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UNIQUENESS OF CREPANT RESOLUTIONS
AND SYMPLECTIC SINGULARITIES

by Baohua FU &#x26; Yoshinori NAMIKAWA

1. Introduction.

In this paper, we work over the field C of complex numbers. Let W be
an algebraic variety, smooth in codimension 1, such that is a Cartier

divisor. Recall that a resolution of singularities 7r : X - W is called crepant
if 7r*Kw = Kx. In this note, we will only consider projective crepant
resolutions, i.e. 7r is projective. Let 7r+ : X+ - W be another (projective)
crepant resolution of W.

DEFINITION 1. - (i) 7r and 7r+ are said isomorphic if the natural
birational map 0 7r+ : X+ - - -t X is an isomorphism;

(ii) 7r and 7r+ are said equivalent if there exists an automorphism
of W such that o o 7r and 7r+ are isomorphic.

As easily seen, any two crepant resolutions of A-D-E singularities
are isomorphic. The purpose of this note is to study projective crepant
resolutions (mostly for symplectic singularities) up to isomorphisms and
up to equivalences.

A special case of crepant resolutions is symplectic resolutions for

symplectic singularities. Following [Bea], a variety W, smooth in codimen-
sion 1, is said to have symplectic singularities if there exists a holomorphic

Keywords: Crepant resolutions - Symplectic singularities.
Math. classification: 14E15.
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symplectic 2-form w on Wreg such that for any resolution of singularities
7r : X - W, the 2-form 7r*w defined a priori on can be extended
to a holomorphic 2-form on X. If furthermore the 2-form 7r*w extends to
a holomorphic symplectic 2-form on the whole of X for some resolution of
W, then we say that W admits a symplectic resolution, and the resolution
7r is called symplectic.

For a symplectic singularity, a resolution is symplectic if and only
if it is crepant (see for example Proposition 1.1 [Ful]). In recent years,
there appeared many studies on symplectic resolutions for symplectic
singularities (see [CMS], [Ful], [Fuj], [Kal], [Ka3], [Nal] and [Wil] etc.).

Our first theorem on uniqueness of crepant resolutions is the following:

THEOREM (2.2). - Let Wi, i = 1, ~ ~ ~ ,1~ be normal locally Q-
factorial singular varieties which admi t a crepant resolution 7ri : Xi --+ Wi
such that Ei := Exc(7ri) is an irreducible divisor. Suppose that W . :==
W, x... x Wk is locally Q-factorial. Then any crepant resolution of W is
isomorphic to the product

It applies to many varieties with quotient singularities. For example
it shows that for any smooth surface S, its nth symmetric product 
admits a unique crepant resolution, which is given by the Hilbert-Chow
resolution: -~ S(n) . As to the nilpotent orbit closures, we have:

THEOREMS (3.1 ) . - Let 0 be a nilpotent orbit in a complex semi-
simple Lie algebra g. Then 0 admits at most finitely many non-isomorphic
symplectic resolutions.

This result is an easy corollary of our previous work in [Ful]. Some
other partial results are also presented in Section 3. The above theorem
motivates the following:

Conjecture (1). - Any normal symplectic singularity admits at most
finitely many non-isomorphic symplectic resolutions.

In Section 4, we prove this conjecture in the 4-dimensional case. As
to the relation between two symplectic resolutions, we have the following:

Conjecture (2). - Let W be a normal symplectic singularity. Then
for any two symplectic resolutions fi : Xi - W, i = 1, 2, there are
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deformations Xi ~ W of fi such that, for s c S B 0, Fi,s : -~ Ws
are isomorphisms. In particular, Xl and X2 are deformation equivalent.

By constructing explicitly the deformations, we prove this conjecture
for symplectic resolutions of nilpotent orbit closures in 51(n) in Section 4.

Finally in Section 5, we construct an example of symplectic singularity
of dimension 4 which admits two non-equivalent symplectic resolutions.

The following proposition gives some applications of results presented
in this note.

PROPOSITION 1.1. - Let W be an algebraic variety, smooth in codi-
mension 1. If up to isomorphisms, W admits a unique crepant resolution
7r : X - W, then any automorphism of W lifts to X.

