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THE HUA SYSTEM ON IRREDUCIBLE HERMITIAN
SYMMETRIC SPACES OF NONTUBE TYPE

by Dariusz BURACZEWSKI*

1. Introduction.

Let G/K be an irreducible Hermitian symmetric space of noncompact
type and let be an orthonormal basis of p+. The Hua system, as
defined in [JK], is

After a number of partial results, the earliest going back to Hua, the
fundamental theorem concerning the Hua system, proved by K. Johnson
and A. Koranyi is:

THEOREM 1.1 (K. Johnson, A. Koranyi, 1980). - A function F on a
Hermitian symmetric space of tube type satisfies 7-~(F) = 0 if and only if
it is the Poisson-Szegb integral of a hyperfunction on the Shilov boundary
of G/K.

* 
The author was partly supported by KBN grant 5P03A02821, Foundation for Polish

Sciences, Subsidy 3/99, and by the European Commission IHP Network 2002-2006
Harmonic Analysis and Related Problems (Contract Number: HPRN-CT-2001-00273
- HARP).
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domains.
Math. classification: 32A50 - 32W50 - 32M15.
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Soon after the result of K. Johnson and A. Koranyi appeared,
N. Berline and M. Vergne [BV] proved that (1.1) does not annihilate
the Poisson-Szeg6 kernel on type two Hermitian symmetric spaces and
described a third order system that characterizes Poisson-Szego integrals
for those spaces, and they raised the question about the nature of the
common solutions of the Hua system for the type two Hermitian symmetric
spaces, a question that has remained opened for twenty years.

The aim of this paper is to prove that the solutions of the Hua system
on type two Hermitian symmetric spaces are the pluriharmonic functions
(see Section 4):

THEOREM 1.2. - Let F be a real valued function on a non-tube

irreducible Hermitian symmetric space. Then = 0 if and only if F is
pluriharmonic.

The system ( 1.1 ) annihilates holomorphic and antiholomorphic func-
tions. The origin of (1.1) goes back to L. H. Hua [Hua], who in 1958 wrote
a system that annihilates the Poisson-Szego kernel on some classical do-
mains. His formula was not exactly the one above, but for classical tube
domains the zeros of both systems are the same. Then A. Koranyi, E. Stein
and J. Wolf obtained the formula for general tube domains and in an un-
published paper showed that the Poisson-Szego kernel is harmonic with
respect to the system (see e.g. [JK]). The first results showing that differ-
ential equations actually characterize the class of Poisson-Szego integrals
were obtained in special cases [KM], [Jl], [J2]. Finally in 1980 K. Johnson
and A. Koranyi proved Theorem 1.1.

For a particular case of functions having L2 boundary values, the
above theorem was proved in [BBDHPT]. The methods of [BBDHPT] make
the utmost use of the strong growth restrictions and are not applicable here.

To treat zeros of H in full generality we combine two essential ingredi-
ents : the method of M. Lassalle [L] and the approach to pluriharmonic func-
tions on symmetric Siegel domains developed in [DHMP], [BDH]. While the
first one is based on the semi-simple group G, for the second one the use
of the solvable Lie group S’ acting simply transitively on the correspond-
ing Siegel domain seems indispensable. The reason is that the G-invariant
operators don’t see pluriharmonicity while the S invariant do(’). The inter-

(’) Bounded pluriharmonic functions are Poisson integrals i.e., they are annihilated
by all the G-invariant operators, but there are many G-harmonic functions that are not
pluriharmonic.
ANNALES DE L’INSTITUT FOURIER
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play between S-picture and G-picture is crucial for our story: the analysis
is done on the group ,S’ and the special structure of ,S’ being the Iwasawa
group is essential. That is why we describe so thoroughly both pictures:
G/K and ,S’ and we pass from one to the other (Sections 2-3).

M. Lassalle [L] reproved Theorem 1.1 introducing new methods and,
at the same time, cutting down the number of equations. We adopt his
method to reduce the problem to bounded functions. Namely, we prove
that a Hua harmonic function is G-harmonic (Section 5) (2) . To do so we
use only a part of the system, the "strongly diagonal operators" (see Section
4). These r equations (r being the rank) correspond to the system of

M. Lassalle. Next we use Harish-Chandra theorem [HC] in order to expand
f in terms of its projections on spaces of K-finite functions f6. Each of
these functions is Hua harmonic, hence G-harmonic. A K-finite and G-
harmonic function can be written as a Poisson integral of a continuous
bounded function defined on the maximal Furstenberg boundary, therefore
all functions f a are bounded.

After restricting to bounded functions we transfer our problem to
Siegel domains. For this we pass to realization of G/K as a Siegel domain
’D in which is described in Section 3.3 following the Koranyi-Wolf
theory [KW]. However, for our purposes, we have to transform it further
on in order to write strongly diagonal operators on the solvable Lie group
S, the one that acts simply transitively on ’D (Section 6). This gives an
extra advantage: the whole system may be replaced by strongly diagonal
operators. In fact, we prove (see Section 4):

THEOREM 1.3. - Let F be a bounded real valued function on a non-

tube Hermitian irreducible symmetric space. If F is annihilated by the
Laplace-Beltrami operator and the strongly diagonal Hua operators then
F is pluriharmonic.

Hence only r -I-1 operators are needed which is considerably less than
in either Johnson-Koranyi’s or Lassalle’s proof.

The rest of the proof uses S (Section 6). First we show that a bounded
function annihilated by the strongly diagonal Hua operators is a Poisson-
Szeg6 integral (see [BBDHPT], [DHP]). Then, we notice that the Laplace-

(2) The fact that for type two domains Hua harmonicity implies G-harmonicity was
mentioned without proof in [JK].
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Beltrami operator AT for the corresponding tube domain To is a linear

combination of the above r + 1 operators. Combining these two facts with
Theorem 1.1 applied to Tn we obtain some more equations (see Section 6).

