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REGULAR PROJECTIVELY ANOSOV FLOWS

WITH COMPACT LEAVES

by Takeo NODA(1)

1. Introduction and the statement of the result.

In [ET], Eliashberg and Thurston investigated relations between

codimension 1 foliations and contact structures on 3-manifold, using the
theory of confoliations. They proved that on a closed oriented 3-manifold
every codimension 1 foliation of class Cr (r &#x3E; 2) except for the product
foliation on S2 x SI can be C°-approximated by a positive (and a negative)
contact structure.

As a special case of such approximations, they defined a linear

deformation of a foliation, that is, a 1-parameter family of plane fields
defined by 1-forms at satisfying

and

for any point of the manifold.

A typical example of linear deformations is given by Anosov foliations.
Y. Mitsumatsu observed in [Mil] that both of the weak unstable and stable
foliations of an Anosov flow are linearly deformed into a positive and a
negative contact structure which intersect transversely at the tangent space
of the flow, where such a pair of contact structures is called a bi-contact

~1~ The author is supported in part by Research Fellowship of the Japan Society for the
Promotion of Science for Young Scientists and by Grant-in-Aid for Scientific research
13-4569, Japan Society for the Promotion of Science, Japan.
Math. classification : 57R30 - 58F18 - 53C12 - 53C15 - 58F15.
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structure. However, a bi-contact structure is not always induced by an
Anosov flow, so he defined a projectively Anosov flow so as to be equivalent
to the flow on the intersection of a bi-contact structure (it is also equivalent
to a conformally-Anosov flow defined in [ET]) .

A non-singular flow Ot on a closed oriented 3-manifold M is a projec-
tively Anosov flow if there exist a Riemannian metric on M, a transversely
oriented continuous splitting Eu 0 Es of TM/T’~ which is invariant under
the action of Ot, and a positive real number C such that

holds for all t &#x3E; 0, vl E S’ and v’ E 6’ B 0.

The invariant subbundlese’ and S’ naturally induce invariant plane
fields Eu and ES on M. Like the Anosov cases, these plane fields

are continuous and integrable, but unlike the Anosov cases the integral
manifolds may not be determined uniquely in general. From a viewpoint of
linear deformations of foliations, it is important to study the cases where
the plane fields E’ and E’ are smooth. We call such a projectively Anosov
flow regular. In the case of a regular projectively Anosov flow, the plane
fields Eu and ES determine smooth codimension 1 foliations 0" and F’,
which are called the unstable foliation and the stable foliation, respectively.
One of the greatest differences from Anosov flows is the fact that these

foliations may contain compact leaves, which are necessarily homeomorphic
to tori.

Anosov flows with smooth invariant foliations are classified by
Ghys [Ghl], [Gh2]. They are either the suspension flows of hyperbolic
diffeomorphisms of T2 or quasi-Fuchsian flows on Seifert manifolds. As to
projectively Anosov flows, some classification results on several manifolds
have been known. The author studied in [Nd] the regular projectively
Anosov flows on T2-bundles over ,S’1 whose unstable or stable foliation
contains a compact leaf and proved that such flows are decomposed into
components called T2 x I-models. T. Tsuboi and the author investigated
in [NT] the regular projectively Anosov flows without compact leaves on
T2-bundles over S’1 with hyperbolic monodromy and the unit tangent
bundle of a closed surface and showed that such flows are actually Anosov
flows. In particular, these results complete the classification of the regular
projectively Anosov flows on T2-bundles over They are either the unions
of T2 x I-models or the suspension Anosov flows. In the recent paper [Ts],
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T. Tsuboi has proved that if the unstable and stable foliations of a regular
projectively Anosov flow on a closed oriented Seifert manifold contain no
compact leaves then the flow is isotopic to a quasi-Fuchsian flow.

The main result of this paper is a classification theorem on Seifert

manifolds in the case the invariant foliations contain compact leaves. Hence
this completes the classification on Seifert manifolds.

THEOREM 1.1. - Let M be a closed oriented Seifert manifold and Ot
a regular projectively Anosov flow with unstable foliation and stable
foliation Suppose that one of these foliations contains a compact leaf.
Then M is homeomorphic to the 3-torus and cpt can be represented as a
finite union of T2 x I-models.

