
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Vladimir MAZ’YA & Igor VERBITSKY

The form boundedness criterion for the relativistic Schrödinger operator
Tome 54, no 2 (2004), p. 317-339.

<http://aif.cedram.org/item?id=AIF_2004__54_2_317_0>

© Association des Annales de l’institut Fourier, 2004, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2004__54_2_317_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


317

THE FORM BOUNDEDNESS CRITERION

FOR THE RELATIVISTIC SCHRÖDINGER OPERATOR

by Vladimir G. MAZ’YA &#x26; Igor E. VERBITSKY (*)

1. Introduction.

In the present paper we establish necessary and sufficient conditions
for the relative form boundedness of the potential energy operator Q with
respect to the relativistic kinetic energy operator B/2013A, which is
fundamental to relativistic quantum systems. Here Q is an arbitrary real-
or complex-valued potential (possibly a distribution), and xo is a nonlocal
operator which replaces the standard Laplacian Ho = -A used in the
nonrelativistic theory.

More precisely, we characterize all potentials QED’ (JRn) such that

for some a &#x3E; 0, b E R, were

In particular, if Q is real-valued, and the form bound a  1, then
this inequality makes it possible to define, via the classical KLMN Theo-
rem (see, e.g., [RS], Theorem X.17), the relativistic Schrodinger operator
1í == B/2013A+Q, where the sum A + Q is a uniquely defined self-adjoint
operator associated with the sum of the corresponding quadratic forms
whose form domain Q(H) coincides with the Sobolev space 

(*) Supported in part by NSF Grant DMS-0070623.
Keywords: Relativistic Schr6dinger operator - Form boundedness - Complex-valued
distributional potentials.
Math. classification: 35J10 - 31C15 - 46E35.
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(For complex-valued Q, this sum defines an m-sectorial operator provided
a  1/2; see [EE], Theorem IV.4.2.)

Equivalently, we give a complete characterization of the class of

admissible potentials Q such that the relativistic Schr6dinger operator
1-l = ~A+ Q is bounded from to the dual space W2-I/2(IRn).

A nice introduction to the theory of the relativistic Schr6dinger
operator is given in [LL]. We observe that it is customary to develop
the relativistic theory in parallel to its nonrelativistic counterpart, without
making a connection between them. One of the advantages of our general
approach where distributional potentials Q are admissible is that it provides
a direct link between the two theories.

In Section 2, we develop an extension principle which establishes a
connection between the relativistic Schrodinger operator H - A + Q
and the nonrelativistic one, H = -0 -~ Q, where Q is a distribution defined
on a higher dimensional Euclidean space. Note that the nonrelativistic
form boundedness problem was settled in full generality only recently by
the authors in [MV2]. (The one-dimensional case of the Sturm-Liouville
operator H = - d~2 + Q on the real axis and half-axis is treated in [MV3].)

It is worth noting that in the above discussion of the relative form
boundedness Ho = can be replaced by rim = B/2013A + m2 - m, where
m represents the mass of the particle under consideration. This operator
appears in the relativistic Schr6dinger equation

in

One of the central questions of the relativistic theory is the domina-
tion of the potential energy JIRn lul2 Q(x) dx by the kinetic energy associ-
ated with ||u|| 2w 21 which explains a special role of the Sobolev space 

W2
in this context (see [LL], Sect. 7.11 and 11.3). We address this problem by
characterizing the weighted norm inequality with "indefinite weights"

Here Q is a locally integrable real- or complex-valued function, or more
generally, a distribution. In the latter case, the left-hand side of (1.2) is

understood as where (Q., .) is the quadratic form associated
with the corresponding multiplication operator.

An analogous inequality characterized in [MV2],
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with the Sobolev norm of order 1 in place of 1/2, is used extensively in

spectral theory of the nonrelativistic Schr6dinger operator H = -0 + Q.
(See [AiS], [Fef], [Ml], [M2], [MV2], [Nel], [RS], [Sch], [Sim].) In particular,
(1.3) is equivalent to the relative form boundedness of the potential
energy operator Q with respect to the traditional kinetic energy operator
Ho = -A.

