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1. Introduction.

In this paper, following [IK2], we continue our study on the N = 1
super Virasoro algebras. There, we have analyzed the structure of Verma
modules, and here we will analyze the structure of Fock modules over the
N = 1 super Virasoro algebras. In the case of the Virasoro algebra, the
modules realized on the space of semi-infinite forms are investigated by
B. Feigin and D. Fuchs [FeFu]. Motivated by their work, Tsuchiya and
Kanie [TK] constructed the representations of the Virasoro algebra on
bosonic Fock spaces via Boson-Fermion correspondence. Here, we first recall
the Fock modules of the N = 1 super Virasoro algebras, and study their
structures. As an application, we will construct the Bechi-Rouet-Stora-
Tyutin (BRST for short) type resolutions announced in [IK1], in detail.

The main idea to study the structure of Fock modules is a gener-
alization of the Jantzen filtration [Ja]. This filtration was used in [FeFu]
to study the structure of Virasoro modules realized on the space of semi-
infinite forms. Here, we reformulate their generalization and state some
general properties of the construction (see §2.3). By our reformulation, in
particular the duality stated in Proposition 2.3, we could even simplify the
original arguments done for the Virasoro algebra. One of the technical dif-
ficulties here arises at the so-called super-symmetric point, and we could
resolve this difficulties by a technique we have developed in our previous
paper [IK2].

Concerning the BRST type resolutions, we use the detailed structure
of Fock modules studied in §4 to construct BRST type complex. Our
proof here is different from those given by [Fel] and [BP] for the Virasoro
case in an essential point, viz., we do not use the so-called screening
operators to construct the complex itself. We can prove the existence of
the coboundary maps by an abstract manner, and we see that the explicit
form of the coboundary maps is given by the screening operators under a
weak assumption. Thus, in particular, our proof is new even for the Virasoro
case.

We consider the supersymmetric point and non-supersymmetric
points separately. The proof for the supersymmetric point uses our

construction of the Jantzen filtration à la Feigin and Fuchs (see [FeFu]
and §2.3). On the other hand the proof for the non-supersymmetric point
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is rather similar to the Virasoro case due to [Fel] and [BP] except for the
point where it is not necessary to use the screening operators to construct
the complex itself.

This paper is organized as follows. In ~2.1, we will recall the definition
of the N - 1 super Virasoro algebras and their Fock modules. §2.2 is

a collection of the necessary facts that follow from the results stated in

[IK2]. §2.3 is the core of this paper where we describe a generalization of
the Jantzen filtration. In §3, we will study basic tools, such as screening
operators and the determinant formulae. In §4, we first state the results
on the BRST type resolutions and the proofs for the supersymmetric point
and non-supersymmetric points are given in different subsections. In §A,
we provide some data which will be used in the main body of the paper.

2. Preliminary.

In this section, we present our framework of the representation theory
of the N = 1 super Virasoro algebras.

In §2.1, we introduce all of the objects considered in this article.

§2.2 is devoted to a reformulation of the Jantzen filtration that fits to our
arguments developed in the further sections.

2.1. Definitions.

Here, we recall the objects that will be considered in this article, the
N = 1 super Virasoro algebras, Verma modules and Fock modules etc.

The Lie superalgebras we are going to consider are the following:

DEFINITION 2.1. The N = 1 super Virasoro algebras Vire
(~ = 2 , 0) are the Lie superalgebras
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which satisfy the following commutation relations:

Vir 1. and Viro are called the Neveu-Schwarz and the Ramond algebras
respectively. Furthermore, Vir~ is Z-graded by setting

and

By definition, Vir c satisfies the following decomposition:

Moreover, Vir~ possesses the following triangular decomposition:

Below, we define the objects that will be treated in this article.

Namely, we introduce Fock-modules of Vir~ .

As a preliminary step, we define the Heisenberg algebra H. Let
be the Lie algebra over the field C whose

commutation relations are given by
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If we put and := Cao EB then we have a

triangular decomposition

Further we set

be the Lie superalgebra
- _ , l-

over the field C satisfying the following commutation relations:

If we set

then we have a triangular decomposition

We also set ; 1

Recall the so-called Fock modules of x and D~ .

For q e C, let Cq := be the one-dimensional H&#x3E;-module given by

We consider the induced module

For 6-= ~,0, let

be the D,.&#x3E;-module whose structure is defined by
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Furthermore, we set

We define the space on which Vir, acts.

DEFINITION 2.2. - For 71 E C, we set

and call i t a Fock module.

Setting

Vir,-module structures on the space can be described as follows:

LEMMA 2.1. - For £ == ~, 0 and h, K E C, we set

where we set

Then we have

1. Vir, acts on the space via

where
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where we set

When we regard the space ,~’~w as a Vir~ module via the above action,
we denote it by 0?/J// .

2.2. Some results on Verma modules.

In this subsection, we will summarize some results on Verma modules

M~(z, h) used in later sections that are not stated in [IK2] but are

immediate consequences of the results. A result on singular vectors in pre-
Verma module N(z, h) will be also given.