Now the strategy is to single out operators whose common zeros have
to be pluriharmonic. These operators, however, cannot be obtained directly
as linear combinations of the ones studied so far. The method we apply is
the induction on the rank of the domain. The crucial observation is that S

is a semi-direct product

where is the group acting simply transitively on the Siegel domain
of rank r - 1 and the group acting simply transitively on the Siegel
half plane Dr (biholomorphic to the complex ball). Since a part of the
equations that we have at our disposal are on ,S’T, we restrict the function
F to Sir and apply some Fourier analysis methods on the Heisenberg group
(Section 7). The induction produces equations to which we can apply the
results of [BDH] and conclude that F is pluriharmonic. Since this method
requires that we deal with bounded functions not L2, the analytic part here
is somewhat more delicate than in [BBDHPT].

The author would like to express his deep gratitude to Ewa Damek for
her numerous ideas, suggestions and corrections incorporated in the paper.
Indeed, some parts of this paper are in fact a joint work. Also the author
wishes to thank Aline Bonami, Jacques Faraut and Andrzej Hulanicki for
their valuable comments.

2. Preliminaries on Hermitian symmetric spaces.

Let G/K be an irreducible Hermitian symmetric space of noncompact
type and G the connected component of its isometry group. G is a centerless
semisimple Lie group, and K is its maximal compact subgroup. We need
some standard notation concerning semisimple Lie groups and algebras.
For more details we refer to [H 1 ], [Kn] or [K].
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2.1. Root space decomposition.

Let g and t be the Lie algebras of respectively G and K, and let
9 : g - g be the Cartan involution on g which is identity on t. If p is the -1
eigenspace of 8, we get the Cartan decomposition g == 6(Bp, where [t, p] = p
and [p, p] = t. Let g~ (tc, p~ resp.) denote the complexification of g (t,
p resp.). We extend 0 to be a complex linear involution on g. G~ is the
adjoint group of gc with KC the analytic subgroup corresponding to te.

u = t (D ip is a compact real form of Denote by T the conjugation
operator on g~ with respect to u. If B is the Killing form on g , then
the bilinear form defined by -B(X, TY) is positive definite.
cr = T0 = 9T is the conjugation of gC with respect to g. (Usually we shall
write E instead of a E. )

Choose a Cartan subalgebra in t. Then 4c is a Cartan subalgebra
of g. Define A to be the system of roots of gc with respect to 4(c. Any
root space ga is contained either in t(c or in In the first case cx is called

compact (a E C) and in the second case noncompact (a E Q). Clearly A is
a disjoint union of C and Q. For a fixed a E A there are Ha E i ~ , Ea E 0~?

such that

( ~H 1 ~ , page 220). In particular, Ea and span a subalgebra of 0 ,
isomorphic to ~(2, C).

We define a Hermitian product on (~’C)* by

for

Let
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ca is well defined because

Using ca’s we introduce a second normalization:

By (2.1) these vectors satisfy the following relations:

If c is the center of t, then there exists an element Z E c such that

(adZ)2 = -1 on pC ([Kn], Theorem 7.117). Let p+ be the (i)-eigenspace of
adZ and p- be the (-i)-eigenspace of adZ. Then p+ and p- are Abelian
Lie subalgebras invariant under the action of tc, and [
page 313). Moreover, there is an ordering of A decomposing Q so that

-1 and

Indeed, we can select an ordering on A as follows: for two roots a, (3 we say
that cx is bigger than /3 if and only if -i(a - ,C3)(Z) &#x3E; 0. Q+ is referred as
the set of positive noncompact roots, while Q- is called the set of negative
noncompact roots.

For a E Q+, let

Then the set f XIII, spans p.

The restriction of adZ to p gives the complex structure on p, which
will be denote by J. Thus we have
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Similarly to (2.7), for every positive compact root a, take Xo, Yo C t
to be

2.2. Some algebraic preliminaries.

In this subsection we are going to introduce some further algebraic
properties of g~, which will be needed later.

First our goal is to describe the restricted root system for G/K. Two
roots Q, /3 E A are called strongly orthogonal if neither a nor Q - /3 are
roots. One can easily check that strong orthogonality implies orthogonality
with respect to the form (2.2). Let

(r = rank G/K) be a maximal set of strongly orthogonal positive noncom-
pact roots. Then

is a maximal Abelian subalgebra of p. (For a construction of IF we refer to
[HI] pages 385-387.)

Take ~- to be the real span of the elements iH..,, and ~+ to be the
orthogonal complement of 4- in # via the Killing form B:
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Let a, ,C3 E A. Denote Q rv /3 if and only . Define:

for

for

for

for

Then the map a - + a is a bijection of Ci onto Qi and CZ~ onto 
It is also known that A+ is the disjoint union of the sets Co, Ci, r,
~Z, and Q+ is the disjoint union of the sets r, Qi, Qij ([H3], pages
457-460).

We shall call G/K a tube type space if all sets Qi are empty. Otherwise
G/K is a nontube type space.

We introduce numbers Ma,j3, which will be helpful in next sections in
computing some brackets relations. For a, {3 E A define M,,, by

(some properties of these numbers are decribed in pages 146-152).

We may assume (~H1~, Theorem V.5.5) that

PROPOSITION 2.1. - Fix k between 1 and r.

c) For the rest of positive roots a: = 0.

Proof. - a) and c) are obvious. We prove b) for a E The second

case is similar.
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Notice that by (2.2) and (2.4)

therefore it is enough to compute and For this purpose
we shall look at corresponding roots series. The qk-series containing a is

la - 7k, because a - 2~y~ ~ ~’ 2 ~~ , which by the above remark implies
that a - 2’Yk is not a root. If is a root, then a cannot belong
to A ([H3], Lemma V.4.4), as well. Hence 1, which is immediate

consequence of Theorem V.5.3 in [H3]. Similarly we get 1.

Therefore (a, a) = (7k, ’Yk). 0

COROLLARY 2.2. - then

Proof. We have just proved that ca - c, and then the corollary
follows from Lemma 5.V.2 in ~H 1 ~ . D

3. Irreducible symmetric Siegel domains.

In this chapter we introduce symmetric Siegel domains and following
A. Koranyi and J. Wolf [KW], we describe realization of a Hermitian
symmetric space as a Siegel domain.

