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Introduction.

The main observations and results of the present paper are the

followings.

(1) The definition of the orbifold base of a fibration. This notion is
standard for elliptic fibrations. Its extension to higher dimensions reveals
the central role played by the category of orbifolds in classification theory,
and is also used here as a leading thread for the appropriate definitions
of the basic notions of the orbifold category (such as bimeromorphic
maps, differential forms, ...). In fact, the definitions and constructions
of the present paper easily extend to the category of orbifolds, using the
definitions of terminal or canonical modification given in § 2 below. See also
§6.

(2) The notion of special manifold (or orbifold), and the associated
construction of the core cx : X --+ C(X), for an arbitrary compact Kahler

(*) added in proof: an introducting exposition of the present text can be found on math.
AG/0402242.
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manifold X. This fibration functorially "decomposes" X into its special
(the fibres) and general type (the orbifold base) "components".

(3) The decomposition of the core as the canonical and functorial
composition of orbifold Iitaka fibrations and rational quotients.

These two structure theorems show that the usual trichotomy of
algebraic geometry (rational connectedness. = 0, general type) reduces
to a dichotomy of a more fundamental nature (special vs general type), in
which specialness is simply the orbifold combination of the first two terms
(rational connectedness. = 0) of the initial trichotomy. The conjectural
stability by deformation of all the fibrations constructed here may be seen
as another indication of their fundamental nature.

(4) The fundamental nature of the dichotomy special vs general
type, with the core as its concrete realisation, can be stressed by further
conjectural aspects of the core and the class of special manifolds, at

the levels of fundamental group, hyperbolicity, and arithmetics. These
conjectures indeed claim that special and general type orbifolds have
entirely opposite behaviours with respect to hyperbolicity and arithmetics,
and that the core cx also "decomposes" X with respect to hyperbolicity
and arithmetics.

The core thus gives a very simple synthetic view of the global structure
of any X, entirely unified from the points of view of geometry, positivity
of cotangent sheaves, fundamental group, hyperbolicity and arithmetics.

(5) At a more technical level, the unavoidable consideration of orbi-
folds leads also to an orbifold extension of the Cn,~.,.L additivity conjecture
of S. Iitaka. Its solution here when the orbifold base is of general type is
one of the main technical results of the present paper. Although this or-
bifold extension rests on the same techniques as the non-orbifold version,
the range of applications is considerably extended, including now fibrations
with general fibres having K == -00.

This seems to be a general fact, that most constructions or statements
of algebraic geometry can be extended at a low technical cost to the
orbifold context, where they become more natural, and so cover many new
situations. A second instance is given here with the orbifold version of the

Kobayashi-Ochiai extension theorem, exposed in § 8.

We shall now give some short indications on the organisation of this

paper, the table of contents lists the different sections. Each of them
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contains an introduction, describing and explaining the topics covered by
each of its subsections.

Concerning the main themes treated in this paper:

In § 1, the basic definitions and properties of orbifold bases of fibra-
tions are given, including the differential sheaf associated to a fibration.
The computation of the orbifold base of the composition of two fibrations
is not used before § 4, where it permits to define the orbifold base of a
fibration in the orbifold context as well.

In § 2, special and general type fibrations are introduced, and their
basic properties derived. General type fibrations are shown to correspond
naturally to Bogomolov sheaves. We explain how to extend the usual
definitions of Algebraic Geometry to the orbifold context, the proofs of
the basic properties remaining exactly the same.

A first construction of the core, using chains of special subvarieties, is
given in § 3. It gives a first, geometric, proof of the specialness of rationally
connected manifolds. But the proof that the base orbifold of the core is of
general type (or a point) is deferred to § 5, because it rests on the additivity
theorem proved in § 4.

A second construction of the core, independent and shorter, is given
in § 5. It also rests on the additivity result of § 4, but can be read

independently of § 3.

The orbifold version of the Kobayashi-Ochiai extension theorem,
shown in § 8, permits to solve a special case of conjecture IIIH, which asserts
that special manifolds are exactly the ones having a vanishing Kobayashi
pseudometric.

The definition of a base orbifold of a fibration, and of a special
manifold (or orbifold) given here was obtained after three other tentative
definitions were rejected. The first definition for special had just meant:
"without meromorphic map onto a (positive dimensional) manifold of
general type". It was never considered, because unstable by finite etale
covers. The second version precisely consisted in defining special manifolds
as the ones having no finite 6tale cover with a meromorphic map onto a
manifold of general type (these are called "weakly special" below). The
third version just retained the multiple fibres in the classical sense (using
gcd of the multiplicities of the various components of fibres). The definition
given here is the fourth one, and replaces the above classical gcd by the
infimum. It is interesting in the retrospect, to notice that the first two
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versions were considered earlier: the first one by D. Abramovich in [Ab97],
and the second one by D. Abramovich and J.L. Colliot-Th6l6ne (see [H-
TOO], and Section 9.4, for more details).

Acknowledgements. The present paper is an expanded version of

[CaDI’], of October 2001. The only improvement (purely technical) to this
first version is the proof of the orbifold additivity theorem, which permits to
prove that the core is indeed a fibration of general type. These results were
conjectured and proved only in special cases in [CaOl’]. But the present
approach was already described in details there, as a consequence of this
additivity result.

I would like to thank F. Bogomolov, J.P. Demailly and C. Voisin for
discussions which permitted me to improve § 9. P. Eyssidieux suggested me
the study of the function field version of the conjectures III and IV of § 9.
This version is discussed in [Ca01 ’] , but this discussion is not included here.

After the first version of this work was put on the arXiv server, I got
stimulating comments and references included here from D. Abramovich,
J.L. Colliot-Thelene (see § 9.5) and B. Totaro, who independently suggested
me to include Conjecture IVA .

F. Bogomolov also noticed that general type fibrations might be linked
with what is called here Bogomolov sheaves; this link is established in 2.26

(one direction was shown in the very first version in the transcendental
context of Section 8).

I heartily thank J.P. Demailly, L. Manivel, C. Mourougane, M. Paun,
E. Peyre, and especially L. Bonavero and S. Druel, for their carefull

reading of the previous versions, which was exposed in Grenoble in July of
2002. And also for pointing many mistakes, gaps and inaccuracies. They
suggested me to reorganise the exposition according to the technical order
of proofs. The present version thus differs considerably from the preceding
ones in this respect. My thanks also go to M. Paun, T. Peternell and J.
Winkelmann, for their careful reading of the appendix (now a separate
text), and their suggestions to improve its exposition.

Finally, special thanks are due to E. Viehweg, who gave me a decisive
hint for the proof of the crucial Lemma 4.19.
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1. Orbifold base of a fibration.

In this chapter, we introduce the notion of orbifold base of a holomor-
phic fibration f : X-Y ( f is thus surjective, and its fibres are connected)
between compact connected complex manifolds. This is simply ( 1.1.4) an
effective Q-divisor on Y, defined by the multiple fibres of f by means of
a suitable ramification formula (which is the one for a virtual ramified co-
ver of Y removing by base change the multiple fibres of f). This orbifold
structure carries naturally a canonical bundle, a Kodaira dimension and a
fundamental group (which would be the ones of this virtual ramified cover).

The Kodaira dimension K(Y, f) is the minimum of the Kodaira

dimensions of the orbifold bases, when f’ runs over all models of f, which
are the fibrations bimeromorphically equivalent to f. This minimum is
achieved by f itself when K(Y) j 0 (by 1.14), but may be smaller in general
when Y is at least two-dimensional. This is due to the fact that blowing up
Y at the intersection of two components of the orbifold divisor may result
in fibres of small multiplicity above the exceptional divisor.

We next show ~(1.8) that K(Y, f) behaves as in the "classical" case
(where f = idx) under composition with generically finite maps u :
X’ --; X and Stein factorisation.

In the next section, we define canonically a rank one subsheaf F f of S2X
by saturating the inverse image of Ky. This sheaf is an intrinsic birational
invariant of the equivalence class of fibration. Its Kodaira dimension turns
out to be K (Y, f ), avoiding going to a suitable birational model of f. As
an application, the orbifold base of f has Kodaira dimension K(Y, f ) if f is
what we call neat (see 1.2).

We next show (1.28) the countable upper semi-continuity of K(Y, f)
in families, a technical result later used to construct the core.

Finally, we show how to compute, on suitable models, the orbifold
structure on the base of a composition g o f of two fibrations, from the
orbifold bases of g and f. This computation plays an essential role in the
proof of the shown case of the orbifold additivity conjecture in § 4. It is

also the clue to the definition of the orbifold base of a fibration between

orbifolds. See Section 1.6.

The basic technical results gathered in this chapter are of constant
use in the next chapters.



506

1.1. Fibrations.

Before giving definitions, let us start with

1.1.1. A motivating example.

Example 1. 1. - Let Xo . E x P, (C), where E is an elliptic curve.
Let X : := Xjj, where X : = E x C, where C is a hyperelliptic curve and
j - t x tt is the involution acting diagonally on X by a translation t of
order 2 on E, and by the hyperelliptic involution h on C. Then both Xo
and X have natural fibrations on Pi(C) with generic fibre E.

They cannot be distinguished by this information, although they differ
fundamentally at the levels of Kodaira dimension, fundamental group,
Kobayashi pseudo metric and arithmetics (for appropriate choice of E).
If, however, we take into account the multiple fibres of the fibrations onto

we see that in the second case (of X), the base is not really Pi (C) ,
but rather the orbifold of general type C/h.

This we shall now generalise.

1.1.2. Fibrations.

A fibration f : X -- + Y is a surjective (i.e. dominant) meromorphic
map with irreducible generic fibres between irreducible compact complex
analytic spaces X and Y (see below for the precise definition of the fibres
of a meromorphic map). Of course, this fibration is said to be holomorphic
(or regular) if so is the map f. If X, Y are normal, a fibration thus has
connected fibres. ; 

°

Another fibration f’ : X’ --+ Y’ is said to be equivalent to f if there
exists bimeromorphic maps u : X --+ X’ and v : Y --+ Y’ such that

f’ 0 u = v o f. We denote by F or Xy the generic fibre of f. We also
say that f’ is a model or a representative of f (we shall not distinguish
between f and its equivalence class).

A fibration f : X --+ Y canonically defines (see [Ca85]) a meromorphic
Y ---~ C (X ), with C(X) the Chow-Scheme of X, by sending the

generic y E Y to the point of C(X) parametrising the reduced fibre Xy of f
over y. C C(X) be the image of Y by 1/: it is a compact irreducible
analytic subset of C(X) bimeromorphic to Y such that its incidence graph
is bimeromorphic to X. The cycles of X parametrised are also called
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the Chow-theoretic fibres of f. The above correspondance induces a bijective
map between equivalence classes of fibrations and compact irreducible
analytic subsets of C(X) with incidence graph bimeromorphic to X.

1.1.3. Neat fibrations. Prepared fibrations.

For a fibration f : X --~Y between compact complex spaces, the
divisors of X mapped by f to a codimension at least two subset of Y
will be the source of many troubles. We therefore introduce the following
definition.

DEFINITION 1.2. - Assume that f : X-Y is a holomorphic fibration.
An irreducible Weil divisor D on X is said to be f-exceptional if f (D) has
codimension 2 or more in Y. We say that f : X-Y is neat if f is holo-
morphic, X, Y are smooth, and if there moreover exists a bimeromorphic
holomorphic map u : X--+X’ with X’ smooth such that each f -exceptional
divisor of X is also u-exceptional.

By allowing modifications, such fibrations always exist by the follo-
wing lemma.

LEMMA 1.3. - Let f© : Xo --+ Yo be a fibration and X’ smooth

bimeromorphic to Xo. Then, there exists a neat model f : X --~ Y of
fo and a bimeromorphic map u : X --+ X’ such that each f -exceptional
divisor of X is also u-exceptional.

Proof. By Raynaud and Hironaka flattening theorems ([R74]), any
fibration fo : Xo --+ Yo has a neat model, in which X’ may be choosen
arbitrarily (bimeromorphic to the domain Xo of the initial fibration fo).
Indeed: first blow-up X’ in such a way that fo o b : X’ - - + Ya is holomorphic,
where b : X’ - - + Xo is bimeromorphic; then flatten fo o b by blowing-up Yo
to get a smooth Y. Finally, take a smooth model X of X’ x Yo Y. D

Assume the fibration f is holomorphic. We say that the holomorphic
fibration f’ : X’-Y’ with X’, Y’ smooth dominates f if there exists a

commutative diagram in which u, v are bimeromorphic; obviously, f’ is

then equivalent to f:
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Observe that any f’ dominating a neat fibration is itself neat.

More generally, we say that the fibration f’ : X’ --~ Y’ dominates
the fibration f : X --+ Y if there exists a diagram as above with u, v
bimeromorphic. This notion is well-defined on equivalence classes.

Let f : X-Y be a holomorphic fibration with X, Y smooth. We
say (as in [Vi82]) that f is prepared if the locus Y* C Y of points y with a
smooth f-fibre Xy has a complement contained in a normal crossing divisor
D C Y such that, moreover, is also a divisor of normal crossings
in X.

Any fibration is dominated by a prepared model, by an immediate
application of Hironaka’s results. The models of fibrations considered can
thus always be assumed to be prepared.

1.1.4. Multiplicity divisor of a fibration.

Assume now X, Y to be smooth and f : X-Y to be a holomorphic
fibration. For any irreducible divisor D of Y, write

where J(f, D) is the set of all irreducible components of f * (D) which are
mapped surjectively onto D by f, while R is f-exceptional. Then, define

The integer m( f, D) is called the multiplicity of f along D.

Let a f C Y be the union of all codimension one irreducible compo-
nents of the locus of y’s E Y such that the scheme-theoretic fibre of f over
y is not smooth. Remark that m ( f , D) = 1 if D is not a component of 
Finally, we introduce a Q-divisor A(/), called the multiplicity divisor of f
by the following: 

..

where D ranges over the set of all irreducible divisors of Y (since
m( f, D) = 1 if D is not a component of JAI, the sum is finite and one
can assume that D ranges over the set of all irreducible components of

The motivation for its introduction comes from the examples above
and Example 1.4 below.
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1.2. Orbifolds.

1.2.1. Notion of orbifold.

An orbifold (Y/0) is a pair consisting of a compact irreducible com-
plex space Y together with a Weil Q-divisor of the form:

0 . for distinct prime divisors Ai of Y, and posi-
tive integers mi . We also say that A is an orbifold structure on Y. We

write 0 ~ for the support of A, in which the coefficient of each Ai is one.
Or equivalently: each mi = -1-00.

If Y is smooth, and if the support of A is a simple normal crossings
divisor, such pairs (Y/0) were introduced and used by V. Shokurov in
[Sh92] under the name of "standard pairs". We shall say that the orbifold
(Y/0) is a klt-orbifold if the pair (Y, ~) is klt (this is an abbreviation

for "Kawamata-Log-terminal" ) . This seems to be the right category to
consider, morphisms being the obvious ones.

The next example shows why such pairs are rather called orbifolds
here. We also note that this term is commonly used in similar situations
either in differential geometry, or when Y is a curve (in [F-M94] or [LuOl],
for example).

Example 1.4. Let f : X--+Y be a finite (ramified) Galois cover
between manifolds. Let its ramification divisor be: A _: 

the order of ramification above the generic point of Ai being mi.

This preceding example occurs in the construction of fibrations with
multiple fibres, as in 1.1 for example.

1.2.2. Orbifold base of a fibration.

DEFINITION 1.5. - Let f be a holomorphic fibration as in 1.1, and
A be the multiplicity divisor of f. We call (Y/A) the orbifold base
of f.

1.2.3. Orbifold invariants and fibrations.

DEFINITION 1.6. - Let (Y/0) be an orbifold. We define its canonical
bundle as the Q-divisor =. Ky + A on Y and its Kodaira dirraension
as ==: n(Y, KY -f- 0).
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The Canonical Algebra of the orbifold (Y/A) is the graded algebra:
:== m.k.(Ky + ~)), if k := l.c.m.(m’s), in the

above notations.

One can also associate to an orbifold its fundamental group, conside-
red below.

The term "orbifold" arises in this context from the following reason:
first from the special case when f is the quotient of a fibration f’ : X’-Y’
by a finite group G acting on some Galois cover X’ of X, the action of
G preserving the fibration f’, and such that f’ has no multiple fibre in
codimension 1. In this case, is precisely the orbifold (Y’/G) . We
then say that the orbifold has the unfolding (Y’, G) . When Y is
a curve, such an unfolding exists, except when Y = Pl and A consists of
one or two punctures with different multiplicities. In the general case, such
unfoldings exist locally on Y (but not globally in general. M. Kapovitch
explained me a very beautiful construction in dimension two for orbifolds
of general type).

1.3. The Kodaira dimension of a fibration.

1.3.1. Kodaira dimension.

Define now in general, for f : X --+ Y a fibration between irreducible
compact complex spaces X and Y:

where f : X -&#x3E;Y ranges over all holomorphic fibrations f between manifolds
X and Y which are equivalent to f. We call f ) the Kodaira dimension
of the fibrations f. Notice indeed that this notion depends only on the
equivalence class of f.

DEFINITION 1.7. - We shall say that f : X-Y is admissible if it is
holomorphic, with X, Y smooth, and if K(Y, f) = K(Y, KY + 0( f )).

In 1.14, we shall see that any f : X-Y is admissible if r~(Y) &#x3E; 0.
Notice also that it follows from 1.8 right below that if f’ dominates f, and
if f is admissible, so is f’.
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1.3.2. Generically finite maps. Statement of main result.

We consider a commutative diagram of holomorphic surjective maps
between compact irreducible normal complex spaces:

We assume moreover that f, f’ are holomorphic fibrations and u, v
generically finite (and such that 

THEOREM 1.8. - Let f : X ~Y and f ‘ : X’--+Y’ be tuTo holomorphic
fibrations and let holomorphic maps u : X’----~X and v : Y’-Y such that

f o u - v o f’ be given.
1. Assume also that u, v are bimeromorphic, then

a. K(Y/A(f)) and &#x3E;

b. If, moreover, ~(Y) &#x3E; 0, then equality holds, and K(Y, f ).
2. Assume that u and v are generically finite and surjective. Then:

a. f’) &#x3E; K(Y, f ),
b. K(Y’, f’) = K (Y, f ) if u is 6tale, and X, X’ are smooth.

We shall prove Theorem 1.8 as a consequence of several lemmas, some
of independent interest in the next subsection. A different, shorter, proof
of 1.8 will be given in Section 1.4 below.

1.3.3. Generically finite maps. Proof of main result.

LEMMA 1.9. - Assume u, v bimeromorphic. Then:

a. A(f o u) = A(f) and so o u)) = 

b. = ~*(A(/)) + E, for some Q-divisor E supported on the ex-
ceptional locus of v. Therefore v*(A(f’)) = A(f) and ~(Y’/a( f’)) 
r,(YIA(f)).

Proof. -

(a) For any D C Y, using notations of 1.1.4, we have:
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where Dj is the strict transform by u of D j , and Rj is the u-exceptional
part of u* (Dj). Obviously, u* (R) is ( f ou)-exceptional. For each component
Rj k of Rj, its multiplicity in ( f o u) * (D) is divisible by mj, by the above
equalities (and the factoriality of the smooth X ) . Thus m(D, f o u) -
m(D, f ), and o u) = 0( f ), as claimed. (Observe that Rj k does not
need to be ( f o u)-exceptional, in general).

(b) By (a), we can and shall assume that X = X’, to ease notations.
Let D’ C Y’ be an irreducible divisor, and let D := v(D). We just need to
show that m(D, f ) = m(D’, f’) if D’ is not u-exceptional, that is: if D is

a divisor of Y. Then: v* (D) = D’ + E, with E an effective v-exceptional
divisor of Y’. Thus mjDj + R = f * (D) _ ( f’)* (D’) + ( f’)* (E).
Now observe that ( f’ ) * (E) is f -exceptional, and that each D j is mapped
surjectively onto D by f, and so must be surjectively mapped to D’ by f’.
Thus, LjEJ(DI,fl) mjDj, and we get the claim.

We thus get the first assertion of (b). The others easily follow from
it: write E = E+ - E-, with E+ and E- effective and v-exceptional. We
thus get:

and so the conclusion.

Remark 1.10. Modifications of X thus don’t alter but

modifications of the base may let it decrease. See the example below, which
shows that strict inequality can actually occur in Theorem 1.8.

Example 1.11. - Probably the simplest example is when Y = P 2 and
A,,d is a union of 2k &#x3E; 6 distinct lines meeting at one point a E p2.

Corresponding fibrations are easily constructed, as follows, let p : Y+-Y
be the double cover branched exactly along Ar,d, and h the involution of
Y+ exchanging the sheets of p. Let E be an elliptic curve and t a translation
of order 2 of E. Let X+ := E x Y+, j := t x h the diagonal involution of
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X+, and Xo = X + /G, where G is the group of order 2 generated by j. Let
fo : Xo---~Y and f + : X+-Y+ be the induced holomorphic fibrations. Let
d : X-Xo be a desingularisation (induced by a desingularisation of Y+,
for example), and f : - d o fo : X ~Y.

Then A(f)  = (1/2)Ared, and so _ -oo (resp. 0; resp. 2)
if k x 2 (resp. k = 3; resp. k &#x3E; 4). On the other hand, let v : Y’--+Y be
the blow-up of a E p2, let E be its exceptional divisor, and f’ : X’-Y’
be the lifting of the meromorphic map v-1 o f : X-+Y’ to a suitable
modification X’ of X. An easy local computation (for example) shows that
0 ( f’ ) - 0, the strict transform of A(f) by v. (This is just because the
normalisation of (Y+ Xy Y’ ) does not ramify over the generic point of
E). We thus conclude that ~(Y’/0( f’)) _ -oo, whatever k &#x3E; 1. (Because
(Ky, + A(/’)) = (k - 3)(v*(H) - E) - 2E, if H is the hyperplane line
bundle on Y, and v* (H) - E defines the unique ruling of Y’). In particular,

 if 1~ &#x3E; 3. Finally, we observe that the same
construction does not lead to this last (strict) inequality is a

normal crossings divisor (but such other examples should exist).

Remark 1.12.- If f : X -~Y is admissible, the canonical algebra
is a bimeromorphic invariant of the fibration f. We call it the

Canonical Algebra of f, and denote it by K( f ).

COROLLARY 1.13. - Let f : X --+ Y a fibration between irreducible
compact complex spaces X and Y.

1. There exists f : X-Y an admissible holomorphic model of f between
manifolds X and Y, and bimeromorphic maps u : X ---~X and v : Y--~Y
such that f o u = v o f .

2. For any X’ bimeromorphic to X, there exists f " : X"---+Y", a holo-
morphic admissible, neat and prepared model of f between manifolds
X" and Y" .

Proof. It is again an easy application of Hironaka smoothing and
Hironaka-Raynaud Flattening theorems.

(1) First take an admissible model f : X-Y of f. Modify Y to
Y’, smooth and dominating Y. Making base change by Y’ over Y, and
smoothing X x Y Y’, we get the fibration f’, with the desired properties.

(2) Start with the previous fibration f’. We can first modify X’ so that
the new X’ dominates any given bimeromorphic model of X. Then flatten
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the new f’ by modifying Y’, to get Y", smooth and the non-smooth locus of
f’ contained in a divisor of normal crossings. As before, make base change
of Y" over Y’, and smooth X’ xy, Y" to obtain a fibration f" : 
enjoying the claimed properties. D

PROPOSITION 1.14. - Assume that t~(Y) &#x3E; 0 in Lemma 1.9 above.
Then,

(In other words, any holomorphic model of f is then admissible).