The first result that we are going to state is the explicit form of
submodules of Verma modules which belong to Class R+. Let p, q E Z&#x3E;o
be integers satisfying p - q E 2Z and (~2013~, q) - 1, and fix the following
central charge:

THEOREM 2.1. Let us fix (r, s) E K:’q’

1. Suppose that (r, s) does not belong to Case 5+. Then, any proper
submodule of M,(z, hi;,) is one of the following forms:

(i) If (r, s) belongs to Case 1+ (i E Z), then we have

(ii) If (r, s) belongs to Case 2+ (i C then we have
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(iii) If (r, s) belongs to Case 3+ (2 E then ule have

(iv) If (r, s) belongs to Case 4.1+ (i E 2Z_,o), then uTe have

(v) If (r, s) belongs to Case 4.2+ (i E 2~~0), then we have

2. Suppose that (r, s) belongs to Case 5+ (i E 

(i) If i = 0, then any submodule of Mo(z, ho;o) is of the form:

(ii) Any submodule of M(z, ho;o) is of the form:

(iii) If i &#x3E; 0, then any submodule of Mo(z, hi;o) is of the form:

where are submodules generated by an even singular vector
of Lo-weight hj;o whose coefficients cp, cQ of P, Q

expanded with respect to the basis defined in 33 of [IK2]

satisfy 2cp -f- c~ = 0 ( resp. CQ = 0).
The second result that we will use later is the multiplicities
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in the case when they belong to Class R+. Let be the Grothendieck

group of the category 0, and we denote the element of K(O) corresponding
to an object V of 0 by [V]. By Theorem 5.2 and (17) of [IK2], we obtain
the following formulae:

1. If (r, s) belongs to Case 1+, then we have

2. If (r, s) belongs to Case 2+, then we have

3. If (r, s) belongs to Case 3+, then we have

4. If (r, s) belongs to Case 4.1+, then we have

5. If (r, s) belongs to Case 4.2+, then we have

6. If (r, s) belongs to Case 5+, then ule have

Let C be the category introduced in §2 of [IK2]. The third result(g,h)
that we will use later is the extension:
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LEMMA 2.3. Suppose that (r, s) E belongs either to Case 1~
or to Case 5+. For m, n E Z and a, T E Z2, we have

Proof. First, we note that for z, h, h’ e C and cr, T E ~2, one can

compute Extà(ME(z, h; a), L~ (z, h’; T) ) as a direct consequence of Proposi-
tion 2.1 and Theorem 5.1 in [IK2] if satisfied. If

E = 0 and h = 24 z, then by the short exact sequence

we have the next exact sequence

By Proposition 2.1 and Theorem 5.1 in [IK2], we get

from which it follows that
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Second, by the short exact sequence

we get the following long exact sequence:

Now, suppose |lml -|n|| = 1. Then, by Theorem 4.1 in [IK2], we have

Moreover, if at least one of the conditions 6; = - (r, s) # ( .9 , 2 ),
(m, n) 54 (o, 0) and T = a is satisfied, we have

Otherwise, we have an inclusion

Assume that ~ {0}, and let EL be
the corresponding non-trivial extension. Then, there exist a non-trivial
extension EM which corresponds to a non-zero element of Extb(Mo
(z,ho;o;a),Lo(z,ho;O;T)) and a surjective morphism EM - EL. But,
this is impossible since EM is the co-kernel of the map

there is no submodule of EM whose character is the same as the character
of Kervr by Proposition 6.1 in [IK2]. Thus, we get the result in this case.
Next, if we have Iml-Inl ( _ -1, we get

and
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from which it follows that

Hence, the result follows from Theorem 4.1 in [IK2].

Next, if we have Iml - Inl = 1, it follows from Theorem 4.1 in [IK2]
that

Let O":f: E 7~2 be the elements satisfying 2(/z~(t~j~i)~ 2013 = 9± - 0".

Again by Theorem 4.1 in [IK2], we have the following short exact sequence:

from which we get the following exact sequence:

Thus, by assumption, we get

which implies

Finally, we state a result on singular vectors of N(z, h). It can be easily
seen by Proposition 3.2 in [IK2] and its proof that an even (resp. an odd)
singular vector of N(z, h) can be parametrized by a certain two dimensional
vector space. Here, we specify a one dimensional subspace which in fact
parametrizes an even (resp. odd) singular vector at non-supersymmetric
points, i.e., except for the case when it belongs to Case 5~ .

Recall that for E E ~ 2 , 0}, 0152, Q E Z&#x3E;o satisfying 0152 - Q E 1 - 2E + 2Z
and t E C*, we defined complex numbers z(t) and h,,13;,(t) by
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Remark that we have the following symmetry:

As one can see from the determinant formulae (see, e.g., Lemma 6.1 in

[IK2]), the pre-Verma module N(z(t), ha,/3;o(t)) contains even and odd
singular vectors of level 1/2 a,B. Let us describe the even singular vector
in this case. Let h) E N(z, h) be an even highest weight vector:

Let wa,(3 ha,(3;o(t)) E N(z(t), ha,(3;o(t)) be an even
singular vector of level 1/2 aB which is regular in t+ 1. Expanding wa,(3 with
respect to the basis ,13° 2 a~ defined in 36 of [IK2],

we see that the coefficients c~ ~, c;,/3 satisfy the following quadratic relation:

by Lemma 3.3 in [IK2]. Indeed, we can say more about the coefficients
as follows:

PROPOSITION 2.1. - Suppose that (z(t), ha,,~;o (t) ) does not belong to
Case 5~ . Then, the coefficients ca ~, c~,~ satisfy

Proof - By the symmetry (2), we may assume 0152 &#x3E; B without loss
of generality.

We prove this proposition by induction on the level n 

The first step (a, Q) _ (2,1) can be checked by direct computation. Assume
that we could prove the statement up to level n - 1. To prove the statement

for level n, we use the embedding diagram (Figure 2 in [IK2]) for Case

2+, 3+, 4.2+. Since we already know that the coefficients satisfy
the relation (3), we have only to check the statement at a special value.
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For each (a, (3) E (Z&#x3E;O)’ satisfying a(3 = 2n and a - (3 E -1 + 2Z&#x3E;o, there
exist t E C*, (a, ~3’), (~x", 1311) E (Z&#x3E;0)2 satisfying

(The choice of such t, (a’, /3’), (o,", ,~") will be given in Appendix A.2.)
These conditions imply the existence of the following commutative diagram:

Figure 1. Splitting of singular vectors

This commutative diagram ensures the following relations:

Thus, the statement follows from these formulae and the induction hypo-
thesis. D

2.3. Jantzen filtration a la Feigin &#x26; Fuchs.

In this subsection, we will formulate a generalization of the Jantzen
filtration [Ja] à la Feigin and Fuchs [FeFu]. Here, we assume that our ground
field K is of any characteristic.

