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RATIONAL SMOOTHNESS OF VARIETIES OF

REPRESENTATIONS FOR QUIVERS OF DYNKIN TYPE

by Philippe CALDERO &#x26; Ralf SCHIFFLER (*)

1. Introduction.

Let F be an algebraically closed field, d = (dl , d2, ... , dn ) E Nan

and Gd - fl’ 1 Let Q be a fixed quiver whose underlying
graph A is the Dynkin graph of type An, Dn or En. Gd acts on Ed =

Fd3), by conjugation. Let C~ be a Gd-orbit and C~ its
Zariski closure. In [BS] the complete list of rationally smooth orbit closures
of type An was obtained. As a consequence it was shown that, in type
An, C7 is rationally smooth if and only if C7 is smooth. In this paper we
will generalize these results to the types Dn and En , see Theorem 3.6 and

Corollary 3.7.

Rational smoothness is a topological property, which is defined using
local intersection cohomology, and has been extensively studied for Schu-
bert varieties, [Deo85], [Car94]. For a survey of some of these results, see
[BLOO] and [Bri98].

Let U+ be the positive part of the quantized enveloping algebra U
over Q(v) associated by Drinfeld and Jimbo to the root system of type A.
Kashiwara and Lusztig have constructed independently of each other a

unique canonical basis B of U+ in [Kas91] and [Lus90a]. For each reduced

(*) The second author was supported in part by FCAR Grant.
Keywords: Quantum groups - Representations of quivers - Singularities - Canonical
basis.
Math. classification: 17B37 - 16G20 - 14B05.
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expression i of the longest element wo of the Weyl group W of type A, there
is also a PBW-basis Bi. Some of the reduced expressions are adapted to the
quiver Q. In this case, Lusztig has shown in [Lus90a] that the entries of the
transition matrix between the bases B and Bi have a description in terms
of local intersection cohomology of orbit closures. We use this approach
to study rational smoothness of orbit closures. One important ingredient
therefore is the action of the bar involution of U on the elements of the

PBW-basis.

This paper is organized as follows. In section 2 we fix notations and
recall some results that we will need at a later stage. In particular, we
recall the Hall algebra realization of U+. We then present two different
approaches to study rational smoothness of orbit closures: one algebraic
and the other geometric.

Section 3 contains the algebraic approach. Here we consider the bar of a
PBW-basis element as a linear combination in the PBW-basis, and study
the coefficients of this expansion; to be more precise, we calculate the
derivative at v = 1 of these coefficients. The method used to calculate

the coefficients differs from [BS]. In fact, we use the dual approach, with
the help of the canonical form on U+. Indeed, the dual PBW-basis is

known in the Hall algebra context by [Gre95]. Moreover, the adjoint a of
the bar involution is a Q-antiautomorphism (up to a power of q) given
by Lusztig, [Lus93]. The reason why things are more convenient when we
dualize is that the dual of an irreducible element of the PBW-basis is an

element of the dual canonical basis, [Cal], and so is stable by cr. Then, the
image by a of a general dual PBW-basis element can be easily calculated
by the antiautomorphism property. This enables us to realize the desired
coefficients in terms of generalized Hall polynomials, see Proposition 3.1.
Using the same methods as in [BS], we then obtain the complete list of
rationally smooth orbit closures. It is easy to see that each orbit closure in
this list is smooth.

In section 4 we present another proof of this characterization using a
geometric approach. According to an idea of Michel Brion, we calculate the
Euler-Poincaré characteristic of the projectivization of the orbit closures 0.

Indeed, it is known that, for rationally smooth cones, the Euler-Poincaré
characteristic of the projectivization of the cone equals the dimension of
the cone. Thanks to a theorem of Deligne on the Weil conjecture, the
characteristic can be calculated by counting the number of Fq-rational
points of an orbit closure viewed as a variety on an algebraic closure
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1Fq of Fq, and specializing at q = 1. This method provides a geometric
interpretation of the proof given in [BS], and followed in 3. It also provides
an interesting homological realization of algebraic elements, namely the
derivative at q = 1 of the coefficients of the bar involution in the PBW-
basis.