Proof. - Because Y is smooth, using the notations of the proof of
Lemma 1.9, we have v * ( 0 ( f ) ) - 0 ( f’ ) , for some nonnegative
rational number b, with A(f) denoting the strict transform of A(f) by v.
Also, here E denotes the reduced exceptional divisor of the map v, and the

inequality: D x D’ between two Q-divisors D, D’ on Y’ means that their
difference (D’ - D) is an effective Q-divisor.

Moreover, we have: j~y~ ~ v*(Ky) + aE, for some strictly positive
rational number a (here we use the smoothness of Y, but Y having just
terminal singularities would be sufficient). We can thus write, as Q-divisors:

We are thus finished if (a - b) &#x3E; 0. So we now assume the contrary,
(a/b)  1.

From: bE &#x3E; v*(A(f)) - A(f), we get first, aE = (a/b)bE &#x3E;
(a/b)(v*(0( f )) - 0( f )), and then:

From which we deduce,
with:

where the last inequality follows from our assumption that r~(Y) &#x3E; 0. 0

LEMMA 1.15. - Let the situation be as in Theorem 1.8 above. Assume

u and v are generically finite and surjective. Then, K(yI, f’) &#x3E; K (Y, f ).

ANNALES DE L’INSTITUT FOURIER
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Proof. We need only to show that for any admissible f’ as

above, we can find a holomorphic representative fo : Xo-~Yo of f with:
because then:

Modifying X’, X, Y and Y’, we can and shall thus assume f’ to be
admissible.

Let v - v" o v’ be the Stein factorisation of v, with v’ : 

connected (hence bimeromorphic), v" : Y"--+Y finite, and Y" normal.

We also denote here with A := A(/), A’ :- A(/’), 0" . := A( f" ),
Ao - 0 ( f o ) , ... the relevant multiplicity divisors for the corresponding
fibrations f, f’, f" .= v’ o f’, fo,....

Let now w : be a modification, and define w o /~ ==
w o v’ o f’, wo w o v’ : 

The relevant diagram is the following:

LEMMA 1.16. - We can and shall further assume, modifying Y, X and
X’, Y’ if needed, that such a w exists, with fo admissible equivalent to f’.

Proof. Indeed, this existence follows from the next lemma, applied
to our initial Y¿, Yo in place of V, U, where f o dominates fo (which means,
there exists g, h such that fo o h = g o and fo : is equivalent to

f, with g : and h : generically finite).

LEMMA 1.17. - Let r : V-~U be generically finite surjective, between
irreducible normal compact complex spaces. There exist modifications

n : V’-V and m : U’-U with smooth V’ and U’ such that:

(1) s := m-l o r o n : V’-U’ is holomorphic,
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(2) if s = r" o r’ is the Stein factorisation of s, then there exists a

(holomorphic) factorisation n" : V" -V of m o r" : V" --~U through r (ie:
r o n" - m o r" ). Here r’ : V’--+V" is connected and r" : V" ---+U’ is finite.

The relevant diagram is the following:

Proof. Just flatten the map r by suitably modifying U. D

To complete the proof of 1.15, we shall next need the following two
properties (a), (b):

(a) Let us prove the following equality between Weil Divisors, with
R" effective:

To see this, observe we may first assume that f’ is deduced from f
by base change by v and smoothing of a main component (this is simply
because A (f o u) &#x3E; 0 ( f ) if Y’ = Y, and u is generically finite. The

argument is the same as in 1.9). Next, a simple computation in local
analytic coordinates over the generic point y" of Y" shows that: if r is the
ramification order of v" at y’ and m is the multiplicity of the fibre of f over
y : v" (y" ), then the multiplicity of the f "-fibre over y" is m’ := (Mld),
if d . := gcd(r, m) and r’ .- r/d (y" being generic means that y" lies

outside the codimension two analytic subset of Y" consisting of points y"
which are either singular on Y", or mapped by v" to a point y : v" (y" )
either singular on A( f) U S, or with f-fibre of nongeneric multiplicity,
where ,S’ : v" (S"), with ,S’" the Weil divisor of points of Y" at which v"

ramifies). From this we see that near y" on Y", we have: Ky» + 0" -
(v") * (Ky + (I - I /r) R) -~- (I - 1 /m’) (I /r) D, with R := v" (R+) (,S’" = R+
the reduced ramification divisor of v" near y" ), and D the (unique) reduced
component of A near y. If R+ or D is empty, our equality (*a) is obvious.
Otherwise, R = D, by our choice of y" , and (*a) follows from the inequality:

1 - 1/mr’ = 1 - 1/m’r = (1 - 1/r) + (1 - l/m’)l/r.
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(b) Moreover, we also have by an immediate check: KY» + A" =
(v’ ) * (KY’ + A’) .

From the initial constructions made, we thus know that fo is admissi-
ble, and dominates f o, admissible (in the sense (**) just before the lemma).

We then get: Ky» + a" _ (v’)*(KYI + p‘)- (v") * (Ky + 0) + R» .

Hence: Ky, + Do= (w)* (KY» + A~)- (w)*((v")*(Ky + A) + R"))=
+ A) + R’)) °

And so: K(yl, Ky, + A/) -&#x3E; (wo) * (v * (Ky + A))) &#x3E;
K(yl, v * (Ky + A))= K (Y, Ky ~- 0) &#x3E; K(Y, f ), as claimed in 1.15, the proof
of which is thus complete. 0

The last property asserted in Theorem 1.8 is:

LEMMA 1.18. - Let the situation be as in Theorem 1.8 above. Assume

now that u : X’-X is 6tale (ie: unramified). Then, K(yI, f ’) - K(Y, f ).

Proof. By Lemma 1.15, we need only to show that K(yI, 
f ) for any f, f’ as above.

We can assume f to be admissible, and still u to be 6tale. Indeed,
just replace X’ by X( := X’ x~ Xi , if m : is a modification

having an admissible fibration fi : equivalent to f. Then X’ is

smooth, and ul : is 6tale. The Stein factorisation f i : of

f 1 o U1 : does not need to have Y1 smooth. But a modification
of Xin allows to assume this to be true (accordingly modifying

Y1 ) . Now the birational invariance of the fundamental group for complex
manifolds shows that X2 may be assumed (after further modification) to
be of the form X’ x X X2 for some modification X2 of X. Let us check this.

We can indeed assume that u : X’ := X’-X is Galois, of group G,
and that f’ is the (connected part of the) Stein factorisation of The

map v : Y’--+Y is thus G-equivariant as well. But then, the modification
m’ : can be assumed to be also G-equivariant, which shows that X2
is obtained from u by base-change over a modification of X. This establishes
our preliminary claim (that f can be chosen admissible).

Next, by Stein factorisation of v = v" o v’, we see as in the above proof
of Lemma 1.8, that it is sufficient to show that:

(that is: l~" is empty).
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Because then + A" = (v’)*(KYI + A’), and so Ky, + A’
(v) * (Ky + ~1) + E’, for some v-exceptional (not necessarily effective) Q-
divisor E’ of Y’, which implies the desired reverse inequality.

By the finiteness of the map v" , the equality (*) has only to be shown near
any point lying outside a codimension two subset S of Y. We can
thus assume that y is a generic point on some component of the support of

A (f ). Let us now cut Y by divisors in general position through y : we are
reduced to the case when Y is a curve (the argument being local on Y in the
analytic topology, we don’t need any algebraicity assumption of Y). But
then an easy local computation (see [Ca98], for example) shows that for
any y" E Y" , the order of ramification r of v" at y" divides the multiplicity
m of the fibre X y of f over v" ( y" ) . The multiplicity m" of the fibre

of f’ over y" is thus m’ := m/r, since u is 6tale. We now compute
Ky,, +A" near y» : KY» + p~? - (~,» )* (KY ~ (1 _ l~r) L~J) + (1-- ~~m’) Ly"~ -
(v»)*(K~ + ((1 - 1 I r) + (1~r)(1 - (v»)*(~Y + (1 - 
as claimed. (Here [y] is the reduced divisor on the curve Y supported by
the point y). D

1.4. The sheaf of differential forms determined by a fibration.

In this section, we define canonically a rank one subsheaf F f of Q’ by
saturating the inverse image of Ky. This sheaf is an intrinsic invariant of
the equivalence class of the fibration. Its Kodaira dimension is K(Y, f) if Y
is smooth. As an application, the orbifold base of f has Kodaira dimension

f ) if f is neat.

DEFINITION 1.19. - Let X be smooth, compact and connected and let

f : X --~ Y be a meromorphic fibration, with Y reduced but not necessarily
smooth. The rank one coherent subsheaf Ff dim(Y) is defined
as the saturation if Yo is the smooth locus of Y.

Let us remark that the subsheaf F f so defined is a bimeromorphic
invariant, it is preserved not only under modifications of X, but also under
modifications of Y. In other words, Ff depends only on the equivalence
class of f. We define its Kodaira dimension.

Let us make more precise what is understood by ",(f): for m &#x3E; 0,
define H° (X, F f ) to be the complex vector space of sections of the subsheaf
of (~X ) ®m which coincides with F?m over the Zariski open subset of X
(with codimension two or more complement) over which Ff is locally free.
Then define in the usual way.
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To see the usual property of k (being an integer, or -oo), I notice

that the data are bimeromorphically invariant on X. So that F f can be
considered as the injective image of some locally free rank one sheaf L on
X (after some suitable modification). The claimed property is then obvious,
since it holds for L. We can then always implicitely assume the existence
of L in the sequel, and also the holomorphic character of any meromorphic
map defined on X (such as, for example, the ones defined by linear systems
LQ9m). We shall now describe F f in more detail.

DEFINITION 1.20. In the preceding situation, define F(f) :==

f * (Kx ) 0 where the symbol used is the usual round-
up (defined as r * l := -[-(*)], applied to the coefficients of the irreducible
components of the effective Q-divisor under consideration. Here is the

integral part, of course).

DEFINITION 1.21. - Let f : X-Y be a holomorphic fibration, and
S an effective divisor on X. We say that S is partially supported on the
fibres of f if f(8) -I Y and if for any irreducible component T of f (S)
of codimension one in Y, then contains an irreducible component
mapped on T by f, but not contained in the support of s.

Observe that if S is partially supported on the fibres of f, so are its
positive multiples. The introduction of this notion is due to the following.

LEMMA 1.22. - Let f : X ~Y be a holomorphic fibration between
manifolds, and S a divisor of X partially supported on the fibres of f. Let
L be a line bundle on Y. The natural injection of sheaves L c f* ( f * (L) + S)
is an isomorphism.

Proof. The assertion is of local nature on Y. So we can assume that

L is trivial. We then just need to show that f * (C7x (,5’) ) ^--~ Oy. We assume
that S C f * (Oy (T)), for some effective divisor T on Y. Local sections of
the sheaf on the right are of the form f * (u/t), where u is holomorphic on
Y, while t is a local equation of T. The sections of the sheaf on the left are

meromorphic functions on X of the same form, but with poles contained
in S. Because S is partially supported on the fibres of f, we get the claim

(t divides u). D

We apply this to the following situation.

PROPOSITION 1.23. - Let f : X --~Y be a holomorphic fibration bet-
ween manifolds. There exists a Zariski closed subset A c Y of codimen-

sion at least 2 such that F( f ) + S and Ff are naturally isomorphic over
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(X - B) := f - 1 (Y - A), where S c X is an effective divisor partially
supported on the fibres of f.

Proof. Let A be the union of the singular set of the support of 
and of images of all f-exceptional divisors on X. Let us remark that the
above natural isomorphism is immediate outside of A, because if T C Y
is a one-codimensional component of the locus of non-smooth fibres of f,
then f -1 (T) contains a reduced component at the generic point of which
f is smooth. So we consider the situation near a smooth point of some Ai
not lying in A. In suitable local coordinates at the generic point of in

the notations of the lines preceding 1.1.4, we have: (x) _ (xl, ... , xn), and
(y) _ (Y1,... , y,), with: f (X) (Yl Y2 := x2, ..., YP xp).

And so: [f*(Ky + A(/))~ is generated by with

d (x’) := A ... A dxp. A simple check shows that this is exactly the
claim. (One may even observe that the divisor S has the same description
as the one given to define F(f), by adding to A the one-codimensional
components of the locus of non-smooth fibres of f). 0

COROLLARY 1. 24. Let f : X-Y be a fibration as in 1.23 above.
Let m &#x3E; 0 be a sufficiently divisible integer. Then:

(1) The natural isomorphism between F( f ) + Sand F f over (X - B)
extends to a natural injection into

s)) N 

(2) If f is neat, this injection is bijective.

Proof. ( 1 ) We start by observing that, by 1.22, the bijection:

actually holds. The natural map at the level of sections of m-th powers
induces an isomorphism over a codimension two subset of Y. Because

+ ~(/)) is locally free on Y, the said isomorphism thus extends
as an injection, by Hartog’s theorem.

(2) This is because B is mapped to a codimension two or more Zariski
closed subset of X’ if u : X-X’ is a modification with X’ smooth and

sending the f-exceptional divisors of X in codimension 2 or more in X’.
Then the sections of m(F( f ) + S) over (X - B) extend to sections of 
as claimed. D
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PROPOSITION 1.25. - Let f : X --+ Y be a fibration, with X smooth,
compact and connected. Then:

(1) ~(f ) _ ~(Y~ f )~ 1

(2) if Y is smooth and f is neat.

Proof - (2) is simply a restatement of 1.24. We deduce (1) by
choosing a neat admissible model f’ of f. Then, = ~(Y’/0( f’)) _
K(Y, f). 0

Remark 1.26. - This allows us to give a short proof of the basic
properties shown in Theorem 1.8. Indeed, using the notations there, we
have a natural inclusion: u* (F f ) C Ff~ , which is an equality if u is 6tale. The
conclusions follow from the standard properties of the Kodaira dimension.
One can also use the sheaves F f to simplify some of the geometric proofs
given in section 2.2.

Remark 1.27. - As an immediate corollary of 1.25, we get that the
canonical algebra K( f ) of f is nothing, but (F f ) ®m ) ) C

with sm V the space of degree m symmetric tensors
on the vector space V.

1.5. Semi-continuity of the Kodaira dimension.

PROPOSITION 1.28. - Let f : and g : Y --+Z be holomorphic
fibrations, with X a connected compact complex manifold, and h : = g o f .
Let Z* be the Zariski open subset of Z over which g and h are smooth.

Let, for z E Z, denote by fz : Xz--+Yz the restriction of f to the z-fibre Xz
of h, mapped by f to the z-fibre Yz of g. Then,

1. There exist modifications J1 : X’-*X and v : Y’---+Y such that fz, is

admissible, for z general in Z, with f’ := v-1 holomorphic.

2. Let d := fz), z E Z*I). (So that d E 0,1, ... , dim(Y) -
dim(Z)}). Then, d = K(Yz,fz), for z general in Z.

3. Let A be the set of points z of Z* such that K(Yz, fz) - dim(Y) -
dim(Z). Then, either A contains the general point of Z, or A is
contained in a countable union of closed proper analytic subsets of
Z.
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Proof. - We don’t mention modifications of X, since they don’t
change the Kodaira dimensions of fibrations with X as domain. For any
modification v : Y’--+ Y and d C let

Z* such that k(Yz, A(f’z)) &#x3E; d}. From [Gr60], and as in [L-
S75], we deduce that S*d (v)=S’d(v) rl Z*, where Sd(v) is a countable union
of Zariski closed subsets of Z.

Obviously, C Sd(v) for any v and d (this on Z* at least,
which is sufficient for our purposes).

If v’ : Y" ~Y dominates v in the sense that there exists a v" : Y" -Y’

with v’ - v" o v, then obviously (by Theorem 1.8) : Sd(V’) C Sd(V).
We can thus define, for any d, Sd C Z as the intersection of all Sd (v)’s:

it is again a countable intersection of Zariski closed subsets of Z.

Define now d := maxfd’ such that Sd~ = Z}. There thus exists some
v such that Z. Both claims then follow immediately from the
constructions just made 0

The third assertion is an immediate consequence of the second.

1.6. Composition of fibrations.

This section will not be used before Section 4.

Assume now X, Y, Z to be smooth and f : X-Y and g : Y-~Z to be
holomorphic fibrations. Our aim is to define, if H is an orbifold structure on
Y ( i. e. an effective Q-divisor on Y with components having multiplicities
of the form (1-1/m), for m integer), an orbifold structure 0(g, H) on Z in
such a way that we have the equality H) = o f ) when H = 0 ( f ) ,
if f : X -~Y is sufficiently "high", in a sense defined in 1.31 below.

1. 6.1. Orbifold base of a fibration.

We shall now define the notion of orbifold base of a fibrations g :
(Y/H)-Z, when the domain of the fibration is itself an orbifold (Y/H).

Writing H . := 1/mi)Hi, define first, for any irreducible

reduced divisor D’ c Y its muliplicity m(H ; D’) in H as being mi if

D’ - H2, and being 1 otherwise (i.e. if D’ is not a component of the

support of H).
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For any irreducible divisor D c Z, write now as in 1.1.4

where J(g, D) is the set of all irreducible components of g* (D) which are
mapped surjectively onto D by g, while R is g-exceptional and define the
multiplicity m(g, H; D) of g : along D by:

And, finally:

DEFINITION 1.29. - Let g : Y~Z be a fibration, with Z smooth. Let
H be an orbifold structure on Y. We defines a Q divisor of Z called the
orbifold base 0(g, H) of the fibration g : by:

In general, it is not true = o f ) if H = 0 ( f ) , but
the following results at least are available.

PROPOSITION 1.30. - Let f : X-Y and g : Y-&#x3E;Z be two holomor-

phic fibrations, with X, Y, Z smooth.

( 1 ) 0 (g o f )  0 (g, 0 ( f ) ) (recall that, for two Q-divisors A, B on a variety
Z, we write A - B if (B - A) is effective).

(2) For any u : X’ --+X and v : Y’-Y bimeromorphic with smooth X’ and
Y’ and f’ : X’-Y’ such that f o u = v o f’, then 0(g’ o f’) = 0(g o f)
were 9’ := g o v and 0(g’, A (f ’)) C A (f )).

Proof. For (1), we easily check that we have, for any prime divisor
DC Z:

and

Dj is a divisor, then: = 

by an easy check. Observe that the minimum of these values, taken over

TOME 54 (2004), FASCICULE 3
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J(g, D), is precisely m(g, 0( f ); D). Thus, m (g o f, D) = 0( f ); D),
where m(f,g) = o and where

J’ (g o f, D) is the set of irreducible components of (g o f ) * (D) which are
surjectively mapped to D by (g o f), but are f-exceptional. From this the
claim follows.

(2) Since g’ o f’ _ (g o f ) o u the equality 0(g’ o f’) = 0(g o f ) follows
from 1.9. We can and shall thus assume that X’ - X and f - v o f.
Let D C Z be a prime divisor. Then J(g, D) C J(g’, D), the difference
consisting of the v-exceptional components of (g’)* (D). Moreover, for each
j E J(g, D), we have: m(g, Dj) = m(g’, Dj), with Dj the strict transform
of Dj by v. Finally: m( f , Dj) = m( f’, by 1.8. This implies the claim. 0

1. 6. 2. High and very high fibration.

DEFINITION 1.31. - We shall say that g : (Y/H)-Z is high (resp.
very high) if there exists a modification uo : with Yo smooth such
that (a) and (b) (resp. (a) and (b’)) below are satisfied:

(a) every g-exceptional divisor of Y is uo-exceptional,

(b) x(Y/H) = with Ho :== (uo)* (H),

(b’ ) + Ho). °

The following lemma is immediate.

LEMMA 1.32.

(1) If g is very high, i t is high.

(2) If 9 is high, then KY + H + B) = K(Y, KY + H), for any effective
g-exceptional on Y.

The main result of this section is the following.

PROPOSITION 1.33. - Assume X, Y, Z to be smooth and f : X ~Y
and g : Y--~Z to be holomorphic fibrations. Then there exist f’ : X’ ~Y’ a
modification of f (with modifications u : X’-X and v : Y’--~Y such that:
f o u = v o f’) such that f’, g’ :- g o v and g’ o f’ are prepared, admissible
and high, and such that moreover :

1. of f’,

2. 0(g’ o f’) = 0(f’))~
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Proof. The existence of f’ : X’ ~Y’ a modification of f (with
modifications u : X’-X and v : Y’~Y such that: f o u = v o f’) such
that 0 (g’, A (f ’)) ,, 0 (g" , A (f ")), for any modification f " of f’, is simply
due to the fact that there are only finitely many orbifold divisors on Z
lying between o f ) and A(g, A(f)), and because of 1.30 above, which
show that the first (resp. second) term is invariant (resp. decreases) under
a modification.

Assume indeed that f (rather than f’ to ease notations) is such a

modification and by contradiction that we have  A (g, A (f )). This
means that there exists an f-exceptional prime divisor D’ C X such that
g( f (D’)) :- D c Z is a divisor in Z, and that the multiplicity m’ of D’ in
(g o f ) * (D) is equal to m (g o f , D), and is so strictly less than m (g, A (f )); D).
Take then a modification f’ of f such that the strict transform of D’ in X’
is no longer f’-exceptional. The multiplicity of D" , the strict transform of
D’ in X’ is then m’ (by an easy check). Thus,

which gives the contradiction.

Finally, by modifying Z, we can assume that (g o f ) and 9 are
admissible, high, and moreover that the non-smooth loci of these two
fibrations are contained in a normal crossings divisor. By modifying next
Y, we can assume that g is prepared, f admissible and high, and that
the non-smooth locus of f is contained in a normal crossings divisor of Y.
Finally modify X to get the remaining stated properties. 0

2. Special fibrations and general type fibrations.

In §2, we first define general type fibrations f : X --+ Y as the ones
having f ) = dim(Y) &#x3E; 0, special manifolds X are defined as the ones
having no f of general type, and special fibrations as the ones having special
general fibres. We list without proof some examples of special manifolds.
The two most important ones are the rationally connected manifolds, and
manifolds with K = 0.

Notice however that being special does not give any restriction on
the Kodaira dimension, except for the top one. For example, any elliptic
surface with base elliptic or rational is special if it has a section (or even
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no multiple fibre). Somewhat unexpectedly maybe, the moduli of fibrations
do not play any role in our considerations. Notice that the consideration of
special manifolds leads to a refinement, still stable by deformations, of the
classical Enriques-Kodaira-Shafarevitch et al. classification of projective (or
Kahler) surfaces.

We next show various geometric properties of special and general
type fibrations. The most important one (2.7) is that any special fibration
f : X --+ Y dominates any general type fibration 9 : X -- + Z, in the sense
that there exists 0 : Y --+ Z such that g = ~ o f.

From which one concludes that on any X there exists at most one
fibration both special and either of general type, or constant. One of the
main results of the present paper is the existence of such a fibration. We

get it by the two possible approaches: either from "above", as the "lowest
special" fibration on X, obtained by geometric means (see Section 3), or
from "below", as the "highest general type fibration" on X (see 5.16). The
second approach is much shorter, but less geometric.

The next subsection shows the bijective correspondance between
Bogomolov sheaves and general type fibrations (2.26). From which we
conclude that special manifolds are characterised by the absence of such
sheaves. Applying a result from [Ca95], we obtain a first simple proof that
X is special if either rationally connected or with 0.