Proof. Let 0 : W - W be an automorphism. Then X - W

is again a crepant resolution, which is isomorphic to 7r by hypothesis, thus
there exists an automorphism ~ of X lifting 0. 0

Acknowledgements. The first named author wants to thank A. Beau-
ville, M. Brion, A. Hirschowitz and D. Kaledin for helpful discussions. We
would like to thank the referee for some helpful suggestions.

2. Quotient singularities.

LEMMA 2.1. - Let W be a normal locally Q-factorial variety and
7r : X - W a projective resolution. Then Exc(7r) is of pure codimension 1
and if Exc(7r) = is the decomposition into irreducible components,
then Li is 7r-ample for some ai &#x3E; 0.

Proof. The first claim is well-known (see 1.40 [Deb]), which follows
from the normality and Q-factority of W. For the second claim, by 1.42

is 7r-very ample for some ai &#x3E;, 0. Suppose that

a2o = 0, then take a point x E Eio - and a 7r-exceptional curve C

passing x. Note that C is not contained in Ei, i ~ io, thus C. 0, i 7~ io.
This gives (- Li C  0, which is absurd since Ox( - Li 
very ample. 0

We are indebted to M. Brion for pointing out the reference [Deb].
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THEOREM 2.2. - Let WZ, i = 1, ~ ~ ~ ,1~ be normal locally Q-factorial
singular varieties which admit a crepant resolution 7ri : Xi - Wi such that
Ei := Exc(Jrj) is an irreducible divisor. Suppose that W : Wl x ..- x Wk
is locally Q-factorial. Then any crepant resolution of W is isomorphic to
the product

Proof. The 7r-exceptional locus consists of k irreducible divisors
Fj := Xi x ... x Ei x - - - x Xk . We first prove that -Fi is 7r-nef for all i.
Let C be a curve in X such that 7r(C) is a point. Consider the following
composite: 

- -

Note that Fi = If p2 (C) is a point Q, then (C, Fj) = 0. If

pi (C) is a curve, then

Applying Lemma 2.1 to the resolution 7ri : Xi -t Wi, we see that -aEi is
7ri-ample for some a &#x3E; 0, thus (pi (C), Ei )  0, since 7ri(Pi(e)) is a point.
Therefore, -Fi is 7r-nef.

Assume now that there is another crepant resolution 7r+ : X+ - W.
Then X and X+ are isomorphic in codimension 1 because 7r and 7r+
are both crepant resolutions. In particular, Exc(7r+) contains exactly k
irreducible divisors, say F~+, 1  i  k. Now apply Lemma 2.1, L+ . :==

is 7r+-a1§xple for some ai &#x3E; 0. Its proper transform by
the birational map X+ - - -t X coincides with
which is 7r-nef

Since L is 7r-nef, 7r-big and 7r is crepant, the Base Point Free the-
orem implies that L®"2 is 7r-free for a sufficiently large m. So there is a
birational morphism X - On the other hand, since
X and X+ are isomorphic in codimension 1, there is an isomorphism

Therefore we have a birational morphism X - X+
over W. Since X and X+ are both crepant resolutions of W, this bira-
tional morphism should be an isomorphism over W. Hence 7r and 7r+ are
isomorphic. 0

For a smooth surface S, we denote by s(n) its symmetric n-th products
(the Barlet space parametrizing 0 cycles on ,5’ of length n), and we denote
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by the Hilbert scheme parametrizing 0-dimensional subspaces of S
with length n.

COROLLARY 2.3. - Let i = 1, - - - k be a smooth surface. Then

any crepant resolution of 1 x - - - x is isomorphic to the Hilbert-
Chow resolution

COROLLARY 2.4. - Let V be a symplectic vector space and G a
finite subgroup of Sp(V). Suppose that the symplectic reflections of G (i.e.
g E G such that Fix(g) is of codimension 2) form a single conjugacy class.
Then any two crepant resolutions of V/G are isomorphic.