Remark 1.2. - The regularity of projectively Anosov flows means by
definition that the invariant foliations are of class C°°, but in the proof of
Theorem 1.1 we use only that they are of class C2.

Remark 1.3. - M. Asaoka has given recently in [A] a complete
classification of regular and non-degenerate projectively Anosov flows and
proved that such a flow is either an Anosov flow or a finite union of T2 x I-
models. Here, a flow is non-degenerate if all periodic orbits are hyperbolic,
so flows with an invariant torus where the restricted flow is conjugate to a
rational linear flow are excluded.

This paper is organized as follows. In Section 2, we review some known
results about regular projectively Anosov flows and introduce T2 x I-models,
the fundamental examples.

In Section 3, we see that each leaf of the invariant foliations is either
vertical tori or horizontal. To do this, we classify the foliations on Seifert
manifolds with compact leaves which are incompressible tori.

In Section 4, we prove that the compact leaves of the unstable

foliation and those of the stable foliation have no intersection. Therefore the

underlying Seifert manifold is decomposed into compact Seifert manifolds
bounded by vertical closed leaves of the invariant foliations.

In Section 5, we prove that each component bounded by closed leaves
is isotopic to a T2 x I-model. To show this, we study the leaf spaces of the
lifted foliations of the invariant foliations on the universal covering.

The author thanks Prof. Takashi Tsuboi for useful discussions and

advices.
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2. Regular projectively Anosov flows.

Let M be a closed oriented 3-manifold and 0’ a regular projectively
Anosov flow on M with the unstable foliation and the stable foliation 

By the following result, we can see that each compact leaf of 0"
and T’ is an incompressible torus in M.

PROPOSITION 2.1 (see [Mi2], [Nd]). - The unstable and stable
foliations of a regular projectively Anosov flow on a compact oriented
3-manifold do not contain Reeb components.

Together with Novikov’s theorem [Nv] (see also [Ta], for example),
we can deduce the following.

COROLLARY 2.2. - There is no regular projectively Anosov flow on ,S’3
and on S2 x 

Remark 2.3. - The assumption of regularity makes an essential
restriction to the topology of M. Indeed, as Mitsumatsu mentioned in [Mi2]
and [Mi3], we can see by the approximation theorem of Eliashberg and
Thurston [ET] and Hardorp’s theorem [H] any closed oriented 3-manifold
admits a bi-contact structure and therefore a projectively Anosov flow.

We introduce a fundamental example of a projectively Anosov flow
whose unstable and stable foliations contain compact leaves. This example
is called a T2 x I-model.

Example 2.4 (T2 x I-model). - Let (x, y, z) be coordinates in T 2 x I.
Take two linear 1-forms Wu = pu dx dy and Ws = p, dx + qs dy on T 2
such that Wu A cvs &#x3E; 0. Consider two foliations 0" and defined by the
following two 1-forms on T 2 x I

where fu, f s : [0, 1] - [0, 1] are orientation preserving and reversing
diffeomorphisms of an interval, respectively.

It is proved in [Nd] that a flow tangent to the intersection of the
foliations T7’ and is a projectively Anosov flow and and Y’ are the

unstable and stable foliations (see Figure 1).
Note 0} and f z - 1 ~ are compact leaves of 0" and so

this model is not an Anosov flow. Remark that it is essential that 

and f s ( 1 ) do not vanish, which implies that the linear holonomy groups
along the compact leaves are non-trivial.
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Figure 1

Gluing together a finite collection of such models, we can construct
an example of a projectively Anosov flow on a T2-bundle over ,S’1. Since the
linear holonomy groups along the compact leaves are non-trivial, we have
to take the same cJu and w, for each model to make the resulting foliations
differentiable. It follows that the monodromy of the bundle must contain
at least two invariant directions and therefore it is isotopic to the identity
or a hyperbolic automorphism.

In fact, we know that such examples on T2-bundles are the only
examples with compact leaves.

THEOREM 2.5 (see [Nd]). - Let M be a T 2-bundle over and cpt a
regular projectively Anosov flow on M. If one of the invariant foliations of 0’
has a compact leaf, then cpt is represented as a finite union of T 2 x I-models.
In particular, M is homeomorphic to either T3 or T2-bundle over S’1 with
hyperbolic monodromy.