We next show (2.38), among other things, that the general fibre X,
of a fibration h : is special if it is special for any s in a set E not
contained in a countable union of Zariski closed subsets with empty interior
of Z. This property, which we call Zariski regularity (for specialness) is,
together with 2.7, one of the main ingredients in the proof that the core of
a manifold is a special fibration (3.3).

This section ends with a brief sketch of the extension of the conside-

rations of the present paper to the orbifold category. Most of them extend
without any difficulty to the orbifold context, including the notions of orbi-
fold modification and of differential form on an orbifold (Y/D) with smooth
Y and the support of D of normal crossings. In particular the notion of

Bogomolov sheaf and the sheaf F f associated to a fibration between or-
bifolds make sense. The geometric aspect seems more delicate to handle

(see Section 6.1 for some subtle problems on surface orbifolds which are
classical in the non-orbifold context).
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The notion of orbifold differential form we introduce interpolates
between the usual one when D is empty, and the classical notion of

Qy(log(D)) when D is reduced, which corresponds to the limiting case
of infinite multiplicities. It seems that this topic deserves by itself further
developments.

2.1. Special or general type fibrations.

Recall that C is the class of compact complex spaces X which are
bimeromorphic to (or, equivalently: dominated by) some compact Kahler
manifold X’ (depending on X). This class was introduced by A. Fujiki.

DEFINITION 2.1. - Let f : X --~ Y be a fibration, with X, Y compact
irreducible.

1. The fibration f : X --+ Y is said to be of general type if K(Y, f) ==

dim(Y) &#x3E; 0.

2. The variety X is said to be speciaL if X belongs to the Fujiki class C
and if there is no meromorphic fibration f : X --+ Y of general type,
for any Y.

3. The fibration f : X --+ Y is said to be special if X E C, and if its
general is special.

DEFINITION 2.2. - Recall (see also that a point of a complex
space Y is said to be general if it lies outside of a countable union of closed
analytic subsets of Y, none of which containing any irreducible component
of Y. Similarly, if f : X --+ Y is a fibration, one of its fibres Xy is general
if it lies above a general point y of Y.

Example 2.3. - We list (most proofs need tools developed below, and
so are given later) some examples of special manifolds.

0. A variety of general type (and positive dimension) is not special.
(Consider its identity map: it is a fibration of general type).

1. A curve is special iff its genus is 0 or 1, iff its Kodaira dimension is at
most zero, iff its fundamental group is abelian, iff it is not hyperbolic.
This is simply because a curve has only the two trivial fibrations

(constant, and identity).
The two fundamental examples of special manifolds are direct gene-

ralisations :
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2. A manifold which is rationally connected is special. See Theorem 3.22
for a geometric proof and definition of the notions involved. Another
shorter (but more abstract) proof of the specialness of rationally
connected manifolds is given in 2.28 below.

3. A manifold X with vanishing Kodaira dimension (i. e. = 0) is

special. See Theorem 5.1 for the proof. Another proof is given in 2.28
in the special case where = 0.

4. More generally, special manifolds are built up from manifolds either
rationally connected (in a weak sense), or with Kodaira dimension
zero by suitable compositions of fibrations with fibres of these two
types. See Section 6.5 for a precise formulation.

5. For any d &#x3E; 0 and E {2013oo, 0,..., d-1~, there exists special projective
manifolds of dimension d and Kodaira dimension k. See 2.19 for such

examples.

6. A manifold X E C is special if there exists a nondegenerate meromor-
phic map from (Cn to X, where nondegenerate means: submersive at
some point where it is holomorphic. For example, a complex torus, or
a projective space are special (this follows also from [2.2 (2),(3)~ above
as well). See Theorem 8.2 for the proof of a more general version.

7. Kahler manifolds with nef anticanonical bundle are conjectured to
be special. This conjecture implies most usual conjectures concerning
these manifolds. See [D-P-S93], [Zh96], [Pa98]. This conjecture can be
shown in the projective case, using the orbifold additivity theorem 4.2
below, even when the anticanonical bundle is pseudoeffective.

8. A manifold X of algebraic dzmension zero (denoted a(X ) = 0, to
mean that all meromorphic functions on X are constant, so that
meromorphic maps from X to projective varieties are constant) is

also special (simply because any meromorphic map from X onto a
projective manifold is constant).

9. More generally (see [Ue75], Chap. 12 for the notions used):

THEOREM 2.4. - Let ax : X --+ Alg(X) be the algebraic reduction
of X E C. The generic fibres of ax is special.

Recall that the algebraic dimension of X, denoted a(X), is the

dimension of Alg(X), and also the transcendance degree over C of the
field of meromorphic functions on X. One says that X is Moishezon if
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a(X) = dim(X). This also means that X has a modification which is

projective.

The proof of the preceding result is given in 2.39 below.

QUESTION 2.5. - Two important stability properties of the class of
special manifolds are expected to hold, but are not proved in the present
paper: are special varieties stable under deformation and specialisation ?

2.2. Special fibrations dominate general type fibrations. Statements.

The geometric study of special manifolds is based on the following
theorem.

THEOREM 2.6. - Let h : V --+ Z and f : X --+ Y be fibrations
with f of general type and h having general fibres which are special. Let
g : V ---~ X be meromorphic surjective. Then, there exists k : Z --+ Y such
that o h.

The situation is described in the following commutative diagram:

The special case V = X deserves special mention:

THEOREM 2.7. - Let h : X --+ Z and f : X --+ Y be fibrations with
f of general type and h special. Then, there exists k : Z --+ Y such that
f o g = k o h (We say that h dominates f ).

The corresponding diagram is

Remark 2.8. - The special case where Y is of general type is obvious,
by the easy addition theorem, because the covering family of Y by the
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subvarieties h (Xz ) has a generic member of general type. These subvarieties
must be points.

2.3. Special fibrations dominate general type Fibrations. Proofs.

The proof of Theorem 2.6 rests on several preliminary resuts of
independent interest that we now state and prove.

LEMMA 2.9. - Let g : X’ ---~ X be meromorphic surjective (ie:
dominant). Assume that X’ is special. Then X is special, too.

Proof. Since being special is invariant by bimeromorphic maps, one
can assume that 9 and all the maps occuring in the proof are holomorphic.
Assume first that g is connected (i.e. a fibration). Let, if any, f : X-Y be
a fibration of general type. We can assume that f o g : X’-Y is admissible.
Then obviously, for some effective divisor E C Y

(because m( f o g, D) &#x3E; m( f, D), for any irreducible divisor D c Y). Thus
f o g is of general type, too. A contradiction. No such f does exist, which
is what was claimed.

In the general case, Stein factorise g and use the first part to reduce
to the case where g is generically finite. If f as in the first part exists, then
we deduce from 1.8 that (the fibration part of) the Stein factorisation of
f o g also is of general type. Hence again a contradiction. 0

PROPOSITION 2.10. - Let f : X --+ Y be a fibration of general type.
Let j : Z --+ X be meromorphic such that f o j : Z---+Y is surjective. Let
f o j = g o h be the Stein factorisation of f o j, yvith h : Z --+ Y’ connected
and g : Y’ --~ Y finite. Then: h is a fibration of general type.

In particular, if dim(Z) = dim(Y), we get:

COROLLARY 2.11. Let f : X --+ Y be a fibrations of general type.
Let j : Z 2013~ X be meromorphic and such that f o j : Z --+ Y is surjective.
Then Z is a variety of general type.

Proof (of 2.10 and 2.11 ). - Assume first that f o j : Z-Y is connected
and admissible (as we can, then). For any component Ai of A := A(f), we
have (restricting to components surjectively mapped onto Ai by ( f o j)):

for some effective Q-divisor E of Y. And ( f o j) is thus of general type in
this case.
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We now consider the general case: let f’ : X’ :- (X Xy Y’)-Y’ be
deduced from the base change by g and smoothing of the fibre product.
The map j lifts meromorphically to j’ : Z --+ Y’ by construction, because
f o 3 is surjective. But now f’ o j’ : Z-Y’ is a fibration. Applying the first
part, we get the claim.

For 2.11, notice that in this situation, h is bimeromorphic and of

general type by 2.10. Thus Z is itself of general type, as claimed. D

Example 2.12. - We can now give two elementary examples of special
varieties:

1. Pn (C) is special.
2. A product of special varieties is special.

Proof - Indeed (for ( 1 ) ) : let f : --+ Y be any general type
fibration, if any. Let m := dim(Y) &#x3E; 0. Choose j : Z = C PJC)
such that f o j is surjective to contradict 2.10.

The proof of (2) is similar. (We shall prove more general results in
Section 3).

PROPOSITION 2.13. - Let f : X --+ Y and k : Y --+ W be fibrations.
Assume that f is of general type. Then --+ Yw is also of general
type, for w E W general.

Proof - Let w E W be general, and recall that fw : is

nothing, but the restriction of f to But then, = + Ew,
with Ew effective and empty for generic w in W. Moreover, 
by adjunction. Thus i for general w. Now

(KY ~-0 ( f ) ) is big. Thus so is its restriction to Yw. By modifying adequately
X and Y, we can assume that is admissible by the following lemma. We
thus get the claimed property. 0

LEMMA 2.14. - Let f : X --+ Y and g : Y --~ Z be fibrations. There
exists representatives of f and g (also denoted f and g) such that fz is

admissible, for z E Z general.

Proof. This is a special case of 1.28. D

We now turn to the proof of Theorem 2.6.

Proof (of 2.6). - This is a direct consequence of 2.15 below. Indeed,
if such a map does not exist, then f o g(Vz) is positive-dimensional, for
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generic z E Z. But the Stein factorisation of f o gz is then of general type,
by 2.15. This contradicts the assumption that g is special. D

PROPOSITION 2.15. - Let f : X --+ Y and h : V --+ Z be fibrations.
Assume f is of general type. Let g : V -- + X be a surjective meromorphic
map. Let gz : Vz --+ Yz, be the restriction of f o g to Vz, with Yz : hz (Vz).
Assume Yz is positive dimensional. Then, the Stein factorisation of gz is of

general type for z general in Z.

Proof. By 2.10, we can then replace X by V and f by ( f o g)
without loosing the hypothesis that ( f o g) is of general type both when g
is generically finite or is a fibration. We thus see that the (connected part
of the) Stein factorisation f’ of f o g is a fibration of general type. Replace
X by V and f by f’, so that we are reduced to the case where X = V, and
f = ( f o g), which we now treat.

Now we can replace Z by any subvariety Z’ C Z going through
a general point of Z, and X by X’ C X, defined by X’ := 
provided f (X’ ) = Y. This is because of 2.10, which shows that the (Stein
factorisation of the) restriction of f to X’ is still of general type.

We shall then construct an appropriate Z’ C Z. Let c : Z -- + C (Y) be
the meromorphic map sending a generic z E Z to the reduced cycle of Y
supported on Yz. Here C (Y) denotes the Chow Scheme of Y. Observe next
that f being of general type, Y is Moishezon. By modifying suitably Y, we
shall assume that Y is projective. Let W E C(X) be the image of Z by c.
Thus W is projective, too.

We next choose W’ C W to be an intersection of generic members of

any very ample linear system on W, in such a way that the incidence graph
Y’ C W’ x Y of the algebraic family of cycles of Y parametrised by W’ is
generically finite over Y. This means that if p : Y’-~Y and q : Y’--~W’ are
induced by the natural projections, then p is generically finite surjective.
More concretely, the generic point of Y is contained in only finitely many
of the Yw’s, for w E W’. Define now Z’ :- (W’). (Remark that when Z
is Moishezon, we don’t need to consider c, and can just take intersections
of ample divisors of a projective modification of Z directly).

We now replace X, Z, g, f respectively by X’, Z’, and their restrictions
to X’.

LEMMA 2.16. - p : Y’-*Y is bimeromorphic.
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Proof - Let c’ be the restriction of the above map c to Z’. Then
Y’ c (W’ x Y) is the image of i
lifts to f’ : X’ -- + Y’ such that p o f ’ = f. Because p is generically finite
and f connected, we see that p is bimeromorphic. D

We have, by construction, q o f = c’ o h : X --+ W’. We now can
conclude by applying successively 2.13 and 2.11 to Xw, for w general in
W’. Indeed: from 2.13 we learn that the restriction f w : X~, --+ Yw of f to
Xw is of general type. Further, for z generic in := Z~,, we know
that f (Xz ) - f (Xw ) - Yw, and so by 2.10, the Stein factorisation of the
restriction of f to Xz is of general type, as claimed. D

COROLLARY 2.17. - Let f : X ---~ Y be a special fibration, and let
j : Z X be such that f o j : is onto. Assume that Z is special.
Then X is special.

Proof. Let h : X --+ W be a fibration of general type (if any). By
2.6 with V = X, there is a factorisation k : Y --+ W such that h = k o f.
Thus : j o h : Z --+ W is onto. We can thus apply 2.11, which says that the
Stein factorisation h’ : Z-W’ of h o j : Z-W is of general type. But Z
being special by assumption, this is a contradiction and X is special.

Remark 2.18. - It is not true true in general that X is special if it
admits a special fibration f : X ~Y with Y special (see 1.1, for example).
But in some cases (if the fibres are for example, rationally connected), this
is true (see 3.29).

Example 2.19. - For any d &#x3E; 0 and E {2013oo, 0,..., d-1 ~, there exists
projective manifolds of dimension d and Kodaira dimension which are
special. In particular, it is not true that a special manifold has nonpositive
Kodaira dimension.

To get examples 0, just take indeed a general member of the
linear system: ) I for large m, and
such that this member has a section over the base P . _ 2013oo, just take
~d .

2.4. A uniqueness result.

We now come to an important consequence of 2.7.



534

COROLLARY 2.20. - Let X C C. There is at most one fibration defined
on X which is both special and of general type. If it exists, such a fibration is
both dominated by any other special fibration defined on X and dominates
any other general type fibration defined on X.

The proof is immediate, from 2.7. In other words, such a fibration is
the "lowest special" and the "highest of general type" on X. The existence
of such a fibration on any X is the main result of this paper.

These two descriptions provide us with two means of construction: by
consideration of chains of special subvarieties, one geometrically constructs
the "lowest special" fibration on any X. This is the way used in Section 3.

Dually, by making fibre products of general type fibrations, one constructs
the "highest general type" fibration on X. This is the approach followed
in Section 5. In both cases, to show that the fibration so constructed has

the missing property (special if general type, and conversely), we need the
orbifold additivity result 4.2.

2.5. A result on almost holomorphic maps.

Recall the following definition:

DEFINITION 2.21. - Let f : X --+ Y be a surjective meromorphic
map between normal compact irreducible analytic complex spaces. We say
that f is almost holomorphic if f (J) :~ Y, where J is the indeterminacy
locus of f.

More precisely: if X’ C X x Y is the graph of f, and f’ : X’--~Y the
(restriction of the) second projection, then f (J) := f’(J’), with J’ being
the set of all x’ E X’ such that (x) does not reduce to x’, or equivalently:
is positive dimensional. (Here p : X’-X is the first projection (which is a
proper modification), and x := p(x’)).

THEOREM 2.22. - Let f : X --+ Y be a meromorphic fibration of
general type, with X c C smooth. Then f is almost holomorphic. (In
particular, if Y is a curve, then f is holomorphic).

Remark 2.23. - The smoothness assumption is essential, as shown

by the example of the cone X over a projective manifold of general type
Y. The conclusion of the preceding theorem should however hold if the

singularities of X are terminal, or even canonical.
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Proof. Resolve the indeterminacies of f by a sequence of smooth
blow-ups u : X’ ~X , with f’ . := f o u : X’-Y holomorphic. If f is

not almost holomorphic, some irreducible component V of the exceptional
divisor of u is mapped surjectively onto Y by f’, in such a way that the
fibres Tlz of the restriction u’ of u to V are mapped to positive-dimensional
subvarieties of Y. This contradicts 2.15, because V has two maps
u’ : V~Z :== u(D) C X, and f" : V-Y, the restriction of f’ to V. Now,
by smoothness of X, u’ is special since its generic fibre is a rational variety
and 2.12 applies. Moreover, by 2.11, f " is of general type (possibly after
Stein factorisation).

From 2.15, we thus have a factorisation 0 : Z-Y with f " 0 o u’.
But this precisely contradicts &#x3E; 0, and we get the claim. D

2.6. General type fibrations and Bogomolov sheaves.

DEFINITION 2.24. - Let X E C. A rank one coherent subsheaf F

of p &#x3E; 0 is said to be a (p-dimensional) Bogomolov sheaf on X if
K(X, F) = p.

The properties of these Kodaira dimensions have been discussed in
Section 1.4 to which we refer.

By the results of that section, any (equivalence class of a) general type
fibration f defined on X canonically determines a Bogomolov sheaf F f on
X. We shall now see the converse direction.

By the results of [Bo79], any p-dimensional Bogomolov sheaf deter-
mines a meromorphic fibration fF : X --+ YF with dim(YF) = p, and such
that F = at the generic point of YF.

The proof given there applies only to X projective (because of the
argument of cutting by transversal hyperplane sections), but (as is well-
known) can be easily modified to apply to any X compact Kahler (or in
C), as follows:

THEOREM 2.25 [Bo79]. - Let F C p &#x3E; 0, be a Bogomolov sheaf
on X E C. Let f F : X-YF be the fibrations defined by the linear system

I for m &#x3E; 0 sufficiently large and divisible. We can assume that f is
holomorphic. Then F = at the generic point of YF.

Proof. We can, using the covering trick argument of [Bo79], reduce
to the case when m = 1, which we now treat.
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We can thus select (p + 1) sections si, i = 0,1,... ,p of F which are
analytically independent (i.e. the linear system they define is fF up to Stein
factorisation, and so has p-dimensional image). Because F has rank one,
there exists meromorphic functions yi, i = 1,..., p such that si = giso.

By Hodge theory (X being Kahler, or even just in C), the holomorphic
p-forms si, i = 0, ... , p on X are closed. From which we get dso = =

0, i = 1, ... , p.

The last equality shows by simple algebraic arguments the existence
of a meromorphic function g on X such that so = A ... n dyp). The
first equality shows that g = f * (h), for some meromorphic function h on
Y, and so the claim, since the argument applies to i &#x3E; 0 as well. D

We can thus sum up the preceding observations as follows.

THEOREM 2.26. - Notations being as above, for any X E C, there
are inverse bijective correspondances between Bogomolov sheaves F on X
and (equivalence classes of) general type fibrations f defined on X. These
correspondances are defined as follows.

1. If f is of general type, then F f is a Bogomolov sheaf on X.

2. If F is a Bogomolov sheaf on X, then fF is a fi bration of general type.

A direct application (and motivation) is:

THEOREM 2.27. - The manifold X E C is special if and only if there
is no Bogomolov sheaf on X.

Proof. The Bogomolov subsheaves on X correspond bijectively to
fibrations of general type with domain X. D

COROLLARY 2.28. - The manifold X is special in the following two
cases:

1. X is rationally connected (see Section 3.3 for this notion),
2. X is a compact Kähler manifold with cl (X) = 0.

Proof. In both cases, it is shown in [Ca95] that K+ (X) x 0, which
means (in particular) that a coherent rank one subsheaf of p &#x3E; 0 has

Kodaira dimension negative or zero. Thus X has no Bogomolov subsheaf.
It is thus special, by 2.27. The result in [Ca95] depends on Calabi-Yau’s
Theorem. But in the projective case, one can get algebro-geometric proofs
using Miyaoka’s generic semi-positivity Theorem. 0
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We shall see later that the weaker condition = 0 is actually
sufficient for X to be special.

Notice that the property shown in [Ca95] in the above two cases is
considerably stronger than the absence of Bogomolov sheaves. This is not
surprising, in view of the fact that these manifolds are the building blocks
of the class of special manifolds, but do not exhaust this class, by far.

2.7. General type reduction.

2.7.1. Ordering of fibrations.

Recall from 1.1 that a meromorphic fibration f : X --+ Y canonically
defines (see [Ca85]) a meromorphic Y --+ C(X). It is easy to show

is an irreducible component of C(X) if f is almost holomorphic
(see [Ca85]).

We now introduce an order on the set of (equivalence classes of)
fibrations with domain X.

We say that f dominates the fibration g : X --+ Z if there exists a
meromorphic fibration Q: Y --+ Z such o f. Equivalently: each
fibre of f is contained in some fibre of g. We write f &#x3E; g. This binary
relation defines an ordering on the set of all equivalence classes of
fibrations (seen as a subset of C(C(X))).

There is now an easy,

LEMMA 2.29. - If A c 0(X) is any subset, it has in the ordered set
0(X) a least upper bound, denoted 11+ . Moreover, if any element of A is
almost holomorphic, so is the least upper bound A+ of the family.

Proof. A+ is so constructed: let Ao .- ~~1, ... , A N) C A be finite
such that the product map f : :== f)B1 x ~ ~ ~ x fÀN has an image of maximal
dimension. Then take for A+ the (fibration part of the) Stein factorisation
of f. 0

Example 2.30. - If A consists of fibrations onto varieties of general
type, then 11+ is also a fibration onto a variety of general type.

This is easily reduced to the case when A has two elements, and
then reduces to showing that if Z c Y x Y’ is a subvariety of a product
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of two varieties of general type, then Z itself is of general type if it is

mapped surjectively to Y, Y’ by the first and second projections. This
results easily from the additivity theorem for fibrations with base of general
type (generalised orbifold versions will be proved in Section 4 below). D

DEFINITION 2.31. - For any X E C, let gtx : i X --+ GT(X) be the
least upper bound in 0(X) of the family Ax of all (equivalence classes of)
fibrations of general type f j : X --+ (If X is special, we just take for
gtx the constant fibration. We call gtx the general type reduction of X.

From 2.7.1 above, we deduce:

PROPOSITION 2.32. - Suppose that X E C is smooth. Then the map
gtx : X --+ GT(X) is almost holomorphic.

We shall see in 5.16 the following two properties of gtx, the proofs
rest on the very different techniques of section 4.

PROPOSITION 2.33. - Let u : X --+ U and v : X --+ V be fibrations

of general type. Then the connected part of the Stein factorisation of the
product map (u x v) : X --+ W’, with W’ := (u x v)(X) c U x V, is a
fibration of general type.

COROLLARY 2.34. - Let X E C. Then gtx is either constant or a

fibration of general type.

2.7.2. Relative gt-reduction.

This subsection is devoted to the construction of relative gt-reduction.

THEOREM 2.35. - Let X E C and f : X --+ Y be any fi bration. Then
f admits a relative gt-reduction. This means that there exists a unique
factorisation f = h o g of f by fibrations h : Z --+ Y and g : X --+ Z such
that for y general in Y, the restriction gy : Xy --+ Zy of g to Xy is the
gt-reduction of Xy. I

Proof. This construction is actually in essence already in [Ca80] to
which we refer for more details. We can and shall assume that X is smooth

and f holomorphic, due to the bimeromorphic invariance of the notions
involved.

We shall actually show a more precise version:
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LEMMA 2.36. - Let f : X --+ Y be a fibration, with X E C. After
a generically finite base change v : Y’-Y and proper modifications that
we notationally ignore, there exists finitely many factorisations f = hi o gi,
i = l, 2, ... , N, with gi : X --+ Zi, hi : Zi --+ Y, such that:

1. the restriction gi,y : Xy --+ (Zi)y of each gi to the general fibre Xy of
f is of general type,

2. if g : X --+ Z is the (fi bration part of) the Stein factorisation of the
prod uct map
then the restriction Xy --+ Zy of 9 to the general fibre Xy of f
coincides with the gt-reduction gtXy : Xy --+ GT (Xy) of that 

Proof. Let, for y c Y*, gty : Xy-Zy be the gt-reduction of Xy,
where Y* is the Zariski open subset of Z over which f is smooth. For

such a y, let Zy be the family of fibres of gty, defined as the image of the
meromorphic map from Zy to C(Xy) sending a generic point of Zy to the
point in C(Xy) parametrising its reduced gty-fibre in Xy.