Proof. Let 7r : X - V/G be a crepant resolution. By McKay
correspondence proved by D. Kaledin ([Ka2]), there is a one-to-one cor-
respondence between the conjugacy classes of symplectic reflections in G
and closed irreducible sub-varieties E of codimension 1 in X such that

codim(7r(E)) = 2. Notice that such E is exactly irreducible components
of Exc(7r). By the hypothesis, there is only one such conjugacy class, thus
Exc(7r) is irreducible. 0

Combining this corollary with Proposition 1.1, we immediately have
the following corollary:

COROLLARY 2.5. - Let V be a symplectic vector space and G a
finite subgroup of Sp(V). Suppose that the symplectic reflections of G form
a single conjugacy class and 7r : X --+ V/G is a crepant resolution. Then
any action of an algebraic group H on V/G lifts to an H-action on X.

Remark 2.6. - Corollary 2.4 gives a generalization of a result proved
by D. Kaledin (Theorem 1.9 [Kal]) and Corollary 2.5 strengthens Theo-
rem 1.3 loc. cit..

Example 2.7. - Here is an example to show the condition in

Corollary 2.4 that symplectic reflections of G form a single conjugacy class
is necessary. This example has also been considered by A. Fujiki ([Fuj]).

Let (x, y, z, w) be the coordinates of C4 . Let G be the subgroup of
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generated by the three elements

, 

Then G is the dihedral group of order 8. Since all the elements of G preserve
the two form dx A dy + dz A dw, the quotient W := C /G is a symplectic
singularity.

One sees easily that W = where S = C’/ ± 1. Let S - S
be the minimal resolution. Let C be its exceptional curve. C -- I~1 and

(C2)S = -2. Now we have a sequence of birational maps

, -" , , - , ,

Let f : X -t W be the composite of the maps, which is a symplectic
resolution of W. Note that

be the diagonal. Put F : = f 1 1 ( OC ) . Then F is a P1 bundle over Ac P1 ) .
It can be checked that F is isomorphic to the Hirzebruch surface ~4. As a
consequence, we have

where p2 is the proper transform of Sym2 (C) by f 1. The intersection 
is a conic of I~2 and, at the same time, is a negative section of F!2--’-’ ~4.

Sing(W) has two components Tl (diagonal of S x S) and T2. Let
Then f -1 (0) C n E2 - F. In particular,

we see that the resolution f is not symmetric with respect to Tl and T2.

Consider the map u : C4 -t (C4 defined by
w, x + z, y + w). One verifies that

Thus u gives an automorphism u on W = C /G, which interchanges T,
and T2. So the two crepant resolutions f and f’ := uo f are not isomorphic,
though they are equivalent.

In fact one can show that the birational map:

is exactly the Mukai flop along the subvariety p2 of Hilb2 (S) .
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3. Nilpotent orbits.

Let g be a semi-simple complex Lie algebra and 0 a nilpotent
orbit in g. Then C~ is singular and smooth in codimension 1. Let 8 be

its normalization, which is a normal variety with symplectic singularities
([Bea]). It is proved in [Ful] that any projective symplectic resolution of
o is isomorphic to the collapsing of the zero section of T*(G/jP) for some
parabolic subgroup P of G, where G is the adjoint group of g. Notice that
G has only finitely many conjugacy classes of parabolic subgroups, thus we
get

THEOREM 3.1. - Let g be a complex semi-simple Lie algebra and
C7 a nilpotent orbit in g. Then 0 admits at most finitely many symplectic
resolutions, up to isomorphisms.

Notice that any two Borel subgroups in a semi-simple Lie group are

conjugate, thus we have

COROLLARY 3.2. - Let fii be the nilpotent cone of a semi-simple
complex Lie algebra g. Then any symplectic resolution of N is isomorphic
to the Springer resolution T* (G/B) - N, where B is a Borel subgroup
of G.

As to the uniqueness up to isomorphisms of symplectic resolutions for
a nilpotent orbit closure, we have following partial results.

PROPOSITION 3.3. - Let g be a simple complex Lie algebra not of

type A and 0 a nilpotent orbit in g. Suppose that C7 - C7 = C for some

nilpotent orbit C of codimension 2 in 0. If the singularity (0, C) is of type
then any two symplectic resolutions for 0 are isomorphic.