We remark that, for nonnegative (or nonpositive) potentials Q (pos-
sibly measures on R~ which may be singular with respect to n-dimensional
Lebesgue measure), the inequalities (1.2) and (1.3) have been thoroughly
studied, and are well understood by now. (See [ChWW], [Fef], [KeS], [Ml],
[MVI] , [Ver].) On the other hand, for real-valued Q which may change sign,
or complex-valued Q, only sufficient conditions, as well as examples of po-
tentials with strong cancellation properties have been known, mostly in the
framework of the nonrelativistic Schr6dinger operator theory and Sobolev
multipliers ([AiS], [CoG], [MSh], [Sim]).

We now state our main results on the relativistic Schrodinger operator
with "indefinite" potentials Q in the form of the following two theorems.
Simpler sufficient and necessary conditions in the scales of Sobolev, Lorentz-
Sobolev, and Morrey spaces of negative order are obtained as corollaries.
Their relationship to more conventional Lp and Fefferman-Phong classes is
discussed at the end of the Introduction, and in Section 3 in more detail.

Note that rigorous definitions of the expressions like ~Q~, our (-A+
1)-1/4 Q are given in the main body of the paper.

THEOREM I. - Let Q E 1. The following statements
are equivalent:

(i) The relativistic Schrödinger operator
from to 

(ii) The inequality

is bounded

holds, where the constant does not depend on u.

and the inequality

holds, where the constant does not depend on u.

THEOREM Let and let

Then is bounded if and only if V =
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(-A -~ 1)-1/4Q E and any one of the following equivalent
conditions holds:

(i) For every compact set e C R ,

where the constant does not depend on e. Here cap(., W2 ) is the capacity
associated with the Sobolev space defined by:

(ii) The is finite a.e., and

Here is the Bessel potential of order 1 /2.

(iii) For every dyadic cube Po in Rn of sidelength 1,

where the sum is taken over all dyadic cubes P contained in Po, and the
constant does not depend on Po.

We observe that statement (iii) of Theorem I reduces the problem
of characterizing general weights Q such that either (i) or equivalently (ii)
holds, to a similar problem for the nonnegative weight |03A6|2.

The proof of Theorem I makes use of the connection mentioned above
between the boundedness problem for the relativistic operator

and its nonrelativistic counterpart,

The latter is acting on a pair of Sobolev spaces of integer order in

the higher dimensional Euclidean space, and the corresponding potential
We also employ extensively a calculus of maximal and

Fourier multiplier operators on the space of functions f E L2,1,,,c(R’) such
that 

A

developed in [MV2], and based on the theory of Muckenhoupt
weights and use of equilibrium measures associated with arbitrary compact
sets of positive capacity.
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Combining Theorem I with the characterizations of the inequality
(1.4) for nonnegative weights established earlier (see, e.g., [ChWW], [Fef],
[KeS], [M2], ~MV 1~ , [MV2], [Ver]) we obtain more explicit character-
izations of admissible weights Q stated in Theorem II.

We now recall the well-known isoperimetric inequalities (see, e.g.,

[MSh], Sec. 2.1.2):

diam(e)  1, n &#x3E; 2,

diam( e)  1, n = 1,

where I e I is Lebesgue measure of a compact set e C R~. Note that the
one-dimensional case is special in this setting, since m = 1/2 is the

critical Sobolev exponent for if n = 1. Thus, it requires certain
modifications in comparison to the general case n &#x3E; 2.

These estimates together with statement (i) of Theorem II (note that
it is enough to verify (1.6) only for compact sets e such that diam(e)  1),
yield sharp sufficient conditions for (1.4) to hold.

COROLLARY 1. - Suppose Q E 1. Then x = 4l+Q
is a bounded operator from to if one of the following
conditions holds:

or

where the constant c does not depend on e C R~.

Remark 1. - We observe that (1.9) holds if ~ E L2.,.(R n) +
Loo (IRn), n &#x3E;, 2, where denotes the weak Lp (Lorentz) space. Similarly,
in the one-dimensional case, (1.9’) holds if ~ E ~- E &#x3E; 0.