Because gty is an almost holomorphic map by 2.22, Zy is an irreducible
component of C (Xy ) .

Consider now the Zariski closed subset C(X/Y) of C(X) consisting
of cycles contained in some fibre of f. It is naturally equipped with the
holomorphic map f y : sending such a cycle to the fibre

containing it. (Strictly speaking, one may need to weakly normalise first, to
make f * holomorphic, but this does not change the argument). Assume the
fibre of f is not special, for y in a subset of Y which is of second category,
in Baire’s terminology. (Being of second category means: not contained in
a countable union of closed subsets with empty interior. As we shall see

later, the right topology here in our context is the Zariski topology, not the
metric topology).

Because X C C, the irreducible components of C(X/Y) are compact.
By the countability at infinity of C(X/Y), there is an irreducible component
F’ of C (X / Y) mapped surjectively onto Y by f * , and such that the f*-fibre
ry of r’ over y has a component equal to Zy C C(Xy), the family of fibres of
a fibration of general type gi,y : Xy --+ Z~. This map is almost holomorphic,
by 2.22. The Stein factorisation of f * restricted to h’ gives a finite base
change for Y. This base change we shall notationally ignore, here, because
they are irrelevant to our problem. So we deal as if the generic fibres of

( f * ) ~ r~ were irreducible. Thus, for some g G Y*, the fibre hy of (f,,)lr, is the
family of fibres of some almost holomorphic fibration gi,y - ry : Xy 2013~ Zy,.y
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on Xy. * By the (obvious) openness of almost holomorphicity, one deduces
the existence of such a qy for the generic y E Y. And so, using the graph
of the family, we get a factorisation f = 6 with fibrations y : X  --&#x3E;
and 6 : Z,y ---~ Y.

By our assumption, yy is a fibration of general type for y in ,S’ C Y
of second Baire category in Y. From 1.28, we conclude that qy is still of

general type for y general in Y.

The construction of the gi’s is now obvious, by observing that if the
map g resulting from a finite family of gi’s, i = 1, 2,..., N, does not induce

gtXy on the general Xy, there exists, by the same argument as above, a
component F’, inducing a general type fibration on the general Xy, and
such that its (Stein factorised) fibre product over Y with the preceding
ones will increase the dimension of the resulting Z. Contradiction. This
shows the lemma, and so 2.35. 0

DEFINITION 2.37. - A subset A c V of a complex analytic space is
said to be of second Zariski category in V if it is not contained in a countable
union of Zariski closed subsets with empty interior of V. (Notice that the
definition makes sense in the algebraico-geometric context as well ) .

From the proof 2.35, we immediately get:

COROLLARY 2.38. - Let f : X --+ Y be a fibration, with X E C.
Assume that dim(GT(Xy)) = d, for YEA, where A is of second Zariski
category in Y. Then, this equality holds for the general point y of Y. In
particular, if Xy is special for y in a subset of second Zariski category in
Y, the general fibre of f is special.

Proof. Let f = h o g be the gt-reduction of f. By assumption,
dim(GT(Xy)) - d for y E A. But also dim(g(Xy)) = dim(GT(Xy)) for y
general in Y, and dim(g(Xy)) = d for y generic in Y. Thus dim(GT(Xy)) =
d for y C Y general. D

2.8. The algebraic reduction.

As an application of the preceding arguments, we show Theorem 2.39:

THEOREM 2.39. - Let X --+ Alg(X) be the algebraic reduction
of X E C. Then the generic fibre of ax is special.
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Proof. Assume not. By Lemma 2.36 above, after a suitable finite
base change over Alg(X) (which we notationally ignore because it pre-
serves the algebraic reduction and dimension), there exists a non-trivial
factorisation ax = h o g with g a fibration inducing a fibration of general
type over the general fibre of a x . Write aX = h o g, with g : X --+ Z and
h : Z --+ Alg(X). Then, dim(Z) &#x3E; dim(Alg(X)).

By construction, the line bundle KY + A (g) over Z is thus

h-big. Thus Z is Moishezon, as one sees considering the line bundle

L := + (Kz + A(g)) on Z, which is big for k a large and posi-
tive integer, and H an ample line bundle on Alg(X), which we obviously
can choose to be projective. (See for example, the Proof of [Ue75], Theorem
(12.1)). But this contradicts the definition of a, and proves the claim. 0

2.9. The category of orbifolds.

We very briefly discuss without proofs the extension of part of our
considerations to orbifolds, restricting here to prepared orbifolds (Y/0)
with Y smooth and the support of A an s.n.c divisor of Y (but ultimately,
one needs to consider klt orbifolds).

One of the main point is to define bimeromorphic equivalence. The
right notion seems to be derived from terminal modifications.

DEFINITION 2.40. - The bimeromorphic holomorphic map v : Y’-Y
is said to induce a bimeromorphic map: v : (Y’/0’)~(Y/0) if it is

terminal with respect to the orbifold structures, that is if.~ Ky, + 0’ _
r where (as usual) the aj are all positive, and J

is the collection ¿f v-exceptional divisors on Y’. (One might of course also
define similarly the notion of canonical modification).

Notice that the orbifold Kodaira dimension is invariant under bime-

romorphic equivalence of orbifold, which is the one generated by terminal
modifications.

One can define for any fibration 9 : its orbifold base, as
in 1.6. One can extend this notion to the case of meromorphic g, by first
resolving the indeterminacies of g by a terminal modification.

The Kodaira dimension of this fibration is then the minimum of the

Kodaira dimensions of the orbifolds bases of fibrations equivalent to g,
these being defined on orbifolds (Y’/0’) bimeromorphically equivalent to
(Y/o).
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DEFINITION 2.41. - Thefibration g : is of general type if
its Kodaira dimension is dim(Z) &#x3E; 0. The orbifold (Y/0) is special if it has
no fibration of general type.

Fundamental tools for the study of orbifolds are the locally free

sheaves Qp (log(A) ) of logarithmic forms along A (classically known when
the multiplicities are infinite, or said differently, when A is reduced). We
shall not give the definition here, but simply say that sections of this
sheaf can be symbolically written locally in the standard normal crossing
coordinates for fixed q as linear combinations of expressions of the form:

with h holomorphic, and  ... r  js+i  ...  jq if

y1 ... 0 is a local equation of the multiplicities being given by the
mi’s.

A section of S2Y (log(A)) is thus an m-th root of a well-defined

holomorphic tensor, when m is an integer divisible by each of the mi’s.

More precisely, a section s of this sheaf is defined as a pair (F, s), where
F is a rank one coherent subsheaf of qq (log I A 1), and s is a holomorphic
section of p0m, for some m divisible by all the mi’s, and such that
s E where A* is the Q-divisor on Y defined by:
o* I# 

By lifting to a A-nice covering (see Section 4), these sections become
standard p-forms. From which one deduces the important property of d-
closedness of such log((0))-forms.

As we did above, one can then also define directly the Kodaira
dimension of a fibration by introducing the saturation of the differential
sheaf defined by g in Qy(log(A)). Because we may only consider high and
divisible multiples to define the Kodaira dimensions, one does not need to
define precisely Qy (log(A) ) to define this orbifold Kodaira dimension, and
directly look at rank one subsheaves F of Qy (log and define as usual

the Kodaira dimension of (F®’~’2 ( -m0 * ) ) .
Their relevance to our topic is that special orbifolds (Y/A) are

characterised by the absence of Bogomolov sheaves on (Y/0), defined as
in 2.24 above when A is empty, just replacing there Qp by Qp (log A) .

The correspondance between Bogomolov sheaves on (Y/~) and ge-
neral type fibrations on this orbifold extends to this orbifold context. The
orbifold additivity theorem then applies in this context.
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The construction of the core for an orbifold can then be made by
the second approach we followed (as the highest special fibration). The
geometric approach seems more delicate than for varieties, and certainly
needs some extra arguments, because one needs to take into account the
order of contact of the subvarieties with the orbifold divisor.

3. The core.

In this third chapter, we construct and start the geometric study of
the core cx : 1 X --+ C(X) of a manifold, together with its functoriality
properties.

We first show (3.3) that its general fibres are special. This fails for
general singular varieties, and does not follow from the original definition,
obtained by applying the construction of meromorphic quotients recalled
in [Ca04]. From this result, we immediately get (3.22) that rationally
connected manifolds are special, simply because I~l is special. The notions
around rational connectedness are recalled. We next deduce in 3.26 from

[G-H-S01] that the rational quotient R(X) of X (see 3.23 for this notion),
coincides with the rational quotient of its core C(X).

Up to this point, we do not know that the base orbifold of the core
is either a point, or of general type. This property is only obtained as a
consequence of the orbifold additivity theorems of the next chapter. Notice
that a second construction of the core, shorter and independent from the
results of the present chapter, is given in 5.7. The present chapter presents
what can be reached without the techniques of the next chapter.

We next describe (3.31 and 3.38) the core and list the special manifolds
in dimensions 2 and 3, after having introduced (see §3.6) the "higher
Kodaira dimensions" of a compact complex manifold. From the description
so obtained, we deduce that in these cases the core is a fibration of general
type, when X is not special. The "decomposition theorem" (5.8) asserts
that this is true in any dimension.

3.1. Construction of the core as the lowest special fibration.

We use the notations of the separate appendix [Ca04].
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DEFINITION 3.1. Let X C C be normal. Let A := A(X) C C(X)
be the family of special subvarieties of X. It is Z-regular. Let then T(A)
be the family of its components (see Proposition 2.4 in [Ca04J), and let
cx : X --+ C(X) be the T(A) quotient of X. This almost holomorphic
fibration will be called the core of X.

In general, not much can be said about the fibres of cx.

Example 3.2. - Let X be the cone over a variety of general type V.
Then cx is the constant map. But X is by no means special, since it has a
P1-fibration over V. Note that this fibration is not almost holomorphic.

This example shows the role of singularities. In the smooth case, we
have the following.

THEOREM 3.3. - Let X e C be smooth. Let cx : X --+ C(X) be the
core of X. Then we have the following.

1. The general fibre of cx is special.

2. If F is a general fibre of cx, and if Z C X is a special subvariety of
X meeting F, then Z is contained in F. Such a fibre F will be said
cx -general.

3. The map cx is almost holomorphic.

Remark 3.4. - The above result should hold true when X is singular,
provided it has at most canonical singularities.

DEFINITION 3.5. - The canonical algebra K(cx) of the core (see
1.12), for X E C, smooth, will be called the essential algebra of X, and
will be denoted by K(cx) := Ess(X).

Proof of Theorem 3.3. - For this, we shall simply apply Theorem 3.3
in [Ca04] to the family A(X) of special subvarieties of X.

We know that A(X) is Z-regular (see Section 2 in [Ca04] for this

notion). It is thus sufficient to show that A(X) is also stable (see Section
3 in [Ca04] for this notion). The property [stab2] is obtained by applying
Corollary 2.9.

The property [stabl] is the content of the next Theorem, which thus
establishes at the same time Theorem 3.3.

THEOREM 3.6. - Let T C T(A(X)) C C(X) be a special family as
above, with X smooth in C. Assume that each irreducible component of T
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is X-covering and let qT : X --+ XT be the T quotient of X. Then uTe have
the following.

1. If X is T-connected, that is, if qT is the constant map, then X is

special.

2. The general fi bre of qT is special.

Proof. Let V C X x T be the incidence graph of the family (Vi)tET
and let 0 and g be the projections from V to X and T respectively.

The second assertion is a consequence of the first, because if Xy is a
general fibre of qT, then Xy is smooth since qT is almost holomorphic, and
the family Ty consisting of t E T such that % C Xy is a finite union of

covering families of Xy with general member special, and such that Xy is
Ty-connected.

We thus only need to show the first statement. Assume that there
exists a meromorphic fibration f : X --+ Y of general type. By 2.22, f is
almost holomorphic, since X is supposed to be smooth. By Theorem 2.6
applied to each irreducible component of V, we have a meromorphic
factorisation 0 : T --+ Y such --+ Y.

Assume first that f is holomorphic. Then f is constant on every Vt,
and so on every T-chain. Because X is T-connected, f takes the same value
on two arbitrary points of X. Thus f is constant and Y is a single point,
in contradiction with the fact that it is of general type. So X is special, as
claimed.

If f is only almost holomorphic, the same argument applies, provided
we choose an f-regular point y E Y. For every t E T, if Yt meets Xy, then
Vt is contained in Xy because of the factorisation property 0 o g = f o 
and the usual rigidity lemma. More precisely, approximate Yt in C(X) by
a sequence Ytn, such that Ytn C Xyn C /~(7), for some Stein-or affine in
the algebraic category-neighborhood U of y in Y. This is possible because
the generic Yt~ is contained in a fibre of f. Then Vt C Xy, by an easy
argument, based on the fact that f is holomorphic on 

So we get that the generic member, hence every member, of the family
T is contained in some fibre of f (here the notion of fibre of f is the usual
Chow-scheme theoretic one, defined in Section 1.1). Thus every T-chain
meeting Xy is contained in Xy. Because X is T-connected, X is contained in
Xy and f is constant, and so not of general type, as assumed. Contradiction.
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We can now establish the following often useful characterisations of
the core.

THEOREM 3.7. - Let f : X --+ Y be a special fibration, with X E C
normal, and such that for any special fi bration g : X --+ Z, there exists a
factorisation 0 : Z --+ Y such that f - 0 o g. Then f is the core of X. In
particular, if f : X --+ Y is a special fibration of general type, then it is
the core of X.

Proof. First, because cx is special, there exists a factorisation
: C(X) --+ Y such that f - o o cx. Let F be a cx-general fibre of

cx. By the existence of qb, it is contained in some fibre G of f. But G is
special, because f is. By the defining property of cx, we have the reverse
inclusion G C F.

The last assertion follows now from Theorem 2.6, because f being
of general type, for any special fibration g, Theorem 2.6 shows that the

factorisation 0 exists. D

The core can be constructed in a relative setting, as well, by a simple
application of Theorem 2.7 in [Ca04].

THEOREM 3.8. - Let f : X --+ Y, with X E C normal. There exists a
unique factorisation f = g f o c f by two fibrations c f : X --+ C( f ) and g f :
C( f ) --+ Y such that, for y E Y general, the restriction c f : Xy --+ C(f)y
is the core of Xy. We call the factorisation f = g f o c f the core of f.

3.2. Functoriality properties.

Notice that cx is not, in general, a bimeromorphic invariant. But it
is easily seen from 3.3 to be so if X is smooth. Indeed, if m : Y --+ X

is bimeromorphic then cy = cx o m. When X is smooth, we denote by
ess(X) the dimension of C(X ), and call it the essential dimension of X.

Thus ess(X) = 0 iff X is special, and dim(X) iff X is

of general type, by Theorem 5.5 below. In the first case, the core is the
constant map and in the second one, it is the identity map.

THEOREM 3.9. - Let X C C be normal. Let cx : X --+ C(X) be its
core, and let --~ A(X ) be its algebraic reduction. Then there exists
a factorisation bx : A(X) --+ C(X) of cx such that bx o In

particular, C(X) is always Moishezon.
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Proof. By Theorem 2.4, the fibres of aX are special, hence contai-
ned in the fibres of cx. 0

PROPOSITION 3.10. Let X C C be normal. Let h : Z--+X be

any meromorphic map with Z E C smooth. Assume h(Z) meets some cx-
general fibre of cx. Then there exists then a natural meromorphic map
ch : C(Z) --+ C(X) such that ch o cZ = cx o h.

Proof. By the assumption, if z C Z is general, its image h(z) in X
belongs to a c x-general fibre Fz of cx. The fibre of cz through z is special
and thus so is its image Vz by h. Since Vz meets Fz, it is contained in Fz,
by property [2.] in Theorem 3.3. Hence the existence of ch. D

COROLLARY 3.11. - Let h : Z -- + X be as in proposition 3.10 above.
Then ch as above exists in the following cases.

1. The map cx o h : Z --+ C(X) is surjective.
2. X is smooth and Z C X is the general member of a family (Zt)tET of

submanifolds of X such that the varieties cx(Zt) cover C(X).
3. X is smooth and Z C X is a general fibre of V) o :

C(X) --+ Y is any fibration. In this case, cz is simply the restriction
of cX to Z.

Let us give some easy examples in which ex can be described.

PROPOSITION 3.12. - Let X E C be smooth and assume that

f : X --+ Y is a special fibration of general type. Then f = cx. In particu-
lar, there is at most one fibration both special and of general type on X.

Proof. Because f is special, there is a factorisation g : Y --+ C(X)
such that g o f = Indeed, a general fibre F of f is special and meets
some general fibre C of cx. Thus F C C. But f is of general type, and
so by Theorem 2.6, there exists a factorisation h : C(X) --+ Y such that
f = h o cx. Thus f = cx, as claimed. 0

Remark 3.13. - We shall later prove (see Section 5.8), that cx is the
fibration of general type. So that cx is the unique fibration of domain X
both special and of general type.

COROLLARY 3.14. - Let X E C be a manifold of general type. Then

cx is the identity map of X and so ess(X) = dim(X).
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Proof. Indeed, idx is then special and of general type. Apply then
3.12. D

Remark 3.15. - We shall see later in Theorem 5.5 that the converse
also holds true, that is if ess(X) = dim(X) &#x3E; 0, then X is of general type.

COROLLARY 3.16. - Let X E C be a manifold and let n := dim(X).
Then ess(X) = n - 1 in the following two cases.

a. and the Ii taka-Moishezon fibration Jx of X is a
fibration of general type. Then cx = Jx.

b. The rational quotient R(X ) of X is of dimension n -1 and of general
type. (See 3.23 below for this notion)

Proof. Indeed, in case (a.) (resp. (b.)), the generic fibre of Jx (resp.
rx ) is an elliptic (resp. a rational) curve. The fibration Jx (resp. rx ) is

thus special. The other conditions imply that it is also of general type. It
is thus the core of X. In particular, ess(X) = n - 1. D

Remark 3.17. We shall see later in Theorem 5.7, as a consequence
of orbifold additivity theorems, that the converse also holds true, that is,
if ess(X) = dim(X) - 1 &#x3E; 0, then X is of the type (a) or (b). For the case
ess (X ) = n - 2 see below 3.36.

COROLLARY 3.18. - Let f : X --+ C be a special fibration, with
X E C smooth and C a curve. Then, either f is of general type and f = cx,
or f is not of general type and X is special.

Proof - In the first case, the claim follows from Proposition 3.12.
In the second, it follows from the fact that if g : X --+ Z is a fibration of
general type, then there exists by 2.6 a factorisation h : C --+ Z such that
g = h o f. But C is curve, and f is not of general type. Thus Z is a point,
and g is not of general type. Contradiction. D

3.3. Rationally connected manifolds.

We now come to our first basic example of special manifolds, the ra-

tionally connected ones. We recall first their definition and some properties.
Recall ( ~Ca92~ , ~K-M-M92~ ) that an irreducible compact complex space X
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is said to be rationally connected if any two generic points of X are contai-
ned in a rational chain of X that is a connected projective curve of X, all
irreducible components of which are rational, possibly singular, curves.

Examples of rationally connected manifolds include unirational, Fano
manifolds and twistor spaces. This property is bimeromorphically stable
among manifolds, but not among varieties (the cone over a projective
manifold which is not rationally connected will again provide such an

example). Of course, the above definition can be given for algebraic varieties
defined over arbitrary fields. We refer to [K-M-M92] for some of the

fundamental properties of this class of manifolds.

Rational connectedness has a slightly different characterisation, by
the following fundamental result ( [G-H-S01] ) .

THEOREM 3.19 Any fibration f : X--+C over a pro-
jective curve C with X smooth and projective, and generic fibre rationally
connected has a holomorphic section.

DEFINITION ([CA95]) 3.20. - Let X E C be irreducible. We say that X

is rationally generated if for any surjective meromorphic map f : X --+ Y,
Y is uniruled.

Any rationally connected X E C is thus rationally generated. But,
conversely, we have the following.

THEOREM 3.21. Let X E C be rationally generated. Then X is
rationally connected.

Proof. By induction on the dimension. The complex space X is
obviously uniruled. Let rx, : X --+ R(X) be the rational quotient of X (see
Theorem 3.23). Then R(X) is also rationally generated. By induction, it is
rationally connected. Recall from [Ca81] that if any two points of X E C can
be joined by a chain of curves then X is Moishezon. So R(X ) is in particular
Moishezon. Thus X too is Moishezon by [Ca85], which says among others
that X E C is Moishezon if there is a fibration u : X --+ Y with Y and

the generic fibre F of u Moishezon and such that F has q(F) = 0. We can
assume X to be projective, by the bimeromorphic invariance of the rational
generatedness. But then the conclusion follows easily from [G-H-S01], which
allows to lift rational curves from R(X) to X. 0

THEOREM 3.22. - Let X E C be rationally connected and smooth.
Then X is special.
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Proof. Let cx : X --+ C(X) be the core of X. Assume it is not the
constant map. Let F be a cx-general fibre of cx. Because X is rationally
connected, some rational curve in X meets F, but is not contained in F.
Contradiction. D

Notice that the smoothness of X is essential, as shown again by the
cone over a projective manifold of general type.

3.4. The rational quotient and the core.

We now turn to the study of the rational quotient of X from the point
of view of special varieties. The rational quotient of X C C was introdu-
ced in [Ca92] as an application of T-quotients. It was also independently
constructed in [K-M-M92], under the name of "maximal rationally connec-
ted fibration" (M.R.C for short), by a different method based on their
"glueing lemma" for rational curves, in the algebraic context.

THEOREM 3.23. - Let X E C be normal. There exists a unique
meromorphic fibration rx : X 2013~ R(X) called the rational quotient of X
such that the following holds.

1. The general fibre of rx is rationally connected.

2. The general fibre of rx contains any rational curve of X that it meets.

As usual, rx is almost holomorphic.

The proof is given in the separate appendix [Ca04]. Notice that,
by Proposition 2.8 in [Ca04], the rational quotient also exists in relative
version.

COROLLARY 3.24. - Let X E C be smooth. The rational quotient
rx of X is then a special fibration. There exists a factorisation (cr)x :
R(X) 2013~ C(X) such that cx = (cr)x o rx.

Proof. - This is simply because X, and so the generic fibre of rx is
special, by Theorem 3.22. This shows the first assertion. Notice the second
is obvious, and does not require X to be smooth. D

We have the following easy property.

PROPOSITION 3.25. - Let X E C be smooth and let f : X --+ Y be a

surjective meromorphic map, with Y E C normal. Then f induces functorial
maps f * : R(X) ---~ R(Y) and f * : C(X) ---~ C(Y).
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In the above proposition, taking f . := rx, we get a natural map
(rx ) * : C(X) --+ C(R(X)). For the rational quotient, we have a particular
property not valid for arbitrary special fibrations.

THEOREM 3.26. - Let X be smooth and Moishezon. Let rx :
X --+ R(X) be the rational quotient of X and let cR(x) : R(X) --+ C(R(X ) )
be the core of R(X). Then (r~)~ : C(X) --+ C(R(X)) is bimeromorphic
or, equivalently, CR(X) or X : X --+ C(R(X)) is the core of X. In particular,

Remark 3.27. - The hypothesis that X is Moishezon can certainly
be weakened to X E C. For this, it is sufficient to make the same weakening
in the hypothesis for G in the Lemma 3.29 below.

