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NONRESONANCE CONDITIONS FOR ARRANGEMENTS

by D.C. COHEN~, A. DIMCA &#x26; P. ORLIK~

1. Introduction.

Let be an arrangement of hyperplanes in the complex projective
space P’, with complement M(A) = U H EA H. Let ,C be a complex
local system of coefficients on M (,,4.) . The need to calculate the local system
cohomology H*(M(A), L) arises in a variety of contexts, including the
Aomoto-Gelfand theory of multivariable hypergeometric integrals [1], [15];
representation theory of Lie algebras and quantum groups and solutions of
the Knizhnik-Zamolodchikov differential equation in conformal field theory
[25] ; and the determination of the cohomology groups of the Milnor fiber of
the non-isolated hypersurface singularity at the origin in associated

to the arrangement [5].
In light of these applications, and others, the cohomology 

has been the subject of considerable recent interest. Call the local system
,C nonresonant if this cohomology is concentrated in dimension n, that

is, = 0 for k :~- n. Necessary conditions for vanishing, or
nonresonance, have been determined by a number of authors, including
Esnault, Schectman, and Viehweg [13], Kohno [17], and Schechtman, Terao,
and Varchenko [24]. Many of these results make use of Deligne’s work [7],

t Partially supported by Louisiana Board of Regents grant LEQSF (1999-2002)-RD-A-01
and by National Security Agency grant MDA904-00-1-0038.
t Partially supported by National Security Agency grant MDA904-02-1-0019.
Keywords: Hyperplane arrangement - Local system - Milnor fiber.
Math. classification: 32S22 - 52C35 - 55N25.
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and thus require the realization of M(A) as the complement of a normal
crossing divisor in a complex projective manifold.

An edge is a nonempty intersection of hyperplanes. An edge is dense
if the subarrangement of hyperplanes containing it is irreducible: the

hyperplanes cannot be partitioned into nonempty sets so that after a change
of coordinates hyperplanes in different sets are in different coordinates.
This is a combinatorially determined condition which can be checked in
a neighborhood of a given edge, see [24]. Consequently, this notion makes
sense for both affine and projective arrangements. Let D(A) denote the set
of dense edges of the arrangement A.

Let N - U H EA H be the union of the hyperplanes of A. There
is a canonical way to obtain an embedded resolution of the divisor N

in P’. First, blow up the dense 0-dimensional edges of ,A to obtain a
map PI : Then, blow up all the proper transforms under pi
of projective lines corresponding to dense 1-dimensional edges in D(A).
Continuing in this way, we get a map p = pn-i : P’ which is

an embedded resolution of the divisor N in P’. Let Z - Then,
D = p-1 (N) is a normal crossing divisor in Z, with smooth irreducible
components Dx corresponding to the edges X E D(A). Furthermore, the
map p induces a diffeomorphism Z B D = M(A), see [23], [24], [25] for

details.

Let ,C be a complex local system of rank r on the complement M(A)
associated to a representation

p : a) - GLr(C).

To each irreducible component Dx of the normal crossing divisor D

corresponds a well-defined conjugacy class T x in GLr (C) , obtained as the
monodromy of the local system ,C along a small loop turning once in the
positive direction about the hypersurface Dx . In this note, we prove the
following nonresonance theorem.

THEOREM 1. - Assume that there is a hyperplane H E A such that
for any dense edge X E D (A) with X C H the corresponding monodromy
operator Tx does not admit 1 as an eigenvalue. Then ~(M(.4),.C) = 0
for any k 7~ n.

In the case when ,C is a rank one complex local system arising in the
context of the Milnor fiber associated to ,A (see [5] and Section 5 below),
this result was obtained by Libgober [20]. We do not see a simple way to
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extend the topological proof given by Libgober in this special case to the
general case stated above.

Outside the range of vanishing results, the interested reader can find
new explicit computations for the dimensions of the cohomology groups

L) in [12].
The structure of this note is as follows. Theorem 1 is proved in

Section 2. Local systems which arise from flat connections on trivial vector
bundles are considered in Section 3. The implications of Theorem 1 in this
special case are compared with other nonresonance theorems in Section 4.
A brief application to Milnor fibers associated to line arrangements in P~,
strengthening a result of Massey [21], is given in Section 5. A strategy
to handle arrangements of more general hypersurfaces is presented in

Section 6.