Remark 2. - The class of admissible potentials Q satisfying (1.9)
is substantially broader than the standard (in the relativistic case) class
Q E Ln (IRn) -~ Loo n &#x3E; 2. In particular, it contains highly oscillating
functions with significant growth of Q ~ at infinity, along with singular
measures and distributions. Similarly, in the one-dimensional case, the

class of potentials defined by (1.9’) is much wider than the standard class
Q E + E &#x3E; 0. (See [LL], Section 11.3.)
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These relations, along with sharper estimates in terms of Morrey
spaces of negative order which follow from Theorems I and II, are dis-
cussed in Section 3. They extend significantly relativistic analogues of the
Fefferman-Phong class introduced in [Fef], as well as other known classes
of admissible potentials.

2. The form boundedness criterion.

For positive integers m, the Sobolev space is defined as the

space of weakly differentiable functions such that

More generally, for real m &#x3E; 0, is the space of all f E

L2(IRn) which can be represented in the form f = (_A + I)-,12g, where
g E Here (-0 ~ 1) -m/2 9 = * g is the convolution of g with the
Bessel kernel Jn of order m, (see [M2], [Stl]). This
definition is consistent with the previous one for integer m, and defines
an equivalent norm on Note that another equivalent norm on

W2’(IRn) is given by

where

The dual space can be identified with the

space of distributions f of the form f = (-A + 1) mj2 g, where 9 E L2 (R’).

Let q E Ð’ (IRn) be a (complex-valued) distribution on R~. We

will use the same notation for the corresponding multiplication operator
q : Ð(IRn) --+ D’ (11~n ) defined by

For m, l E R, we denote by Mult(W2 --+ the class of bounded

multiplication operators (multipliers) from W2 to W2 generated by q E
V’ (IRn) so that the corresponding sesquilinear form (-~ -, .) is bounded

where C does not depend on u, v. The multiplier norm denoted by
equal to the least bound C in the preceding inequality.

2 2
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It is easy to see that, in the case I = -rrL, (2.2) is equivalent to the
quadratic form inequality

To verify this, suppose 1, 1, where u, v E Ð(IRn).
Applying (2.2’) together with the polarization identity

and the parallelogram identity, we get

Hence, (2.2) holds for l = -m with C = 2C’. Moreover, the least bound
C’ in (2.2’) satisfies the inequality

Let D ~ _ (_~)I/2. We define the relativistic Schr6dinger operator as

(see [LL]), where is a multiplication operator defined
by Q E D~(M~). It is well-known that actually D ~ I is a bounded operator
from to W2 1 /2 (~n ) . Thus, 1i can be extended to a bounded
operator

if and only if Q E or, equivalently, if the
quadratic form inequality (2.2’) holds for, = Q and m = 1/2.

From the preceding discussion it follows that x : 

is bounded if and only if

for some a, b &#x3E; 0. By definition this means that Q is relatively form
bounded with respect to ] D ] .

In particular, if Q is real-valued, and 0  a  1 in the preceding
inequality, then by the so-called KLMN Theorem ([RS], Theorem X.17),

+ Q is defined as a unique self-adjoint operator such that

For complex-valued Q such that (2.3) holds with 0  a  1/2, it follows

that understood in a similar sense, is an m-sectorial operator

([EE], Theorem IV.4.2).
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In the case where Q C Ll,loc(IRn), (2.3) is equivalent to the inequality

and hence to the boundedness of the corresponding sesquilinear form

where the constant is independent of u, v e 

Our characterization of potentials Q such that H : 
is based on a series of lemmas and propositions presented

below, and the results of [MV2] for the nonrelativistic Schrödinger operator.

By we denote the class of f E L2,loc(JRn) such that

where Br (x) denotes a Euclidean ball of radius r centered at x.

LEMMA 2.1. - Let 0  l  1, and rrt &#x3E; l. Then 1 E 

Wj ) if and only if I

Moreover,

and

Proof. We first prove the lower estimate for

Here and below c denotes a constant which depends only on l, m, and n.