Proof. We have natural fibrations 0 : : R(X) --+ C(X) and

~ _ (rX )* : C(X) --~ C(R(X)) defined above. We need to show that ’0 is
bimeromorphic, or that the general fibre F of CR(X) 0 rX : X --+ C(R(X))
is special.

Observe that we have, by restricting rx to F, a map rx : F --+ G,
where G = rx (F) is the corresponding fibre of Thus F is fibred over

G, which is special, with fibres which are generically rationally connected.
The claim thus follows from the next proposition. D

PROPOSITION 3.28. - Let f : F-~G be a fibration with F E C smooth
such that G is Moishezon and special, and the generic fibre of f is rationally
connected. Then F is special.

Proof. Let, if any, g : be an admissible holomorphic fibration
of general type. Since f has special fibres, there exists by Theorem 2.6 a
factorisation 0 : G-H of ~ = (~ o f. But now by Lemmas 3.29 and 3.30
below, we see that A(g) = 0 (~) . Thus 0 is of general type, too. But this
contradicts G being special. Such a g thus does not exist, and X is special. 0

LEMMA 3.29. - Let f : F--+G be a fibration with generic fibres
rationally connected, F smooth and G Moishezon. Then f is multiplicity
free, that is is empty.

Proof. We may assume that G is projective. The claim then follows

immediately from [G-H-S01] , and is actually the most difficult part of the
proof, by considering the restriction of f over a very ample curve of G

meeting transversally any irreducible component of 0 ( f ) . D
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The proof of the following is immediate from the definition of mul-
tiplicities and the computation of the base orbifold divisor of a composed
fibration, as in section 1.6.

LEMMA 3.30. - Let f : F2013~G and 0 : G-~H be fibrations. Assume
that f is multiplicity free. Then o f ) = A (0)

3.5. Surfaces.

We can describe the core of a surface as follows, in terms of its rational
quotient or Iitaka-Moishezon fibration. This will be extended to threefolds
in the next section. A description in arbitrary dimension will be given in
Section 6.5.

Recall that for any compact connected complex manifold X with

K(X) &#x3E; 0, we denote by Jx : X --+ J(X) its Iitaka-Moishezon fibration.
Let also n’(X) := K(J(X), Jx). Obviously K(X) ? K’(X) &#x3E; -00.

THEOREM 3.31. - Let X be a compact Kahler smooth surface. Then
its core cx is described as follows.

1. If K(X) = 2, then cx - idx, and ess(X) = 2.

2. If K(X) = ~’ (X ) = 1, then Jx and ess(X) = 1.

3. 1 &#x3E; r,’(X), then X is special.
4. If ~(X ) = 0, then X is special.
5. -oo and q(X ) &#x3E; 2, then rx and ess(X) = 1.

6. If K(X) = -oo and q(X )  1, then X is special.

Proof - If K(X) = 2, the claim is given by 3.14. If K(X) == 1, the
fibration Jx : X --+ C = J(X ) is special, and the claim follows from 3.18.
If K(X) == 0, X is special from the facts just recalled above. If ~(X ) _ -oo,
from the classification of surfaces, X is bimeromorphic to I~1 x C, C a
curve with g(C) = q(X), and rx is the projection to C if q(X) &#x3E; 0, and
the constant map if q(X) = 0. The claims are then obvious. 0

Recall that a group G is said to be almost or virtually abelian if it
has a finite index subgroup which is abelian.

COROLLARY 3.32. - Let X be a compact Kahler surface. Either X is

special and cx is the constant map, or r~(X ) &#x3E; 1 and cx = Jx, the Itaka
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fibration, or K(X) = -oc, and cx = rx, the rational quotient of X. One
can compute ess(X) as follows.

j- and 7r, (X) is not virtually abelian.

3 . ess (. is virtually abelian.

Proof. All claims are deduced immediately from 3.31, except
for the ones concerning the fundamental group, when K(X) x 1. If

K(X) = -oo, then with the notations of the proof of
3.31. The assertion is obvious. If ~(X ) = 0, we know that is almost

abelian from classification theory. If K( X) == 1, the assertion follows from
Lemma 3.34, applied to Jx . D

COROLLARY 3.33. - A compact Kahler surface X is special if and
only if it has a finite 6tale cover which is bimeromorphic to one of the
following surfaces.

1. I~2 ((~) .
2. PI (C) X E, with E elliptic.
3. K3, or Abelian.

4. Elliptic over a curve C with m multiple fibres, C either rational and
then m ~ 2, or elliptic and then m = 0.

Proof. The surfaces listed above are special, by 3.31 above. Thus
so are their undercovers. Conversely, if X is special, it has a finite etale

cover in the preceding list. This is clear if ~(X) ~ 0, by classification, and
from the next Lemma 3.34 if ~(X) = 1. D

LEMMA 3.34. - Let f : X -~C be a relatively minimal elliptic liberation
on the compact Kahler surface X.

1. Let f*(c) := ¿jEJ mjDj be any scheme- theoretic fibre Xc of f.
Then, its multiplicity m(c, f) is also equal to m+ (c, f ) : :==
gcd{mj}.

2. There exists a finite 6tale cover u : X’ --+X such that if v o f’ - f o u
is the Stein factorisation of f o u, with f’ : X’--+C’ connected and
v : C’-~C finite., then f’ has no multiple fibre if g(C’) &#x3E; 1, and at
most 2 multiple fibres of coprime multiplicities if C’ is rational.

3. Moreover, g(C’) _ ~(C’, f ’) = f ) in the preceding situation.
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4. X is special if and only if 7rl (X) is almost abelian.

Proof. (1) follows from Kodaira’s classification of singular fibres of
elliptic fibrations (see [B-P-V84] Chap. V.7). This equality actually also
follows from an elementary argument in the more general case of fibrations
with generic fibre a complex torus.

Assertion (2) follows from [Ca98] and [Na87]. Indeed, [Na87] shows
that if a curve C with points a1, ..., am, affected with multiplicities
n1, ..., is given, there exists a cover C’ of C ramified above the ai’s
only, each point above any ai having ramification exactly ni. The only ex-
ception is when C = P’, m = 1, 2, and when n2 if m = 2. In [Ca98],
it is shown (it is a simple computation) that the base change over C’ leads
to the sought after 6tale cover u : X’-~X .

Then property (3) follows from Theorem 1.8 for the second equality,
and from the fact that m = 0 if g(C’) &#x3E; 1.

We show (4). If X is special then f )  0, so that C’ is rational or
elliptic. We apply [Ca98], which shows that the natural sequence of maps

is exact, with F’ a generic fibre of f’, so that F’ is an elliptic curve, and
Z IB 2. Thus 7r1 (X’) is almost abelian if X’ is special, which is true

if so is X, because f’ is special and r,(C’, f’) _ f).

Conversely, assume that 7r1 (X) is almost abelian. Then so is 7r1 (C’),
and C’ is either rational or elliptic. Thus f )  0, and X is special by
3.31. D

3.6. Higher Kodaira dimensions.

We shall define higher Kodaira dimensions (to be generalized in 6.4
below) of any connected manifold X c C as follows. This works for compact
connected manifolds as well.

The first Kodaira dimension of X is the usual one, K(X). If

~(X ) _ -oo, the second Kodaira dimension of X is not defined. Otherwise,
/~(~) ~ 0, and Jx : X --+ J(X), the Iitaka-Moishezon fibration of X, is
defined. Let then



555

We have

If K’(X) = -oo, the next Kodaira dimension r,"(X) is not defined.
Otherwise K’ (X) &#x3E; 0. Let then

be the Iitaka fibration defined on J(X) by the Q-divisor KJ(x) + 
for any admissible model of the fibration Jx. Define

Define next

Of course, we have

for the invariants so defined. Continuing inductively, we can define a
decreasing sequence of invariants

and iterated orbifold Iitaka fibrations

If the sequence is defined til J;), define

and if this is nonnegative, define as being the Iitaka fibration
defined by the for any admissible model

of the fibration JÝ). We thus have fibrations
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Observe also that J(r)) = 0, if Fr is a general fibre of J(,- - i, r))
by the standard property of Iitaka fibrations.

This sequence stops at the first term, if any, equal to -oo, and is sta-
tionary if any two terms ~~’’) (X ) = I~~’’+1) (X ) are equal, and nonnegative,
necessarily. This happens clearly if and only if the corresponding map J);)
is of general type.

The following is easily shown by induction on r.

PROPOSITION 3.35. - The sequence of higher Kodaira dimensions is
invariant under bimeromorphic maps and finite 6tale covers.

We shall later (in 6.4) extend these notions, and even conjecture that
these higher Kodaira dimensions are invariant under deformation, for X
Kahler.

As an illustration for the introduction of these invariants, we show
the following.

PROPOSITION 3.36. - Let X E C be smooth of dimension n &#x3E; 2. Then

ess(X) = n - 2 in each of the following cases (a-e). Moreover, the core cx
and its generic fibre F, a special surface, are described as follows.

b. = n - 1, r,’(X) = -oc and there exists r : J(X) --+ Z with
dim(Z) = n - 1 such that f o Jx is of general type. Then r,(F) - 1,
and K’(F) = -oo.

c. = K’(X) = n - 2. Then Jx, and r,(F) - 0.

d. R(X), the rational quotient of X, is of general type, and of dimension
n - 2. Then F is a rational surface.

e. R(X) has dimension n - 1, and K(R(X)) = ~’(R(X )) = n - 2. Then
F is birationally elliptic ruled.

Proof - Case (a). Indeed, the fibre of J’x is special, because F has
an elliptic fibration J : F2013~C with K( C, J) = 0, so the assertion follows
from 3.31. By assumption, J’x is of general type, because ~’ (X ) _ r,"(X).
To show that r,(F) - 1, use the easy addition theorem, applied to X and

it says that n - 1 =

dim (F) + n-2=n-1.
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We shall skip the proofs of the other cases, which are easier or

similar. D

Remark 3.37. - We shall also nearly show the converse, as a conse-
quence of additivity theorems, in Section 6.5. Actually, the converse holds
under the general additivity conjecture.

The formulation of case (b) is unnatural. A natural formulation rests
on the notion of rational quotient for orbifolds. See 6.5.

3.7. Threefolds.

We shall describe the core of a compact Kahler threefold. For this
we shall need Theorem 5.1 shown later in Section 5, which says that X is

special if K(X) = 0, in all dimensions. (See Section 6.5 for the n-dimensional
versions of the next two theorems).

THEOREM 3.38. - Let X E C be a nonspecial threefold. The core
cx of X is a fibration of general type. Moreover, one can describe cx, its

generic fibre F, and ess(X) as follows.

1. ess(X) = 3 = 3. Then cX = id

2. ess(X) = 2 in the following two cases.

a. K(X) = ~’ (X ) = 2. Then cx = Jx is an elliptic fibration of general
type.

b. K(X) = -oo, R(X) is a surface of general type, and cx = rx is a
P’--bbration over R(X).

3. ess(X) = 1 one of the following cases occurs.

a. ~(X) = 2, r,(X) = ~" (X ) - 1. Then J~ is a fibration of

general type onto a curve, with F a special surface with = 1

and K’(F) = 0.

b. = 2, ~’ (X) _ -oo and X nonspecial. Then cx is a fibration
of general type onto a curve with ~(F) = 1 and ~’ (X ) _ -oo.

c. K(X) = K’ (X) = 1. Then cx = Jx is a fibration of general type
onto a curve with r,(F) - 0.

d. rx is a fibration onto a curve of general type, with F a
rational surface.
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e. cx = rx is a fibration of general type over a curve with F
a birationally ruled elliptic surface.

We now give a very rough list of the special threefolds.

THEOREM 3.39. - Any special threefold X E C is one of the following.
1. ~(X ) = 2.

a. ~’ (X ) - 1 &#x3E; r,"(X) and J’x is a non-general type fibration over
a curve with hbre F a special surface with = 1 &#x3E; 

~0, -oo~.
b. K’ (X) = 0 and Jx is an elliptic fibration with a klt orbifold base

a normal surface with torsion canonical bundle Ks -f- A, the log-
Enriques case.

c. ~’ (X) _ -oo and X has either a non-general type fibration over a
curve with generic fibre a special surface F with ~(F) = 1, 1-.(F) =
-oo, or an elliptic fibration with base orbifold a klt normal surface
with Picard number one, and log-Del Pezzo, that is -(Ks ~- 0) is
ample.

2. ~ (X ) = 1 and Jx is a non-general type fi bration over a curve with
generic fibre F a surface with K(F) = 0.

3. ~(X) = 0.

4. K(X) = -oo and X is either rationally connected, or a fibration
over an elliptic curve with generic fibre a rational surface, or a 
fibration over a special surface S with k(S) &#x3E; 0. The case where

X is simple non-Kummer conjecturally does not exist, but strictly
speaking additionally belongs to the last part (4) of the above list,
because K(X) x 0, then.

Proof. We shall prove both results 3.38 and 3.39 at the same time.

The case where /~(X) =1 -oo is clear from the Section 3.4 above,
because X is then uniruled if X is projective by [Mi88], and by [C-POO]
otherwise if X is not simple.

So we proceed case-by-case, 0.

= 0, we are done by Theorem 5.1. If X is non-projective, we
could also have applied [C-POO], Theorem 8.1, which says that if X has

a nonzero holomorphic 2-form, it is covered by either a torus, or by the
product of an elliptic curve and a K3-surface. Thus X is special in this
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case, too. The existence of a nonzero 2-form when X is non-projective is a
famous result of Kodaira.

We now classify the cases occuring according to the pairs ( ~ (X ) , ~’ (X ) )
with K(X) &#x3E; 1. When the two terms are equal and positive, we conclude
from 3.12 that Jx is the core, and of general type. If K(X) = 1, and

K’(X) x 0, we conclude from 3.18 that X is special. We are thus left

with the cases where = 2 and K’(X) x 1. We thus now assume that
~(X) = 2.

Assume first that ~’ (X ) = 1. Consider the map J’x : X --+ J’ (X ),
using the notations of 3.6. It has general special fibres, because if F is

its general fibre, and G:=Jx(F), then the restriction to F of Jx defines
J’ : F --+ G, which has generic fibres elliptic curves, while G is a curve and,
by the definition of io 1 we have K( G, J’) = 0. We conclude from 3.18 that
F is a special surface. The easy addition theorem shows that r,(F) - 1.

If ~" (X ) = 1, J’x is a fibration both special and of general type. So
we conclude from 3.12 that it is the core of X.

Otherwise, if K" (X) x 0, X is special. We are thus done with this case
(ess(X) = 0, or 1).

We are now left with the more difficult case when K’ (X) x 0. Assume
that X is not special. Let f : X --+ Y be a fibration of general type. The
fibration Jx being special, we get from 2.6 a factorisation ø : J(X) 2013~ Y
of f - 0 o Jx. Thus Y has to be a curve.

To conclude the proof we thus just need to show that this does not
happen if r~’ (X ) = 0, because of the Minimal Model Program applied to a
klt surface orbifold, as described below. The assertion we need follows from

Proposition 3.41 below. But we need first some definitions for its statement.

3.8. Orbifold surfaces.

A surface orbifold will be a klt pair (S, A), with ,S’ a normal projective
surface, and A an orbifold divisor. We refer to [K-M98], §3.7 and ~4.1 for
the notions of canonical bundle and intersection numbers in this context,

peculiar to surfaces.

If g : S-*C is a holomorphic fibration, we define the orbifold base of

9 : as the pair I , where A (g, A) is the Weil

Q-divisor on C defined as in 1.29.
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Remark 3.40. - As in 1.6, we see that if h : is a fibration with

A = A(h), then Ag = A(g o h) on a suitable model of h.

We define then as usual the canonical bundle and Kodaira dimension

of (C/Ag) and (S’/0) (by definition, KS + A is supposed to be Q-Cartier).
We then say that g is of general type if 1, and that 

is special if  2, and if there is no holomorphic fibration of general
type g : onto a curve.

PROPOSITION 3.41. - Let (,5’/0) be a surface orbifold. 0,
then is special.

Proof - Assume there exists a general type fibration g on 
We shall show that ~(,S’/0) ~ 0.

We thus apply the MMP to our initial pair (S/A). This produces a
sequence of elementary contractions of the form k : ( s/ o ) ~ ( s’ / o’ ) , with

still a klt pair, such that after at most p(S) - 1 steps, one gets for
the final pair, denoted also (,S’’/0’)), one of the three basic cases:

(1) is nef,

(2) There is a fibration g’ : ,S’’~C’ onto a curve such is

g’-ample, and p(,S’’ ) = 2,

(3) is ample, and p(S’) = 1 ( "log-Del Pezzo" case).

Notice that at each step, the Kodaira dimension of the pair (S/0) is
preserved, and that the curve being contracted is rational smooth (because
S itself is klt). We refer to [K-M98] and [F-M94] for the existence and usual
properties of these reduction steps.

In cases (2) and (3), we have -oo. So these

cases do not occur, because we assumed that 0. Thus 

is nef.

We claim that D’ . - Ks, + 0’ _ 0. Indeed, we have (D’)~ = 0,
otherwise 2. From [F-M-K92], (11.3), we get the claim (their
theorem asserts that is equal to the numerical Kodaira dimension

of (s’/0’)).

The rest of the proof rests on the following two Lemmas 3.42 and 3.43.
The first one will be proved at the end of this section.
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LEMMA 3.42. - Let g : be a fibration of general type, with
(S/0) klt. Let E be a rational curve mapped surjectively onto C by g.
Then A . E &#x3E; 2.

COROLLARY 3.43. Let k : (,5’/0) -~ (,S’’ /0’ ) be the contraction of
an irreducible smooth rational curve E, with Sand S’ klt surfaces,
(KS ~ 0) ~ E ~ 0, and 0’ :- 1~* (0). If g : is a fibration of general
type, then there exists g’ : (S’IA’)--~C such that g = g’ o k. Moreover, g’
is still of general type, and 1

Proof. The second assertion is clear, if the first one is. This is

because m(c, g’, A’), since in the definition of the left hand
side of the inequality, the infimum is taken over a smaller subset.

The first assertion is clear also if g(C) &#x3E; 1, because the rational curve
E contracted by k cannot be mapped surjectively to C by g.

We shall show that this also cannot happen when C is rational,
because g is of general type. Actually, as the proof shows, the condition
~(C, Ag ) &#x3E; 0 is sufficient, even. We use the following numerical conditions:

(a) E 2 0 (E exceptional),

(b) (KS + E) ~ E = -2 (E rational, smooth),

(c) (Ks ~ 0) ~ E ~ 0.
So we assume by contradiction that E is mapped onto C by g. We

then get

which contradicts 3.42. D

We now complete the proof of 3.41.

We then apply the Minimal Model Program to S’, but relative to
Ks, (ie. we take 0’ - 0. Notice that the pair (S’, 0) remains klt, because
0’ is effective) At each contraction step again only smooth rational Ks,-
negative curves are contracted, which have zero intersection number with

(Ks, + 0’), so that this Q-Weil divisor also remains numerically trivial at
each of these contraction steps. Let (S", 0") be the resulting pair. It has,
by 3.43, all properties of (5",A’). In particular, D" :- (Ks,, + A") 0,
and g" : (X"IA")--+C is of general type. Put K . :== Ks,,. Assume first
that K(S") &#x3E; 0. In addition to the above properties, K is nef. By our

assumptions, the generic fibre of g" is elliptic, and 0" is "vertical", that is
contained in fibres of g".
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Thus

a union of complete fibres of g", by Zariski’s Lemma. There exists thus an
orbifold divisor 6" on C such that 0" - (g" ) * ( b" ) . 0, and

K(C/6") = 1, we easily get that 1 (see Lemma 4.9 below, for
example). A contradiction.

We now treat the remaining case in 
is g"-ample, and every fibre of g" has an irreducible reduction. As above,
A" = (gll) * (611), for an orbifold structure J" of general type on C. We thus
have p ( S" ) - 2, and the arguments of [F-M-K92], Theorem 11.2.3, show
that Ks,, + AF", (f1")hor is the horizontal part of A", defined
as usual, and F" is any fibre of g". Here A C Q is such that A &#x3E; 2q - 2,
with q the genus of C. Thus D" - (A + deg(J"))F’/ has Kodaira dimension
at least 1, because deg(6") &#x3E; 2 - 2q. Contradiction. D

We still have to show Lemma 3.42.

Proof of 3.42. - From Hurwitz’s formula, we get -2 - -2d +
where d is the degree of the restriction h : E2013~C of g

to E, and for each e E E, re is the ramification order of h at e. Fix c E C.

dj :=multiplicity of Dj in A.

Claim. , where ~c is the union of

components of A contained in ,S’~, with their corresponding multiplicities.

Then Lemma 3.42 is an easy consequence of the claim. Indeed,

But deg(6) - 2 &#x3E; 0, because g is of general type. Hence the conclusion
of 3.42.

To complete the proof, we establish the preceding claim.
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Proof of the claim. -

We are thus reduced to show that

Because , we just need to establish
which itself follows from the inequality

"ej(D4 - E) e &#x3E; 1, be E E,, where the intersection number (Dj . E) e
is the local intersection number near e. Recall that S is only assumed to
be normal.

We now show this last inequality. We have E) e - re,
and the conclusion follows from the inequality mj x re, B:Ij E J. To show
this inequality, we make a base change over h : E--+C. Let S’ be the

normalisation of the fibre product S xc E, and let k : S’-S, g’ : S’’--~E
such that the natural maps induced from this base change.
Let E’ C S’ be the lift of E to S’: it is a section of g’. Let e’ be the

point of E’ lying above e. The components of (g’)* (c’) which contain e’ are
thus reduced. This easily implies the conclusion, by looking at a generic
point of Dj, near which the projection 9 is locally given by the equation
g(t, z) = z’3. The fibre product is thus locally given by an equation of the
form (re = Z’3.

Dividing by d :== we can assume that d = 1, since we
normalised the fibre product. Thus we have on S’ local coordinates (t, s)
with ( = and z = sre . Locally, the projection g’ is given in these
coordinates by g’ (t, s) _ (. From which we deduce that mj = 1. Thus m
divides re . This in particular proves the claimed inequality. D
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Remark 3.44. - What we actually proved in this section is the

orbifold additivity for Kodaira dimensions in dimension 2. The general
case is stated in the next section at 4.2.

4. Orbifold additivity.

This fourth chapter states (see 4.1) the orbifold version of Iitaka
conjecture Cn,r,.,,, and shows (4.2) the special case when its orbifold base is
of general type. This result is one of the main technical tools of the present
paper, and can be used in many cases for fibrations with general fibres
having negative Kodaira dimensions, where the classical statements do not
give any conclusion. It should find many further applications in the future.

Despite of this, the proof rests on the same techniques as the clas-
sical case. It consists in extending the weak positivity results of Fujita,
Kawamata and Viehweg for direct image sheaves of pluricanonical forms to
the orbifold situation, by suitably introducing the orbifold divisor into the
proofs, distinguishing its vertical and horizontal components. The vertical
part increases the second the orbifold base, while the hori-
zontal part contributes increasing the term ~(F), F the general orbifold
fibre. Also, because the base orbifold does not depend on the horizontal
part of the orbifold divisor, this horizontal part may be allowed to have

arbitrary rational coefficients between 0 and 1.

4.1. Orbifold conjecture 

We use the notations and notions introduced in Section 1.6. So, if

g : (Y/H)-Z is a holomorphic fibration from the manifold Y equipped
with the orbifold divisor H, we defined the base on Z.