2. Proof of Theorem 1.

Before giving the proof of Theorem 1, we say a few words concerning
the monodromy operators Tx. Let A denote the central arrangement
in C’+’ corresponding to the arrangement ,A, in The representation
p : 7r1 (M(,,4), a) - GL, (C) induces a representation

where a is any lift of the base point a.

For such a representation ~, associated to a local system £ on the
complement of A, there is a well-defined total turn monodromy operator
T (.A.) = p(’1), where ’1(t) = for t E [0, 1]. Choosing a generic
line passing through a and close to (but not through) the origin yields, in
the usual way, m elementary loops which generate the fundamental

group 7FI (H(,,4), a). The product in a certain natural order of the associated
monodromy operators in GLr (C) is easily seen to be exactly the total turn
monodromy operator T(.,4). In particular, if L (resp., p) is abelian, the order
is irrelevant and T (,~4) = T1 ... where Tj is the monodromy around the
hyperplane Hj.

Let X be a dense edge of ,A. and let V be an affine subspace of

complementary dimension in cn+1, transverse to X at a generic point x in
X. Consider V as a vector space with origin x and let ,t3 denote the central
arrangement in V induced by A. Let B be the corresponding projective
arrangement in P(V). The following result can be checked by the reader.
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LEMMA 2. - The following conjugacy classes in GLr(C) coincide:

(a) The monodromy Tx ;

(b) The total turn monodromy T(B) ;
(c) The monodromy of the restriction of the local system £ to any of

the fi bers of the projection M (,~3) ~ M(B).

Now we prove Theorem 1. In this proof, we use a partial resolution
similar to the resolution p : Z ~ P’ mentioned in the Introduction.

First, blow up all the dense 0-dimensional edges contained in the
chosen hyperplane H. This yields a map q1 : P’. Then, blow up all
the proper transforms under q1 of projective lines corresponding to dense
1-dimensional edges in which are contained in H. Continuing in this

way, we get an embedded resolution of the divisor N in P’ along H. This

yields a map q = W = P’ such that E = q-1 (N) is a

normal crossing divisor at any point of H’ = q-1 (H). Moreover, H’ has
smooth irreducible components Ex corresponding to the edges X E D(A),
X C H, and q induces a diffeomorphism W B H’ = P’ B H. Note that
the conjugacy classes Tx for X E D(A), X C H constructed from the
resolutions Z and W coincide.

Let U = W B H’ = P’ B H, and let z : M (,,4 ) -~ U and j : U - W be
the corresponding inclusions. Denote the derived category of constructible
bounded complexes of sheaves of C-vector spaces on U by Db(U), and let
.~’ = Rz’,,,C [n] E Db(U). Since is smooth, the shifted local system
~’[7~] is a perverse sheaf on M(A). Moreover, since i is a quasi-finite affine
morphism, it preserves perverse sheaves, and hence .~’ E Perv(U), see [16,
(10.3.27)].

Since U is a smooth affine variety, by the Artin Theorem and Verdier

Duality, see [16, (10.3.5) and (10.3.8)], we have the following vanishing
results:

(1) 0) = 0 for all k &#x3E; 0, and = 0 for all 1~  0.

Note that we can write = and j7)
where s : M~ 2013~ pt is the constant map to a point. Since

P’ is compact, s is a proper map, and hence Rs* = Rsi. Consequently, in
light of the Leray-type isomorphism

to prove Theorem 1, it is enough to establish the following result.
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LEMMA 3. - With the above notation, if for any dense edge X E
D(A) with X C H the corresponding monodromy operator Tx does not
admit 1 as an eigenvalue, then the canonical morphism Rjj0 - in

is an isomorphism.

Proof. The canonical morphism is an isomorphism if and only if
the induced morphisms on the level of stalk cohomology are isomorphisms.
This local property is clearly satisfied for the stalks at x E U since U is
open.