Proof. Let 7r : X - 0 be a symplectic resolution, then over
U := C U 0, 7r is isomorphic to the blowup of U at C, since (0, C) is of
type AI. By the semi-smallness of symplectic resolutions (Proposition 1.4
[Nal] or Proposition 1.2 [Ka2]), codim(7r-l(O - U)) &#x3E; 2, thus Exc(7r)
consists of one irreducible divisor. Since g is not of type Ak, C~ is Q-factorial
([Ful]). Moreover, the 7r-exceptional fiber over C is isomorphic to P , thus
connected, so C7 is normal (Theorem 1 [KP]). Now the proposition follows
from Theorem 2.2. 0

Then one can use results of H. Kraft and C. Procesi in [KP] to
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determine all the nilpotent orbits which satisfy the hypothesis of the above
proposition. For example, in ~0(5), we find Oj3,1,ij . In sp(4), we have Oj2,2j .
In so(8), we get ~E3,3,1,I~ ~ and ~2,2,2,2] etc.

PROPOSITION 3.4. - Let 0 be a nilpotent orbit in + 1, C). Let
d= ~dl, - - - , ds~ ] be its Jordan decomposition type. If dl = - - - = ds, then up
to isomorphisms, 0 admits a unique symplectic resolution.

Proof. It is well-known that the closure of any nilpotent or-

bit in 51(n + 1,C) is normal and admitting a symplectic resolution. If

di = ’" = ds, then all polarizations of 0 (i.e. parabolics P such that
T* (G/P) is birational to 0) form a single conjugacy class (see for example
Theorem 3.3 (b) [Hes]), thus C7 admits a unique symplectic resolution, up
to isomorphisms. 0

PROPOSITION 3.5. - Let 0 be a nilpotent orbit in a complex simple
Lie algebra of type B - C - D, with Jordan decomposition type d=

~dl , - - - , ds ~ . Suppose that

(i) either there exists some integer k ) 1 such that dl - - - - - d, =

2k;

(ii) or there exist some integers q &#x3E; 1,1~ &#x3E; 1 such that di = "’ =
dq = 21~ -t- 1 and dq+l = ... - ds - 2k.

Then 0 admits a unique symplectic resolution, up to isomorphisms.

Proof. By Proposition 3.21 and Proposition 3.22 [Ful], such a
nilpotent orbit C~ admits a symplectic resolution. Furthermore by the proofs
there (see also [Fu2]), two polarizations of 0 have conjugate Levi factors.
Thus the number of conjugacy classes of polarizations is given by No of
Theorem 7.1 (d) [Hes], which equals 1 in our case. Thus C~ admits a unique
symplectic resolution, up to isomorphisms. 0

Now we study symplectic resolutions up to equivalences for a nilpotent
orbit 0 := contained in 51(n) , where ~dl, - - - , dk] is the Jordan de-
composition type of C~. Let ~sl, - - - , be the dual partition of ~dl, - - - , dk] .
We denote by C ,S’L(n) a parabolic subgroup of flag type (ii , ..., ik);
that is, Pil .... ik stabilizes a flag 0 == Yo C VI C ... C Vk = ~n such
that = ij for 1  j  k. This is equivalent to saying that

SL(n)1 Pil,....ik is the flag manifold F(n, n - ik, n - ik - ik-1 ..., il).
It is well-known that all the polarizations of 0 are of the form
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for some permutation a E ~~,.,, (see for example Theorem 3.3
~Hes~ ) .

PROPOSITION 3.6. - The two symplectic resolutions

are equivalent.

Proof. Take the dual flags, we get an isomorphism between
and Furthermore 0 is normal.

Now the proposition follows from the following lemma. 0

LEMMA 3.7. - Let W be an anine normal variety and 7r~ : Xi -t W,
i = 1, 2, two crepant resolutions. Then 7r, is equivalent to -7r2 if and only if
Xl is isomorphic to X2.