Let u E Cü(IRn). Using the integral representation (which follows by
inspecting the Fourier transforms of both sides),

we obtain

Hence,
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where

Next, we estimate

In the last line we have used the known inequality ( ~MSh~ , Section 2.2.2)

To estimate the term Ðz/211IL2’ we apply the pointwise
estimate (Lemma 1 in [MSh], Section 3.1.1)

with s = m - l/2, where
s. Hence

is the Bessel potential of order

We next show that

By the Lemma in [MSh], Section 3.2.5 in the case p = 2, we have

where m ~ 1 &#x3E; 0. Applying the preceding estimate with m - l/2 in place
of m and l/2 in place of l respectively, we get

Now by interpolation,
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Since it follows that

Hence,

Combining these estimates, we obtain

which is equivalent to the inequality

This, together with the inequality
above, completes the proof of (2.7).

used

We now prove the upper estimate

By (2.9),

Using an elementary estimate we have

From these inequalities, combined with the estimate

established above, it follows

As above, by an interpolation argument,

Thus,

Clearly, the preceding estimate yields
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This completes the proof of Lemma 2.1.

LEMMA 2.2. - Let 0  l  1, m &#x3E; l. Then 1 E

Wj ) if and only if (-0 + 1 )~/~q e L2), and

Proof. We denote by M the Hardy-Littlewood maximal operator

Recall that a nonnegative weight w c is said to be in the

Muckenhoupt class if

a.e.

The least constant on the right-hand side of the preceding inequality is
called the Al-bound of w.

We will need the following statement established earlier in [MV1],
Lemma 3.1 (see also [MSh], Section 2.6.5) for the homogeneous Sobolev
spaces defined as the completion of with respect to the
norm

LEMMA 2.3. - E Mult(Wp -~ Lp), where 1  p  oo, and

0  m  p . Suppose that T is a bounded operator on the weighted spacep

Lp (w) for every Suppose additionally that, for all f E Lp (w),
the inequality

holds with a constant C which depends only on the Al-bound of the weight
w. Then T1 E Mult(Wp’ -* Lp), and

where the constant CI does not depend on 1.

We will also need a Fourier multiplier theorem of Mikhlin type for

Lp spaces with weights. Let m E Then the Fourier multiplier
operator with symbol m is defined on by = where .~’

and ;:-1 are respectively the direct and inverse Fourier transforms.

The following lemma follows from the results of Kurtz and Wheeden

[KWh], Theorem 1.
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LEMMA 2.4. - Suppose 1  p  oo and w C Suppose that
m E Coo (IRn B f 01) satisfies the Mikhlin multiplier condition

for every multi-index a such that 0  n. Then the inequality

holds with the constant that depends only on p, n, the A, -bound of w, and
the constant C, in (2.12).

COROLLARY 2.5. - Suppose 1  p  oo and w E Suppose
0  1 x 2. Define

Then

where the constant C depends only on l, p, n, and the A1-constant of w.

Remark. It is well known that in the unweighted case the operator
(1 - 0) -l~2 is bounded on for all &#x3E; 0 and 1 ~ p # 00,

including the endpoints ( [Stl] , Section 5.3.2, Lemma 2).

Proof of Corollary 2.5. - Clearly,

Furthermore, it is easy to see by induction that, for any multi-index c~,

1, we have the following estimates

and

Since 0  1 ~ 2, from this it follows that mz satisfies (2.12), and hence by
Lemma 2.4 the inequality

holds with a constant that depends only on l, p, and the A1-bound of w.m

We are now in a position to complete the proof of Lemma 2.2. Suppose
that -y E Mult ( W2 ~ W2’), &#x3E; l and 0  l  1. By
Corollary 2.5, the operator is bounded on L2 (w)
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for every wEAl, and its norm is bounded by a constant which depends
only on l, n, and the A1-bound of w. Hence by Lemma 2.3 it follows that
q E Mult (Wm2 ~ L2 ) yields Tn, 7 = ( ( 1 - ~) ll2 - |D|l) y E Mult (W2
L2), and

where c depends only on l, m, and n.

We need to replace W2 in the preceding inequality by W2 . To this
end, let B = denote a ball of radius 1 in R~, and 2B = 
Suppose that m  2 (the case m = 2 requires usual modifications). Then
1 E L2 ) if and only if  +00, and (see
[MSh], Section 1.1.4) is equivalent to 2 2 2

Hence,

We set -y = + and estimate each term separately. By Lemma
2.3,

To estimate the second term, notice that Tml and hence

Indeed, for x E B,

Since r E Mult(W2’ - L2), it follows that q C L2,unif, and hence

Consequently,

Hence,

Thus, we have proved the inequality
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Clearly, Using these estimates and

Lemma 2.1, we obtain

Conversely, suppose that It follows
from the above estimate of I that

Obviously, Applying again Lemma 2.1 to-
gether with the preceding estimates, we have

It remains to obtain the estimate

whose proof is similar to the argument used in [MSh], Section 2.6, and is
outlined below.