Consider the case x C H’. Then = 0 using the proper base

change, see [16, (2.6.7)~. To show that 0, we have to compute
the cohomology groups 1 where B is a

small open ball in W centered at x.

Since E is a normal crossing divisor at x, it follows that the funda-

mental group of M(A) r1 B = (W B E) rl B is abelian. Using the methods
of [14], we can decrease the rank of the local system ,C. Repeating this
process yields a rank one local system, where the result follows using the
Kfnneth formula, since at least one of the irreducible components of E

passing through x corresponds to a dense edge X C H.

This completes the proof of Lemma 3, and hence that of Theorem 1
as well. 0

Remark 4. - A vanishing result similar to Theorem 1 for hyperplane
arrangements over algebraically closed fields of positive characteristic may
be obtained by using [3] as a reference instead of [16].

Remark 5. - Assume that there is a hyperplane H such that

for any dense edge X E with X C H and codim X  c the

corresponding monodromy operator Tx does not admit 1 as an eigenvalue.
Then HP(M (A), L) = 0 for any p with 0  p  c. Indeed, by intersecting
with a generic affine subspace E with dim E = c, we obtain a c-homotopy
equivalence r1 E - induced by the inclusion, and hence
isomorphisms HP(M(A) n E, ,C ) = for 0 ~ p  c. The

assertion follows by applying Theorem 1 to the arrangement in E induced
by the arrangement A.
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3. A special case.

In this section, we consider the special case of local systems which
arise from flat connections on trivial vector bundles. Write A= f Hi,... , 
and for each j, let fj be a linear form with zero locus Hj. Let cJj = d 
and choose r x r matrices Pj E which satisfy 0. For an

edge X of A, set Consider the connection on the trivial

vector bundle of rank r over with 1-form ( The

connection is flat if cv = 0. This is the case if the endomorphisms Pj
satisfy
(2)
[Pj, Px] = 0 for all j and edges X such that codim X = 2 and X C He

see [17]. Let £ be the rank r complex local system on corresponding
to the flat connection on the trivial vector bundle over M(A) with 1-form w.

Remark 6. - An arbitrary local system ,C on M(A) need not arise
as the sheaf of horizontal sections of a trivial vector bundle equipped with
a flat connection as described above. The existence of such a connection is

related to the Riemann-Hilbert problem for ,C, see Beauville [2], Bolibrukh
[4], and Kostov [18]. Even in the simplest case, when n = 1 and IAI &#x3E; 3,
there are local systems ,C of any rank r &#x3E; 3 on M(A) for which the

Riemann-Hilbert problem has no solution, see [4, Theorem 3].
For a local system which may be realized as the sheaf of horizontal

sections of a trivial vector bundle equipped with a flat connection, Theo-
rem 1 has the following consequence.

COROLLARY 7. - Assume that there is a hyperplane H E A such
that

(3) none of the eigenvalues of Px lies in Z for every dense edge X C H.

Then

This result is a refinement of the vanishing theorem of Kohno [17],
where condition (3) is required to hold for all edges. Next, we recall the

following well-known nonresonance theorem of Schechtman, Terao, and
Varchenko [24].

THEOREM 8 ([24, Corollary 15]). - Assume that none of the eigen-
values of Px lies in for every dense edge X E D (,,4) . Also suppose that
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. Then

Note that this result pertains only to abelian local systems. This
assumption is not necessary.

THEOREM 9. - Assume that

(4)
none of the eigenvalues of P x lies in for every dense edge X E D (A) -
Then

Sketch of Proof. Let B’ (,,4) denote the algebra of global differen-
tial forms on generated by the 1-forms cJj , the Brieskorn algebra of
A. Since the endomorphisms Pj satisfy (2), the tensor product B’o (A) 0 cr ,
with differential given by multiplication by w = ¿T=l úJj 0Pj, is a complex,
which may be realized as a subcomplex of the twisted de Rham complex
of M(A) with coefficients in ,C.

By work of Esnault, Schectman, and Viehweg [13], refined by Schecht-
man, Terao, and Varchenko [24], the above assumptions on the eigenvalues
of Px imply that there is an isomorphism

Thus it suffices to show that = 0 for q ~4 n.