The fundamental property of this definition is that, when H = 0( f ), for
some fibration f : X----&#x3E;Y, then H) = o f) for suitable models of
f, g which can be choosen so that f, g and g o f are prepared and admissible
and g is high (see 1.33). We can now state the orbifold additivity conjecture
Corbn,m’

CONJECTURE 4.1 - Let g : (Y/H)-Z be a holomorphic
fibration between manifolds, with Y E C. Assume g is prepared and high.
Then

where z E Z is general and
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Of fundamental importance for the considerations of the present paper
is the following special case, shown by suitably adapting the classical

methods of proof (T. Fujita, Y. Kawamata, E. Viehweg).

THEOREM 4.2 (C9t b). Let g : be a holomorphic fibration
between manifolds, with Y E C and Z projective. Assume g is prepared,
high and of general type, that is = dim(Z). Then

where z E Z is general and (Y/H)z - ( Yz / Hz ) .
Of course, the above Cnrm is a simple generalisation and refinement

of the classical conjecture of S. Iitaka, dictated by the constructions made
in the previous chapters.

Remark 4.3. - In 4.2 and 4.1 above, it is sufficient that the horizontal

part Hhor of H has all of its irreducible components having rational

multiplicities lying in [0,1]. The proof given below applies in this broader
situation.

Let us list some of its corollaries or special cases of the above

conjecture.

PROPOSITION 4.4. - Assume (

be fibrations, with; where

Proof. By 1.6 and 1.28, we can choose models of g and f in such
a way that f, g and g o f are admissible, prepared, with g high, o f ) ==

A (g, A (f)), and moreover such that f z is admissible. We conclude then from

In the special case where X = Y, we get the following.

The extreme inequality is of course the classical Iitaka conjecture. Let
us first list some immediate consequences of Theorem 4.2.

be fibrations, with
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COROLLARY 4.7. - Let g : Y-~Z be a fibration with Y E C. If g is of
general type, then K(Y) = ~(Yz ) ~ dim(Z).

We shall now give the proof of Theorem 4.2. It is classically done
in two steps. First an easy reduction to weak-positivity statements for
direct images by g of twisted pluricanonical forms and second the proof
of semipositivity. The first step is entirely similar to the known cases, so
we shall be brief on it. The second step is simply obtained by introducing
the orbifold divisors at appropriate places in the classical proofs of Y.
Kawamata and E. Viehweg. See also the initial work [F78].

4.2. Reduction to weak positivity.

We start by briefly recalling the notion of weak-positivity introduced
in [Vi83] (see also the survey [Es80]).

A torsionfree coherent sheaf F on Z, projective, is said to be weakly-
positive (written w.p for short) if for any ample line bundle A on Z, and

every integer a &#x3E; 0, there exists an integer b &#x3E; 0 such that (D Ab is

generated over some nonempty open subset U of Z by its global sections

(defined over Z). Here denotes the extension to Z of the sheaf

denoted by the same symbol, naturally defined over the open subset where
.~’ is locally free.

LEMMA 4.8. - The following properties are shown in [Vi82].

(1) is locally free and nef, it is w.p.

(2) Let v : Z’--+Z be bimeromorphic, C 9 a inclusion of torsionfree
coherent sheaves of the same rank on Z’. If v* (.~’) is w.p, then so is

v* (9).

(3) If v : Z’ --+Z is a ramified flat covering with Z and Z’ smooth, and if
T is torsionfree coherent on Z, then F is w.p if so is ~*(~").
We now state without proofs two lemmas, shown but not separately

stated in [Es80], and in various more or less implicit forms in [Vi82] and
[Ka81]. Together with the weak-positivity result shown in the next section,
they imply immediately Theorem 4.2.

LEMMA 4.9. - Let g : Y-~Z be a fibration with Z projective. Let
E and L be Q-divisors on Y and Z respectively, such that L is big and

r~(Y, E) &#x3E; 0. Then K(Y, E + g* (L)) = dim(Z) + K(Yz,E¡yz), for z general
in Z.
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The crucial place where weak-positivity enters is to check that

k (Y,E) &#x3E; 0.

LEMMA 4.10. - Let g : Y--~Z be a fibration, E a line bundle on Y
and L a Q-divisor on Z such that L is big and g* (E) is weakly positive and
nonzero. Then r, (Y, E -E- g*(L)) &#x3E; 0.

In the next section, we shall show the following theorem.

THEOREM 4.11. Let g : Y-~Z a prepared holomorphic fibration
g : Y--~Z, with Y and Z smooth and Z projective. Let H be an orbifold
structure on Y. Let m &#x3E; 0 be an integer such that all Q-divisors involved
are integral. There exists an effective g-exceptional divisor B on Y such
that the sheaf + H) + B) is weakly positive on Z.

Remark 4.12. - The preceding Theorem 4.11 holds with the same
proof when H satisfies the weaker condition stated in Remark 4.3 above.
That is, if the horizontal part of H has components with coefficients
rationals lying between 0 and 1.

Let us now explain how to deduce Theorem 4.2 from the pre-

ceding lemmas and Theorem 4.11. First apply Lemma 4.10 to E :=

H) + B, with m &#x3E; 0 an integer sufficiently divisi-
ble, so chosen that g* (E) is nonzero and w.p, and L := (m/2)K(Z/,N(g,H)),
which is big by hypothesis. We conclude that -f- g* (L) ) &#x3E; 0. Thus
E’ - E + g* (L) is such that E’) &#x3E; 0. Next apply Lemma 4.9 to E’ and
L to conclude that Ky -f- H + B/m) satisfies the inequality stated in
4.2. Use finally the fact that g is high to conclude the proof of 4.2, because

+ H + B/m) - + H) (see 1.32). D

4.3. Orbifold weak-positivity.

Our objective in the next two sections is to establish Theorem 4.11
stated and used above, an orbifold generalisation of famous results of Y.
Kawamata and E. Viehweg, initiated by T. Fujita in the case where Z is a
curve. We shall actually essentially just reduce our case to the cases they
treated.

We consider thus a prepared holomorphic fibration 9 : Y-~Z, with Y
and Z smooth and Z projective. That g is prepared means that its non-
smooth locus is contained in a simple normal crossing divisor of Z, and
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that the inverse image by g of this non-smooth locus is also a divisor of
simple normal crossings on Y. We let 0 := 0(g) and 0’ :- 0(g, H) be the
orbifold divisors. Thus A is also of simple normal crossings. Notice that

Notice that H) = where is the g-vertical part
of H is defined as follows. If then is equal
to I/nk)Hk, where K’ C K consists of the components of H ~
which are not mapped onto Z by g.

We shall also denote by Hhor the g-horizontal part of H, defined such
that H = Hvert + Hhor.

We shall obtain Theorem 4.11 as the consequence of three interme-

diate steps. The first step is a generalisation of the standard weak positivity
results for direct image sheaves of pluricanonical forms in Kahler geometry.

THEOREM 4.13. - Let g : be a prepared holomorphic fibration,
with Y and Z smooth, Y Kähler and Z projective. Let D = ¿jEJ d3 Dj
be a divisor with positive integer coefficients on Y, the Dj being pairwise
distinct. Write D = Dvert -~ Dhor. Assume also that the support of Dhor
is a divisor of simple normal crossings with positive integer coefficents.
Let m be a positive integer such that m &#x3E; d4,r for every j C Jhor. Then
g,, (mKy/z + D) is weakly positive.

This result will be proved in the next section. The second and third
steps are given by the following lemma 4.14 and proposition 4.15.

LEMMA 4.14. - Let g : Y--~Z satify the same assumptions as the
preceding 4.13. Let D be any divisor with integral coefficients on Y and
let m be a nonegative integer. If v : Z’---*Z is a flat finite map with Z’

smooth, and if g’ : Y’---+Z’ is deduced from g by smoothing the base change
Y := Y x z Z’ of Y by v, then there is a natural injection of sheaves

where D’ := u*(D) and u : Y’-Y is the natural map obtained by
composing the desingularisation d’ : Y’-Y with the base change map
û : f7---+Y.

PROPOSITION 4.15. - Let g, D, m be as in 4.14 above. Let, in addi-
tion, H = Hvert be an orbifold vertical divisor on Y, which means that
no component of H is mapped onto Z by g. There exists a finite flat map
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v : Z’-~Z, with Z’ smooth, such that if g’ : Y’-~Z’ is constructed as in
4.14 above from v, the above injection of sheaves extends to an injection

for some effective g-exceptional divisor B on Y.

We shall give below the proofs of the preceding lemma and proposi-
tion. Let us first show that they imply, together with 4.13, the Theorem
4.11. Write mH = D + mH"ert, with D := mHh°r. This is an integral
divisor, if m is sufficiently divisible. Moreover, 0  dj = ( 1 -  m,

for each j. So that 4.13 applies to g’ and D’ := u*(D), if g’ is deduced from
g by any base change v : Z’ ~ Z as in Proposition 4.15 above.

If we now apply the Proposition 4.15, we see that the conclusion of
4.11 holds. We shall now prove 4.14 and 4.15.

Proof of 4.14. - The relevant diagram is the following.

It is proved in [Vi83], Lemma 3.3, pp. 335-336 to which we refer,
that in our situation, naturally injects into This

statement implies that d* (mKy, /z, + D’) injects into û* (mKy/z + D), since
D’ = u* (D). We then just need to apply 9* to both sides, noticing that
§* (S* ) = v* (g* ), by flatness of v. D

Proof of 4.15. - We start with the construction of v. Write A =

DEFINITION 4.16. - Let g : Y ---+Z be a prepared holomorphic hbra-
tion, with Y and Z smooth and Z projective. A finite covering v : Z’---+Z
is said to be 3-nice in similarity to [Ka8l] if the following hold.

(1) It is flat, and Z’ is smooth.

(2) v*(Ai) = miDi", for some reduced divisor Ai" C Z’, this for any
z c I. Here mi is any integer divisible by these being the
same as above, used to define the multiplicity of g along Ai. Observe
in particular that ~*(A) is Cartier on Z’.
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is a divisor of normal crossings on Z’.

By [Ka81] and [Vi82], such coverings exist. Let v : Z’-Z be a A-nice
covering and let things be as in Lemma 4.14. Then 4.15 is an immediate
consequence of 4.8 and the following.

PROPOSITION 4.17. - In the preceding situation, there exists on Z’ a
natural injection of sheaves

this for any integer m &#x3E; 0 sufficiently divisible, and some effective g-
exceptional divisor B on Y.

Proof. The main point is that we just need to check this injection
on the complement of a codimension two subvariety A of Z’, since by 4.14,
the result holds with deleted from the left-hand side,
and deleted from the right-hand side, on all of Z’. This provided
O (B) is defined by the poles of maximal order acquired by an arbitrary
extension across A of a section of + 

defined outside of A. Observe that we are working here on the fibre product
Y x Z Z’ which is Cohen-Mac Caulay, so that the poles of the sections
considered actually occur in codimension one.

We shall thus check the above injection only above the generic point z
of some Ai. Write g*,Ai + R where J(g, Ai) is the set
of all irreducible components of g* Di which are mapped surjectively onto
Ai by g, while R is g-exceptional. Let Ui be a sufficiently small analytic
open neighborhood of z in Z. Let YU := and let W C Yu be a
small analytic neighborhood of y, a generic point of 

Thus mij divides m-ij mi3 qi,j for some integer, by the definition
of a 0-nice covering. Factorise v : :== v’ o v * over U, with v’ : Z’--+Z*, and
v* : Z*-Z, in such a way that v* (resp. v’) ramifies at order exactly my
(resp. qi,j) above Ai (resp. ð.7 := (v* ) -1 (Di ) ) . Construct Y* from Y over Z
by taking base change by v*, followed by normalisation and then smoothing.
We have also a natural fibration g* : y*2013~Z*. Possibly modifying Y’, we
thus get a factorisation u = u* o u’ . Moreover, from the usual commutation

properties, we have v’ o g’ - g* o u’, and v* o g* = g o u*. The relevant
diagram is the following.
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The crucial property in this construction is that u* is 6tale over W,
if sufficiently small. This is an easy standard local computation which we
already used several times before. Thus u* is 6tale over the generic point
of A ij.

From the following Lemma 4.18 below, we deduce that, over the
generic point of we have a natural injection of sheaves

for any integer m &#x3E; 0 sufficiently divisible.

From this injection, we can deduce the following, by tensorising with
Oy (D) and its lift C7Y* (D* ) to Y* by u*

The very same argument as in the proof of 4.14 above shows the existence,
for any j, on which the preceding factorisations depend, of a natural

injection of sheaves

By composing the above injections, and restricting over W, we
see that the sections of g:(m(Ky,/z’) + D’) actually belong to v*g* (m

We identify local sections of g: (m(K Y’ /z’) +
D’) over Z’ and sections over corresponding open subsets
of Y’.

The conclusion now follows from Hartog’s extension theorem, applied
over Yu, to extend the sections thus obtained across the intersection of two
or more such Ai,j’s. D

We used the following.

LEMMA 4.18. - With the above notations, over the generic point
we have a natural injection of sheaves m(K(y*/z*)) C (u* ) * (m

, for any integer m &#x3E; 0 sufficiently divisible.
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Proof. We shall argue using, instead of sheaf injections, rather
inequalities between Q-divisors; the inequality A &#x3E; B meaning as usual
that A - B is effective.

From the equalities,

and

(ramification formula),

we deduce that

because On the other hand,

since mi, jni, j &#x3E; by the very definition of This concludes the proof,
by applying (u* ) * . 0

4.4. Twisted weak positivity.

The aim of this section is to prove Theorem 4.13. Write D = +

Dhor. We have a natural injection + Dhor) C + D)
and these sheaves have the same rank. Thus, we may assume D = Dhor .

For the proof, we shall refer to the one given in [Vi83] of the classical
case where D is empty, and simply indicate the changes needed. I would
like to heartily thank E. Viehweg, who gave me a decisive hint for the proof
of the following lemma.

The single change needed lies in the Corollary 5.2 of [Vi83]. We restate
this corollary in the form we need.
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LEMMA 4.19. - Let g : Y-~Z be as in 4.13. Let A* be ample
on Z, let A = g*(A*). Assume that D + mA) ) is

generated by its global sections on some nonempty open subset of Z. Then
+ D + (m - 1)A) is weakly positive on Z.

Proof. We shall closely follow the proof of the same Corollary 5.2,
where D is empty, in [Vi83]. The proof in fact reduces to add D everywhere
in an appropriate way.

Observe also that the proof given there uses only the fact that

g*(Ky/z) is weakly positive when Y is projective. The case when Y is
Kahler can be obtained from the different proof of this fact sketched in

[Vi86], based on [Ko86] (see the references in [Vi86] for more details),
because it uses only the Hodge-theoretic result due to P. Deligne that
holomorphic forms with logarithmic poles on a compact Kahler manifold
are d-closed.

Take now L + D + A. Define next,

Assume that the base locus of mL - (m - I)D does not contain any
component of D. We can of course always easily reduce to this case, by
diminishing the relevant dj’s, without modifying the conclusion.

We now reproduce, in its great lines, the proof of the Corollary 5.2
in [Vi83]. Blowing up Y if needed, we can assume that M is a line bundle,
and that mL = mM + E + (m - I)D, for E an effective divisor on Y,
not containing any component of D, such that E + D has a support of
normal crossings. By hypothesis, NIVl is generated by global sections over
a nonempty Zariski open subset of Z.

Observe next that, by an easy lemma, if V is a subsheaf bundle of

+ D - E, and E’ - E an effective divisor, then g* (V) = g. (V(E’)).
Restrict indeed to a generic fibre of g. Then a section of Y(E’), being
a section of mKy/z + D, must vanish at the generic point of E to the
appropriate order.

We first treat the case in which m &#x3E; dj, Vj E J. The Corollary 5.1 of
[Vi83] then applies without any change and shows that the subsheaf
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is weakly positive, where

the integral part of a Q-divisor being computed just by taking the integral
part of the coefficients, componentwise.

From the constructions made, we see that

and that they coincide over the generic point of Z. Indeed, we compute
right below that the sheaf on the right is nothing, but + D.

Thus the observation above applies, with Tl = g*(Ky/z + L(’-’)), and
E’ :- [(m - to give the conclusion.

The sheaf on the right is thus weakly positive, too. Computing, we
get

as desired. This ends the proof of the special case considered.

When dj = m for certain components Dj of D, so that D = D- 
each component Dj of D- having dj  m, one just needs to replace Ky/z
by Ky / z + ~ in the above proof, using the fact that g,, (Ky/z +,A) is weakly
positive on Z, by [Ka81] Theorem 32 (which can be proved also using the
above result of Deligne in the Kahler case). D

5. Geometric consequences of additivity.

This fifth chapter contains the geometric consequences of the orbifold
additivity result (Theorem 4.2). We show that manifolds with K = 0
are special (5.1), the Albanese map of a special manifold is surjective,
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connected, and has no multiple fibres in codimension one (5.3). We also
show (5.5 (resp. 5.7)), that the essential dimension ess(X) :== dim(C(X))
of X is equal to its dimension dim(X) (resp. to dim(X) - 1) iff X is of

general type (resp. iff X has a fibration of general type with generic fibre
a curve either rational or elliptic).

These are two special cases of the "decomposition theorem", which
states that the core of X is a fibration of general type, if X is not special.
This theorem is established in (5.8). We also show that the decomposition
theorem implies the invariance of the essential dimension under finite etale
covers, in particular that such covers of a special manifold are still special.
We finally observe (see subsection 5.6) that the decomposition theorem
asserts that any nonspecial X has a (unique) fibration both special and of
general type, and a unique maximum Bogomolov sheaf.

We then show, as another application of 4.2, the second construction
of the core "from below" , as the "highest general type" fibration on a given
X. This proof is much shorter, but less geometric, than the one given in
Section 3.

We then show, although it is not used in the present paper, that the
Stein factorised product of two fibrations of general type is itself of general
type (1)

5.1. Varieties with 

The second fundamental example of special manifold is given by the
following theorem.

THEOREM 5.1. - Assume X E C has ~(X ) = 0. Then X is special.

Proof. This is an immediate application of Theorem 4.2. Let indeed
f : X ~Y be a fibration of general type. Then the results apply and give
K(X) &#x3E; x(Xy) + dim(Y). But dim(Y) &#x3E; 0, by hypothesis, and 0.

Contradiction. D

(1) Maybe surprisingly, this does not seem to have been noticed, or even conjectured
since [Bo79] that one could so naturally define a fibre product of two Bogomolov sheaves,
although the techniques used in the present paper are available since two decades. This is
probably because the question is immediate if one starts from the geometry of orbifolds
and general type fibrations, but hidden if one starts from the sheaves, or even from the
associated fibrations, without the geometric leading thread of multiple fibres.
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Remark 5.2. - This theorem together with Theorem 2.27 shows that
X has no Bogomolov sheaf if K(X) = 0. Actually, it is expected that
~+ (X ) = 0 if K(X) = 0 (see [Ca95] for details and definitions). This equality
is shown for X projective, or Kahler, using Yau’s results, if cl (X ) = 0.

5.2. The Albanese map.

The following result uses indirectly only the easiest part of the

Additivity Theorem 4.2. It nevertheless seems to belong to this section.

PROPOSITION 5.3. - Let X E C be special. Let ax : X --~Alb(X)
be the Albanese map of X. Then is surjective, connected, and has no

multiple fibres in codimension one, that is A(ax) is empty.
If X is only w-special (see Section 9.4 below for this notion), then ax

is surjective and connected.

Proof. Assume :== is not onto. Let Z c Alb(X) be its

image. After [Ue75], (10.9), there exists a fibration g : Z-W with W
of general type. Let 0 : X-W’ and a : W’-*W be the Stein factorisation
of 0 o a-a o 0. Then W’ is of general type, too, since a is finite. This

contradicts the fact that X is special. Thus a is onto, and Z = Alb(X).
Let now cx = ~3 o a’ be the Stein factorisation of cx, with cx’ : X-A’

connected and /3 : A’--+Alb(X) finite. A slight variation of the arguments
of [K-V80] shows that if /3 is ramified, there exists a fibration 0 : A’--~W’,
with W’ of general type. Considering cp 0 a’, we get as above a contradiction
to the fact that X is special. Thus /3 is unramified, hence isomorphic, by
the universal property of a, which is thus connected and onto.

Assume now that the fibration a : X--+Alb(X) has 0(a) nonempty.
Let A be any component of There exists a connected submersive

quotient map q : Alb(X)--+A := Alb(X)/B, for some subtorus B of Alb(X),
such that 0 = for some big Q-divisor D C A.

Consider the fibration f : q o X-A. The support of C A

obviously contains D. We conclude from 1.14 that f is of general type, since
KA is trivial and D is big on A. Again this contradicts the assumption of
X being special. And concludes the proof if X is special.

If X is only w-special, the first two steps of the proof apply without
any change to give the last assertion. D
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Question 5.4. - Let X E C be a special manifold. Are then the generic
fibres of ct x special?

One can easily show that this question has a positive answer if so does
the conjecture Cnrm.

5.3. Varieties of general type.

Although the results of this section are easy consequences of the main
result 5.8 below, we give a direct proof.

THEOREM 5.5. - For any manifold X E C, we have ess(X) = dim(X)
if and only if X is of general type.

In particular, X is generically covered by a nontrivial family of special
submanifolds, the fibres of cx, if X is not of general type. The case when

k (X) &#x3E; 0 is clear, by Theorem 5.1 applied to the fibres of the Iitaka-
Moishezon fibration of X. So the result applies nontrivially only when

K:(X) == -oo, and its proof gives the following.

THEOREM 5.6. - Let X C C be such that ~(X ) _ -oo and dim(X) &#x3E; 0.

Then cx : X --+ C(X) has a general fibre F which is special of positive
dimension, with r~(F) _ -oo.

The proofs are easy applications of Theorem 4.2.

Proof of 5.5. - Assume first that X is of general type. So the identity
map idx of X is a special fibration of general type. It is thus the core by
3.12.

Conversely, assume that ess(X) = dim(X), or what is the same, that
cx - idx, and that n := dim(X) &#x3E; 0, so that X is not special.

There exists then a fibration of general type f : X ~Y, with m :=

dim(Y) &#x3E; 0. We proceed by induction on n &#x3E; 0. So the assertion holds for

manifolds of dimension smaller than n.

If F is a general fibre of f, then F is of general type. Indeed, otherwise,
we could construct a relative core for f, by Proposition 2.8 in [Ca04], and
deduce a nontrivial fibration on X with general fibre special, contradicting
our initial hypothesis.

Thus F is of general type. But now f is a fibration of general type
with general fibre itself of general type. By Theorem 4.2, we get that X is
of general type, as claimed. D
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Proof of 5.6. - We proceed by induction on n . := dim(X) &#x3E; 0,
assuming that X is not special. There exists then a fibration of general
type f : X --+ Y, with dim(Y) &#x3E; 0 and a factorisation f = cx o g, for a
certain fibration g : C(X) 2013~ Y. We get first from the preceding result that
dim(Xy ) &#x3E; 0, otherwise K(() = n . Assume 0. From Theorem

4.2 again, we learn that K(X) = -oo &#x3E; dim(Y) + I’B:(Xy)  dim(Y) &#x3E; 0.
Contradiction. Thus K(Xy) = -oo. Because of the functoriality properties
of the core, the restriction of cx to the general fibre Xy of f is the core of
Xy. Thus, by the induction hypothesis, ~(F) 1= -oo, F being the general
fibre of the core of X. D

In a similar way, we can get a very simple description of the next step,
ess(X) = dim(X) - 1. (See Section 6.5 for the general version of the next
Theorem 5.7).