Since ( 1 - 0) l ~2 -y E L2 ) , it follows that

for every compact set e C Hence, for every ball Br (a),

and in particular

Notice that ~ - 0)l~2’Y, where the Bessel potential Jl =

( 1 - 0) -l~2 can be represented as a convolution operator, f.
Here Gl is a positive radially decreasing function whose behavior at 0 and
infinity respectively is given by

as if

as

From this, it is easy to derive the pointwise estimate
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Using Hedberg’s inequality together with the preceding pointwise estimate,
as in the proof of Lemma 2.6.2 in [MSh], we deduce

where M is the Hardy-Littlewood maximal operator. Using the pre-

ceding estimates, together with the boundedness of M on the space

Mult(W2 --+ L2)(see [MSh], Section 2.6) we obtain

By Lemma 2 in [MSh], Section 2.2.1, it follows

The proof of Lemma 2.2 is complete. D

THEOREM 2.6. - e D’(TT). E 

and only if lf = (-A + 1)"~~ e 
L2(R")). Furthermore,

Proof. To prove the "if" part, it suffices to verify that, for every
u E and (p - (-A + j)-1/4-Y E L2), the inequality

holds. Here the integral on the left-hand side is understood in the sense of
quadratic forms 

-

where (-y~, ~~ is the quadratic form associated with the multiplier operator
q, as explained in detail in [MV2].

Since -y = (-A + 1)1/41&#x3E;, we have
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Note that (-A + 1)1/4 - ID11/2 == Tml/2’ where Tml is the Fourier

multiplier operator defined by (2.13). By Corollary 2.5, Tml/2 is a bounded
operator on L2 (w) for any A,-weight w, and its norm depends only on the
A1-bound of w. Hence by Lemma 2.3 it follows that ((-~ + 1)1/4 - 
E L2), and

Using this estimate and the Cauchy-Schwarz inequality, we get

Hence, in order to prove (2.15) it suffices to establish the inequality

By duality,

where 4l C Z/2 ioc? and the integral on the right-hand side is well-defined

(see details in [MV2]).
Notice that, for u E Cü(IRn),

Using the identity yvith b = u(x) and
a = u(y), and integrating against we get

Hence,
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Using the preceding inequality, we estimate

where The last integral is bounded by

In the preceding chain of inequalities we first applied Hedberg’s inequality
(see, e.g., [MSh], Section 1.1.3 and Section 3.1.2)

with g = and then the Hardy-Littlewood maximal inequality
for the operator M. This completes the proof of (2.15).

To prove the "only if" part of the Theorem, we will show that

The proof of this estimate is based on the extension of the distribution

q e 2 (R to the higher dimensional Euclidean
space, and subsequent application of the characterization of the class of

multipliers W2-l (1R.n+I)) obtained by the authors in
[MV2].

We denote by q o 6 the distribution on defined by

where x - (xl, ... , xn) E 1R.n, and 6 = is the delta-function

supported on xn+1 = 0. It is not difficult to see that

i l’YI I W2 ~2(~n&#x3E;~W2 1~2(~’n,).
This follows from the well-known fact that the space of traces on of

functions in coincides with with the equivalence of
norms (see, e.g., [MSh], Section 5.1). Indeed, for any let

u (x) = and = v (x, 0) . Then by the trace estimate mentioned
and hence
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This gives the estimate:

The converse inequality (which is not used below) follows similarly by
extending u, v E to U, V E with the corresponding
estimates of norms.

For the rest of the proof, it will be convenient to introduce the

notation J(n+l) = (-An+l + 0, for the Bessel potential of
order s on here denotes the Laplacian on 

Now by Theorem 4.2, [MV2] we obtain that ~y®~ E 
if and only if

and

Next, pick 0  E  1/2 and observe that

Using Lemma 2.2 with t = 1/2 + 6, m = 1, and J e+3/2 (n+1) b 0 6) in place of 7,E+3/2 ’

we deduce

As was proved above, the left-hand side of the preceding relation is bounded
by a constant multiple of !H!~/~~~i/2~.