For an abelian local system, this was established by Yuzvinsky [26]. To
extend his argument to an arbitrary local system, it is enough to show that
the complex (B’ (,,4), c,~) is acyclic for a central arrangement A. This may
be accomplished using the Euler derivation to produce a chain contraction,
a straightforward modification of the proof given by Yuzvinsky. 0

4. Comparison.

The purpose of this section is to compare the nonresonance results of

the previous section. A local system (resp., a collection (Pl, ... , Pm) of en-
domorphisms satisfying (2) and ¿7=1 Pj = 0) will be called A-nonresonant
if it satisfies condition (4), and will be called (A, H)-nonresonant if it sat-
isfies condition (3). Let lr denote the r x r identity matrix, and note that
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if 1~1, ... , km are integers with kj - 0, then the collections of endo-
morphisms (PI, ..., and (PI + k1 . R,, ... , + give rise to the
same representation and local system. Furthermore, if the endomorphisms
P~ satisfy the conditions of (2), then so do the endomorphisms Pj + kj . TIr.
Hence, if the connection with 1-form i is flat, then so is the
connection with 1-form

Surprisingly, the monodromy condition (3) of Corollary 7 is more

stringent than the condition (4) of Theorem 9.

PROPOSITION 10. - Let .C be a rank r complex local system
on M(A) induced by a collection of (A, H)-nonresonant endomorphisms
(Pl , ... , P~-,-L ) . Then there are integers k1,..., km so that the collection
(Pi + ki - TIr, ... , + km - is A-nonresonant.

Proof. Without loss, assume that the collection of endomorphisms
(Pl , ... , is (A, Hi)-nonresonant. Then by (3), for every dense edge X
of ,A for which X C Hi, the eigenvalues of Px are not integers.

Let q be a positive integer, greater than the maximum of the absolute
values of the eigenvalues of the endomorphisms Py, where Y ranges over
all dense edges of ,,4 for which Y g Hl. Let

and note that I

We assert that (~1,~2,..., Pm) is an A-nonresonant collection of

endomorphisms. For this, let X be a dense edge of A. If X C Hl , then
the eigenvalues of Px = Px + (m - TIr are not integers since the

eigenvalues of Px are not integers. If X g Hl , then the eigenvalues of
Px = are not in Z jo by the choice of q. Hence the collection
of endomorphisms (Pl, P2, ..., satisfies (4), and is thus A-nonreso-

nant. D

In light of this result, one might speculate that the A-nonresonance
condition (4) and the (A, H)-nonresonance condition (3) are equivalent.
This is not the case, as the following examples illustrate. For simplicity,
these examples involve rank 1 local systems. In this context, it is customary
to refer to the collection of endomorphisms (Pl , ... , as weights, and to
write A = ( ~ 1, ... , Am) = (PI, ... , 
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Example 11. - Let A be the arrangement of five lines in I~2 defined

by the polynomial Q = x(x - z)y(y - z)z. Order the hyperplanes of ,A, as
indicated by the order of the factors of Q. The dense edges of are the

hyperplanes, X125 = Hl n H2 n H5, and X345. For this arrangement, the
weights A = ( 2 , 2 , 2 , 2 , -2) satisfy the A-nonresonance condition (4), but
there is no integer vector I~ for which A + k satisfies the (A, H)-nonresonance
condition (3).

Note that the rank 1 local system £ corresponding to the weights A in
the previous example has trivial monodromy about one of the hyperplanes
of A. There are examples where the monodromy about each hyperplane is
nontrivial, and (4) holds, but (3) does not hold for any hyperplane of ,~1.

Example 12. - Let ,,4 be the arrangement of six lines in I~2 defined

by the polynomial Q = x(x - z)y(y - 2z) (x - y)z. Order the hyperplanes of
as indicated by the order of the factors of Q. The dense edges are

the hyperplanes, X126, X135, and X346. For this arrangement, the weights
) satisfy the A-nonresonance condition (4), but

there is no integer vector 1~ for which A+ k satisfies the (A, H)-nonresonance
condition (3).