Let 5’ be an algebraic variety, and V,W be vector bundles over S
of the same rank, say r. Suppose that a morphism of the vector bundles
f : V - W is given.

We denote the sheaf of sections of V, W by V (resp. W).
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Now, let us fix a regular point P C S and a curve C c S containing the
point P as a regular point. We denote the restrictions of V, W, V, Wand f
to the fixed curve C by Vc, Wc and fC respectively. Moreover, the
restriction of them to the point P are also denoted by vp, Wp, 
and fc,p respectively. Here, we assume the following:
Ass The rank of Imfc,p is of full, i.e., r.

We regard the map as a morphism VC, p - Wc, p. Since the
map and f p are the same morphism, regarded as a morphism between
the fibres Vp 2013~ we denote it by fp in this case. Let Oc be the
structure sheaf of C. Then, by assumption, Oc,p is a discrete valuation

ring with its unique maximal ideal mp = (t) with a uniformizing element
t c oc,p.

Under the above setting, we can formulate the Jantzen filtration a la

Feigin &#x26; Fuchs as follows:

DEFINITION-PROPOSITION 2.1. For n E we define an Oc,p-
submodule of VC, p and a K-vector subspace Vc,p(n) of Vp as
follows:

Similarly, we define an of WC, p and a K-vector
subspace by

We set := Im fC, p. Then, the quotient space of Wp is

defined by

Let 7rn be the canonical projection We define the ’n-th.

derivative of f ’

by

where is a i.e., u is an element of Vc,p(n) satisfying
£(P) = u.
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Then, we have the following:
1. The map fen) is well-defined, i. e.,

2. We have the following filtration:

3. We llave the following co-filtration :

We call the above filtrations of vp the Jantzen filtration of

and the above co-filtration the Jantzen

co-filtration of (vp, W p; f ; C).
We remark that a choice of uniformizing element is rather inessential

to define the higher derivatives i.e., they are defined up to a scalar

multiplication. 

This (co-)filtration enjoys more properties:

PROPOSITION 2.2. - For any n E Z&#x3E;o, we have

This proposition suggests the following duality between the Jantzen
filtration and the co-filtration. Namely, let yV, WV be the dual vector
bundles to v (resp. W), and let

be the transpose of f (to be precise, t f is the transpose of the morphism
f at each fibre). Then it defines the Jantzen filtration and the

co-filtration of By the duality, we mean the
following proposition:

PROPOSITION 2.3. - For any n E Z&#x3E;o, ule have
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where * signifies the dual as .K-vector space.

The proof of the above three propositions is rather straightforward,
and we will omit it here.

Now, for each s E C, let U C C be an open neighborhood of s over
which the vector bundles Vc and Wc become trivial. Let C

r(U, Ve), C r(U, Wc) be r(U, Oc)-free basis of r(U, Vc) (resp.
We define °c,s by

We remark that det fc,s is well-defined up to a multiplication by the units

C~c, S .
The next statement follows by an argument similar to the case of the

original Jantzen filtration [Ja], and is called the character sum formula. Let
vp be the valuation of (Oc, p, mp) satisfying vp (m p B m~) == {1} C Z.

LEMMA 2.4.

3. Fock modules I: basic properties.

In this section, we will study some basic properties of Fock modules.

3.1. Screening operators.

Let us first recall isomorphisms among Fock modules.

LEMMA 3.1 (cf. [IK2]). - For A, q, K E C ancl E E {0, ~ }, we have

In particular, it follows that
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Proof. The first isomorphism is induced by the automorphism of
the Lie algebra defined by

The second isomorphism is induced by the automorphism of the Lie algebra
defined by

and the automorphism of the Lie superalgebra D, defined by

The third isomorphism is induced by the isomorphism as

D~)-module, where the anti-involutions aVê of U(H) and U(De)
respectively are defined by

By this lemma, it is enough to study the properties of Fock module

.~’~’~ instead of seemingly general ,~’~;~.
Our arguments in the rest of this subsection follow [TK], where they

considered the Virasoro algebra. For p E C and an indeterminate (, we
/ ,

define the operators i

The operators and ,5’u (~) are defined by

The commutation relations between 5~(() and Vir, can be computed by
the direct computation.
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LEMMA 3.2. - For n E Z and m E E + Z, we have

where [ , ]+ signifies the anti-commutator.

For a E the composition of the operators (i = 1, ~ ~ ~ , a)
is given by

We remark that the left hand side of this formula converges on ~ (~1, ~ ~ ~ , (a) ]
1(11) ~2 ( &#x3E; ~ ~ ~ &#x3E; 1(,, &#x3E; 0}, and the right hand side provides us its analy-
tical continuation. Motivated by this formula and Lemma 3.2, for a

we set 
’

where in the second formula only the j-th factor is replaced by 
Then, Lemma 3.2 implies the following commutation relations:

LEMMA 3.3. - For n E Z and m c E + Z, we have



1774

Next, we will look at the Fourier components of ~1, ~ ~ ~ , (a). For
a E Z&#x3E;o , set

Let S~ be the local system with coefficient in C associated to the mon-
odromy group of the multi-valued function

and S~ be its dual. For each cycle r E and half integers

~ .L 

By Lemma 3.3 and integration by parts, we get

PROPOSITION 3.1. and li ’s (1  i  a) satisfy A = 2 (u -
,a-1 ), ?72013A=2013 a2013" and li = b - 2 a for E CC*, then we have

Here and after, we fix the relation between A and JL as in Proposition
3.1.