Proof. The isomorphism X, - X2 induces an isomorphism of

C-algebras ]P(X2, Ox,,), thus an isomorphism of algebraic
varieties

The morphism 7ri gives an injective morphism from
which is an isomorphism since W is normal. So W~ 
i = 1, 2. Therefore, the two resolutions ~1 and 7r2 are equivalent. 0

COROLLARY 3.8. - Let 0 be a nilpotent orbit in 51(n) with Jordan
decomposition type [dl,..., Suppose that dl - 2, then any two

symplectic resolutions for 0 are equivalent.

Proof. Since dl - 2, the dual partition of ~dl, ~ - ~ , dk] consists of
two parts ~n - t, t], where t = 2}. 0 has two symplectic resolutions,
which are given by cotangent spaces of Grassmanians: T* Gr(n, t) - C7 and
T* Gr(n, n - t) - 0, thus they are equivalent. 0

Some interesting questions related to derived categories for the two

symplectic resolutions T* Gr(n, t) - 0 and T* Gr(n, n - t) - 0 are
discussed in [Na2].

Example 3.9. - Here we give an example where a nilpotent orbit
admits two non-isomorphic symplectic resolutions. Let n &#x3E;, 2 be an integer.
Consider the symplectic resolution Omin, where Omin = 0[2,lnl
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is the minimal nilpotent orbit in 51(n + 1, C). Now we perform a Mukai
flop along the zero section P ri pn of i.e. we first blow up

along P, then blow down along the other direction to get another

symplectic resolution n I Omin. · Notice that the birational map
is not defined at the points of P. So 7r and

7r+ are not isomorphic. In fact, the two symplectic resolutions come from
non-conjugate parabolic subgroups in G, one is the stabilizer of a line in

and the other is the stabilizer of a vector subspace of codimension 1
in 

Example 3.10. - Here we give an example of a nilpotent orbit

closure which admits three non-equivalent symplectic resolutions. Let 0
be the nilpotent orbit of st(6) with Jordan decomposition type ~3, 2,1~.
Then there are six non-conjugate polarizations P(a(1),a(2),a(3)) of C~, where
~ is a permutation of {I, 2, 3}. There are six non-isomorphic symplectic
resolutions of 6 corresponding to the six polarizations. Among these, the
following pairs are equivalent resolutions by Proposition 3.6:

We now show that there are exactly three non-equivalent resolutions.

Assume that two of the three cotangent bundles T*F(6,3, 1), T*F(6,3,2)
and T*F(6, 5, 2) are equivalent resolutions of C~. Let us consider the

fibers of each resolution. Since the fibers with dim = 1/2 dim T*F are
central fibers, if two resolutions are equivalent, then the corresponding flag
manifolds are mutually isomorphic. We shall prove that this is absurd. We
observe ample cones of these varieties. Since these varieties have Picard
number two, they have at most two different fibrations. F (6, 3,1 ) has two
fibrations F ( 6, 3,1 ) - F (6, 3 ) and F (6, 3,1 ) - F (6,1 ) . The first one is
a P2-bundle and the second one is a Gr(5,2)-bundle. F(6, 3, 2) has two
fibrations F (6, 3, 2 ) - F (6, 3 ) and F (6, 3, 2 ) - F(6,2). The first one is a
P2-bundle and the second one is a P3-bundle. F(6, 5, 2) has two fibrations
F(6,5,2) -&#x3E; F(6,5) and F(6, 5, 2) - F(6, 2). The first one is a Gr(5,2)-
bundle and the second one is a P3-bundle. If two of these varieties are

isomorphic, they should have three different fibrations, which is absurd.

By Lemma 3.7, we see that neither two of T*F(6,3, 1), T*F(6,3,2)
and T*F(6, 5, 2) are isomorphic.
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4. Finiteness of symplectic resolutions and deformations.

We propose the following conjecture:

CONJECTURE 1. - Let W be a normal symplectic singularity. Then
W admits at most finitely many non-isomorphic symplectic resolutions.

Note that for nilpotent orbits, this conjecture is proved in Theo-
rem 3.1. Here we prove the conjecture in the case of dim(W) = 4.

THEOREM 4.1. - There are only finitely many non-isomorphic
symplectic resolutions of a symplectic singularity W of dimension 4.