Our main result, Theorem 3.3, generalizes [BS, Theorem 5.4]. Nev-
ertheless, the E-case slightly differs from the A-D case. Let’s explain how.
First of all, by Ringel’s Hall algebra approach of quantum groups, the co-
efficients of the bar automorphism discussed above are parameterized by
couples (0, 0’) of Gd orbits, and are non zero if and only if 0’ ::S C~ for
the so-called degeneration ordering. Now, Klaus Bongartz gave, [Bon95],
a description of this ordering in the representation theory of the quiver
Q. In particular, we can define "elementary degenerations" corresponding
to certain non-split exact sequences, called elementary operations, in the
Auslander-Reiten quiver of Q, and 0’ ::S C~ if and only if there exists a chain
of elementary degenerations relying 0’ and 0. The results in [BS] proves
that the coefficient parameterized by (0, C7’) "sees" the minimal length of
such a chain, and that the derivative at q = 1 of the coefficient is non zero
if and only if the degeneration corresponding to (0, 0’) is elementary. In
order to generalize this result, we have to replace elementary degenerations
by a finer notion, see 3.2.

Note that the statement "smooth Q rationally smooth" makes sense for
arbitrary quiver. It seems that the geometric proof can be generalized for
a slightly more general class of quivers. But the problem is still open for
affine quivers or quivers with possibly many edges between two vertices.

2. Notations and recollections.

2.1. The quantized enveloping algebra U.

Let A be a Dynkin diagram of type A, D or E, let n be the number
of vertices of A and let (aij) be the corresponding Cartan matrix. Thus

if i = j
if i-j is an edge in A
otherwise.
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Let v be an indeterminate and U the quantized enveloping algebra of
Drinfeld-Jimbo of type A over the field of rational functions. U is
a Q(v)-algebra with generators: Ei, Fi, Ki, Kz 1 (1  i ~ n) and relations:

where

if

if

if

if

Let U+ be the Q(v)-subalgebra generated by the Ei (1 ~ i ~ n).
Let ( ) : U ~ U be the involution of Q-algebras defined by

for all and

Note that

Let Q, resp. Q+, be the free abelian group, resp. semigroup, with basis
Define an inner product ( , )~ on Q by = aij.

Let R = ~cx E Q ~ I (a, a)Q = 2}. R is a root system of type A and a set
of simple roots is o;2,, Let R+ _ R ~ a = £j cjaj with
cj E ~1~ be the subset of positive roots.

Each cx E R defines a reflection Sa : 1 Q --+ Q, z - z - (z, a) Q a.
We will write si instead of sa2. Let W be the Weyl group of R. This is
the subgroup of Aut(Q) generated by the reflections si, (1 ~ i # n). Let

be the length of w with respect to the generators f Sl, s2, ... , sn~ and
denote by wo the unique element of W of maximal length. It is known that

f(wo) - v - # (R+ ) . Let Tr be the linear form on Q+ such that Tr(ai ) = 1,
1in.

We shall use the Q+-grading wt of U+ defined by 

Lusztig has defined an action of the braid group on U [Lus90a] and
used it to define bases of PBW type of U+. We now recall these definitions.
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For i E {1, ... ,n}, let Ti : U - U be the automorphism of Q(v)-
algebras defined by

We have if and if This

gives us a braid group action. Moreover Ti(Ej) = if 

Given integers M, N &#x3E; 0, we define

and

for

Let T be the set of sequences i = (il, ... , iv) of elements in {I, ... , n)
such that Si1 ... is a reduced expression of wo. Each i E T gives rise
to a total order on R+ - f al I... where at = Sit-l(oit)
fort = 1,..., v. We say that an element c - (ci,..., c~) E NV is of i-
homogeneity d = (dl,..., dn ) E N~ if

Let b(t) be the vector (o, ... , 0, l, 0, ... , 0) E NV whose only nonzero
component is in the tth column and is 1, where I # t # v.

For i = (il , ... , C T and c = (cl , ... , cv ) E N’, define

Note that if c is of i-homogeneity d then 
I

PROPOSITION 2.1. - Let i E T. Then Bi = c E is a

Q(v)-basis of U+. We say that Bi is a basis of PBW type.

Proof. [Lus90b, sect. 1.8 and 1.13]. 11
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We now recall Lusztig’s construction of the canonical basis of U+.