3.1. Preliminaries on irreducible symmetric cones.

Let Q be an irreducible symmetric cone in an Euclidean space. Our
aim is to describe a solvable group So acting simply transitively on Q. We
are going to use heavily the language of Jordan algebras so we recall briefly
some basic facts which will be needed later. The reader is referred to the

book of J. Faraut and A. Koranyi [FK] for more details.

A finite dimensional algebra V with a scalar product (~, ~~ is an

Euclidean Jordan algebra, if for all elements x, y and z in V:
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We denote by L(x) the self-adjoint endomorphism of V given by the
multiplication by x, i.e. L(x)y = xy. For an irreducible symmetric cone Q
contained in a linear space V of the same dimension, the space V can be
made a simple real Euclidean Jordan algebra with unit element e, so that

Let Go be the connected component of the group of all transformations in

GL(V) which leave Q invariant, and let go be its Lie algebra. Then go is a
subspace of the space of endomorphisms of V which contains all L(x) for
all x E V, as well as all xay for x, y E V, where

(see [FK] for these properties).

We fix a Jordan frame {Cl, ... , in V, that is, a complete system
of orthogonal primitive idempotents:

and none of the cl, ..., c, is a sum of two non-zero idempotents. Let us recall
that the length r is independent of the choice of the Jordan frame. It is
called the rank of V. To have an example in mind, one may think of the
space V of the symmetric r x r matrices endowed with the symmetrized
product of matrices -1 (xy + yx). Then the corresponding cone is the set
of symmetric positive definite r x r matrices, the set of diagonal matrices
with all entries equal to 0 except for one equal to 1 being a Jordan frame.

The Peirce decomposition of V related to the Jordan frame {Cl, ... , 
([FK], Theorem Iv. 2.1 ) may be written as

It is given by the common diagonalization of the self-adjoint endomorphism
L(cj ) with respect to their only eigenvalues 0, 1/2, 1. In particular = Rcj
is the eigenspace of L(cj ) related to 1, and, for t  j, Vij is the intersection
of the eigenspaces of L (ci ) and related to 2 . All Vij, for i  j, have
the same dimension d.
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For each i  j, we fix once for all an orthonormal basis of Vij,
which we note with 1 ~ a  d. To simplify the notation, we write
ea = ci (a taking only the value 1). Then the system for i x j and

is an orthonormal basis of V.

Let us denote by ao the Abelian subalgebra of go consisting of
elements H = L(a), where

We set Aj the linear form on ao given by ~~ (H) - aj. It is clear that

the Peirce decomposition gives also a simultaneous diagonalization of all
H E ao, namely

Let Ao - exp ao. Then Ao is an Abelian group, and this is the Abelian
group in the Iwasawa decomposition of Go. We now describe the nilpotent
part No. Its Lie algebra no is the space of elements X E go such that, for

where the pairs are ordered lexicographically.

The choice of the Jordan frame determines a solvable Lie group

So - NoA, being the semidirect product of No and A. Then the group
So acts simply transitively on Q. This may be found in [FK] Chapter VI,
as well as the precise description of no which will be needed later. One has

where

This decomposition corresponds to a diagonalization of the adjoint action
of ao since
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Finally, let V~ = V + iV be the complexification of V. We extend the
action of G to V~ in the obvious way.

3.2. Irreducible symmetric Siegel domains.

Suppose that we are given a complex vector space Z and a Hermitian
symmetric bilinear mapping

We assume that

The Siegel domain associated with these data is defined as

It is called of tube type, if Z is reduced to {0}. Otherwise, it is called of
type II.

There is a representation a : such that

and such that all automorphisms for s E Ao, admit a joint diagonal-
ization (see [KW]). To reduce notations, we shall as well denote by a the
corresponding representation of the algebra 50. For X E (3.8) implies
that

As an easy consequence, one can prove that the only possible eigenvalues
for a (H), with H E ao are Àj(H)/2, for j = 1, ... , r. So we may write

(3) We denote a Siegel domain by ~D to be consistent with A. Koranyi and J. Wolf
notation needed in the next subsections.
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with the property that

Moreover, all the spaces ,~~ have the same dimension. A proof of these
two facts may be found in [DHMP]. We call X the dimension of Zj for
j - l, ... , r. Let us remark, using (3.9) and (3.11), that for (, w E Zj,

and so the Hermitian

form Qj is positive definite on 

The representation a allows to consider So as a group of holomorphic
automorphisms of cD. More generally, the elements ( E Z, x E V and
s E So act on cD in the following way:

We call the group corresponding to the first two actions, that is

N(16) = Z x V with the product

All three actions generate a solvable Lie group

which identifies with a group of holomorphic automorphisms acting simply
transitively on ’D. The group ~V(~), that is two-step nilpotent, is a normal
subgroup of S. The Lie algebras of S admits the decomposition

Moreover, by (3.3), (3.6) and (3.11), one knows the adjoint action of
elements H E ao:

for

for

for
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Since ,S acts simply transitively on the domain ’D, we may identify S
and ’D. More precisely, we define

where e is the point (0, ie) in ’D. The Lie algebra j6 is then identified with
the tangent space of ’D at e using the differential We identify e with
the unit element of S. We then transport both the Bergman metric g and
the complex structure j from ’D to S, where they become left-invariant
tensor fields on S. We still write j for the complex structure on S.

3.3. Realization of Hermitian symmetric space
as a Siegel domain.

The goal of this subsection is to describe connections between Her-
mitian symmetric spaces and Siegel domains. For a space G/K, which is
supposed to be in the Harish-Chandra realization, we find a biholomor-
phically equivalent domain, equipped with the structure of Siegel domains.
We follow closely [KW] and [K], but at the end we shall need a little more,
namely we are interesting in full description of a basis of s in terms of the
Lie algebra g~ .

First we recall the Harish-Chandra realization. Let us denote the

analytic subgroups of Gc corresponding to subalgebras p+, p- by P+ and
P-, respectively. They are Abelian. The exponential map from p± to P~ is
biholomorphic and P~ is biholomorphically equivalent with ~’~ for some n.