DEFINITION 3.1. The operator

is called the screening operator associated to the cycle
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We will consider when the operator SE (11; r; a, b) is non-trivial. We

may assume that a &#x3E; 1, since the case a = 1 is trivial. By looking at the
contribution from the fermions

it turns out that the non-triviality of the operator r; a, b) can be
observed by the non-triviality of

then the local system S~ becomes trivial, and we may
take the residue around (1 - - - - - (a = 0 which is non-trivial. Thus, we

may assume that -(/~+1)~Z. Set

Then, by the change of variables

the above integrand becomes

which is a multi-valued function on and define the local system S~,
with coefficients in C associated to the monodromy group of the above
integrand. We denote the dual of S, by 5~. Then, Lemma 3.9 in [TK]
implies

This means that for a cycle r C Ha(Ma, ~S~ ), there exist r1 E 

(Ya-1, S~ ) and r2 E HI (C*, C) such that the integration (4) is equal to
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Thus, we have reduced the problem to the non-triviality of the first factor.
Set

Then, Proposition 4.2 in [TK] and [Sel] ensure the following:

PROPOSITION 3.2. - There exist cycles r, E Ha_1 (Ya-1, S~ ) defined
on Oa such that

1. r, is holomorphic on Oa.

2. The following formula holds:

where r(s) in the formula is the Euler Gamma function. Take an integer
a C a half integer b E -1 Z satisfying b - 2 a E ( 2 - E) + Z and a
complex number p E Take a cycle r1 = rJ1 E Ha-1(Ya-1,S:), and set
r = r, x r’ where r’ is a generator of 7:fi(C*, C). Under this situation, we
have

THEOREM 3.1. - The screening operator

is non-trivial, i.e.,

. ,

is a non-zero vector in .FAA + 2 and

2. for b  0, there exists a vector in whose image is

One can prove this theorem by a way similar to those given in [TK].
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3.2. Determinant formulae.

For (z, h) E (C2, set

In this subsection, we will compute the determinants of two maps
whose composition is

the map, defined by

for a, T E ~2- Clearly, the modules ME(z, h), h)’ and the map Sz, h
are Z x Z2-graded for (z, h) E C2 . Thus, for n E (1 - and T E Z2, we
set

Fixing basis of . we define the determinant of the

map which is denoted by det, (z, h)~. This determinant can be easily
computed, and the result looks as follows:

LEMMA 3.4. - F’or n E (1 - and T E ~2, we have

Next, we introduce our basic tools to study Fock modules.

DEFINITION 3.2. - For (~, r~) E ~2 and E E ~0, 2 ~, we define two
Vir,-module maps follows:
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in particular, we have

Note that the Fock module .FA nE is Z x Z2-graded, and the maps
LÀ,1];E are also Z x Z2-graded. Hence, for n E (1- and T E ~2,

we set

We denote the determinants of the maps and (LÀ,1];S)~ by
and respectively.

The explicit formulae of and can be de-

scribed as follows. For A e C, set À:f: := A ± VÀ2 + 1.

THEOREM 3.2. - For and

T E ~2? we have

Proof. The proof of this theorem is based on the results of § 3.1.
In fact, one can easily show that the left hand sides are divisible by the
right hand sides. But since we have o S,,,h’q;’F, we have

by a suitable choice of basis. Hence, we conclude that the left hand sides
coincide with the right hand sides by Lemma 3.4.

The details are left to the reader. 0
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4. Fock modules II: structure theorem.

In this section, we will study the detailed structure of the Fock
modules -F"

4.1. Classification of weights.

In this subsection, we will classify the pair (A, il) of parameters which
specify the module 0?’~ .

These ~(T),r~a,,~(T) and z(t), recalled in 82.2 are related by

Thus, by abuse of notation, we say that a pair (A, q) belongs to Class
* if the corresponding weight ha’~ ) does.

If the pair (A, q) belongs to Class V, we have nothing to do.

If the pair (A, r~) belongs to Class I, then there exist (0152, (3) E (7~,0)2
and T E C* satisfying

If the pair (A,?~) belongs to Class R’, then there exist p, q E Z&#x3E;o
satisfying p - q E 2Z, (~ , q) = 1 and

where we set

First, if the pair (A, q) belongs to Class R-, then by Theorem 3.2, it turns
out that both of the maps and can never degenerate at the
same time. This means, in this case, the Fock is isomorphic
to either the module h7;’) or its contragredient dual 
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Thus, the structure of the Fock module 0?’~ has already been investigated
in §4 of [IK2]. Hence, we will classify the only pair (A,,q) that belongs to
Class R+ below.

Set

For each (r, s) E Kp,q, we set

According to the degeneracy of the weights s; i), we regroup Kp,q into
four groups as follows:

TABLE 1. - Classification of 

Remark 4.1. The degeneration of s; i) are summarized in the
following table:
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Thus, we may assume that the range of i in q(r, s; i) for each case is given
by the following table:

Remark 4.2. - The automorphism of Kp,q defined by

has the following meaning. It can be checked directly that we have

which implies that

This, in particular for i = 0, is nothing but the symmetry of the Kac table,
and at the level of the Fock modules, we have

by Lemma 3.1. This observation simplifies the arguments given in § 4.3.

Remark 4.3. - Setting

for (r, s) E Kp,q and z E Z, the Lo-weights h(r, s; i), and hi;e defined in
[IK2] are related as follows. Set
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Then, for (r, s) E Kp,q, the weights (h(r, s; and the weights for

a(r, s) E K:’q are related, and their explicit relations are given by the
following table:

The list of the lattice points on the line 1,, ol s - ;, (~ E f ± 1) defined by
the factors of determinant

in the first quadrant of the (a, 0) -plane for Class R+ is given in §A.1.

4.2. Structure of Fock modules: simple cases.

In this subsection, we will set up the necessary tools to study the
structure of the Fock modules 0?’~ . In particular, we will also study the
case when does not belong to Class R+.