THEOREM 5.7. - Let X C C be a manifold of dimension n &#x3E; 0. Then

ess(X) = n - 1 if and only if one of the following two cases occurs.

(a) ~ ( X ) = n - 1 and Jx is a fibration of general type.

(b) The rational quotient R(X ) of X is of dimension n - 1 and of general
type.

Proof. The fact that cases (a), (b) imply that ess(X) = n - 1 was
already shown in 3.16. So assume cx : X --+ C(X) has n - 1-dimensional
image. Let F be the generic fibre of cx . It is a special curve, hence rational
or elliptic.

If F is rational then C(X ) = R(X), by the fact that rX dominates
cx (see 3.24). Thus R(X) is n - 1-dimensional. Moreover, we get from 3.9
that R(X) is Moishezon, and so also X is Moishezon, by [Ca85].

Because C(R(X)) = C(X), by Theorem 3.26, which applies because
X is Moishezon, we conclude that idR(X), and so by the preceding
Theorem 5.5, we infer that R(X) is of general type, as claimed.

Next, if F is elliptic, then cx = Jx, because Jx dominates cx, and is
obviously dominated by cx if K(X) &#x3E; 0. We show the result by induction
on n &#x3E; 2, the case of curves being obvious.

Thus X is non-special, by assumption. Let f : X --+ Y be a fibration
of general type, and let F be its general fibre. By 2.6, we have a factorisation
f = cx o g, for a certain fibration g : C(X) --+ Y.
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Moreover, because of the functoriality properties of the core, the
restriction of cx to the general fibre Xy of f is the core of Xy. The
induction hypothesis thus applies to Xy, and we get that K(Xy ) = d - 1 if
d := dim(Xy), and also that JXy, which is the restriction of cx to Xy, is a
fibration of general type.

We are thus in position of applying Theorem 4.2, since f is of general
type. We get first that K(X) = + dim(Y) = n - 1.

Then, because the general fibres Xy of f have nonnegative Kodaira
dimension, we get also from Theorem 4.2 that Jx is of general type, since
so is its restriction to the general fibre of f. D

5.4. The decomposition theorem.

This is the following asssertion, which motivates most of the present
paper.

THEOREM 5.8. - Let X be non special. Then cx is a fibration of

general type.

Roughly speaking, this means that X "decomposes" into its "special
part", the fibres of cx, and its "core" or "essential part", the orbifold

which is either a point, or of general type. Hence the name.
The Decomposition theorem can also be restated in the following form. Any
X E C has a fibration both special and of general type. This fibration is
unique, and it is the core of X (apply 3.12 to see the last two assertions).

Proof of Theorem 5.8. - Proceed by induction on d := ess(X). When
d = 0, the result trivially holds. So assume it does when ess(F)  d. Assume

that ess(X) = d &#x3E; 0. By assumption, X is not special. So let f : X --+ Y be
of general type. We have, by Theorem 2.6, a factorisation Y : C(X) --+ Y
of f = y o cX.

By the characteristic property of the core, the restriction of c x to the
general fibre Xy of f is the core of Xy. Otherwise X would contain special
subvarieties strictly larger than the generic fibre of cx, a contradiction.

By the induction hypothesis, we conclude that the restriction of cx
to the general fibre Xy of f is a fibration of general type.

We conclude from Theorem 4.2 that cx itself is a fibration of general
type, as claimed. D
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Remark 5.9. - We already showed some cases of the preceding Theo-
rem 5.8.

(1) Up to dimension 3 as a byproduct of the description of the core given
in low dimensions.

(2) When X is of general type, and when ess(X) = dim(X). In this last
case, showing that X is of general type is actually the same as showing
the Decomposition theorem in this case. The crucial step was actually
applying 

(3) Exactly the same remarks apply to the classification of the cases in
which ess (X ) = n - 1.

(4) We shall show below two consequences of the Decomposition Theo-
rem, that C(X) is Moishezon, and meromorphic multisections of cx
are of general type.

THEOREM 5.10. Let X E C, and let ax i X--4Alg(X) be its

algebraic reduction. There exists a factorisations Alg(X) --~ C(X) of
cx = ~ o a. Alternatively, C(X) is Moishezon.

Proof. By Theorem 2.39, the general fibre of aX is special. 0

Let us now establish the following weak version of the Decomposition
Theorem (2.11 shows that it is a consequence of this result).

PROPOSITION 5.11. Let j : : Z -- + X be a meromorphic map such
that cx o j : Z --~ C(X) is surjective and generically finite, cx : X-C(X )
being, as usual, the core of X E C. Then Z is a variety of general type.

Proof. By the functoriality of the core, and the surjectivity of
cX o j, we get the existence of a factorisation cj : C(Z) --~ C(X). Because
CX o j = cj o cz is generically finite, so is cz. The claim thus follows from
Theorem 5.5. 0

5.5. Finite 6tale covers.

Let us indicate that the Decomposition Theorem implies the inva-
riance of ess(X) under finite 6tale covers.

THEOREM 5.12. - Let X E C be smooth and let u : X’-X be a

finite 6tale cover. Let cu : C(X’) --~ C(X) be the induced map. Then cu is
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generically finite. In particular, ess(X) is invariant under finite 6tale covers,
and a finite 6tale cover of a special manifold is special.

Remark that the proof of this seemingly easy statement requires here
fairly deep tools. It would be interesting to know if there is an easy proof
of it. (Notice that the proof shows that cu is just the finite part of the Stein
factorisation of c x o u).

Proof. We can assume that u is Galois, of group G. Due to its
uniqueness, the map cx, is G-equivariant for an appropriate action of G
on C(X’). Let h : C(X’) --~ C’(X) be the G-quotient. We have natural
maps e’x : : X --+ C’(X), by G-invariance, and v : C’ ( X ) -- ~ C ( X ) , since
the fibres of c~, as images of those of by u are special. Moreover,
c x = v o C, , by the general properties of c x .

By the Decomposition Theorem, cx, is a fibration of general type.
And so c &#x26; is also of general type, by 1.8. From 2.6, we infer the existence
of a factorisation w : C(X) --+ C’(X) such that c% = w o cx. Thus
C’ (X ) = C(X), and h = cu is a finite map. D

5.6. Essential and Bogomolov dimensions.

DEFINITION 5.13. - For X E C, let

B(X) :- max{p &#x3E; 0, such that there exists a Bogomolov sheaf F C 

if there is no Bogomolov sheaf on X, define B(X) :- 0.

From 2.27, we see that B(X) - 0 if and only if ess(X) = 0. In general,
we have the following.

COROLLARY 5.14. - For any X E C, we have ess(X) = B(X).

Proof. Let F be any Bogomolov sheaf of dimension p &#x3E; 0 on X.

The associated fibration is thus of general type, and so dominated by cx.
Thus ess(X) &#x3E; p. Conversely, because cx is a fibration of general type, the
Bogomolov sheaf associated to it has p = ess(X). Hence the equality. 0

Let us say that if F, G are Bogomolov sheaves on X that F dominates
G if the fibration f of general type associated to F dominates the fibration

g of general type associated to G.
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Remark 5.15. - The Decomposition Theorem may then be restated
in the following form. For any X E C, ess(X) = B(X), there exists on X a
unique maximum Bogomolov sheaf, and it is defined by the core of X.

5.7. Construction of the core

as the highest general type fibration.

We sketch here a second, shorter, construction of the core. It is more
abstract and less geometric, avoiding the consideration of chains of special
varieties.

THEOREM 5.16. - Let X E C. Then X admits a fibrations both of

general type, and special. This fibration is unique up to equivalence. It is
the core of X.

Proof. Everything is clear from 2.6, once the existence is known.
We proceed by induction on dim(X) = n. If X is special, we are finished.
Otherwise, there exists a fibration f : X --+ Y of general type, and with

dim(Y) &#x3E; 0 maximum among such fibrations.

If the general fibres of f are special, we are again finished. Otherwise,
by the uniqueness of the core, we can then construct a relative core, which
is a factorisation f = g o h, by fibrations h : X --+ Z and g : Z --+ Y, in
such a way that the restriction hy : Xy --+ Zy of h to the general fibre Xy
of f is the core of Xy, and thus a fibration of general type, by the induction
hypothesis, since dim(Xy) = dim(X) - dim(Y)  dim(X)).

But now, we see from 4.6 that h itself is of general type, because g o h
is, and also hy. But dim(Z) &#x3E; dim(Y), and this contradicts the maximality
of dim(Y). The fibres of f are thus special. D

Remark 5.17. - This proof was given in the very first version of this
paper, under the hypothesis that 4.6 should be true. Remark also that
property (2) of 3.3 can also be easily be proved, using 2.7.

Remark 5.18. - If Ess(X) is the essential algebra of X (see 3.5), its
Kodaira dimension is thus equal to: ess(X) .- dim(C(X)). We shall later
conjecture (see 6.23) that the graded algebra Ess(X) is finitely generated
and invariant by deformation of X.
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5.8. Fibre products.

We answer here the question 2.33, although it is not used in the present
paper.

THEOREM 5.19. - Let X E C, and f : X --+ Y, g : X --+ Z be two
fibrations of general type. Let h : X --+ W be the connected part of the
Stein factorisation of the product map f x g : X --+ Y x Z. Then h is a
fibrations of general type.

Proof. This is an immediate generalisation of the argument in
the classical case, when Y,Z are themselves of general type. Indeed, let
g’ : W--+Z and f’ : W ---~ Y the fibrations such that f - f’ o h and
g = g’ o h. By the equality, deduced from 4.2,

we just need to check that the restriction of g’ : Xz -- + Wz is of general type,
for z general in Z. Observe the statement is bimeromorphically invariant.
We thus assume that Z is projective (it is certainly Moishezon, since g is of
general type). Take S C Z be an intersection of generic hyperpane sections
such that (g’)-1 (S’) .- T C W is mapped surjectively and generically
finitely onto Y by f’. Let V : = h-1 (T ) C X. The restriction f v : V --.. Y of
f to V has thus the restriction hv : V --+ T of h to V as Stein factorisation.
It is thus a fibration of general type, by 2.10.

If g’ : T 2013~ S has positive-dimensional fibres, the conclusion follows
from 2.13. If not, this means that g dominates f, in which case the assertion
is trivial. 0

6. The decomposition of the core.

This sixth chapter establishes the canonical and functorial decom-

position of the core as a tower of fibrations with orbifold fibres either K-

rationally generated, or with r, = 0.

Orbifold Iitaka-Moishezon fibrations ~2&#x3E; are defined without difficulty
as in the non-orbifold context, by simply considering the orbifold canoni-

(2) Usually called Iitaka fibration. The construction obtained independently by B.
Moishezon [Mois] remained apparently unnoticed.
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cal bundle (see Section 6.3). We denote the Iitaka-Moishezon

fibration of the orbifold (Y/D) .
The orbifold rational quotients have a more involved construction. In

order to avoid any conjectural statement, we are lead to give a definition
based on a refined Kodaira dimension similar to that introduced in [Ca95],
and not on the geometry of rational curves. But once this is done, the

decomposition is easily seen to exist and to be uniquely defined at each
step.

To make this definition, we first start in 6.1 by defining and comparing
some orbifold variants of the notion of rational connectedness. One of them,
called ~-rational generatedness, turns out to give a good substitute of the
notion of rational quotient in the orbifold context. Under the Conjecture
6.5 that orbifolds with negative Kodaira dimension should be uniruled by
orbifold rational curves, K-rational connectedness is equivalent to rational-

generatedness and to compound rational-connectedness (see 6.11). Notice
however that [G-H-S01] fails in the orbifold context, as shown by Example
6.13. So that in order to restore some version of rational-connectedness,
one had to rely on a weaker notion than orbifold rational curves.

In Section 6.2, the orbifold rational quotient r(y/ D) of an orbifold

(Y/D) is defined. It is, roughly speaking, the unique fibration f on (Y/D)
with general orbifold fibres ~-rationally generated, and orbifold base of
non-negative Kodaira dimension.

In Section 6.4, we show that the orbifold rational quotient r f and

Iitaka-Moishezon fibration when applied to the orbifold base of a special
fibration f : X --~ Y, produce again special fibrations r f o f and Jj o f.

This preservation property immediately leads in Section 6.5 to the
expected decomposition of the core in the form cx = (Jor)~ of iterated
orbifold rational quotients and Iitaka fibrations. This result is crucial,
because it shows that special manifolds are exactly the compounds 0

and K-rationally generated orbifolds. And specialness simply appears as the
orbifold combination of the first two terms of the fundamental trichotomy
of algebraic geometry.

Finally, in Subsection 6.6, we conjecture the deformation invariance
of all the invariants introduced in the course of this decomposition. In

particular, ess(X) and the essential algebra should be invariant under

deformation, and deformations of special manifolds should remain special.
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6.1. Orbifold rational connectedness.

We consider in this section an orbifold (Y/D) with Y E C compact
smooth and D an orbifold divisor of normal crossings on Y. We define
several variants of rational connectedness, directly adapted from the non-
orbifold case.

If g : (Y/D)-Z is a fibration, we define its orbifold base (ZIA (g, D))
as in Section 1.6. If 9 is only meromorphic, we replace (Y/D) by a terminal
modification p : (Y’/D’)-(Y/D) such that g’ := g o it is holomorphic,
and then define the orbifold base of 9 to be that of g’. We then define

g, D) as the minimum of the Kodaira dimensions of the orbifold bases
so obtained.

The orbifold general fibre of 9 : (Y/D)-Z is defined as the orbifold
(Yz/Dz), with Yz the general fibre of g, and Dz := i* (D), where i : Yz -Y
is the inclusion map.

An orbifold rational curve on (Y/D) is an irreducible rational curve
C on Y such that K6 -+- 8(n*(8-1(D)))) == -oo, where n : is

the normalisation map, and 8 is the operation which sends any effective

integral divisor where the mj’s are positive integers
and the Dj’s prime distinct divisors, to the orbifold divisor D := 8(D*) :==

1/mj)Dj. Of course, 0-’ is the inverse operation, sending an
orbifold divisor D to its associated integral D*. Notice that n*(D) 7~
6(n*(E)-’(D))), unless C meets IDI transversally.

DEFINITION 6.1. - We say that (Y/D) is:

(1) Uniruled if it is covered by a family of curves, whose generic member
is an orbifold rational curve,

(2) Rationally connected if two generic points of Y can be joined by a
chain of orbifold rational curves,

(3) Rationally generated if, for any fibration g : (Y/D) --+ Z, the orbifold
base of some, or any, holomorphic model of g is uniruled (taking
g = idly : (Y/D) itself is then uniruled),

(4) ",,-rationally generated if, for any fi bration g :
-00.

We note, as usual, for short: R.C (resp. R.G; resp. k-R.G) for ratio-
nally connected (resp. rationally generated; resp. K:- rationally generated).
Notice that R.G was introduced in [Ca95] in the non-orbifold context, and
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that the notion of ~-rational generatedness is directly inspired from the
definition of ~+ in the same paper. Actually, one can even define:

DEFINITION 6.2. For (Y/D) as above, defines :=

where g runs through all fibrations g : as

above.

Then ~-rational generatedness is defined by the equality K+ = -00.

Remark 6.3. - One can also introduce in the orbifold case many
other invariants, based on the vanishing of holomorphic "covariant" tensors,
which conjecturally characterise rational generatedness. We do not do this
here, because one needs first to define these notions in the orbifold case.
So we introduced only the simplest one, ~+ .

One could, for example, define F) ~, where F
ranges over all rank one coherent subsheaves of Qo (log (D)), p &#x3E; 0, arbitrary.
See Section 2.9 for this notion. Another (presumably equal) variant of
orbifold rational connectedness would be defined by /~+(y/D) = -oo.

Standard arguments that we do not need to reproduce easily show the
following.

PROPOSITION 6.4. - For any orbifold (Y/D) as above, one has:

The reverse implications to (1) and (2) above depend on a positive
answer to the following fundamental conjecture.

CONJECTURE 6.5 Assume K(Y/D) = -oo.
Then (Y/D) is uniruled.

If this conjecture has a positive answer, then R.G and k-R.G are
equivalent properties.

Remark 6.6. - Conjecture 6.5 seems especially delicate, if true, in the
orbifold context. It is presently open even in the surface case dim(Y) = 2,
and seems to present great subtlety. It is similar to the case handled in

[K-MK97], of log-Del Pezzo surfaces with a reduced boundary D. But their
methods should apply to treat the above surface case.
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Weaker conjectures relate to algebraicity properties of ~ - -oo or
rationally generated orbifolds.

For example: assume that (Y/D) is rationally generated, with Y E C.
Is then Y Moishezon?

In the same vein, assume that K(Y/D) = -oo. Is then Y covered by
a family of non-trivial subvarieties? (Here non-triviality means that the
subvarieties have a dimension different from 0 and dim(Y)).

LEMMA 6.7. - Let r : (Y/D) ---~ Z be a fibration. Assume that:

for a general orbifold fibre of r, and:

if (Z’/D’) is the orbifold base of g’ : Y’--~Z’, for
some holomorphic representative g’ of g.

Then -oo.

Proof. Assume not. There would exist a fibration h : (YID) --+ V
such that the orbifold base of any representative of h had a non-negative
Kodaira dimension. Because the orbifold fibres of r have ~+ == -oo, this

would imply the existence of a factorisation 0 : : Z -- + V of g = 0 o g,
by Lemma 6.9 below. But then we have a contradiction to the fact that

~+ (Z’/D’) _ -oo, by Lemma 6.10.

LEMMA 6.8. Let g : be a fibration, and j : Z’--+Y be
such that g o j : Z’-Y is generically finite and surjective. Assume that j
is in general position with respect to g, which means that the intersection

of j (Z’) and E is transverse at its generic point, for each component E
(This condition is satisfied for the generic fi bre Z’ of any

Ebration h : Y-T, if dim(T) &#x3E; 0). Then K(Z’ID’) -&#x3E; K(Y/,A(g, D)), if
D’ := j * (D) .

Proof. By the transversality assumption, we have, above the gene-
ric point of any irreducible divisor L of Z:
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in the usual notations. If we write, for each j,
the coefficient (possibly (

is then defined by (
easy computation, based on the inequality n

above the generic point of L. The assertion is then obvious. D

LEMMA 6.9. - Let g : and h : (Y/D)-T be fibrations
such that 0. Then 0, if (Yt/Dt) is the orbifold
general fibre of h.

Proof. Assume first that T is projective. By taking intersections
of ample divisors in T, and their inverse images in Y, we can reduce to
the case where the resulting Y’ C Y is mapped generically finitely onto Z
by g. By the preceding lemma, we conclude that /~(Y~/D~) ~ 0. From the
easy addition theorem, we conclude that the generic orbifold fibre of h has
K &#x3E; 0. The non-projective case can be obtained by using the arguments
of 2.15. D

LEMMA 6.10. - Let f : and g : Z-T be tuTo fibrations.

Then A ((g o f ), D) = A (g, 0( f, D)), on suitable bimeromorphic models of
f and g.

Proof. It is exactly the same as that of 1.33. D

An immediate consequence of 6.7 (see [Ca95] for the non-orbifold

version, with the same proof) is the following.

COROLLARY 6.11. Assume Conjecture 6.5 holds. For any orbifold
(Y/D), the following three properties are equivalent:

(3) (Y/D) is compound rationally connected, which means that there

exists a sequence of fibrations ri : (i = 0,1, ..., m) such that
Yo = (Y/D), is a point, and the orbifold fibres of each of the ri is

R.C, the orbifold structure on being defined inductively as the
base orbifold of ri : 
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Remark 6.12. - One knows from [G-H-S01] that the reverse implica-
tion to 6.4 (3) holds in the non-orbifold context. So it is natural to ask if it
still holds in the presence of orbifolds divisors. This is not the case, as the

simple example below shows.

Example 6.13. - Let
rani &#x3E; 3, m2 = ~3 =1/2, and each D~ is a generic divisor of bidegree (1, d),
d &#x3E; 3. Let g : Y-Z = P’ be the first projection. Its orbifold fibres are
all orbifold rational curves (because I/m + 1/2 + 1/2  2). Elementary
arguments however show that every orbifold rational curve on (Y/D) is a
fibre of g, although -oo.

Remark 6.14. - Another natural question in this context is whether
the "glueing Lemma" of [K-M-M92] extends to this context. For example,
can one add to an orbifold rational curve C’ in (Y/D) sufficiently many
"free" orbifold rational curves if (Y/D) is uniruled, in such a way that the
union deforms to an irreducible orbifold rational curve?

We shall now justify the introduction of the notion of ~-generatedness,
by showing that it permits to define the notion of K-rational quotient (even
in the orbifold case) without solving Conjecture 6.5 above.

6.2. Orbifold ~-rational quotient.

We are now in position to define orbifold ~-rational quotients.

THEOREM 6.15. - Let (Y/D) be an orbifold, with Y E C, as al-

ways. There exists then, up to equivalence, a unique fibration ry/ D :
Y --+ R(Y/ D) = Z such that:

(1) the general orbifold fibre (Yr/Dr), r E R(Y/D) of RYID has

We call ry / D the orbifold k-rational quotient of (Y/D).

Proof. Uniqueness. Assume there exists another fibration h :

Y --~ Z’ with the same properties. The fibres of ry~D have r,+ - -oo,
and so must be mapped to points by h. Thus Z dominates h. And conver-

sely. Thus h = ry / D .
For the existence, let g : (Y/D) --&#x3E; Z have general fibres with

K+ = -oo, with dim(Z) minimal among g’s with the preceding property.
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If 0, where Dg, is the orbifold base of g’, an arbitrary
holomorphic representative of g, we are finished. Otherwise, arguing by
induction on dim(Y), there exists a fibration s : (ZjDg) --+ V such that
dim(V)  dim(Z), and such that the general orbifold fibre of s has

K+ = -oo. But then, from the above Lemma 6.7, we conclude that the
general orbifold fibre of s o g has also ~+ - -oo, thus contradicting the
minimality of dim(Z). D

6.3. Orbifold Iitaka-Moishezon fibration.

The Iitaka-Moishezon fibration of an orbifold (Y/D) as in Section 6.1
above can be defined without difficulty by considering the linear system
ImKy/Dl for m sufficiently big and divisible. We shall then denote by
Jy~D : (Y/D) --+ J(Y/D) the resulting Iitaka-Moishezon fibration. By the
usual properties of Iitaka fibrations, one has 0, for its general
orbifold fibre.

6.4. Special fibrations.

We describe in this and the next section an alternative construction of

the core of an arbitrary X, along the program described in the introduction.

The idea is quite simple. Assume we have a special fibration f :
X--+Y. We try to understand the obstructions to constructing a non-
trivial h : Y --+ Z such that g .- h o f : X --+ Z is still special, this in
terms of the invariant f ).

If f is of general type, h does not exist, because then f is the core of
X, by 3.12. We shall see that this is in fact the only obstruction.

The other possibilities can actually be reduced, as in the classical
Iitaka-Moishezon classification Program, to the cases K = 0, or -oo, using
the orbifold Iitaka fibrations and K-rational quotients introduced above.

So, we consider in the sequel a special fibration f : X --+ Y, with
X E C. For a suitable admissible model of f, let the orbifold (Y/D), be

Let r f : Y --~ R(Y/D) - Z be its orbifold ~-rational quotient. We
thus have 0, if (Z/Dz) is the orbifold base of r f. We call r f
the rational reduction of f. It is the identity map of Y if ~(Y, f ) &#x3E; 0.
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We are thus in position to define- J B-I-z-,, I I -/ , , - , ,

the Iitaka fibration of (Z/DZ). We call the Iitaka reduction of f.