The mapping (pi,k,p2) is a diffeomorphism of P+ x KC x P-
onto an open submanifold of GC containing G. For g E G let p+ (g) denote
the unique element in p+ such that g E exp (p+ One can show

that p+(g) = p+(gk) and p+ is a diffeomorphism of G/K onto a domain
D c p+ = G acts biholomorphically on D by g ~ p+ (g~ = p+ (g§i. Let
o = p+ (e), then D is the G-orbit of o and the group K is the stabilizer
of the point o. This is the Harish-Chandra embedding and in fact realizes
G/K as a bounded symmetric domain (we refer for more details to [Hl] or
[Kn]).

From now on we shall assume that D is the above realization. Put

and define an element of GC called the
Cayley transform:
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Let

For g E G, c exp (p+ (g)) E and so the mapping p+ (g) -
p+ (c exp p+ (g) ) defines a biholomorphism of D onto a domain cD C p+
([KW]). Clearly, ’D is the orbit of the point c’ o = iE,y under the action
of the group cG, and C K is the isotropy group of iE.y.

A simple computation proves the following lemma

Then

Furthermore Ad(c) acts trivially on ~+.

It can be shown that c8 == I and Ad(c4) preserves t and p. We
decompose both Lie algebras:

-eigenspace of Ad(c4) in p,
-eigenspace of Ad (c4 ) in t,

If gT = g, then the space G/K is of tube type, otherwise it is of nontube
type. In the obvious way we introduce Lie algebras p~, PT etc., and
analytic subgroups of G~ : GT, KT, etc. We denote by p-1, subspaces
corresponding to restricted roots Similarly define subspaces
of m’c which are restricted root spaces of and 0,
respectively. Notice that
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Furthermore,

Next we introduce

Moreover, let

One can easily see that ; and is a real form of p~. Similarly
n+ is a real form of q+ 0 One can prove that Ad(c2) preserves tT and

We define

, then , Lemma IV.2.6). By KT and L
we denote corresponding Lie groups.

Now we are ready to describe the domain ’D. The image of the point
iEr under the action of is a self dual cone in inT, with the group L as
a stabilizer of iEr ([K], Theorem IV.2.10). We shall denote this cone by Q.
Define a function

where (adY)* is the adjoint operator of adY with respect to BT. It can
be shown ([KW], Lemma 6.4) that 4D satisfies all asumptions listed in the
previous subsection and
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([KW], Theorem 6.8). Therefore ~D is a Siegel domain of type I or II.

Now we want to recognize the group ,S’ in this picture. The mapping
iqT ~--~ nT given by

is a bijection ([KV], Lemma 2.5). Let L be the inverse map, then we define
multiplication in n+ by

One can easily prove that the above definition coincides with the one given
in [FK], page 49, and multiplication so defined gives the structure of Jordan
algebra in n;j.

Take ci = E’Yi’ then L (ci ) = 2 and the set is a Jordan

frame. The Peirce decomposition (3.2) with respect to this frame is given
by the decomposition (3.19) of n~ ni and n~ ~ . Then ao
is spanned by vectors H,yi and the Gauss decomposition (3.4) of no = nK
coincides with (3.19) for n1-. Therefore, the solvable part of Iwasawa
decomposition of Cg with respect to ao is

and this is exactly the same decomposition as (3.15). The group ,S corre-
sponding to  acts simply transitively on the domain ’D.

3.4. An orthonormal basis for a Siegel domain of type II.

Now we describe an orthonormal basis of 5 for the nontube case

corresponding to the decomposition (3.15). This will be the same basis
as in [DHMP], [DHP], [BBDHPT]. We begin with finding a basis of nij.
Take a E Qi~ and put

then by [L] (page 141) a E The classification theorem for Hermitian

symmetric spaces says that in the nontube case the dimension of each space
Qij is even. Since cx ~ "+’j if and only if 0152 1= ~i 2 ~’ , it follows that a.

By Qij we shall denote the subset of Qij such that from each pair of roots
a and a exactly one is contained in 
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Define

Then {3 and 0 are positive compact roots. Applying Lemma V.5.1 in [HI]
and Corollary 2.2 we obtain:

for some E, a, p, 6 E ~ - l,1 ~ . We have a + d, - -yi - -yj - 0, thus it follows
from Lemma V.5.3 that Ep = 80’, which implies

From (3.18) and (3.23) we obtain

therefore j are elements of

g, hence Aa = belong to n?’ . Calculating
dimensions we see that the vectors having the above form are a basis of
nii. To write a basis of n2~ we shall use the formula (3.5) and compute
Ca = and Da = (see (3.1)). Take

then [X, Er] = Aa , therefore = X, and
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Similarly we can compute:

Our last step it to write a basis of nt. By [KW], Lemma 6.5, the map
~ = is a real linear isomorphism of p+ onto n2 . The dimension
argument proves that vectors of the form

for a E Qi, form a basis of n+
The vectors

form an orthonormal basis of .~ with respect to the Hermitian product BT .
We denote the corresponding left-invariant vector fields on ,S’ respectively
by:

and we introduce in p+ coordinates corresponding to the Xa, Xa:

Given a function f on cD let

then for a left-invariant vector field W on S’ we have
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and so

where w = u + iv. Therefore the complex structure J on S transported
from ~D is:

Finally,

are holomorphic vector fields.

Let Z be one of the vectors fields Zj, Za, w the corresponding
coordinate or wa and let Az be the unique left-invariant differential

operator with the property

Az is real, second order, elliptic degenerate and annihilates holomorphic
(consequently pluriharmonic) functions and any left-invariant operator
with the above properties is a linear combination of such. Therefore Az’s
are building blocks for admissible operators. Az can be explicitly computed
on the whole group S:

where V denotes the Riemannian connection on S’ (see [DHP], [DHMP]).
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4. The Hua system of second order operators
and the Main Theorem.