THEOREM 2.2. - Let i and Li the of U+

generated by Bi.

(i) Li is independent of i. We denote Li by ,C.

(ii) 7r(Bi) is a Z-basis of Llv-’L independent of i. Here 7r : 
is the canonical projection. We denote 7r(Bi) by B.

(iii) The restriction of 7r : £ --+ defines an isomorphism of
Z-modules 1["’ : ,C n £, --+ where Z is the image of L under ( ) . In
particular, B == 7r’-l(B) is a Z-basis of L n Z.

(iv) B is a Z[v-I]-basis of £ and a Q(v)-basis of U+. B is said to be
the canonical basis of U+ .

(v) Each element of B is fixed by ( ) : U+ ~ U+.

Proof. [Lus90a]. D

2.2. Specialization at v = 1.

Let A = Q[~](~-i) denote the subring of consisting of functions
regular at v = 1. Define the A-form U~ of U+ to be the A-subalgebra
of U+ generated by Ei, 1 ~ i ~ n. Denote by Ui = I)U A the
specialization of U+ at v = 1. This is the positive part of the classical
universal enveloping algebra of type A, with generators EI’...’ En and
classical Serre relations

if

if

Note that in Ul, Ti(Ej) becomes the usual bracket EiEj and the
specialization Bi ( 1 ) _ c E of the PBW-basis is a PBW-basis

of U 1.

2.3. Cauiver modules.

Let Q == be a quiver whose underlying graph is A, i.e. for
each edge of A we fix an orientation. (We use the notation Q° for
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the set of vertices of the quiver Q and Q’ for the set of arrows.) A vertex
i C Qo is a sink (respectively a source) of Q if there is no arrow i 2013~
(respectively i E-- j ) E QI. An element i - E T is adapted
to the quiver C~ if il is a sink of Q, = Q and ik is a sink of the quiver
Qk = obtained from by reversing the orientation of all
arrows ending at where 2  1~  v. It is easy to see that there is an
element i E 2’ adapted to Q and that an element i of Z can be adapted to
at most one quiver.

For the rest of this paper, let i be adapted to the quiver Q.

Let F be any field. A module (or representation) V == of Q
is a collection of n finite dimensional F-vector spaces Vi, (1 ~ i ~ n) and
of (n - 1) F-linear maps i Vi 2013~ Yj , (i --+ j E Q ) . A morphism from
the module v = (Vi, fij ) to the module v’ _ (Vi’, is a collection of

F-linear maps such that IIj 0 gi fij for

each i - j These modules and morphisms form an abelian category
Mod(Q). If V is a module of Q, denote by [V] its isomorphism class in

Mod(Q).
The dimension of the module V = (Vi, f i j ) is the n-tuple

dim(V) == (dimF (Yl ), dimF (V2 ), ... , dimF (Vn )) E 
A module V of Q is indecomposable if V cannot be written as the direct
sum of proper submodules.

THEOREM 2.3.

(i) For all a E R+, there is a unique indecomposable module (up
to isomorphism), denoted ea E Mod(Q), such that (dl, ... , dn)
and a = diai; any indecomposable module is isomorphic to ea for a
unique a. This is Gabriel’s theorem.

(ii) There exists an ordering at, 1 ~ t  v of the positive roots such
that 

(iii) There exists a bijection c = (cl, c2, ... , cv) H [e(c)~ between N"
and the set of isomorphism classes of modules of Q, where

In this case, dim(e(c)) = (di,..., dn), where di cxi, i.e.
c is of i-homogeneity d. In particular, the classihcation of indecomposable
modules is independent of the ground field.

Proof. [Lus90a, sect. 4.12 - 4.15]. 0
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Set [V, V’l = dimF HomQ (V, V’) and [V, = dimF Extk(V, V’) .
Note that Homo (V, V’) is the F-vector space of morphisms g : V -~ V’ in
Mod(Q) and Extk(V, V’) is the F-vector space of extensions 0 ~ V’ -
E ~ V ~ 0 in Mod (Q).

For d = (dl,..., dn) E define

The group Gd acts on Ed by (g - (gj An element

of Ed can be seen as a module in Mod(Q) of dimension d. Two elements
of Ed define isomorphic modules if and only if they are in the same Gd-
orbit. By Theorem 2.3, there exists a bijection between the set of v-tuples
c = (cl , ... , cv ) of i-homogeneity d and the set of Gd-orbits in Ed, where
c = (cl , ... , cv ) corresponds to the orbit Oc whose elements are isomorphic
to e(c).