3. Foliations on Seifert manifolds.

In order to understand the topology of the invariant foliations, we
classify foliations on Seifert manifolds with compact leaves which are

incompressible tori.

Let us recall some basic properties of Seifert manifolds (for details,
see [O], [Sc]). A trivial fibered solid torus is a D2 x with the product
foliation by circles x Sl for x E D2 and a fcbered solid torus can be
obtained from a trivial fibered solid torus by cutting it open along D2 x {~/}
for some y E S’1, rotating q/p of a full turn, and glueing back together.
A Seifert manif old is a compact 3-manifold M with a decomposition into
disjoint circles, called fibers, such that each fiber has a neighborhood which
consists entirely of fibers and is isomorphic to a fibered solid torus. A fiber
of a Seifert manifold is called regular if its fibered neighborhood is trivial
and singular otherwise. By the equivalent relation of identifying the points
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in a fiber, we obtain the base of the Seifert manifold, which is a compact
2-orbifold.

A surface embedded in a Seifert manifold is called horizontal if it is
transverse to fibers at each point and vertical if it is a union of regular
fibers. Note that a vertical surface must be a torus, a Klein bottle, or an
annulus.

Foliations without compact leaves on a circle bundle over a surface are
studied in [Th] and [L], which are generalized to those on Seifert manifolds
in [EHN], [Ma], [Brl].

THEOREM 3.1. - Let M be a closed oriented Seifert manifold whose

base is not a torus or Klein bottle without singular point. Suppose that 
a codimension 1 transversely orientable C~’-foliation (r &#x3E; 2) on M without
compact leaves. Then F is isotoped to a foliation by horizontal leaves.

Remark 3.2. - Brittenham [Brl] proved this theorem for Seifert

manifolds whose bases are ,S’2 with three singular points and the isotopies
are given as C°-isotopies. In the other cases, the isotopies can be taken to
be of class C~.

Now let us study foliations with compact leaves which are incompres-
sible tori. If the underlying Seifert manifold is simultaneously a T2-bundle
over S’ then we may assume that all compact leaves are isotopic to fibers
of the bundle, after changing the bundle structures if necessary. Cutting
the manifold along a compact leaf, we obtain a foliation on T2 x I which
is tangent to the boundary. Such foliations are classified in [MR], so we
exclude T2-bundles.

THEOREM 3.3. - Let M be a closed oriented Seifert manifold which

cannot be covered by a T 2-bundle over and F a codimension 1

transversely oriented foliation on M. contains compact leaves
each of which is an incompressible torus in M. Then F can be isotoped so
that each leaf is either vertical or horizontal.

This can be proved by a simple application of the following result by
Brittenham. Here, a Reeb sublamination is a sublamination on I x (,S’1 x I)
which contains at least one of the non-compact leaves of the foliation
defined by a Reeb component on ,S’1 x I crossed with I, or its non-orientable
analogues. For definitions and notations concerning essential laminations,
see [GO].
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THEOREM 3.4 (see [Br2]). - Let M be an orientable compact Seifert
manifold with non-empty boundary, and ,C an essential lamination in M,
which is either transverse to, or contains as a leaf, each boundary component
of M. Then, possibly after splitting £ open along a finite number of leaves,
either £ can be isotoped so that each leaf is either vertical or horizontal, or
it has finitely many Reeb sublaminations with horizontal boundary.

Proof of Theorem 3.3. - Let L be a compact leaf of T. By the
theorem of Jaco (see [J], Theorem IV. 34), which characterizes two-sided
incompressible surfaces embedded in Seifert manifolds, L satisfies one of
the following cases:

(a) L is a fiber in a fibration of M as a T2-bundle over S1.

(b) M = Ml U M2 where MI n M2 - 9Mi = åM2 == L and Mi
(t = l, 2) is homeomorphic to a twisted I-bundle over the Klein

bottle.

(c) L is a vertical torus.

We only have to consider the case (c) because in the other cases M is
covered by a T2-bundle. So each compact leaf is isotopic to a vertical one.
We can decompose M by a finite collection of compact leaves {Lj} into
compact Seifert manifolds with non-empty boundary so that the restriction
of T on each component is tangent to the boundary.