For each £ E {0, 1/2 }, let IF, Mc be the trivial vector bundles on2
D = C2 whose fibres at a point (A,,q) E D are hA’NE), and

Me (ZA, respectively. Moreover, let r, L be the morphisms of bundles
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whose restriction to the fibre over a point (A, 7]) E D are and LÀ,1];ê

respectively. We define the morphism of vector bundles S : 1D~ ~ MC by
,S’ := Lor. Since each fibre of M, F, M’ is a graded vector space with finite
dimensional graded subspaces and the morphisms preserve this grading, we
can apply the method developed in § 2.3 and define the Jantzen filtration
and the co-filtration in a natural way. For each point P == 
let Cp be the line defined by

be the Jantzen filtration of the quadruples (resp.
and and let

and be the Jantzen co-filtration

of the quadruples
respectively. We remark that since the maps and are

Vir,-module morphisms, it follows that the Jantzen filtrations and the co-
filtrations defined above are sequences of Vir,-modules.

For (A, Tj) E ((:2 and each n E set

Fixing a uniformizing element t of Oc,,p, the n-th. derivative of 

and are defined, and we denote them by ]F(n] and
respectively.

LEMMA 4.1 ([FeFu]).2013 Let k, 1 G and assume there exists a

vector
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where we set (z, h) - (z~, h~’~ ) . Then, there exist vectors wf E 
.~’~’~ ~l -f- 1) and wc E h) c B satisfying

Proof. Set P := (A,7/) E D and Let

and be the stalk of the sheaves of sections of 

(resp. Fcp and Mop) at the point P. For each n e Z&#x3E;o, we set

Then, since we have

by definition, we can take

satisfying u(P) = w. Now, setting

where t is the fixed uniformizing element of Gcp,p, it is easy to check that
these wf , w~ satisfy the properties in the lemma. 0

Let us study the structure of the Fock modules in each case.

First, if a point (A, q) e D belongs to Class V, then the module .~~’~ is

irreducible. Hence, we have

LEMMA 4.2.
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Second, if a point (A, q) E D belongs to either Class I or Class R-,
then only one of rÀ,r¡;E and can vanish. To be precise, take T E C*

satisfying A = a (T) and (a, ,~3) E (Z&#x3E;0)2 satisfying 71 ± r~a,~ (T ) ~ .
Then, by the determinant formulae (Theorem 3.2), we obtain the following
lemma:

LEMMA 4.3. - Under the above setting,

1. = A(T) + 71,,,3 (T), then we have

2. ifq = A(T) - then we have

4.3. Structure of Fock modules: Class R+.

In this subsection, we study the structure of the Fock modules -F";e
in the case when (~, r~) belongs to Class R+ in detail.

Let us fix p, q C Z&#x3E;o satisfying

and set

As in [IK2], we use the character sum formulae to study the structure of
Fock modules. By the duality stated in Proposition 2.3 and Remark 4.2, it
is enough to compute the character sum formulae

The results are given as follows:

LEMMA 4.4. - The sum
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is given by

1. Group

2. Group

3. Group 

This lemma is a simple consequence of Lemma 2.4, Theorem 3.2 and

3A.1.

Now, we first analyze the structure of the Fock module Yl" where
(A, TJ) belongs to either Group 4 or Group T. In this case, we have the
following lemma:



1787

LEMMA 4.5 (Group

Proof. We first prove the case when (A, q) belongs to Group 4. We
prove the statement by induction on k.

By Lemma 4.4, it follows that dim

{0}. Thus we conclude that

On the other hand, Lemma 4.4 implies that

since we have [ Thus, by
Theorem 2.1, the statement for k = 1 is proved. Assume that we could

prove the statement up to l~ - 1. Then, it follows from Lemma 4.4 and the

hypothesis that

Thus, by an argument similar to the case of k = 1, we can prove that the
statement is also true for k, and we complete the induction.

Second, we prove the case when (~, r~) belongs to Group T. Again, we
prove the statement by induction on k.

By Lemma 4.4, it follows that

and

Thus, we see that
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First, we prove the statement in the case i - 0 and 1. Let ,S’ E

~ be an element such that "
is an even singular vector. Suppose S.(1 Q9 10 1 z) E Then,

~ 24 ’ ’

since we have S. (1 0 1x) © (1 0 1 ° ) = 0 by assumption, we see that
S is an element of the left ideal of a certain completion of U(H EB Do)
generated by H+, Do;+ and ao - A. But then, it is easy to see that

is also an even (non-zero) singular vector, and since
we h ave = it turns out that

This is impossible, since we have

and (7). Thus, by Theorem 2.1, we conclude that the statement is true in
this case.

Second, we prove the statement in the case 1 ~ 0 and 1~ = 1. Let

be elements such that is a non-zero even

singular vector. Then, it is easy to see that (7](~~,~ ~’; i) - + Y is an
element of the left ideal of a certain completion of e3 Do) generated
by 7~, Do;+ and ao - 7]( ~, ~; i). Then, it is also easy to check that the

even singular vector + Y)Go. (1 0 1°,h( q , ~ ;i)o ) is also an element

which implies that

Expanding X and Y with respect to the basis ,13y°z~ q , 2 P 2 ;_~~2~+l~~o_h~ q , ~ 2 2 ;i~o
as in ~IK2~
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and comparing the coefficients of Go and

, we obtain

by (8). This implies that cy # 0 and 0, and hence the statement
is true in this case by Theorem 2.1. Assume that we could prove the
statement up to k - 1. Then, it follows from Lemma 4.4 and the hypothesis
that

Thus, we see that

Paying attention to the fact that there exists a section u E

such that u(P) is an element
of we can

prove that the statement is also true for k by similar arguments. iheretore,
we have completed the proof. D

First, suppose that (A, q) belongs to Group 4. For k E Z B 101,
let Wk E h(r, s; i)~) be a singular vector of Lo-weight being

. Second, when belongs to Group T, for

k C 2Z B f 0~, we let be a singular vector of Lo-
_ _ 

.. _ _

weight being h ( 2 , 2 ; (sgn which is an image of a highest weight
vector under an injective map (see Theorem 4.4 in [IK2]). For k E 
we let Wk E 2 ; i)o) be a singular vector of Lo-weight being2 2 

- 
.. ,

which belongs to , and for

1~ E -1 + 2Z&#x3E;0, we let be a singular vector of Lo-
weight being 2 ; ~ Iii + which is not a scalar multiple of and is

an image of a highest weight vector under an injective map.