There is a partial order on NV given by c’ -- c if c’ and c have the
same i-homogeneity and the orbit is contained in the Zariski closure

C~~ of Oc. This is the so-called degeneration ordering.

Let S be the set of non-split short exact sequences of modules of Q
and let Op be the subset of S consisting of all sequences for which the first
and the last module are indecomposable. Hence if T E Op then

for some s, t and some module V. The elements of Op
are called elementary operations. For T : 0 ~ eas - V - eat ~ 0 E Op
define in(T) = s and out(T) = t and denote by op~ the vector

given by
if r - 8, t
if ear is a direct summand of V

otherwise.

Remark that for non split exact sequence as above, the multiplicity of an
indecomposable ear in V is always at most one. For all c E NV define

E Op I c + opT E N’l. Thus an elementary operation
T E Op(c) allows us to go from one orbit Oc to another orbit 
As we will see in Theorem 2.4 below, elementary operations do not only
preserve the i-homogeneity but they are also compatible with the partial
ordering ~.

The following theorem is shown in [Bon95].
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THEOREM 2.4. - Let c, c’ E N". Then the following four state-
ments are equivalent:

(ii) There is a sequence of elementary operations Tri, ’Y’2, ... , such
that and

for all indecomposable modules e,.

for all indecomposable modules e,.

2.4. Hall algebras.

Fix a quiver Q and a v-tuple i adapted to Q. Let HQ = 1t be the
twisted Hall algebra associated to the quiver Q. 1t is the free 
with basis ,l3 the set of isomorphism classes of representations of the quiver
Q, with multiplication

where (e(c’), e(c")) == dimIF 2 Hom(e(c’), e(c"))-dimJF 2 ExtI(e(c’), e(c"))
and is the number of submodules of e(c) that are isomorphic to e(c")
and are such that the corresponding quotient module is isomorphic to e(c’),
as representations over F~2. This defines polynomials F~, ,e" which are called
Hall polynomials.

THEOREM 2.5. - There exists an isomorphism q : U+ H
of Zn - gr aded Q(v)-algebras such that It maps Ei to

Proof. [Rin93], [Gre95] 0

We shall need the following corollary, see [Cal] :

COROLLARY 2.6. - Up to a power of v, the Ei’ -coefficient of
where the polynomial ~...~~(9) denotes the

number of filtrations of e(c’) with successive quotients isomorphic to e(cl ),
..., e ( c k) over ]Fq -
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2.5. Coalgebra structure.

Define an algebra structure on U+ U+ by

on homogeneous elements. Let 6 : u+ --+ U+ U+ be the Q(v)-
algebra map given by 6(Ei ) = Ei 0 1 + 1 ~ Ei. Now, there exists a unique

form (, ) on U+ such that (Ei, Ej) = 6,,j (1 - v-2)-1 and
(x, yy,) = (6(x), y 0 y’), where (, ) is extended to U+ 0 U+ by the rule

The Hall algebra approach of the quantum algebra U+ gives a nice
description of its coalgebra structure, [Gre95]. For every representation e(c)
of the quiver Q, let be the number of automorphisms of e(c) as a
representation over F~2. Recall [Rin90] that

We have [Rei99]:

This proves that the basis Bi is orthogonal. We can define the dual basis
for this pairing

This implies that the algebra U+ is generated by , I _ s -_ v, with

straightening relations:

In order to understand those straightening relations, we have to define
another polynomial. Let 0 2013~ e(c’) -~ e(c) -~ e(c") - 0 be a non-split
exact sequence of representations of Q. Then, the set of points in

the F~2-space e(c’)) corresponding to this extension is a cone
(minus the zero point). Set

It is known that Ec,,,,,, is a polynomial.