Let W be such a component, then we can split along a finite
collection of leaves to yield an essential lamination ,C. By Theorem 3.4, ,C
is isotoped so that each leaf is either vertical or horizontal. Furthermore,
we may assume the interstitial I-bundle W B ,C is fibered by arcs which are
either horizontal or vertical. Then we can crush each fiber to a point and
retrieve ,~ with a desired isotopy. 0

Remark 3.5. - The isotopy given by the proof above is not

differentiable in general, but we can prove this theorem also by a similar
argument as in [L], where the isotopy has the same differentiability as that
of the given foliation.

Now let us consider the invariant foliations of a regular projectively
Anosov flow. Assume that at least one of them has a compact leaf, which
is an incompressible torus. Then the projectively Anosov property makes
some restrictions on the foliation in the neighborhood of each compact leaf.

Comparing the holonomies of F’ and FS along the orbits on a compact
leaf, we can easily obtain the following.



488

LEMMA 3.6. - Let Ot be a regular projectively Anosov flouT on a
compact oriented 3-manifold and .~~ the unstable or stable foliation of Ot.
Suppose that Fa contains a closed leaf L. Then the linear holonomy group
of L is non-trivial, i.e., there exists a closed curve r on L with linear

1.

If the linear holonomy group is non-trivial, the germ of the foliation
is determined on both sides of the compact leaf.

LEMMA 3.7. - Let M be a closed Seifert manifold and Ot a regular
projectively Anosov flow on M. Suppose that the unstable or stable

foliation Fa contains a vertical compact leaf L. Then if a leaf of in the

neighborhood of L is vertical (resp. horizontal), all non-compact leaves in
the neighborhood are vertical (resp. horizontal).

Proof. By the previous lemma, the linear holonomy groups of the

compact leaves of are non-trivial, so compact leaves are isolated.

It is proved in [MR] that the germ of an isolated compact leaf

homeomorphic to T2 is topologically conjugate to a foliation defined by
a 1-form:

where (x, y, z ) are coordinates of T~ x [0, ~), V)(z) is an increasing function
satisfying 0 (0) - 0, and (p, q) E R’ B f (0, 0) 1. This tells us that a leaf of -F’
near a vertical compact leaf is vertical (resp. horizontal) if and only if the
linear holonomy of the compact leaf along a fiber is equal to 1 (resp. ~ 1).
This completes the proof. 0

The invariant foliations 0" and are characterized by the following
proposition.

PROPOSITION 3.8. - Let M be a closed oriented Seifert manifold and

the unstable or stable foliation of a regular projectively Anosov flow Ot
on M. Suppose that F’ contains a compact leaf. Then the number of the

compact leaves is finite and possibly after changing the Seifert fibration
structures of M, is isotopic to a foliation such that all compact leaves
are vertical, and that all non-compact leaves are horizontal.

Proof. If M is covered by a T2-bundle then Theorem 2.5 implies
that M is actually the 3-torus and satisfies the required properties.
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Suppose M cannot be covered by a T2-bundle. Since Fa is a

transversely oriented codimension 1 smooth foliation and all compact
leaves are incompressible tori by Proposition 2.1, we can apply Theorem 3.3.
In particular, each compact leaf is a vertical one.

Let U be the set of all horizontal non-compact leaves. We may

suppose U # 0. Indeed, if all leaves of is vertical then Fa is a foliation
defined by the pull-back of a foliation on the base space of an S1-bundle
over a closed surface. However, such a foliation can exist only on manifolds
which are covered by T2-bundles over 

The set U is open and its boundary B = 8U in M consists of vertical
leaves. Take a fiber ~ of M in U which is transverse and let N (q) be its
tubular neighborhood. Then we can take a properly embedded horizontal
surface S in M B such that S’ is transverse to each vertical leaf of 

and 85 is transverse to Fa N~q&#x3E; . The intersection with induces a smooth

foliation F(S) with singularities on S.

The set B n ,5’ is closed and saturated by non-singular leaves of F(S).
By the theorem of Schwarz [Sch], each minimal set in B n ,S’ is a closed

leaf, so it is a component of the intersection of a compact leaf of and S.

By Lemma 3.7, U lies on the both sides of each compact leaf in B.

Therefore B consists of a finite collection of vertical compact leaves. Thus
the union B U U is an open and closed set in M, that is, it coincides the

whole M. We have thus proved the proposition. D

4. Intersection of compact leaves.

PROPOSITION 4.1. - Let M be a closed oriented Seifert manifold

and 0’ a regular projectively Anosov flow with unstable foliation and

stable foliation Then the compact leaves of 0" and those of T" do not
intersect.