In both examples, the monodromy about each rank 2 dense edge
is trivial, so the (A, H)-nonresonance condition (3) cannot hold for any
integer translate of the weights, but the weights nevertheless satisfy the
A-nonresonance condition (4).

5. An application to Milnor fibers of line arrangements.

Let be the number of hyperplanes in the arrangement
A C I~n and let Q = 0 be a reduced equation for the corresponding central
arrangement Ã in cn+1. The smooth affine hypersurface F in cn+1 given by
the equation Q = 1 is called the Milnor fiber of the arrangement ,,4 (resp.,
A). There is a naturally associated monodromy operator h : F -~ F given
by multiplication by T = exp(27r i /m), satisfying = 1. For k, p E Z,
let bp(F)k denote the dimension of the T~-eigenspace corresponding to the
monodromy action on HP(F, C). It is known that

where ,C~ is the rank one local system on M(,A) corresponding to the
monodromies T1 = T2 = ... = Tm = Tk, see [5]. In this section, we prove
the following strengthening of a result of Massey [21].
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THEOREM 13. - Let A be a line arrangement in JtD2, with associated
Milnor fiber F. Then for any integer 0  k  m and any line H in the

arrangement A we have

where the sum is over all points x E H such that the multiplicity of A at
x is mx &#x3E; 2 and m divides kmx.

Proof. In this proof, we work directly on p2 (without using the
partial resolution W from Section 2). Let i : M (,,4) ~ p2 B H and
j : p2 B H - p2 denote the natural inclusions, and set .~’ = Ri,, L [2]. Recall
that Y is perverse, and extend the canonical morphism Rj*0 in

to a distinguished triangle

Let x be a point of multiplicity mx on the chosen line H. Applying
the functors to the triangle (5), we obtain a long exact sequence, which
yields in particular

Here M~ = M(,,4) rl Bx, where Bx is a small open ball centered at x. It

follows that Mx is homeomorphic to the complement of the central line
arrangement in (C2 defined by f (y) = y’x + There are two cases. If

m does not divide kmx, then 0 for all q. On the other hand,
if m divides kmx, then = mx - 2, see for
instance [8, p. 109] and [5], [21].

Now apply the functors to the triangle (5) and use the vanishing
results (1). This yields an exact sequence

To compute the middle term in this sequence, we use the spectral sequence

where ,S’ is the support of 9, a finite set. It follows that 

H-1Q) is a C-vector space of dimension ¿x(mx - 2) where the sum
is over all points x E H such that the multiplicity of at x is mx &#x3E; 2 and

m divides 0
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Remark 14. - The proof of Theorem 13 uses only the fact that the
support of the sheaf 9 is finite. This may happen for arrangements in Pn
for n &#x3E; 2, yielding a more general version of the theorem.

An alternative proof of Theorem 13 (as well as a proof of a related
result), using only basic facts on the topology of polynomial functions and
their monodromy, can be found in [10].

6. Generalizations.

Our main results can be stated (and proved in the same way, either
using partial resolutions or working directly in the projective space) for
arrangements of hypersurfaces N = in a projective space P’~ . See [6]
and the references there for other results in this setting. It is not necessary
to assume that the individual hypersurfaces are smooth. It is enough to
impose local vanishing assumptions, both for the intersections contained in
a fixed hypersurface, say Vi, and at all singular points of VI itself.

In the hyperplane arrangement case, we can treat the local cohomo-
logy groups whose vanishing is necessary in the proof of Lemma 3 in terms
of complements of central arrangements. This allows us to decrease the
dimension by one and proceed by induction.

In the general hypersurface arrangement case, this induction is no

longer available, since the complement need not be locally a cone over
a projective arrangement of smaller dimension. However, the following
approach may be used to obtain vanishing results in this generality.