Proof. Fix a symplectic resolution f : X - W. Let 1+ : X+ - W
be another symplectic resolution. Then, X and X+ are connected by a finite
sequence of Mukai flops over W. In fact, any small birational contraction
of a symplectic 4-fold is locally isomorphic to the Mukai flop by [CMS] or
[WW], from which the existence of flops follows. The termination of the flop
sequence follows from [Mat]. For the existence of flops for general 4-folds,
see [Sho]. Now we can apply the argument of [KM] to prove our theorem-0

Example 4.2. - Let A be an abelian surface and : A - A the
involution -x. Then Ao . := A/ &#x3E; has 16 double points. Let
B - Ao be the minimal resolution. Then 7r : B x B - Ao x Ao is a

symplectic resolution. Notice that the 2-dimensional 7r-exceptional fibers
are isomorphic to P’ x P , thus no Mukai flop can be performed. Thus 7r
is the unique symplectic resolution for Ao x Ao, up to isomorphisms.

Example 4.3. - Let f : Hilb2 (S’) - Sym(S) be the symplectic
resolution considered in Example 2.7. The only 2-dimensional f-exceptional
fiber is f -1 (o) - I~2 U F. We cannot apply a Mukai flop to f more than
one time, thus Sym 2(S) admits exactly two non-isomorphic symplectic
resolutions: f and u o f .

Recall that a deformation of a variety X is a flat morphism 2£ I S
from a variety x to a pointed smooth connected curve 0 E S’ such that

p- 1 (0) !2-t-’ X. Moreover, a deformation of a proper morphism f : X - Y is
a proper S-morphism F : X - Y, where 2£ - ,5’ is a deformation of X and

y - ,S’ is a deformation of Y.

Two varieties Xl and X2 are said deformation equivalent if there is
a flat morphism X I S from a variety X to a connected (not necessarily
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irreducible) curve S such that Xi and X2 are isomorphic to two fibers
of p. As to the relation between two symplectic resolutions, we have the
following:

CONJECTURE 2. - Let W be a normal symplectic singularity. Then
for any two symplectic resolutions fi : Xz - W, i = 1, 2, there are

deformations Xi ~ W of fi such that, for s E S, 0, Fi,s : - Ws are

isomorphisms. In particular, Xl and X2 are deformation equivalent.

If W is a projective symplectic variety (with singularities), then we
have Kuranishi spaces Def (W ) and Def (Xi) for W and Xi. Since W has
only rational singularities, we have the maps (/~)* ~ Def(Xi) -t Def(W).
By Theorem 2.2, [Nal], the Kuranishi spaces are all non-singular and ( f i ) *
are finite coverings. Now take a Def (W) from a 1-dimensional
disk such that this map factors through both Def (Xi ) . By pulling back the
semi-universal families by this map, we have three flat families of varieties.
If we take the map sufficiently general, then these families give the desired
ones in the conjecture. One can say more. D. Huybrechts in [Huy] proved
that if two compact hyper-Kahler manifolds Xi and X2 are birationally
equivalent, then they are deformation equivalent. Here we do not need the
intermediate variety W any more.

Let us return to our local case. When W is an isolated singularity,
we also have the Kuranishi spaces for W and Moreover, by [CMS] and
[WW], fj ’s give a Mukai flop in this case. Then one can show the Conjecture
applying the deformation theory as well as the projective case. The problem
is when W is not an isolated singularity. We do not have appropriate spaces
like the Kuranishi spaces any more. Sometimes, the formal approach could
be possible, but its convergence is a difficult problem. D. Kaledin proved
this conjecture under some hypothesis in [Ka3]. For the last statement of
the conjecture, we proved in [Fu2] that Xl is deformation equivalent to X2
when they are symplectic resolutions of nilpotent orbit closures in a classical
simple complex Lie algebra. Here we prove Conjecture 2 for nilpotent orbit
closures in g == s[(n). The construction is elementary and it may be of

independent interest (see [Na2]).

THEOREM 4.4. - Let 0 be a nilpotent orbit in 5i(n) with Jordan
decomposition type Then Conjecture 2 holds for 0.