Proof. By Proposition 3.8, each of 0" and has only finitely
many compact leaves and can be reformed by isotopy into a foliation such
that all compact leaves are vertical tori and all non-compact leaves are
horizontal.

LEMMA 4.2. - A closed orbit c of 0’ is isotopic to a regular fiber of
the Seifert manifold M if and only if there exist a compact leaf L’ of 0"
and a compact leaf L’ of such that c is contained in LU n LS .
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Proof. It is obvious that the intersection of vertical compact leaves
consists of closed orbits isotopic to regular fibers.

Suppose that c is a closed orbit of 0’ isotopic to a fiber and that c is
contained in a non-compact leaf L of F’ or Since L can be reformed

by isotopy to a horizontal surface, the projection 7r: M --+ B of the Seifert
manifold to its base defines a covering map of L to its image 7r(L) and
any closed curves on L can be regarded as lifts of closed curves on B.

However, 7r(c) is a null homotopic closed curve on B and therefore c is a
null homotopic closed curve on L. It is a contradiction. D

Suppose that a compact leaf L1 of intersects a compact leaf of Fu.
Then has a finite number of closed orbits isotopic to fibers. A region
in a leaf bounded by adjacent two closed orbits is called a slope component
if the direction of these closed orbits coincides and a Reeb component
otherwise (see Figure 2).

Figure 2

Let A1 be such an annulus on Ll and ci and c2 closed orbits such
that 8Ai = ci U C2. Then there exists a compact leaf L2 of F’ containing c2
and we can take on L2 a closed orbit c3 adjacent to c2 and an annulus A2
bounded by c2 U c3. Iterating this procedure, we can take a sequence of Ai’s
and ci’s. The finiteness of the compact leaves implies that we can find some
integer such that c2k+1 = CI and = A1 (see Figure 3).

Figure 3

be such a chain of annuli and closed orbits. Note

that Ai is contained in if i is odd and in F’ if i is even. Let hi and h2
be the linear holonomies of Fu and respectively, along a closed orbit ci



491

with orientation. Then projectively Anosov property implies h~ &#x3E; hi for
all i. In the following, indices are defined by mod 2k.

CLAIM (see Figure 4). 1 ) For odd i, hi = if the orientations

of ci and coincide and hi = (hi+1)-1 otherwise.

2) For even i, hi - h’, if the orientations of Ci and ci+l coincide
and h’ = (h +1)-1 otherwise.

Figure 4

This is obvious from the fact that two isotopic closed orbits have the
same linear holonomy.

CLAIM (see Figure 5). - Let A be an annulus on a stable leaf and let
8A h~ &#x3E; h~ then A is a Reeb component and h~, &#x3E; hc" &#x3E; 1.

Figure 5

CLAIM (see Figure 6). - Let A be an annulus on an unstable leaf
and let 8A = c U c’. If h’ &#x3E; h~ &#x3E; 1 then A is a Reeb component

&#x3E;h~.
These two claims are deduced from the fact that it holds h’  1 if and

only if ha &#x3E; 1 for a = s, u, whether A is a slope component or a Reeb

component.

Let us apply these claims in our case. Since A1 is contained in a stable
leaf, it holds that hu &#x3E; 1 or hu &#x3E; 1, so hs &#x3E; hu &#x3E; 1 or h8 &#x3E; hu &#x3E; 1
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Figure 6

respectively. By applying Claim 2 and 3 repeatedly, we can see that all Ai ’s
are Reeb components. Furthermore, by Claim 1,

- 1 if i is odd,

. hi h +1 = 1 if i is even.

Therefore we obtain

It contradicts the projectively Anosov property that hi &#x3E; hi for all i. 0

5. Regular pro jectively Anosov flows
bounded by closed leaves.

In this section, we complete the proof of Theorem 1.1. By Proposi-
tion 3.8 and Proposition 4.1 we can decompose M by the compact leaves
of 0" and FS into a finite collection compact Seifert manifolds, each of
which is bounded by a disjoint union of compact leaves and contains no
other compact leaves in the interior. Let W be such a component and we
will see that (W, is conjugate to a T2 x I-model.