PROPOSITION 2.7. - Suppose 1  s  t - v. Then, for all c in N"
and up to a power of v, i.ve have

if ~ I

if ~ I for some T E Op,
otherwise.
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Proof. This is a direct consequence of (2.4) and the Riedtmann
formula which states

Remark 2.8. - As the set U 101 is a cone, we see that the

polynomial E~",~, (v2) can be factorized by v2 -1. So, the proposition shows
that the A-space generated by the Ei * is an algebra, and its specialization
at v = 1 is a (commutative) polynomial algebra. Indeed, it is known

that this specialization is the algebra of regular functions on the maximal
unipotent group.

Now, let a be the Q-antiautomorphism of U+ such that = Ei,

LEMMA 2.9. - Let x, y be homogeneous elements in U+, and let
t e {1,...,~}. We have

Proof. (i) is a direct consequence of [Rei99, 4.3] and (ii) is proved
in [Cal, prop. 2.1]. 0

2.6. Local intersection cohomology of orbit closures.

In this subsection, let F be an algebraic closure of a finite field Fq with
q = pe elements, where p is a prime number, and let d = ( d 1, ... , dn ) E N .
We will write the dimension dim(Oc) of the orbit Oc by d(c).

The results of this subsection have been proved in [Lus90a, chap.
9-10].

PROPOSITION 2.10. - Let c E N" be of i-homogeneity d. Then for
each c’ ~ c, there exists og, such that

Moreover og = 1 and for all is an element of
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THEOREM 2.11. - Let c E N" be of i-homogeneity d and let
~~ E B be the unique canonical basis element such that - 

Then

where c’ runs over the set of elements of ~T v
of i-homogeneity d, (,,c, = 1 and E for c’ :A c.

(ii) If c’ i c, then = 0.

(iii) If ( ) is the Z-linear invol u tion of Z [v, sending v to then

(iv) If c’ --- c, f is a Fq-rational point of the orbit in Ed and Hj
is the stalk at f of the a-th cohomology sheaf of the intersection cohomology
complex of the Zariski closure C7~ of Ore with coefhcients in Qi (extended
by zero on the complement of that closure), where .~ is a prime number 1= p,
and ivith the Fq-structure such that the Frobenius map acts as identity on
the stalks of its 0-th cohomology sheaf at the rational points of the orbit
Oc, then

for all a and

In particular, is a polynomial in v2 with coefficients in N.

DEFINITION 2.12. - We say that the orbit closure Oc is rationally
smooth at Oc, C Oc if for all c" such that c’ --~ c" ~ c we have

= 1 for a Fq-rational point f E i.e. if (cc,/ =
vd(c")-d(c) for all c" such that c’ --~ c" ~ c.

The orbit closure Oc is rationally smooth if it is rationally smooth
at each for all

Remark 2.13. - By a result of [BM], C~~ is rationally smooth iff for
each point x E 0c we have

if i = 2 dim C~~
otherwise

where Hi denotes ordinary cohomology.
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3. Algebraic approach.

This section gives a generalization of results in [BS]. We first prove
some formulas on the coefficients 

3.1. A formula for 

We fix a quiver Q and a v-tuple i adapted to Q as in the previous
section. For all c in N’, set c’ := ctb(t), 1  t  v. An explicit formula for

can be calculated:

PROPOSITION 3.1. - For every c, c’ in N’, we have:

up to a power of v.

Proof. In the following proof, equalities are up to a power of
v. We first write - (Ei , Ei ’ * ) . Hence, by Lemma 2.9, (i), we have

H~ == So, by formula (2.3), it remains to find
the coefficient of Ef in the decomposition in the basis Bi .

It is easily seen that - up to a power of v. Then,
using equation (2.4), Lemma 2.9, (ii) and the fact that

up to a power of v,

we get

Finally, using equation (2.4), Corollary 2.6, (i) and equation (2.3), we
obtain:

and the proposition follows. 0

There is a nice particular case of this formula when e (c’ ) is the sum

of two indecomposable modules.
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COROLLARY 3.2. - Suppose
a power of v,

Then, up to

Proof - This is a direct application of the Riedtmann formula,
[Rie94]. 0

3.2. Derivative of at v = 1.

Set 
-

which is a polynomial. Let Opr be the set of regular elementary operations
defined by

With the notation above, we set

By [Nor], we know that all elementary operations are regular in case
A and D. This is not true in case E, see remark below. For c in define

Opr(c) := Opr n Op(c) . We can now generalize [BS, Theorem 5.4].