Let f : (cn+1, 0) - (C, 0) be an analytic function germ and let

~" _ C[n + 1] be the perverse sheaf on cn+1 obtained by shifting the
constant sheaf C. It is known that perverse sheaves are preserved by the
perverse vanishing cycle functor, [16, Corollary 10.3.13]. Thus E

Perv(X), where X = f -1 (0). There is a natural monodromy automorphism
J-L : For any a E C, we can consider the eigenspace
,~~ = ker(p - a - Id), which is a well-defined perverse sheaf on X, since the
category Perv(X) is abelian, [16, Proposition 10.1.11].

For any point x E X, = where Fx is the

local Milnor fiber of f at the point x. Moreover, the induced action of A on
corresponds exactly to the usual monodromy action on the

local Milnor fiber Fx.
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Let be the support of the sheaf and let sa = with

the convention dim 0 = - 1. Note that the integer sa depends only on
the hypersurface germ (X, 0) : indeed, any two reduced equations for this
germ are topologically equivalent (since the contact equivalence classes are
connected), see [8, Remark 3.1.8~ .

It follows that 0a C Perv(6a), see [9, Section (5.2)]. Hence the support
condition in the definition of perverse sheaves gives H’~~~ ( P$ j (0))x = 0 for
any m  -sa. This implies that

for all j &#x3E; 0.

Using the Milnor fibration of f at the origin, we can identify the
corresponding Milnor fiber Fo with an infinite cyclic covering of Uo, the
local complement of X in (cn+1, 0). For a E C*, we denote by ,Ca the
rank one local system on Uo whose monodromy around each irreducible
component of X is multiplication by a.

Then it is well-known that

see for instance [19], [11]. It follows that

for all q  n - 1 - So. Applying this local vanishing result to the global
setting of hypersurface arrangements as in Section 2 above, we obtain the
following (note that n + 1 is replaced by n !).

THEOREM 15. - Let N hypersurface arrangement
in P’, with associated Milnor fiber F. Let d = d1 + ... + d, be the

degree of N. For each point x E Yl, denote by s(x, k) the number S,k
associated to the hypersurface germ (N, x) as above, ulith T = exp(27r i /d).
Let sk = maxxEV1 s(x, k). Then for any integer 0  k  d, we have

for all q ::( n - 2 - S k .

COROLLARY 16. - If N = a normal crossing divisor at

any point x C Yl , then the monodromy action on Hq (F) is trivial for

q -_ n - 1.



1895

BIBLIOGRAPHY

[1] K. AOMOTO, M. KITA, Hypergeometric Functions, (in Japanese), Springer-Verlag,
Tokyo, 1994.

[2] A. BEAUVILLE, Monodromie des systèmes différentiels linéaires à pôles simples sur
la sphère de Riemann (d’après A. Bolibruch), Séminaire Bourbaki, Vol. 1992/93,
Astérisque N° 216, (1993), Exp. N° 765, 4, 103-119. MR 94j:32015.

[3] A. BEILINSON, J. BERNSTEIN, P. DELIGNE, Faisceaux Pervers, Analysis and
topology on singular spaces, I (Luminy, 1981), 5-171, Astérisque, 100, Soc. Math.
France, Paris, 1982. MR 86g:32015.

[4] A. BOLIBRUKH, The Riemann-Hilbert problem, Russian Math. Surveys, 45 (1990),
1-58. MR 92j:14014.

[5] D. COHEN, A. SUCIU, On Milnor fibrations of arrangements, J. London Math. Soc.,
51 (1995), 105-119. MR 96e:32034.

[6] J. DAMON, On the number of bounding cycles for nonlinear arrangements,
Arrangements-Tokyo 1998, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000,
51-72. MR 2001k:32049.

[7] P. DELIGNE, Équations Différentielles à Points Singuliers Réguliers, Lect. Notes in
Math., vol. 163, Springer-Verlag, Berlin-New York, 1970. MR 54 #5232.

[8] A. DIMCA, Singularities and Topology of Hypersurfaces, Universitext, Springer-
Verlag, New York, 1992. MR 94b:32058.

[9] A. DIMCA, Sheaves in Topology, Universitext, Springer-Verlag, New York, to

appear.

[10] A. DIMCA, Hyperplane arrangements, M-tame polynomials and twisted cohomo-
logy, Communtative Algebra, Singularities and Computer Algebra (J. Herzog,
V. Vuletescu eds.), NATO Science Series, Vol. 115, Kluwer, 2003, pp. 113-126.