To do this, we study the leaf spaces of the unstable and stable
foliations. This technique is investigated for Anosov flows in [Ghl], [Ba]
and [F], for examples, and for projectively Anosov flows in [NT].

Let W be the universal covering space of W and be the

induced flow and foliations on W. The leaf spaces are the 1-dimensional
~ ~ ~ ~

spaces Qu and QS defined by Qu - W/0" and QS = respectively.
Note that they are not Hausdorff in general. Proposition 2.1 implies that
Fu and Ts are foliations by planes and therefore Qu or Q’ is Hausdorff
if and only or Ts is conjugate to the product foliation. The projections
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p’: W - Q’ and p~: W - QS are 7rI (W)-equivariant and the juxtaposition
map of projections:

is a 7rl (W)-equivariant submersion. Let Wo be the interior of W and define
also the analogues 0§ , Wo, 0g, 0§ , Qg. I

LEMMA 5.1. - Each of the foliations 0g and TO. is conjugate to the
product foliation.

Proof. We shall discuss 0g then the same argument works for 0§ .
Suppose first that OW coincides the union of the compact leaves

of 0" . Then each leaf of 0g is horizontal by Proposition 3.8, we can take
a regular fiber 1 so that its lift 3ll in Wo intersects all leaves of 0g. Hence
we only have to prove that each leaf of 0g intersects 3ll at just one point.
Suppose on the contrary that a leaf L intersects 3ll at two points p, q. Then
we can construct a loop by two arcs connecting p to q on L and on but

a slight deformation of the loop yields a null homotopic transversal to Fö.
It is a contradiction.

Secondly, assume that 8W contains a compact leaf L’ of Let us

see that the restricted foliation F of 0" to L’ can be isotoped so that each
leaf is horizontal. Since F cannot contain a vertical leaf by Lemma 4.2, we
only have to show that F does not contain a Reeb component on an annulus.
If there exists, the two closed leaves on the boundary lie on the same leaf
of 0" , so their linear holonomies of F coincide. However it contradicts the

projectively Anosov property (see Theorem 4.1 of [Nd]).

By the similar argument in the proof of Theorem 3.3, 0g can be
isotoped to a horizontal foliation. The rest part of the argument is the same
as above. 0

Then Theorem 1.1 follows from the theorem below. This theorem does

not assume any more that the underlying manifold is a Seifert manifold.

THEOREM 5.2. - Let W be a compact oriented 3-manifold with

non-empty boundary and 0’ a regular projectively Anosov flouT on W with
unstable foliation 0" and stable foliation Suppose that 8W is the

disjoint union of all closed leaves in 0" and and that in the universal

covering Wo of the interior Wo of W, each of the lifted foliations 0g and .~’o
is conjugate to the product foliation. Then W is homeomorphic to T2 x I
and Ot is a T 2 x I-model.
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We will prove this theorem by several lemmas.

In the case leaf spaces are Hausdorff, the following result is known

(see [NT]).

PROPOSITION 5.3. - Let cpt be a regular projectively Anosov flow on
a 3-manifold M. Assume that the lifted stable foliation on the universal

covering space M is diffeomorphic to the product foliation Then the

leaf space of the lifted orbit foliation 0 restricted to each leaf Lu of the
lifted unstable foliation Tu is Hausdorff.

~ ~ ~

Applying this proposition for Yos and L E Fu, we obtain the following
lemma:

LEMMA 5.4. - Let L be a leaf Then its image p(L) is Hausdorff
and therefore homeomorphic to an open interval.

The same holds for the leaves of 

LEMMA 5.5. - If two distinct points p, q in Qa (a = u or s) are
non-separable from each other then both of them are in Q’ B Qo .

Proof. Let p, q be such points. Since Q’ is Hausdorff by assumption,
at least one of them, say p, lies in Q’ B Q’. Let Lp be a corresponding closed
leaf of in W then the action of 7r, (Lp) ~ Z 0 Z on Q~ fixes p and maps q
to points which are non-separable from p. If q is in Q’ then the restricted
action on Q’ fixes q, but it is impossible because the fundamental group of
a leaf in does not admit an abelian subgroup of rank 2. 0

LEMMA 5.6. - The image p(W) is Hausdorff.

We use the following lemma in the proof.