THEOREM 3.3. - Let c, c’ in NV with same i-homogeneity, then

if and only if there exists ’Y’ in Opr(c) such that

(iii) If the condition in (ii) is verified, then
where s = in (’Y’ ) and t = out (’Y’ ) .

Proof. The first formula of (i) is given in Proposition 2.10. For
the second formula, just remark that the map ( ) specializes on identity at
v = 1.

Let’s prove (ii) and (iii). By equation
up to a power of v. Say is the expansion of

in the dual PBW-basis, thus - h~, up to a power of
v. Then, since ~(1) - 0, we have which is non-

zero iff the multiplicity of (v - 1 ) in h~, is one. The above expansion is
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obtained by performing a certain number of straightening relations (2.5).
By Proposition 2.7, we have

(1) hgl = I , up to a power of v.
(2) If c = c’ + opl for some T E Op with s = in(T), t = out(T),

then, up to a power of v

where c = c’ + c" - b(t) - b(s). Then the multiplicity of (v - 1) in h~, is
at least one and is equal to one iff T is regular.

(3) All other have (v - 1) multiplicity at least 2.

This proves (ii). Now let c = c’ + opT with T E Opr and s = in(T),
t = out(T). Then the only way Ei * terms appear in our expansion is in
the straightening relations involving both The number

of these straightening relations is c’c. Thus, by Proposition 2.7, h~, is a

sum of csct terms equal to (v2 -1) up to a power of v. Hence,
The theorem follows since

Remark 3.4. - The formula in (iii) slightly differs from the one
in [BS] because of the factor eT . This factor can be obtained from the

polynomials calculated in [N6r] . In type A, it can only be 1, so this agrees
with the formula in [BS]. In type D this constant can be equal to 1 or -1.
In type E, it can be equal to 1, -1 and 0.

3.3. Rational smoothness.

In this section, we will characterize which orbit closures Of are

rationally smooth. As a consequence, we will show that if Dc is rationally
smooth, then C~~ is smooth.

Let u = v2. The next proposition has been shown in [BS, Cor 6.4].
We sketch a proof of it for completeness.

Suppose that Dc is rationally smooth, then for all c’ ~ c we have
Fix now c’ --~ c. We obtain by Theorem 2.11, (iii) that

By taking the derivative to u evaluated at u = 1, we get by Theorem 3.3, (i):
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PROPOSITION 3.5. - is rationally smooth then

for all c’ ~ c.

For a subset J of the set Q’ of arrows of the quiver Q, we define

The following properties are easily proved and left to the reader. Let J, J’
be two subsets of the set Ql of edges of Q.

( 1 ) Ed ( J) is a linear subspace of Ed of dimension dim(Ed(J)) =

dj. In particular, Ed ( J) is a smooth variety.

(2) Ed (J) is a Gd-stable closed subset of Ed and it is a finite union of
Gd-orbits. As a consequence and because the field F is algebraically closed,
we get that there is a unique open dense Gd-orbit in Ed ( J) . We will denote
this orbit by C7 ( J) .

and

and

Because of (3) and (5) we see that for each Gd-orbit Our in Ed, there
is a unique smallest subset J(c) of Q’ for which Oc C Ed (J(c)). In fact

Because Ed ( J) is closed, then 0, C Ed (J) if and only 
As a consequence, if c"  c, then we get easily that J(c") C J(c). Note
also that we don’t necessarily have Oc = O(J(c)). In fact, we will prove
in Theorem 3.6 that we get this equality precisely when C7~ is rationally
smooth.

Let be defined by

for some i, I  i  n

is the minimal Gd-orbit of Ed and it consists of only the trivial
representation of Ed.
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THEOREM 3.6.

(1) We have the equality

(2) C~~ is rationally smooth if and only if

Proof. By Theorem 3.3,

Now T E iff T E Opr and i.e.

and = cxi are simple roots, and there is

an arrow - j E Q . Moreover T : : 0 ~ --+ e01522 +0152J --+ e01522 --+ 0 and

eT = 1. Note also that in this situation cmin + opT =S c iff i --~ j E J(c).
Thus

this proves (1).

(2) Ed (J(c)) is smooth, hence rationally smooth.