Now, for k E Z B 101, we define a vector as a vector that

corresponds to in the sense of Lemma 4.1. Here we

also set
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As an application of Lemma 4.5, we can illustrate the structure of the Fock
module 0?’~ in the case when it belongs to Group 4 or T as follows:

THEOREM 4.1 (Group 4 &#x26;:’?). - The structure of the Fock module
(Z E Z) can be described as follows:

Thus, we set

be the canonical projection.

2. For I E Z, we have

be the canonical projection.

3. We have the following isomorphisms:

Remark 4.4. - Pictorially, the structure of the Fock module 
that belongs to either Group # or Group T can be illustrated as follows:
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Figure 2. Group ~ &#x26; T

Here, o and x denote a singular vector, and the zero vector in the
indicated quotient respectively. The arrow

v --~ w

signifies the fact that the vector w lies in U (Vir E)’ v in an appropriate
quotient module. The existence of these arrows is the direct consequences
of Propositions 2.2, 2.3 and Lemma 4.5. Indeed, we have

in this case.

Now, let us prove Theorem 4.1.

Proof. By the fact that we mentioned in Remark 4.4 and Lemma
4.1, it is easy to see the following facts:

(A) The character of the modules A and KerPr(k] for

l~ E Z&#x3E;o can be expressed as follows:
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(C) For k E Z&#x3E;o and 1 E Z, we have

Hence, to prove the first statement of the theorem, we have only to consider
the modules

In fact, it follows from (B) and (C) that for k E Z&#x3E;o and 1 E Z,

Moreover, (A) and (B) guarantee that the vector singular vector.
Thus, the module

is a highest weight module with highest Lo-weight h(r, 5; Iii + 2k - 1)~. We
remark that this module is non-zero, and the following inequalities hold

(b’h E cC) :

Now, by Lemma 2.2 and (A), it turns out that

and the first statement is proved. In fact, we have proved the existence of
an isomorphism:

Similarly, to prove the second statement, we have only to consider the
modules

-_.:B_- /J ...1
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In fact, similar arguments show that

Now, the second statement follows from Lemma 2.3.

The third statement can be proved by noting the fact that for k E Z&#x3E;o and
l E Z, we have

u

Second, we analyze the case when (A, TI) belongs to group A. In this
case, we have the following lemma which can be proved in a way similar to
the case of Group 4:

LEMMA 4.6 (Group 44). - For i E 22 and k E vrTe have the

following:
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As an application of this lemma, we can show the following structure
theorem of the Fock module 0? when (A, Tj) belongs to Group ~:

THEOREM 4.2 (Group ~).2013 The structure of the Fock module
22) can be described as follows:

Thus, we set
let

be the canonical projection.

(ii) We have

be the canonical projection.
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(ii) We have

One can prove this theorem by a similar way to the proof of Theorem 4.1,
so we will omit its proof here.

Third, we analyze the case when (A, q) belongs to group J. In this
case, we have the following lemma which can be proved in a way similar to
the case of Group #:

LEMMA 4.7 (Group ~).2013 For i C 2Z and k E Z&#x3E;o, we have the
following:

Remark 4.5. - According to our choice of the space of parameters
(i.e, f (A,,q)l), one has to be careful when one study the Jantzen filtration

In fact, in the case when belongs to
Group 0, one can check that the following hold:
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This happens because of the ramification of the covering

Note that this is the only subtle case, i.e., the case where the results require
some modifications. (Compare this with Theorem 4.1 in [IK2].)

By Lemma 4.7 and Remark 4.5, the following theorem can be shown
in a way similar to the proof of Theorem 4.1:

THEOREM 4.3 (Group 0). - The Fock module semi-

simple, and we have

Remark 4.6. - The following diagrams illustrate the structure

of the Fock modules in the case when (A, q) belongs to Group A or
Group 0: 

-

Figure 3. Group 46 &#x26; ~

Here, 4 : 1 (resp. 46 : 2) signifies the classification in Theorem 4.2.



1797

5. Bechi-Rouet-Stora-Tyutin resolution.

In this section, we construct Bechi-Rouet-Stora-Tyutin (BRST) reso-
lution for the minimal cases.

5.1. Bechi-Rouet-Stora-Tyutin complex.

Let us fix p, q E satisfying p - q E 2Z and (~~?9) = 1. For

o;, /3 E Z and (r, s) E Kp,q, we set

Moreover, for (z, h) E C 2, we set

Then, we have the following theorem:

THEOREM 5. 1. - Let us fix (r, s) E Kp,q satisfying (0  r  q, 0 
s  p). Take k C and j E 

1. We have the following complex:

where az, (3z (l E Z) and the BRST differential

are given by one of the following two cases:

(I) For 1 C Z, we have

In this case, we have
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and the numbers al are given by

provided that J-L is an element of Oal for each I E Z.

(II) For l E Z, we have

and the numbers al and bi are given by
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provided that p is an element of Qc,, for each l E Z.

Here, in both cases, the twisted cycles T l E Hal (Ma, S~ ) are so chosen that
the co-boundary operators dl are non-trivial morphisms.

2. The cohomologies of the complex C

can be described as follows:

(a) For i = 0, we have

(b) For i ~ 0, we have

Remark 5.1. - As we will see in the next subsection, we do not use

screening operators to construct the BRST complex. The existence of a non-
trivial screening operators for any (r, s) satisfying 0  r  q, 0  s  p

is rather subtle, and it seems that there are some cases whose existence
problem has not solved yet. The same situation also happens even for the

ordinary Virasoro algebra.