[11] A. DIMCA, A. NÉMETHI, Hypersurface complements, Alexander modules and
monodromy, preprint, 2002. math.AG/0201291.

[12] A. DIMCA, S. PAPADIMA, Equivariant chain complexes, twisted homology and
relative minimality of arrangements, preprint 2003. math.AG/0305266.

[13] H. ESNAULT, V. SCHECHTMAN, V. VIEHWEG, Cohomology of local systems on the
complement of hyperplanes, Invent. Math., 109 (1992), 557-561. Erratum, ibid.,
112 (1993), 447. MR 93g:32051.

[14] H. ESNAULT, E. VIEHWEG, Logarithmic de Rham complexes and vanishing
theorems, Invent. Math., 86 (1986), 161-194. MR 87j:32088.

[15] I. M. GELFAND, General theory of hypergeometric functions, Soviet Math. Dokl.,
33 (1986), 573-577. MR 87h:22012.

[16] M. KASHIWARA, P. SCHAPIRA, Sheaves on Manifolds, Grundlehren Math. Wiss.,
vol. 292, Springer-Verlag, Berlin, 1994. MR 95g:58222.

[17] T. KOHNO, Homology of a local system on the complement of hyperplanes, Proc.
Japan Acad., Ser. A, 62 (1986), 144-147. MR 87i:32019.

[18] V. KOSTOV, Regular linear systems on CP1 and their monodromy groups, Complex
analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque,
N° 222, (1994), 5, 259-283. MR 95g:34008.

[19] A. LIBGOBER, The topology of complements to hypersurfaces and nonvanishing
of a twisted de Rham cohomology, Singularities and complex geometry (Beijing,



1896

1994), AMS/IP Stud. Adv. Math., 5, Amer. Math. Soc., Providence, RI, 1997,
116-130. MR 99g:14024.

[20] A. LIBGOBER, Eigenvalues for the monodromy of the Milnor fibers of arrangements,
Trends in Singularities (A. Libgober, M. Tibar eds.), Trends Math., Birkhäuser,
2002, 141-150. CMP 1 900 784.

[21] D. MASSEY, Perversity, duality and arrangements in C3, Topology Appl., 73

(1996), 169-179. MR 97k:32054.

[22] P. ORLIK, H. TERAO, Arrangements of Hyperplanes, Grundlehren Math. Wiss.,
vol. 300, Springer-Verlag, Berlin, 1992. MR 94e:52014.

[23] P. ORLIK, H. TERAO, Arrangements and Hypergeometric Integrals, MSJ Mem.,
vol. 9, Math. Soc. Japan, Tokyo, 2001. CMP 1 814 008.

[24] V. SCHECHTMAN, H. TERAO, A. VARCHENKO, Local systems over complements of
hyperplanes and the Kac-Kazhdan condition for singular vectors, J. Pure Appl.
Algebra, 100 (1995), 93-102. MR 96j:32047.

[25] A. VARCHENKO, Multidimensional Hypergeometric Functions and Representation
Theory of Lie Algebras and Quantum Groups, Adv. Ser. Math. Phys., vol. 21,
World Scientific, River Edge, NJ, 1995. MR 99i:32029.

[26] S. YUZVINSKY, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm.
Algebra, 23 (1995), 5339-5354. MR 97a:52023.

Manuscrit reçu le 12 novembre 2002,
accepté le 26 mai 2003.

Daniel C. COHEN,
Louisiana State University
Department of Mathematics
Baton Rouge, LA 70803 (USA).
cohen~math.lsu.edu

http: //www. math. Isu.edu/ - cohen
Alexandru DIMCA,
Université Bordeaux I
Laboratoire de Mathematiques Pures
351, cours de la Liberation
33405 Talence Cedex (France).
dimca@math.u-bordeaux.fr

http://www.math.u-bordeaux.fr/"dimca
Peter ORLIK,
University of Wisconsin
Department of Mathematics
Madison, WI 53706 (USA).
orlik~math.wisc.edu