Conversely if Oc is rationally smooth, then applying Proposition 3.5
for c’ = cm’n and using part (1), we get dim(Ed(J(c))) = d(c). Hence Of
is the unique dense orbit in Ed(J(c)), thus Oc = Ed(J(c)). 0

COROLLARY 3.7. - An orbit closure of type A, D, E is smooth, if
and only if it is rationally smooth.

4. Geometric approach.

We present in this section an independent proof for Theorem 3.6.
The interest of this proof is that we give an homological realization of
the constants calculated in the previous section. To be more precise, the
derivative of a coefficient SZ at u = 1 can be seen as an Euler-Poincaré
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characteristic of a complex variety. The principle on which the alternative
proof works is that if a cone X in C~ is rationally smooth, then, the rational
cohomology of the projectivization P(X) in pn-l is the same as the rational
cohomology of P~ where d = dim (X).

4.1. Euler-Poincar6 characteristic.

In the following section, the varieties 0 are considered on the field
C. We fix c E N" of i-homogeneity d. Set Xc := as a complex
variety and let resp. Xc(Fq), be the corresponding variety on the
finite field Fg, resp IFq. We know that there exists a discrete valuation ring
R C C with residue field of characteristic p and a variety X~ defined on R
such that we get the variety over Fq and the variety Xc over C by
the base change to Spec IFq and Spec c respectively.

Let be the Euler-Poincaré characteristic of the variety Xc.
Then

THEOREM 4.1. - For every c E of i-homogeneity d vve have

Proof. We first transpose the calculation of in the context

of I-adic cohomology with compact support. We have

where l is prime to p. Hence,

Fix a prime number p such that 1 is prime to p. We know that there is an
action of the Frobenius Fr on the 1-adic cohomology. By the Grothendieck
trace formula, [Dan96, 7.10], we know that

Now, the theorem of Deligne, [Dan96, 8.21], asserts that 
is filtered by Fr-stable subspace such that the eigenvalues of the
Frobenius Fr on the successive quotients are half integral powers of p up
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to a root of one, see also [Lus90a]. So, there exists an N such that if e is a
multiple of N, the eigenvalues of Fr’ are powers of pe . For these e, we have

Now, we know that is a polynomial So, the previous
equation provides a polynomial equality which is true for an infinite number
of pe .

Hence, which implies by
(4.1) that x(Xc) = Pc(I). The proof of the theorem relies now on the
following lemma. D

LEMMA 4.2. - For every c E I‘w of i-homogeneity d vve have

Proof. - First of all, let Sc be the set of elements c’ of i-homogeneity
d such that there exists T E Op such that cm’n + op~ = c’  c. We have:

with

We want to calculate As Oc is a disjoint union of orbits
with c’  c, we have to count the cardinality of the set of JF q-

rational points This will be denoted by Oc’(9), thus 
be a point of and let Gd,x’ be the

isotropy group of x’ in Gd. Then, Qe,(q) == IGIGdl1 and it is known that 
is the group of automorphism of the module e(c’). Hence, IGd,x,1 = 
is given by (2.2). In particular, the multiplicity of (q - 1) in is

Eni=1 di - Evs=1 c’s.
We find that every ~ is zero unless c’ e Sc. Using the formula

and L’Hospital’s rule, we find

By the decomposition
lemma.

we obtain the
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4.2. Alternative proof.

We now explain how the previous theorem gives a geometric version
of the algebraic proof given in [BS] and in the present paper. First, as
Oc is a cone, we claim that the rational smoothness of C~~ implies that
the cohomology of Xc is the same as the cohomology of the projective
space, i.e. dim Q) = dim H’(pd(c) - 1, Q). Let’s sketch a proof for this
claim, following [Bri98]. By Remark 2.13, the rational smoothness property
implies that
As Oc is contractible, we obtain by a long exact sequence in relative
cohomology, that is a rational cohomology sphere of dimension
2d(c) - 1. Now, let C C* acting naturally on the cone It is clear

that X~ and have the same rational cohomology. Hence, a
Gysin exact sequence gives
and = 0. This proves the claim.

Now, x(Xc) = = d(c). By Theorem 4.1, this implies that
dimOc == dim Ed (J(c)), and then Oc = Ed (J(c) ) . Once again, this implies
that Oc is smooth.
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