Thus,

Passing to the trace on = 01 in the multiplier norm on the
left-hand side (see [MSh], Section 5.2), we obtain

We now observe that

which follows immediately by inspecting the corresponding Fourier trans-
forms.

In other words,



335

From this estimate and Lemma 2.2 with l = E, m - 1/2, and with ~
replaced by J~+i / 2’Y, it follows

Thus, and

The proof of Theorem 2.6 is complete. 11

3. Some corollaries of the form boundedness criterion.

Theorem 2.6 proved in Section 2, combined with the known criteria
for nonnegative potentials, yields Theorem II stated in the Introduction.
In particular, it follows that, if Q E Ð’(IRn), and -cD = (-A + 1)-1/4Q,
then the multiplier defined by Q, and hence x = B/2013A -t- Q, is a bounded
operator from to if and only if

for every compact set e C Rn such that diam(e)  1.

Some simpler conditions which do not involve capacities are discussed
in this section.

The following necessary condition is immediate from (3.1) and the
known estimates of the capacity of the ball in R" ([MSh], Section 2.1.2).

COROLLARY 3.1. - Suppose Q E 1. Suppose ’H =
is a bounded operator. Then, for

every ball Br (a) in R" ,

and

where the constant does not depend on a E and r.
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We notice that the class of distributions Q such that V = (-A+
1 ) -1 /4 Q satisfies (3.2) can be regarded as a Morrey space of order -1 / 2.

Combining Theorem II with the Fefferman-Phong condition [Fef]
applied we arrive at sufficient conditions in terms of Morrey spaces
of negative order. (Strictly speaking, the Fefferman-Phong condition [Fef]
was originally established for estimates in the homogeneous Sobolev space
W2 of order m = 1. However, it can be carried over to Sobolev spaces W2
for all 0  m  n/2. See, e.g., [KeS] or [MV1], p. 98.)

COROLLARY 3.2. - Suppose Q E D’(R’), n &#x3E;, 2. 

(-A + 1) -’I’Q, and s &#x3E; 1. Then R is a bounded operator from 

to W2-l/2(IRn) if

where the constant does not depend on a E 1R.n and r.

Remark. - It is worth mentioning that condition (3.4) defines a class
of potentials which is strictly broader than the (relativistic) Fefferman-
Phong class of Q such that

for some s &#x3E; 1.

This follows from the observation that if one replaces Q by Q ~ in
(3.4), then obviously the resulting class defined by

becomes smaller, but still contains some singular measures, together with
all functions in the Fefferman-Phong class (3.5). (The latter was noticed
earlier in [MVI] , Proposition 3.5.)

A smaller but more conventional class of admissible potentials appears
when one replaces cap(e, on the right-hand side of (3.1) by its
lower estimate in terms of Lebesgue measure of e C 1R.n. This yields the
following result (stated as Corollary 1 in the Introduction).

COROLLARY 3.3. - Suppose Q e D’(R’), n &#x3E;, 1. 

(_A+I)-1/4Q. Then H _ a bounded operator from 

to for every measurable set e C 
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or

where the constant c does not depend on e.

We remark that (3.7), without the extra assumption diam(e)  1, is
equivalent to ~ C where is the Lorentz (weak Lp)
space of functions f such that

In particular, (3.7) holds if 4D E L2n(1R.n), or equivalently, Q E W2n ~2 (II~n ) .
Furthermore, if 4D C then obviously (3.7) holds as well, since

if diam(e)  1. This leads to the sufficient condition 03A6 E 

n &#x3E; 2.

It is worth noting that (3.7) defines a substantially broader class
of admissible potentials than the standard (in the relativistic case) class
Q E + Loo(JRn), n &#x3E; 2 ([LL], Section 11.3). This is a consequence
of the imbedding

which follows from the classical Sobolev imbedding C 

for p = 2n/ ( 2n -1 ) and r = n &#x3E; 2. Indeed, by duality, the latter
is equivalent to

Similarly, in the one-dimensional case, the class of potentials defined
by (3.8) is wider than the standard class + E &#x3E; 0.

It is easy to see that actually Q E + if n &#x3E; 2, or
if n = 1, is sufficient for the inequality

which is a "na~ive" version of (1.2) where Q is replaced by IQ I.
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