Proof. Let 8m] be the dual partition of ~d~, - - - , dk]. The
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polarizations of ( Define

Let

be the universal subbundles on F~ . A point of T* F~ is expressed as a pair
(p, Ø) of p E For and 0 E End(C’) such that

The Springer resolution

is defined as 0)) : = 0 -

First, we shall define a vector bundle Sa over Fa and an exact sequence

Let be the cotangent space of Fa at p C Then, for a suitable
basis of C~, consists of the matrices of the following form:

Let ~~ (p) be the vector subspace of 51(n) consisting of the matrices A of
the following form:

where ai :== ai1si and 1st is the identity matrix of the size si x si. Since
A E 0. We define a map 71,(p) : £u(p) - as

77, (p) (A) : = (a,, a2,... , 7 am - 1) - Then we have an exact sequence of vector
spaces

_ , 1-1

We put ~~ :- Then E, becomes a vector bundle over Pa, and
we get the desired exact sequence. Note that we have a morphism
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Next, let N C be the set of all matrices which is conjugate to a
matrice of the following form:

where bi = bilsi and ISi is the identity matrix of order s2. Furthermore
the zero trace condition requires 0. For A E N, let ØA(X) :=
det (xI - A) be the characteristic polynomial of A. Let be the

coefficient of inO(A) - We define the characteristic map ch : N - 
by ch(A) := (Ø2(A), ..., Øn(A)). Note that 01 (A) = 0.

Let us consider the vector a = (a,, a2, ...., am) of length n where
a2 appear exactly si times. Define Oi,a to be the for the following
diagonal matrix A of the size n x n:

where ai = with 8i x si identity matrix
and we define a map

by I Pulling back ch :
we have

Each point of fa is expressed as a pair of a point p E Pa and
0 E End(C~). Now we define

as Su (p, 0) = 0. This map is a generically finite morphism. Since ch o 
7r o 77,, we have a morphism

Let ~V be the normalization of N’ and let f be the composite:
factors through N and we have a morphism

- L’" 1B T

Now, 9, becomes a birational morphism. Moreover, for a general point
t E 9,,t is an isomorphism. The flat deformations

give desired deformations in the conjecture.
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5. An example.

In this section we construct a symplectic singularity W of dim 4
which has two non-equivalent symplectic resolutions. We already have such
examples by the nilpotent orbit construction (cf. Example 3.10). But here
we introduce another construction. Our construction is elementary.

A similar example has also been constructed by J. Wierzba (Sec-
tion 7.2.3 [Wi2]), using a different approach. Finally we note that such an
example can be constructed by hyper-Kahler quotients [Got].

5.1. The idea.

Let f : V - W be a symplectic resolution such that

(i) for some point 0 E W, f - 1 (0) = P2 U Ei, where P2 n E 1 is a line

on P2 and, is, at the same time, a negative section of Ei;

(ii) the singular locus E of W is 2-dimensional. And for p E E such
that p # 0, (W,p) ~ (A, - surface singularity) x (C~,0).

Over such a point p, f will become the minimal resolution. Now flop
V along I~2; then we get a new symplectic resolution f + : V+ --~ W such
that f + 1 (o) - I~2 U 1~2 where two I~2 intersect in one point. Then, it is
clear that the two symplectic resolutions are not equivalent. In fact, if they
are equivalent, then there should be an isomorphism V ~ V+ which sends

/~(0) isomorphically onto f + 1 (o) . But this is absurd.

5.2. Construction of the example.

5.2.1. Set-up.

Let S be the germ of an A2-surface singularity and let 7r : S - S be
its minimal resolution with exceptional curves C and D. There are natural
birational morphisms

We denote by g : Hilb2 (S) - the composition. Sym2 (S) contains
Sym2 (C) and Let PC and PD be their proper transforms on

Hilb2 (S’) . Note they are isomorphic to l~2 . Let us consider the double cover
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Let Q be the proper transform of
isomorphic to the one point blowup of
the center of the blowup is
be the proper transform of

be the exceptional curve. Then
. The relationship between PC, PD

and l~ are the tollowing:

(i) Pc and PD are disjoint.