5.2. Existence of the coboundary maps.

In this subsection, we prove the existence of a non-trivial morphism
Ci-- Ci+1 for all I e Z.

To be precise, we will prove the following proposition:

PROPOSITION 5.1. Take k E ZO, and let j c Z be an integer
satisfying j E ~ ~ 1~ ~ . We have
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Let us fix (r, s) E Kp,q satisfying 0  r  q, 0  s  p. We first note
that we have the following formulae:

Below, we will only study a non-trivial morphism

for l E since the other cases can be treated by a similar manner.

For i = 1 + 1, l and k E Z, we denote the element of introduced

before Theorem 4.1 as w~ by By Theorem 4.1, it follows that any
morphism from J

. 
factors through i i.e.,

we have the following figure: F (rs;l);,-

First, we will show that the arrows --~ in the above diagram is in
fact an isomorphism in the case when (r, s) belongs to Group 4, i.e.,
(r, s) ~ ( 2 , 2 ) . In this case, it follows from Theorem 4.1 that there is

no singular vector in whose Lo-weight is the same as that of

1) for k E Z&#x3E;o . Thus, in this case, any morphism
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factors through.

be the canonical projection. For j E we set

Below, we will prove that Fj is isomorphic to 0j for each j E Zjo. Let Y~
be one of Then, for k E Z&#x3E;o, it satisfies the following short exact
sequences:

(Here and after, we omit denoting the dependency of the parity of the
highest weight vectors to simplify the notations. Thus, in particular, we
assume that the parity is chosen appropriately.) Notice that these exact
sequences are both non-splitting. Therefore, it is enough to show that

First, we will prove (11). We remark that (11) for j - 1 is a direct

consequence of Lemma 2.3, since Yo - h(r, s; 1 + 1),) by Theorem
4.1. From the long sequence of Ext associated to (10) for k = j - 1, it is

enough to show

since by definition, we have
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By the long sequence of Ext associated to (9) for 0  I~  j and Lemma

2.3, we get

On the other hand, the long sequence of Ext associated to (10) for

0  1~  j - 1 and Lemma 2.3 yields the following inclusion:

Now, (13), (14) together with Lemma 2.3 prove (11).

Second, we will prove (12). From the long sequence of Ext associated to
(9) for k = j, it is sufficient to show

since by definition, we have

By the long sequence of Ext associated to (10) for 0  k  j and Lemma
2.3, we have

On the other hand, the long sequence of Ext associated to (9) for 0  k  j
and Lemma 2.3 yields the following inclusion:

Now, (15), (16) together with Lemma 2.3 prove (12). Thus, to prove

Proposition 5.1 for Group ~, it is sufficient to prove

We will prove this together with Theorem 5.1 for Group 4, and will give
it in the next subsection.
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Second, we will prove that the arrows ~ in the above figure is a

non-trivial morphism, which is unique up to a scalar, in the case when
(r, s) belongs to Group T, i.e., (r, s) = (1, ~). In this case, let 7r be the

canonical projection

For j E we set

Note that we have the following short exact sequences:

We will show that dim Homviro (9j, Fj) == 1 and a non-trivial mor-

phism in extends to Homviro (~+1,~+1) by induction
on j.

The first step, i.e., for j = 0, the first assertion is trivial by definition.
By Lemma 2.3, (17) and (18), it follows that there exists a unique, up to
scalar, non-trivial (mono-)morphism

Here, we denote the domain of fo and Im fo by 90 and T70, respectively. By
Lemma 2.3, the long sequence of Ext associated to (17) and (18) yields
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which implies the second assertion for j - 0. Hence, we have a unique
non-trivial morphism f 1 E By construction, the first

statement for j = 1 is also trivial. Set

Letting f 1 be an isomorphism 01 E£ :F1, it is clear that the morphism f 1
factors as

Since Lemma 2.3 and the long sequence of Ext associated to the short exact
sequences

yield

the morphism fi extends to a unique, up to a scalar, non-trivial (mono-)
morphism

Let us denote the domain of fi and Im f 1 by 91 and ;::1 respectively. Clearly,
we have the next short exact sequence

By Lemma 2.3 and the long sequences of Ext associated to the short
sequences (19), (20) and (21), it follows that
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from which the second assertion for j = 1 follows.

Now, one can proceed a general step of the induction by a similar
argument. We will leave the detail to the reader.

5.3. Proof for Group 4.

Before proving Theorem 5.1, let us recall an analogue of Schur’s
lemma:

LEMMA 5.1. - Let M be an object of the category 0. Suppose M is
indecomposable and has a Jordan-Hblder series. Then, we have

Proof. The proof of this lemma is a consequence of the following
statement that can be proved directly:

Let K, L, N be objects of the category 0. Suppose that K is indecom-
posable and Endvirg (K) ^--’ C, and that L is irreducible. If N is a non-trivial
extension satisfying the following short exact sequence ,

then we have

U

Now, let us turn to the proof of Theorem 5.1.

By Theorem 4.1, it follows that for k E Z&#x3E;o satisfying k x j, there
exists a unique submodule of gkwhich is isomorphic to 9j. Moreover, since
we have

by Lemma 5.1, it turns out that
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Hence, we get

Now, a concrete isomorphism from lim 0j to lim 0j is given by Theorem
- -

3.1 under the assumption in Theorem 5.1.

5.4. Proof for Group 

--- 

Let us first state a variant of Proposition 2.1 for quasi-Verma modules

M(z, h). For (A, q) e D (see §4.2 for the definitions), let T) (T e Z2)
be generators of M(za, satisfying

We may assume the following equalities:

without loss of generality.