Let be any orthonormal basis of p+ and be a dual basis of

p- with respect to the Killing form B of g~ (for example and

are such bases). Then the Hua system is

The above definition was given by K. Johnson and A. Koranyi in [JK]. It
is clearly an element of UC where Uc is the complexification of the
enveloping algebra of g. One can easily check that ?-~ does not depend on
the chosen basis. For this reason we shall write always the operator ?-~ in
terms of the base vectors We say that a function f defined on
D is Hua-harmonic, if the corresponding function f on G (1(g) = f (g ~ o))
is annihilated by the Hua system. Analogously f is annihilated by a left-
invariant operator U on G if U f = 0.

Now we are ready to formulate the main result of this paper:

THE MAIN THEOREM. - Let D = G / K be an irreducible Hermitian
symmetric domain of nontube type and let f be a real function on D. Then

f is Hua-harmonic if and only if f is pluriharmonic.

Let us recall that f defined on D C Cn is pluriharmonic if it

is the real part of a holomorphic function. Pluriharmonicity is equiva-
lent to being annihilated by all operators (1 ~ n). Since

, formula 3.18), the Hua system annihi-
lates pluriharmonic functions. For this reason we have only to prove that
any Hua-harmonic function is pluriharmonic.

In fact we shall not use the whole Hua system, but only a part of it.
More precisely for any basis of ~~ define elements Uvk by

Then we have a simple proposition

PROPOSITION 4.1 ([JK], [L]). - Let f be a function on G. Then
~f =0 ifand only if for every k: Uvkf =0.
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By [JK] and [L] the Laplace-Beltrami operator is a linear combination
of operators Next we define second order differential operators Uk,
which will be called strongly diagonal Hua operators:

Observe, that in view of Proposition 2.1:

To prove pluriharmonicity of any Hua-harmonic function, we shall use only
the Laplace - Beltrami operator and strongly diagonal Hua operators.

Now we explain the strategy of the proof. Using classical results [HC]
we may expand f in terms of its projections on the spaces of K-finite
vectors of type 7r:

where K is the set of equivalence classes of irreducible unitary representa-
tions of K and X7r is the character of ~r. Now f7r == X7r *K f are K-finite
functions and are clearly Hua-harmonic. In the next section we prove (The-
orem 5.1) that every Hua-harmonic function is G-harmonic (i.e. annihilated
by all G invariant operators on G/K without constant term), therefore f 7r
are G-harmonic. Each K-finite, G-harmonic function is Poisson integral of
a continuous bounded function defined on the maximal Furstenberg bound-

ary ([H3], Theorem V .6.1 ) , therefore each f7r is bounded, and it is enough
to prove the Main Theorem for bounded functions.

Having the boundedness assumption (which is invariant on biholo-
morphic mappings), we transfer our problem to the group ,S’ acting simply
transitively on the Siegel domain ’D, and using techniques of [BDH], we
obtain the result. The details are contained in Sections 6 and 7.
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5. G-harmonic functions.

The aim of this section is to prove the following theorem

THEOREM 5.1. If f is a Hua-harmonic function, then f is G-

harmonic.

The above theorem was proved in the tube case by [JK] and [L].
Furthermore the authors of the first cited paper remarked that this result

holds also for nontube domains, but they didn’t give a proof. Our proof
follows closely the argument of [L] and finally we get a system of equations
that differs only by constants from the one considered by Lassalle. The
main step is to prove the following theorem

THEOREM 5.2. - If lb is K-biinvariant, Hua-harmonic function on G,
then 4) is constant.

Using this result we can easily prove Theorem 5.1:

Proof of Theorem 5.1. As we noticed in the previous section,
among the Hua operators there is the Laplace-Beltrami operator. Hence f
is an analytic function. Take dk to be unimodular normalized Haar measure
on K. For fixed g E G define a function on G:

Then 16 is K-biinvariant and Hua-harmonic, therefore by Theorem 5.2 ~
is constant. Hence

and using the Godement theorem ([H2], page 403) we deduce that f is
G-harmonic. D

We are interested in studying how the Laplace - Beltrami operator
and strongly diagonal Hua operators act on a K-biinvariant function f,
defined on G. From KAK decomposition of G follows that f depends only
on A. Hence its enough to compute radial parts of Uk, which we shall
denote by E For this we determine ð1(EaE-oJ for all positive
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noncompact roots a, considering three cases when a belongs to r, Qj or
Arguing as in [L] we obtain:

PROPOSITION 5.3. - The radial parts of operators are:

for ~ I

for 1

0 for

Using the above result we may compute radial parts of strongly
diagonal Hua operators:

where

{3 and A are independent on j and k.

Take f to be any K-biinvariant analytic function on G. Every element
g of G can be written (using KAK decomposition) as

V’

Therefore f depends only on tj and we can think of it as a function defined
on Furthermore f is W-invariant, where W denotes the classical Weyl
group. W acts on a by signed permutations, so
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for any permutation at of r elements. Therefore we can write a new version
of Theorem 5.2 as follows:

THEOREM 5.4. - Let A and j3 be strictly positive real numbers and
let f be an analytic function on invariant under signed permutations,
being a solution of differential equations

for k = 1,..., l. Then f is constant.

The theorem for similar system of equations was proved by M. Lassalle

([L], p. 150, Theorem 5). However, the same proof works in our case,
therefore we omit it and refer the reader to [L].

6. Hua operators on Siegel domains.

Given a function f on D we define

- a function on G,
- a function on ’D,

~ - a function on ’G.

To prove that f is pluriharmonic it is enough to show pluriharmonicity
of If, because c is biholomorphic.

One can easily check that C l(Ad(c)g) = f (g) which implies that for
any X E ~(G): 

- -

where Ad(c)X E Therefore the function C f is annihilated by the left
invariant operators Ad(c)Uk. Our aim is now to compute these operators on
the domain ID and on the group S. As a result we shall get Hua operators
on Siegel domain written in terms of admissible operators Az’s, Z being
as in (3.28).