(ii) Q intersects both PC and PD.

(iii) In Q, Q f~l P~ coincides with lc and Q f1 PD coincides with lD .

(iv) In Q n Pc is a line, and, in PD, Q f1 PD is a line.

Let E C Hilb2 (,S’) be the exceptional divisor of the birational mor-
phism v : Let Ec := E n and

. Ec is a P1-bundle over the diagonal Ac C
Sym2 (C) . Let fc be a fiber of this bundle. Similarly, ED is a P1-bundle
over OD C Sym2(D), and let fD be its fiber. Note that

5.2.2. Mukai flop.

Flop Hilb2 (S) along the center Pc to get a new 4-fold V. We denote
by PC C V the center of this flop. There is a birational morphism
g+ : Sym 2(S).

Let PD C V be the proper transform of PD, and let Q’ C V be
the proper transform of Q. Since PD is disjoint from PC, PD is naturally
isomorphic to PD ; hence I~2 . On the other hand, Q’ is isomorphic
to the blowdown of Q along lc. Now Q’ becomes the Hirzebruch surface

The intersection PD n Q’ is a line of PD, and is a negative section of
Q’ E# On the other hand, Q’ and Pé intersect in one point. Let EJ C V
(resp. ED C V ) be the proper transform of EC (resp. ED ) .

5.2.3. Idea.

We shall construct a birational contraction map f : V - W over
such that, in (g+ ) -1 (o) , PQ and G~’ are contracted to a point

by f, EC is contracted along the ruling to a curve, and both ED and
PIC are birationally mapped onto their images. We put f (PD n Q’) = q
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and let W ° be a sufficiently small open neighborhood of q E W, and let
) satisfies the conditions

of Section 5.1. Let (/~)~ : (V ° )+ -~ W ° be another symplectic resolution
obtained by flopping P1. Then f ° and (/~)~ are not equivalent.

5.2.4. The construction of f.

Let p : B(S x S) - ,S x ,S’ be the blowup along the diagonal As.
Let F be the exceptional divisor of the blowup. We have a double cover
a : B(S x S) - Hilb2 (,S’) . We can write

for some M E Pic(Hilb2(S)). Note that M®2 = O( -E). Choose L E Pic(S)
in such a way that (L.~’) = 0 and (L.D) = 1. The line bundle 
on B(S x ,S) can be written as the pull-back by a of a line bundle N on
Hilb2(~S’). Define

Then we have

We have the following situation after the flop along PC :

(i) The proper transform e’ of e is a ruling of Q’ ~ ~1.

(ii) The proper transform l’v of 1D is a negative section of Q’ E# El, and
at the same time, is a line of PD .
Let Ib be the proper transform of fc, and let f D be the proper

transform of f D . Then, for the proper transform ,C’ E Pic(V) of ,C, we have

Moreover, for a line I of Ph, we see that (,C‘.l) = 1 because Hilb2(S) - - -
V is the flop along Pc and (£.1c) = -1. These implies that ,~’ is g+-nef
(and, of course, g+-big). Since g+ is a crepant resolution, by the base point
free theorem, ,C’®n is g+-free for a sufficiently large n. By this line bundle
we define f : V - W. An irreducible curve on V is contracted to a point
if and only if it has no intersection number with ,C‘ . Since (L’.1’ ) = 0, f
contracts PD to a point by (ii). Moreover, since (L’.e’) = 0, f contracts
~?’ to the same point. Finally, since (~‘. fC) _ 0, f contracts every ruling
of E3 to ponits. Similarly we can check that PIC and E~ are birationally
mapped onto their images by f.
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5.2.5. Detailed description of f.

Among the irreducible components of g+ 1 (o), Q’, PD and Eé are
f-exceptional. The birational morphism f factorizes g+ as

consists of two components; one of them is p2 and
the other one is f (ED), which is the blowdown of E4 along the
negative section. These two components intersect in one point. Note that

is a conic on 

Remark 5.1. - It follows from Lemma 3.7 that for the two symplec-
tic resolutions V - W and V+ -~ W , V is not isomorphic to V+.
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