LEMMA 5.7. - Let cpt be a regular projectively Anosov flow on a
compact oriented 3-manifold the unstable foliation of cpt. Suppose
that L is a closed leaf in 0" and that the restricted flow O’l L is conjugate
to the suspension of a diffeomorphism of SI. Then each orbit contained
in 0-saturated neighborhood of L is attracted to L as t - 

The proof is obvious since the linear holonomy group of L is non-trivial

by Lemma 3.6.

Proof of Lemma 5.6. 2013 Clearly, two distinct points p, q in p(Wo)
or in the image of a leaf of Tu or Ts are separable. Suppose p E p(Li)
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and q E p(L2) where Lie, L2 E 0" ) 0g. Let Ll and L2 be the projections
in W of L1 and L2, respectively, and take 0-saturated neighborhood Ui
and U2 of them. We can take their lifts Ul and U2 as §-saturated neigh-
borhoods of L1 and L2 in W, then they are disjoint from each other by
Lemma 5.7 and their images by p separate p and q. 0

Taking parameterizations of Q’ and Q’ by (o,1), we may assume by
Lemma 5.6 that p(M) is embedded in [0,1] x [0, 11 with coordinates (x, y).
Note that the image of each leaf of Tu and Ts is a vertical and a horizontal
open interval, respectively.

LEMMA 5.8. - The image p(W) is homeomorphic to [0, 1) x [0,1).

Proof. We may assume has a closed leaf L in aW . Let N be
a 0-saturated neighborhood of L in W and take the lifts L and N in W,
respectively. By Lemma 5.4 and 5.5, we may assume p(L) C ~0,1~ x ~0,1~
is a horizontal open interval {a  x  b, y = 01 and p(N) lies in y &#x3E; 0.

Since Ix al and ~x = bl are invariant under the action of 7rl (L) ~ Z 0 Z,
they do not intersect p(Wo). Therefore a = 0 and b = 1. Thus we have seen
that Qu and Qs are actually Hausdorff. In the y-coordinate, 0 and 1 are the

only fixed points by the action of 7Ti(L). Furthermore, the topology of 0"
near L tells us that no other point is fixed by any non-trivial action of
elements of 7r, (L).

By assumption p(N) C (o_,1) x ~0,1). We claim that p(~V) =
(o,1) x [0,1). For small E &#x3E; 0, p(N) contains (a, b) x [0, c], where (a, b) is
an open interval whose image by the action of 7rl (L) covers (o,1).

If there exist closed orbits of 0’ on L, the action f a of the element
a C which corresponds to the closed orbits has fixed points in (o,1).
Take (a’, b’) C (a, b) whose end points are fixed points. By replacing (a, b)
with a larger one, we may assume that the orbit of (a’, b’) covers (0, 1).
Since f a acts on Q’ non-trivially, (a’, b’) x ~0,1 ) = U f3 ((a’, b’) x [0, E])
is contained in Then by the action of we can see

p(N) _ (0, 1) x [0, 1).
If there is no closed orbit on L then the restricted flow is topo-

logically isotopic to an irrational linear flow by the theorem of Denjoy [D].
Taking a sequence of closed curves which approximates the slope of the
linear flow, we can see p(N) = (o,1 ) x j0,1 ) also in this case.

We next observe the frontier. It is clear by Lemma 5.7 that p(W ) does
not intersect ~ y = 1 ~ . Let Q be the (j-limit set of the orbits in N, which is
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non-empty, closed, and invariant by 1/, and let Õ be its lift. The image 
lies on the frontier of p(N) because N does not contain a closed invariant
set in the interior. Thus intersects ~x = 01 U ~x = 1 ~, so we may
assume that p(W ) contains a point (0,~/i). This point is in the image of a
lift L’ of a closed leaf L’ in 0" , therefore by applying the same argument
with changing the roles of and 0" , we can see p(W) = ~0,1 ) x ~0,1 ) . 0

Thus 4f has the same orbit space as that of a T2 x I-model, the
boundary 9W consists of a union of two tori isotopic to each other, one of
which is the closed leaf of T’ and the other is that of and all orbits

contained in Wo are attracted to LU (resp. LS) as t --~ +00 (resp. t --~ -oo).
Hence (W, is a T 2 x I-model, by Proposition 5.15 of [Nd].
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