THEOREM 6.1. Let f be a Hua-harmonic function on D, then the
corresponding function cf on cD is annihilated by the Laplace-Beltrami
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operator A on cD and Hk (1  k x r):

which we shall call strongly diagonal Hua operators as well. The Laplace-
Bel trami operator is given by

Proof. The idea of the proof is following. First we compute Uk’s
at the point o, denoting the result by Vk :

Next using the Cayley transform we find operators cVk such that

and finally we extend them S-invariant on the domain ’D and the group S.

First observe that by [JK] (3.18)

where are coordinates in p+ with respect to the basis 
Therefore

Now we have to compute the differential of c. We shall use the formula

given in [S], Lemma 11.5.3, which says that the Jacobian of the mapping
z H c ~ z at the point o is given by

where cK denotes the component K~ of c in the decomposition P+ K(CP- -
By [KW], Lemma 3.5:
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Hence the vectors Ea are eigenvectors of Ad(cK ) :

Therefore,

Let us observe that for o

for E, p defined by (3.23) and w as in (3.25). Then applying (3.26) and
the definition of building blocks we obtain the S-invariant extension of
the above operator which is + AZ2. In the same way we get the
corresponding operators for 8ziåZi and 8zaåZa (for a E Qi): 2£za;.
Therefore

Observe that using the same method we can transfer the Laplace-Beltrami
operator:

and we get formula (6.2). D

Note that to obtain the main result it is enough to prove the following:
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THEOREM 6.2. - Let f be a real, bounded function on S, annihilated
by the operators:

Then f is pluriharmonic.

Now we are going to change slightly the notation for the one used in
[BDH] and [BBDHPT]. Take all vector fields

and denote them

Corresponding vectors

denote by

using the same ordering. Analogously we change

for

Hence we get the left-invariant vector fields:

Finally, for the buildings blocks we adopt the notation

Then formulas (6.1) and (6.2) can be written as:
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for Furthermore by [DHMP], Theorem 1.23:

From [DHMP] and [BDH] it follows that pluriharmonicity is equiv-
alent to being annihilated by each building block ,C~, 0~ , Ai separately,
and that is just what we are going to prove about f:

THEOREM 6.3. - Let f be a real, bounded function on S, annihilated
by A and by for j = 1,..., r. Then

for all i, j,,3.

A simple calculation shows that as a linear combination of A and
we may obtain the Laplace-Beltrami operator AT for the tube domain

TQ = V + iQ, which is identified with the subgroup VSo of the group S.
Indeed,

Given ( E Z, the function = f ((~, x)ya) becomes a function on the
tube domain TQ and all the operators that are linear combinations of the
blocks 0~ , Ai have perfect sense as operators there. In particular using A,
AT and Poisson integrals both on ’D and on TQ we are able to prove that
for fixed (, f( is the Poisson-Szego integral on TQ and so using Theorem
1.1 we obtain

THEOREM 6.4 ([BBDHPT], Theorem 3. 1). - Let f be a bounded
function on S annihilated by A and by 1-lj, for j = 1,..., r. Then

and



110

are strongly diagonal Hua operators for

Proof of Theorem 6.3. - To prove the theorem we are going to use
induction on the rank of the cone. Assuming r &#x3E; 1, we show how to reduce
the problem to the rank r - 1.

First let us decompose the domain ’D. Take to be the rank r -1

cone determined by the frame cl, ... , The underlying space vr-l for
is the subspace

Next let us define

Then it is easily seen that x is mapped by 4) into I

belongs to nr-l when ( E So we may define the

corresponding Siegel domain vr-l as

Now let

Looking at the corresponding brackets relations one can prove that
is isomorphic to the Lie algebra of the Heisenberg group with m =

x + (r - 1 )d. Therefore

(vrT is the center of the group).
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Put Ar = exp and Sr = Ar then ,ST is a solvable group
acting simple transitively on the classical Siegel half plane Dr which is
biholomorphic equivalent to the complex ball in (see also the next
section). We can identify S, with Dr.

On the level of the Lie algebra we have the decomposition

where

is a subalgebra of s and 5r is an ideal. Therefore we can decompose
the group as a semidirect product of a subgroup sr-l and normal subgroup
sr :

acts simply transitively on the Siegel domain of the rank r -1.

The complex structure on s, (transferred from is the restriction

of the one on .~. Hence

Furthermore the basis

of s, is orthonormal with respect to the Riemannian form g, on So. We
can compute the Riemannian connection V on ~~.:



112

LEMMA 6.5. - The Riemannian connection is given by

Defining operators Ar, £§F and Lijr as in (3.30) and (6.3), with V in
place of V, using formula (3.30) and Lemma 6.5, we get:

Since the above operators act from the right, they have perfect sense both
on Sr and S, by (6.3) we may write:

where . and

In the next section we are going to restrict operators C, and HT to
left cosets of and to prove that left-hand sides of (6.11) are zero. But in
view of (6.11) this means that f is annihilated by the strongly diagonal Hua
operators and the Laplace-Beltrami operator corresponding to the domain
vr-l, which completes the proof of theorem (6.3). 0

7. Bounded pluriharmonic functions on the Siegel
upper half plane.

Now we are going to prove the last step of the Main Theorem. The
idea of our proof is very similar to the proof of Theorem 6.7 in [BDH]. But
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we shall use somewhat different operators, and for this reason we have to

strengthen some of the lemmas. For completeness we give the whole proof.
We should mention, that notation used in this section is independent on
the notation contained in the rest part of the paper.

We shall consider the classical Siegel domain D defined by

It is well-known, that D is biholomorphically equivalent to the unit ball in
Let G denote the group of holomorphic isometries of D. Take the

Iwasawa decomposition of G:

Then the elements ((, u) E IHIn (Heisenberg group), a E A = R+ (dilatations
group) and p E (the group of unitary mappings of en) act on D in
the following way:

The semidirect product of EP and A acts simply transitively on D.
Therefore we can identify the group S’ = IF-IInA with the domain D:

Let us denote by T left-invariant fields on IHIn , which in e (the
identity element of Hn) agree respectively with o9x,, (9,yj, ((j = xj + 
Then the operators T, H given by

are left-invariant on the group S, and form a basis of the Lie algebra 5 of S.
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For fixed k ( 1 ~ k x n), we are going to consider the following
operators:

D and L are admissible operators (compare (6.3)), LB is called a sublapla-
cian on the Heisenberg group. All the operators are related by the following
equation:

Notice that if

and

where JU7 , Y,, Qgg are left invariant vector fields on Sand Sr defined
in Section 6, then restricted to Sr are D and L, respectively.