A basis of each weight subspace of AY(z,B, h7;0) can be described as
follows. For j E Z, ij E Z&#x3E;o and T, E, Ej E 7~2, set

Then, for cr E Z2 and n E 

form a basis of , let

(see (6) ) be an even singular vector of which is regular in 
Expanding with respect to the basis ,l3° 2 a~, set
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The next proposition is a corollary of Proposition 2.1:

PROPOSITION 5.2. - Suppose that (A, TI) does not belong to Group
Q. Then, the coefficients ca ~, ê;,/3 satisfy

Now, let us turn to the proof of Theorem 5.1 in the case when (r, s)
belongs to Group T, i.e., (r, s) = ( q , p/2).2 2

First, we construct the coboundary maps that commute with higher
derivatives of F and L.

For a C f ±1, a E Z&#x3E;o and b E 2 Z satisfying b - 1/2 a E 1/2 + Z, let Ca,b
be two rational curves in D defined by 

(C* --4 D be a morphism defined by

It can be easily checked that ca b induce isomorphisms

of algebraic varieties. Let be vector bundles over C* whose

fibre at a point T E (C* is given by := (V = i.e.,
we set 

~’

For l E Z and 1~ E we define the morphisms of bundles over C*,

and
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as follows. The morphism uL (resp. restricted to each fibre is a non-trivial

embedding (resp. the canonical projection) of Viro-module. For l E Z, the
restriction of dl to each fibre is a non-trivial morphism which satisfies the
following commutative diagram:

The existence of morphisms d, are guaranteed by the fact that rand L are
isomorphisms at the fibre over a general point.

Remark 5.2. - The existence of such morphisms dl at a special point
is given by Proposition 5.1 and its variant, and hence the global existence
of dl is guaranteed.

Second, we show that the long sequence in Theorem 5.1 is, in fact,
a complex.

Fix , J For let (resp.
be the Jantzen filtration (resp. the Jantzen co-filtration)

associated to the quadruple (IL) bl (u) ; r; C6al ,bl ) . For t E 0,
__ 

al,bl a bl Cal,bi). 
For 1 c Z_

let (resp. be the Jantzen filtration

(resp. the Jantzen co-filtration) associated to the quadruple (Kerr¿a (u),al, bl
Coker r ¿ a (u); r’; Cal ,bl ), where r’ is the first derivative of r in the sensei ]F’; Cai, bi ) I
of Definition-Proposition 2.1. For n E we set

As an application of Theorem 4.1, it follows from the genericness of
the curves that the following lemma holds:

LEMMA 5.2. The Jantzen filtrations 

coincide with those obtained in Lemma 4.5. Thus, in particu-
lar, the Jantzen co-filtrations are the

same.

Here and henceforth, we use the symbols
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let

be the canonical projection. By construction, we have the following key-
lemma :

LEMMA 5.3. - For n E we have the following:

1. l E Z  0:

Hence dl induces a morphism,
which will be denoted by the same symbol dl.

(iii) The following diagram is commutative:

Hence d, induces a morphism
be denoted by the same symbol dl.

(iii) The following diagram is commutative:

Thus, by this lemma, ti induces the following morphisms:

By Proposition 5.2, one can prove the following lemma:
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LEMMA 5.4. - For l E Z, we have
, , , ,

Now, we show that the long sequence in Theorem 5.1 is a complex.

For 1 E Z, we prove that

by induction on n. The first step, i.e., n = 1 case is trivial by Theorem 4.1.
Suppose we could prove (22) up to n. By the commutative diagrams

and Lemma 5.4, it follows that

which implies
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By Lemma 2.2 and Lemma 4.5, it turns out that there does not exist

(z, h) E (C2 satisfying

where the positive integer n, is defined by

Thus, induction hypothesis (22) up to n implies (22) for n + 1. Therefore,
we have proved that the long sequences in Theorem 5.1 are complexes.

Next, we compute the cohomology of the complex C in Theorem 5.1.

By Theorem 4.1, Lemma 5.3 and the definition of coboundary morphisms
one can prove the next lemma:

LEMMA 5.5. - Let e Z&#x3E;o be a positive integer.

1. The complex

is quasi-isomorphic to the complex

2. For any n e the following long sequence is exact:

where we set

Set

and consider the following commutative diagram for n E Z&#x3E;o :
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Since the long sequence in the last row is acyclic by 2 of Lemma 5.5,
it turns out that the complexes in the first row and the second row are
quasi-isomorphic. Namely, for n E Z~o? if we define the complex C(’) by

then and C~n+1&#x3E; are quasi-isomorphic. Moreover, since we have

Part 2 of Theorem 5.1 follows from 1 of Lemma 5.5.

A. Data.

In this section, we provide some numerical data used in the main
body of this article.

A.1. Lattice points (ak, on the line l’»

In this subsection, we will supplement some data used in §4.3. In
particular, the data for Class R+ will be provided.

Let p, q be positive integers satisfying p - q E 27~ and (~2013~, q) - 1.
Fix

For each o- E ~~~, we will arrange the lattice points of the

line in the first quadrant of the (a, (3)-plane so that they satisfy
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Then, one can see that the following relation always holds:

Thus, we will list for each a c f ± 1. Moreover, we will also
list j E ~ satisfying

Group

Group



1814

Group

1. For , I

2.Fora=-;
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Embedding pattern.

In this subsection, we will provide the data to prove the existence of
the commutative diagram (Figure 1) in §2.2.

To be precise, we have to specify the value p, q E and r E

Z&#x3E;o (resp. s E Z&#x3E;o) to use the Embedding diagram in [IK2]. Thus, for
each (o~/3) E (Z&#x3E;o) 2, we will present the following data:

1. The case where (z(t), belongs to.

2. The values p, q (t is related to these number by t = q ) and r
(resp. s).

3. The commutative diagram together with the pairs (c/, 

Here, we symbolize the commutative diagram (Figure 1) as

where i, j, k E Z satisfy

Let a, f3 E Z&#x3E;o be positive integers satisfying



1816

(i) Case 3+.

(i) Case 2+.

(i) Case 2+.

(i) Case 3+.
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(i) Case 3+.

(i) Case 3+.

(i) Case 4.2+.

(i) Case 3+.
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