The goal of this section is to prove the following theorem:

THEOREM 7.1. - Let F be a real bounded function on D annihilated

by D and L. Then F is a pluriharmonic function, which implies that for

In terms of the previous section this theorem says that F is annihi-
lated by all building blocks: Aq and 

Being D + L harmonic, F can be written as Poisson integral of its
boundary value f E 

(see [DH], [RI).
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PROPOSITION 7.2. - Let F be any bounded function on D annihilated

by D and L, and let f C L°° (IHIn) be its boundary value. Then f satisfies
the following equation:

Proof. This proposition is a straightforward consequence of the
fact, that the family of functions Fa tends in the distribution sense to the
function f, when a goes to 0. The convergence is sufficient to "transfer"
differential operators LB and 9~ to f. However our assumptions give us
more, namely limits

exist in the distribution sense as well, for all nonnegative integer numbers
m. To prove this put

Then using (7.1) and an observation that 8a and D commute we have

which implies

Now we are able to deal with the operator L. Let

then by (7.1)

Hence
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Notice that the operators L and D commute, so

Therefore we easily check that

Finally applying again (7.1), differentiating it with respect to a and using
formulas (7.4), (7.5) and (7.6) we conclude that

which complete the proof. 0

Now the strategy is to reduce the problem to functions F whose
boundary value are easier to handle, due to special properties of their
Fourier transforms. First, we may clearly assume that

for f E p Indeed, Fa may be approximated by functions
pn * Fa and on the level of boundary values this means (7. 7) . Furthermore,
we prove the following

- 

PROPOSITION 7.3. - Let F be as in Theorem 7.1 and let f = p * f
(f E L°° p E S(Hn )) be its boundary value. Denote by f ( (,:X) the
distributional partial Fourier transform of f along Then there exists a

sequence of functions ?In E C°° (II~ B 101) such that for fn and Fn defined by
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the following conditions hold:

9 Fn is annihilated by L and D;

I and the constants sn
and Mn are dependent only on TIn;

o the sequence Fn tends to F + c, where c is a constant.

It is clear that for any sequence of functions TIn such that 

C°° (II~ B 101) the first two conditions are true. The main difficulties is to
build a sequence that ensures the last condition.

Let 0 be a Schwartz function on R such that

and

For a given sequence ~I~n~n=1,2,... of natural numbers tending to
infinity, let 

- " "

Given a bounded function 9 on R, there is {A~}~=i 2 ...? oo such that

But by [BDH] (Lemma 4.4) even more is true. We can choose a sequence
..

Now using (7.3) we prove that the above limit does not depend on (.

LEMMA 7.4. - The function

is constant.

Proof. Consider the function H on IHIn defined by
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Then H E and it is a boundary value of a smooth function
E L°° (,S’), given by

Observe that for every u E R,

Indeed,

Hence by the Lebesque dominated convergence theorem

pointwise hence also in the distributional sense on S. Each of functions

qbn *R L’a (~, u) is annihilated by L and D, so Ha is as well. Therefore by
Proposition 7.2 

--

but H is independent on u, thus

where A2 is the Laplacian on C’~ = R2,.
Taking the Fourier transform of both sides we obtain
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which means

Boundedness of H forces it to be constant. 0

Proof of Proposition 7.3. - Let 0 be a function defined by (7.8). We
select the sequence such that the condition (7.9) was satisfied. Take
qn to be

It is easy to check that this is the required sequence of functions.

Thus we may assume that for a positive ~, M:

Let 4Jl, 4J2 E be defined as follows:

We may decompose functions f and F into the sum of two functions

where

and we see that

Furthermore

which imply

So to prove Theorem 7.1 it remains to show

THEOREM 7.5. - Fi is holomorphic.
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To prove this theorem we shall need some elementary theory of
unitary representations of the Heisenberg group for which we refer to [T].

Let U’ be the Schrodinger representation of JHIn, ([T], 1.2.1). In the
underlying Hilbert space Hx = we consider the basis consisting of

properly scaled Hermite functions ~ (1.4.18 and Section 2.1 of [T]). Let

Then

where ~a,,~ are the special Hermite functions, ([T],I.4.19). functions

belong to the Schwartz class on C’ and are eigenfunctions of the sublapla-
cian LB :

Let

and for

Then

where

We shall need more information about 4t,,, - Let Lk be the k-th
Laguerre polynomial, i.e.,

Given a multiindex a = (a,, ..., cxn) and ( E en let
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Then

(see [T] 1.4.20).

LEMMA 7.6. - For 0 and

Proof. Let

and Proposition 7.2 we get

and the lemma follows. D

Furthermore, fi translated by any element ((, u) E on the left

is the boundary value of Fl translated on the left by ((, u). Therefore,
repeating the above argument we obtain:

for and

Let us define

e~ are joint eigenfunctions of LB and T, and we can expand g in terms of
its spectral projections:
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(see Theorem 2.1.1 [T]), where the above series converges in norm.

We are going to prove that

PROPOSITION 7.7. - The series

converges in 

Proof. - To prove this proposition we will use the following property
of the Laguerre functions ([BDH]):

For every l, p E I~ there exist c = c(l, p) and M = M (1, p) such that

To estimate norm of

let us notice first that

By (7.12) we get
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For the last inequality we estimated by Pa pointwise due to
Harnack’s principle. To obtain the thesis it is enough to show that

for some m, independent on N, where

According to (7.11) and (7.13) we can write

Hence the Schwartz inequality, (7.17) and (7.22) yield

Now taking N large enough we obtain (7.21).

LEMMA 7.8. - For every a E R+, the function
is radial.

Proof. For p E define

and

Then



124

We claim that Pa is annihilated by the operator L + D. For this we apply
the fact that LB and 9~ commute with the action of U(n) on JHIn:

Moreover, Pa is an approximate identity. These two properties uniquely
define the Poisson kernel ([DH], Corollary 3.13). Hence

Since e~ are radial as well, we get

COROLLARY 7.9. - For every À =1= 

Now we are ready to expand Fl. Using (7.20), Proposition 7.7 and
the above corollary we have:

where

Hence by (7.18)
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On the other hand, by [DHMP] (Lemma 2.37),

Therefore,

So it suffices to prove that the function

is holomorphic. We have

which proves Theorem 7.5.

8. Appendix.

In [DHP] and [BBDHPT] the authors introduced a geometric defini-
tion of the Hua system. The definition was written in terms of the curvature
tensor R of the domain, which allows to generalize Hua operators to any
Kahlerian manifold. On Hermitian symmetric spaces both definitions are
equivalent, which is an consequence of Theorem 4.2, page 180 in ~H1~ . Ex-
plicitly, this theorem says that for X, at the base point o,

Therefore, one can apply the adjoint representation of t on p to the Hua
system 1í, to express it using the curvature tensor. Finally, if we use non-
degeneracy of the adjoint representation and the invariance of the system
under the group of biholomorphic transformations of the domain, we get
the formula from previous papers.



126

BIBLIOGRAPHY

[BBDHPT] A. BONAMI, D. BURACZEWSKI, E. DAMEK, A. HULANICKI, R. PENNEY, and
B. TROJAN, Hua system and pluriharmonicity for symmetric irreducible
Siegel domains of type II, Journal of Functional Analysis, 188 (2002),
38-74.

[BDH] D. BURACZEWSKI, E. DAMEK, and A. HULANICKI, Bounded plurihar-
monic functions on symmetric irreducible Siegel domains, Mathematische
Zeitschrift, 240 (2002), 169-195.

[BV] N. BERLINE and M. VERGNE, Equations de Hua et noyau de Poisson,
Lecture Notes in Math., 880 (1981), 1-51, Springer-Verlag.

[DH] E. DAMEK and A. HULANICKI, Boundaries for left-invariant subelliptic
operators on semidirect products of nilpotent and abelian groups, J. Reine
Angew. Math., 411 (1990), 1-38.

[DHMP] E. DAMEK, A. HULANICKI, D. MULLER, and M. PELOSO, Pluriharmonic
H2 functions on symmetric irreducible Siegel domains, Geom. and Funct.
Anal., 10 (2000), 1090-1117.

[DHP] E. DAMEK, A. HULANICKI, and R. PENNEY, Hua operators on bounded
homogeneous domains in (Cn and alternative reproducing kernels for holo-
morphic functions, Journal of Functional Analysis, 151 (1) (1997), 77-120.

[FK] J. FARAUT and A. KORANYI, Analysis On Symmetric Cones, Clarendon
Press, Oxford, 1994.

[HC] HARISH-CHANDRA, Discrete series for semisimple Lie groups II, Acta Math.,
116 (1966), 1-111.

[H1] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces,
Academic Press, New York, 1962.

[H2] S. HELGASON, Groups and Geometric Analysis, Academic Press, Orlando,
1984.

[H3] S. HELGASON, Geometric Analysis on Symmetric Spaces, American Math-
ematical Society, Providence, 1994.

[Hua] L. K. HUA, Harmonic Analysis of Functions of Several Complex Variables
in the Classical Domains, Science Press, Peking (1958), Amer. Math. Soc.
Transl., Math. Monograph 6, 1963.

[JK] K. JOHNSON and A. KORÁNYI, The Hua operators on bounded symmetric
domains of tube type, Annals of Math., 111 (2) (1980), 589-608.

[J1] K. JOHNSON, Remarks on the theorem of Korányi and Malliavin on the
Siegel upper half-plane of rank two, Proc. Amer. Math. Soc., 67 (1977),
351-356.

[J2] K. JOHNSON, Differential equations and the Bergman- Shilov boundary on
the Siegel upper half-plane, Arkiv for Matematik, 16 (1978), 95-108.

[KM] A. KORÁNYI and P. MALLIAVIN, Poisson formula and compound diffusion
associated to an overdetermined elliptic system on the Siegel halfplane of
rank two, Acta Math., 134 (1975), 185-209.

[Kn] A. W. KNAPP, Lie Groups, Beyond an Introduction, Birkhäuser, Boston-
Basel-Berlin, 1996.

[K] A. KORÁNYI, Analysis and Geometry on Complex Homogeneous Domains,
chapter Function Spaces on Bounded Symmetric Domains, pages 183-281,
Birkhäuser, Boston-Basel-Berlin, 2000.



127

[KV] A. KORÁNYI and S. VAGI, Rational inner functions on bounded symmetric
domains, Trans. A. M. S., 254 (1979), 179-193.

[KW] A. KORÁNYI and J. WOLF, Realization of Hermitian symmetric spaces as
generalized half-planes, Annals of Math., 81 (2) (1965), 265-288.

[L] M. LASSALLE, Les équations de Hua d’un domaine borné symétrique de
tube type, Invent. Math., 77 (1984) 129-161.

[R] A. RAUGI, Fonctions harmoniques sur les groupes localement compact à
base dénombrable, Bull. Soc. Math. France, Mémoire, 54 (1977), 5-118.

[S] I. SATAKE, Algebraic structures of symmetric domains, Iwanami-Shoten
and Princeton Univ. Press, 1980.

[T] S. THANGAVELU, Harmonic Analysis on the Heisenberg Group, Birkhäuser,
Boston-Basel-Berlin, 1998.

Manuscrit requ le 17 mars 2003,
accepté le 17 juillet 2003.

Dariusz BURACZEWSKI,
Instytut Matematyczny
Uniwersytet Wroclawski,
Plac Grunwaldzki 2/4
50-384 Wroclaw (Poland).
dbura@math.uni.wroc.pl