Notice that the general orbifold fibre of r f (resp. J f ) has 
= 0), and that dim(J(Z/Dz)) = K(Z/Dz).

We next define s

special reduction of f.

As a consequence of the Theorem 6.16 below, we also define rs f :=
and call it the reduced special reduction of f.

If the context is clear, we write r, J, Jor instead of r f , J f , Sf = J f o r f .

THEOREM 6.16. - Let f : X --+ Y be a special fibration, with X E C.
Then X is special if either

Proof. We first establish (i). This follows from 4.2 and its corol-
laries. Assume indeed X were not special. By 2.6, there would exists a
fibration g : Y --+ Z such that g o f : X --+ Z were of general type. But
then, we would have 0, because ~(Y, f ) = 0, by the easy ad-
dition theorem and thus 0 = K (Y, f) _ ~(Yz, fz) + dim(Z) &#x3E; dim(Z) &#x3E; 0.

Contradiction, and (i) is true.

To prove (ii), simply assume X were not special. Then there would
exist h : X - - + V of general type. By 2.6, we had a factorisation cp : Y 2013~ V
of h = 0 o f . But then, on suitable models, we had A (h - 0 o f = 0(~, D),
contradicting K+ (Y/D) = -oo. D

COROLLARY 6.17. - Let f : X --+ Y be a special fibration, with
X E C. Then

(i) r f o f is a special fibration,

is a special fibration,

(iii) rs f is a well-defined fibration, up to equivalence.

Proof. This is simply because the restriction of f to the general
orbifold fibre of r f o f has orbifold base the corresponding fibre of r f ,
which is an orbifold with x+ = -oo, by construction. Then Theorem 6.16

(ii) applies to give the conclusion. The same argument shows (ii), replacing
f by r f o f, r f by J f , and Theorem 6.16 (ii) by Theorem 6.16 (i). Then
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(iii) follows, because g := s j o f is a special fibration, so that rg = is

well-defined. D

6.5. The decomposition of the core.

Let f : X --+ Y be a special fibration, with X E C. Define inductively,
0, a descending sequence of special fibrations s f : X 2013~ and

rs f : by the following.

We call s1 (resp. the kth-special reduction of f (resp. the kth-
reduced special reduction of f ) .

When f - idx, which is indeed a special fibration, we write s1 =
(J o r) ~, rs1 = r o (J o r) ~ and instead of s1, rs1
and and speak of the special reductions of X.

From this we immediately deduce the following theorem, by applying
the above iteration starting with f := idx, the identity map of X, thus
getting the sequence of kth-special reductions of X.

THEOREM 6.18. Let X E C and n := dim(X). Then (J o 
ex, the core of X.

Of course, in general, the sequence of fibrations s1 will be stationary
before its nth-term is reached.

DEFINITION 6.19. For X E C 0, define :=

and Define also A(X) as the smal-
lest I~ &#x3E; 0 such that = 

These are new bimeromorphic invariants of X. We call the kth-

special dimension of X, the reduced kth -special dimension of X , and
A(X) the special length of X. Standard easy arguments give the following
proposition.

PROPOSITION 6.20. - Let X E C. The following holds.

(1) The invariants and are invariant under finite etale co-

vers u : X’--&#x3E; X of X. The same holds for the associated fibrations,
that is s1, (resp. is the (connected part of the) Stein factorisa-
tion (resp. o u).
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(2) The fibrations and are functorial in X, i.e. a dominant me-

romorphic map g : X --+ X’ induces natural dominant meromorphic
maps between the corresponding Sk ’s and RSKS.

One has next the following "strictness" property for the core decom-
position, which we quote without proof.

THEOREM 6.21. - Let X C C, and 0 be integers. Let S

(resp. R) be the general fibre of s j/ (resp. The restrictions of and

to Sand R coincide respectively with ss, rs S sR and rsR.

Remark 6.22. - The sequence of (2n + 2) integers

partitions the class of n-dimensional manifolds in C into a certain finite
number c(n) of classes, according to the number of steps and the dimensions
of the steps needed to decompose the core in orbifold rational quotients
and Iitaka fibrations. One has for example c(O) = 1, c(l) = 3, c(2) = 8
and c(3) = 21, by direct listing. The sequence c(n) satifies c(n + 1) =
4c(n) - 4c(n - 1) + c(n - 2). From which one gets, for any n &#x3E; 0,
c(n) = on+l)/-~,f5, with a := (3 + v~5/2), and ,C3 := (3 - B/5/2).

6.6. Deformation invariance.

We next state the following conjecture, for X c C smooth.

CONJECTURE 6.23 (Deformation Conjecture). - The integers A(X),
and for X compact smooth and Kähler, and all k &#x3E; 0,

are deformation invariants of X. Moreover, the corresponding fibrations

8k and vary holomorphically with X, on suitable models (ie: the
(bimeromorphically well-defined) family of fibres of cx should deform with
X).

In particular, ess(X) is a deformation invariant of X, and the class of
special manifolds is stable under deformation.

We state separately the next conjecture:

CONJECTURE 6.24 (Deformation and finiteness Conjecture). - For X
compact, smooth and Kahler, the graded Essential Algebra Ess(X) of
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X (see 3.5) should be finitely generated and invariant by deformation of
x E c.

Even weaker versions of the forelast statement are difficult: is ess(X)
upper or lower semi-continuous under smooth deformations? Is it lower

semi-continuous under degenerations?

The following is important and maybe accessible: is a degeneration
of special manifolds still special, in the sense that all of its irreducible

components are special?

The preceding conjecture extends the classical conjecture concerning
the deformation invariance of the Kodaira dimension for compact Kahler
manifolds. Notice that this is the case for k = 0, and in the projective case,
and deformation among projective manifolds, for by the invariance of

plurigenera, due to Y.T. Siu ([Si98],[Si02]).
Of course, one could still extend the preceding conjectures to the

category of orbifolds, appropriately defined.

7. The fundamental group.

In this §7, we consider the fundamental group, and conjecture ("abe-
lianity conjecture" 7.1) that a special manifold should have an almost abe-
lian fundamental group. This conjecture is supported and motivated by
the fact that rationally connected manifolds are simply connected, that
this conjecture is standard for the case /-. = 0, and the preceding conjectu-
ral orbifold decomposition of any special manifold as a tower of fibrations
with fibres of one of these two types (in a slightly generalised sense). This
conjecture seems to sum up all conjectures with the same conclusion.

We show that this conjecture is true for linear and torsionfree solvable

representations of the fundamental group, as an immediate consequence of

previous results by various authors. As usual, we extend this conjecture to
the orbifold case, anyway necessary to solve the non-orbifold one in higher
dimensions.

7.1. The abelianity conjecture.

Our considerations here are guided by the following conjecture.
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CONJECTURE 7.1. Let X be special. Then WI (X) is virtually abe-
1i an.

Recall that a group is said to be virtually abelian (one also says almost
abelian) if it has a subgroup of finite index which is abelian.

This conjecture is motivated by the fact that it should be true for klt
orbifolds either rationally connected or with K = 0, and the fact that a
special manifold should be (after Section 6.5) a tower of orbifold fibrations
with orbifold fibres in the preceding two classes.

Examples 7.2. -

(1) Curves. A curve is special iff its fundamental group is virtually
abelian.

(2) Rationally connected manifolds. They have trivial fundamental
group and are special ([Ca94], [Ca95], [K-M-M92]).

More generally, if rX is the rational quotient of X (see 3.4), then
it induces an isomorphism between the fundamental groups of X and

R(X) by [Ko93]. So that X and R(X) are simultaneously special and
have simultaneously virtually abelian fundamental groups. The above

conjecture should thus essentially reduces to the case where /~(~C) ~ 0
if the uniruledness conjecture is true.

(3) Manifolds with a(X) = 0, or with ~(X ) - 0 are special, and
standard conjectures say they should have a virtually abelian fundamental
group. These conjectures are thus special cases of conjecture I above.

Notice that Conjecture 7.1 is established for manifolds with 
0, which are indeed special, and have almost abelian fundamental group, by
the Calabi-Yau theorem. This provides strong support for and motivates
the case where K = 0. See [Ca95] for another example of result supporting
Conjecture 7.1 in the case a(X) = 0.

(4) Surfaces and Threefolds. By 3.33 and 3.39, Conjecture 7.1 holds for
Kahler surfaces and projective threefolds 2, except maybe for the
ones with K = 2, and having a model of the Iitaka-Moishezon fibration with
orbifold base a log-Enriques or log-Fano normal surface. In this case, the
conjecture is open because of an insufficient knowledge of these orbifolds.

(5) Orbifold version. This case shows clearly that the solution of
Conjecture 7.1 above should be extended to the orbifold situation. Recall
that the fundamental group of (Y/0) is defined as the quotient of the
fundamental group of the complement of A in Y, modulo the normal
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subgroup generated by elements of the form Am’, where Aj is a small loop
winding once aroud ~ 1 So the right form of
the Abelianity conjecture is the following.

CONJECTURE 7.3. - Let (Y, 0) be an orbifold, with Y E C smooth,
and A of normal crossings. The fundamental group of (Y/0) is trivial if
(Y/A) is K-rationally generated, and almost abelian if (Y/A) is special.

Notice that a positive answer for surfaces solves the remaining cases
of the abelianity conjecture in dimension three.

(6) Manifolds with -Kx nef. These are conjectured to have a virtually
abelian fundamental group. This conjecture is thus also a consequence
of Conjecture 7.1 under a positive answer to the question asked above
of whether such manifolds are special. The main results concerning this
conjecture are in [D-P-S93], [D-P-S93], [Pa98] and [Zh96].

(7) Kahler manifolds X covered by Cd . These are special, by the results
of the next Section 8.2, and S. Iitaka conjectured them to be covered by
complex tori. Easy arguments show that this happens precisely if 7r, (X) is
virtually abelian. So this conjecture is also a special case of the abelianity
conjecture above.

7.2. Linear and solvable quotients.

Recall first (5.3) the following theorem.

THEOREM 7.4. - Let X E C be a special manifold. Let Qx :

X -~Alb(X) be the Albanese map of X. Then it is surjective, connected.
Moreover, Qx has no multiple fibres in codimension one.

Remark 7.5. - Due to 5.1, this extends and sharpens slightly a result
of [Ka81].

Remark 7.6. Assume that Conjecture 7.1 holds, or alternatively,
that X is special and has almost abelian fundamental group. Easy standard
arguments then show, using the surjectivity of the Albanese map and its
absence of multiple fibres in codimension one, that the universal cover
of X is holomorphically convex, in accordance with the conjecture of
Shafarevitch, and that its Remmert reduction makes it proper over an

affine complex space, which is the universal cover of its Albanese variety.
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Now using [CaOl] (see also [A-N99], [Be89] and [Sim93]), we get the
following result.

THEOREM 7.7. If X is special and if tt : is a surjective
morphism of groups, with G solvable and torsionfree, then G is virtually
abelian. We say that torsionfree solvable quotients of 7rl (X) are almost
abelian.

Proof. This is an easy consequence of 4.2’, which says that the
Albanese map of X is surjective and connected, and of corollary 4.2’ of

which says that if the Albanese map of X’ is surjective for any
finite 6tale cover X’ of X, then the conclusion of 7.7 is true for X. D

Remark this applies in particular when a(X ) - 0 (it is shown by a
different method in [Ca95]), and when K(X) = 0.

Now, using a result of [Zu97], itself based on results of N. Mok [Mo92]
(see also ~Si82~ ), and 7.7, we get the following theorem.

THEOREM 7.8. - Let X be special, and let p : 7rl C) be
a linear representation. Then G := Image(p) is virtually abelian. We say
that linear quotients are almost abelian.

So, counter-examples to Conjecture 7.1, if any, can’t be detected by
linear representations of their fundamental groups.

Proof. Let G’ be the Zariski closure of G. Replacing X by a suitable
6tale cover, we may assume that G’ is connected. We have an exact sequence
of groups

with S semi-simple and R solvable. Consider the representation p’ = a o p :
7f1 (X )-~,S’, where a : G-S is the above quotient. By [Zu97], thm. 5, p.105,
we get that S is trivial (i.e. reduced to the unit element). Thus G C R is
solvable, and can be assumed to be torsionfree, passing to a suitable finite
6tale cover, by A. Selberg’s theorem. The conclusion now follows from 7.7. D

Remark 7.9. - The above results 7.8 and 7.7 hold, more generally,
for w-special manifolds (see 9.4 below).

COROLLARY 7.10. Conjecture 7.1 holds when is linear (i.e.
has a faithfull linear representation).

An easy consequence of 7.8 is the following.
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THEOREM 7.11. Let X 6 C be covered by (Cd, with d := dim(X).
Assume that is either solvable, or linear. Then X is covered by a
complex torus (i.e. S. Iitaka’s Conjecture then holds for X).

Proof. We know that X is special by 8.2 below (one can also
get directly from [K-075] that X is w-special, which is sufficient for our
purpose). Thus 1rl(X) is virtually abelian by 7.7 or 7.8 above. Replacing X
by a suitable unramified cover, the conclusion thus follows from the next
Lemma 7.12. 0

LEMMA 7.12. - Let X E C be covered by (Cd, with d :== dim(X).
Assume that is abelian. Then X is a complex torus.

Proof. Let 0152 : X--+A be the Albanese map of X. By 4.2’, it is

surjective and connected. Let F be a generic fibre of 0152. It is sufficient to

show that dim(F) - 0, because X is covered by (Cd. Indeed, cx is then

birational. And so X contains a rational curve if a is not isomorphic. But
this rational curve would lift after normalisation to the universal cover of X.

A contradiction. Assume dim(F) &#x3E; 0. Then image (n1 (F) --+1rl (X)) would
be infinite, again because C~ does not contain positive dimensional compact
subvarieties. Because 1rl (X) is abelian, this implies by dualising that the
restriction map H° (X, is nonzero. A contradiction to the

fact that F is a fibre of a. D

8. An orbifold generalisation of Kobayashi-Ochiai’s
extension theorem.

In this section, we establish and apply an orbifold version (see (8.2))
of the famous extension theorem of Kobayashi-Ochiai ([K-075]), which
asserts that a nondegenerate (i.e. somewhere submersive) meromorphic
map 0 from a dense Zariski open subset U of a complex manifold V to
a variety of general type Y extends meromorphically to V.

Our version says this still holds true even if Y is not assumed to be

of general type, provided 0 factorises as 0 = f o ~, with f : X --+ Y a
fibration of general type, and 0 : U --+ X meromorphic.

The proof is an orbifold version of the proof of Kobayashi-Ochiai.
This result implies among other more general results that a manifold X
is special if there is a meromorphic nondegenerate map 0: C~ --+ X. If 0
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has dense image in the metric topology, the Kobayashi pseudometric of X
vanishes identically, and we get a case in which conjecture IIIH of §9 holds.

8.1. Statements.

The setting considered in all of this Section 8 is the following.

Notation 8.1. - Let V be a connected complex manifold, D a reduced
divisor on V, and U := V - D. Let 0 : U --+ X be a meromorphic map,
with X E C. We always assume 0 : - f o ~ : U - - + Y is nondegenerate (i.e.
has maximal rank p = dim(Y) somewhere). Let f : X --+ Y be a fibration,
with p := dim(Y).

Our main result is the following theorem.

THEOREM 8.2. - Let V, U, X, Y, 0, f be as above. Assume that f
is a fibration of general type. Then:

( a) 7/; extends meromorphically to 7/;’ : V --+ Y,

(b) for any m &#x3E; 0 sufficiently divisible and

1jJ* ( s) extends to (

Remark 8.3. - The result of Kobayashi-Ochiai is the special case
where X = Y, so that X is of general type.

The proof will be given in the next sections. It is just an orbifold
modification of the original proof of [K-075]. We shall first give some

applications of this result, which are criteria of a transcendental nature

ensuring that certain varieties are special.

DEFINITION 8.4. - Let U = V - D be the complement of a reduced
divisor D in the connected complex manifold V. Say that the pair (V, D)
is log-special if for p &#x3E; 0, there is no rank one coherent subsheaf L c

(S2y ) and no m &#x3E; 0 such that the complete linear system defined by
H°(Y, mL + (m - 1)D) is of general type (i.e. defines a meromorphic map
of maximal rank p).

As a first application, we immediately get from 8.2 the following
corollary.

COROLLARY 8.5. - Let U = V - D be the complement of the divisor
D in the connected complex manifold Y. Let 0 : U - - + X be nondegenerate.
Assume that the pair (V, D) is log-special. Then X is special.
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We now consider the case when V == X and D is empty. So the
extension part of 8.2 is certainly trivial. Observe that the pair (Y, D) :=
(X, o) is log-special precisely if there is no Bogomolov sheaf on X. We thus
recover one direction of theorem 2.27.

COROLLARY 8.6. - Assume that X has no Bogomolov sheaf. Then X
is special.

To get some concrete applications, we take more restrictive conditions
than log-specialness.

DEFINITION 8.7. - Let U = V - D be the complement of a reduced
divisor D in the connected complex manifold V. Say that the pair (V, D)
is log-RC (S2y)®"2((m - 1)D)) vanishes for any m &#x3E; 0 (log-RC is
for log-rationally connected).

Of course, if (V, D) is log-RC, it is log-special. If V is projective
rationally connected, the pair (V, 0) is then log-RC.

One easily checks the following (shown in a generalised form below).

Example 8.8. - The pair is log-RC.

From 8.2, we get:

COROLLARY 8.9. - Assume that the pair (V, D) is log-RC. Then X
is special, in the situation of 8.1 and 8.2.

Specialising from Example 8.8, we get the following definition.

DEFINITION 8.10. - Say that X is Cd -dominable (resp. covered by 
if there exists 0 C~ 2013-~X, nondegenerate (resp. if the universal cover of
X is isomorphic to 

The terminology Cd -dominable is from [B-LOO]. From 8.9, we then
deduce:

COROLLARY 8.11. - Let X E C be Cd -dominable. Then X is special.
In particular, if X is covered by Cd, then X is special.

Remark that manifolds X E C covered by Cd are conjectured by
S.Iitaka to be covered by a torus (i.e. to have a finite 6tale cover which
is a torus). This is shown to be true for surfaces in [Ii73], and for threefolds
in [C-Z99]. For X projective of arbitrary dimension, this follows (see [C-
Z99]) from the standard conjectures of the Minimal Model Program. See
7.11 for another case where this conjecture is known to hold true.
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We now give a geometric criterion for the pair (V, D) to be log-RC.
This criterion may explain the name log-RC, and shows that being log-RC
may be seen as a transcendental analogue of rational connectedness.

DEFINITION 8.12. - We say that the pair (V, D) is H’-speciczl if there
exists a meromorphic map 0: U = W x C,with W quasi-
projective, and moreover such that 0 is holomorphic and constant at the
generic point of W x ~0~ (i.e. ~(~,0) = a, for some fixed a C X and any
w c W).

Example 8.13. - The pair (pn, is H’-special. Blow-up a point
outside of pn-l to see this.

PROPOSITION 8.14. - The pair (V, D) is log-RC if it is H’-special.
The easy but lengthy proof is deferred to Section 8.8 below. Although

the following clearly results from the preceding observations, we state it

separately.

COROLLARY 8.15. - Let X C C be H’-special. Then X is special.

Remark 8.16.

(1) The preceding corollary will be linked with hyperbolicity considera-
tions in the next section (see 9.3 below, where the notion of strong-
hyperbolicity specialness is introduced).

(2) Due to 8.2, and in this situation, it is tempting to ask if X is special
when V itself is special.

This is not true, because transcendental holomorphic maps do not
preserve multiplicities along D. The following example shows this.

Example 8.17. - Let B, E be elliptic curves, and ai E B be distinct
points, i = 1, ... , 4. Let B* be the complement of these points in B. Let
V := E x B and U : = E x B* C V. Let now m ~ 2 be an integer. Let now X
be obtained from V by applying to V the four logarithmic transformations
of multiplicity m respectively to its fibres E x over B. Then X is

projective, and contains U as a Zariski open subset. However, V is special,
while X is not.

So the specialness of V does not imply that of X, even when 0 is the
embedding of a Zariski open subset of both V and X. Except when X is a
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curve, as observed by M. Zaidenberg (this is an immediate consequence of
[K-075])).

8.2. Sketch of proof of the Kobayashi-Ochiai’s
extension theorem.

We shall very briefly first sketch the proof of the classical result of
Kobayashi-Ochiai, and then indicate in Section 8.6 the changes needed to
obtain the orbifold version.

We consider here only the extension part of the statement (i.e. the
fact that 0 extends meromorphically to V). The second part, the control
of the order of poles of (~’)* (s), is shown in Section 8.7 by a lemma of
independent interest.

Recall we want to show that if (V - D) - - + Y is nondegene-
rate, then 0 extends meromorphically to V, provided Y is of general type.
The idea is thus that maps to general type varieties do not have essential
singularities. This is analogous to the fact that a bounded function on the
unit disc minus the origin extends across the origin. Now general type ma-
nifolds behave like manifolds with universal cover a bounded domain, in
the sense that they admit pseudo-volume forms with negative Ricci form.

The proof (as explained in [Ko98], Chap. 7) goes in several steps.

(1) It is sufficient to deal with the special case Y = D -

{0} x DP- 1, so that U = {0} x := D(p). This is simply because
meromorphic maps to a projective variety (or even a Kahler manifold)
extend meromorphically across codimension 2 or more analytic subsets.
The case where dim(V) &#x3E; p can be reduced to the equidimensional case
(see [Ko98], p.374-75).

Notations. For future reference, we denote by D(r) the disk of radius
r centered at 0 in C, by D :_ the unit disk; DP(r) and are

constructed as and D(P) above, replacing D by D (r) .

(2) Because Y is of general type, it has a pseudo-volume form w of
Ricci curvature negative, bounded from above by a constant -1/C  0.

This form is constructed out of a basis of a linear subsystem L of mKY
giving an embedding of Y into some projective space, once its fixed

components have been removed. Another property used in the proof is that
if wj is the pseudo-volume form associated to a single element of the basis
of L above, the quotient is a smooth function on Y. This function
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is thus bounded. These notions and constructions are explained in more
detail in Section 8.4 below.

(3) An elementary lemma (see 8.22 below), together with the argu-
ment exposed in (5) below, show that the special case (1) above is true, if
one shows that w being the preceding pseudo-volume form on Y, then the
integral of converges on ~~p~ (1/2).

(4) By the celebrated Ahlfors-Schwarz lemma (see 8.21 below), we
have the estimate w - C j3, if j3 is the homogeneous volume form on 
with constant Ricci curvature -1, and C is the positive constant of (2)
above. One concludes from the elementary fact that j3 has finite volume on
llJ) (p ) (1~2~.

(5) Let us now conclude the proof in the equidimensional case. The
forms w j : .- of the linear system extend meromorphically
to by the steps (2,3,4). But the map 0 is defined by the N-tuple of
maps (wo : wi : ... : with values in pN. The map 0 itself thus extends
meromorphically to D , as claimed.

We shall refer to [Ko98] for the details not given here. For the main
points (2,3,4), we shall introduce the basic definitions and properties in
the Sections 8.4 and 8.6 below. Finally, the proof of the orbifold version
will be given in Section 8.6.

The proof of point (b) in the statement of Theorem 8.2 will be given
in the separate Section 8.7 below. Although it can be deduced from [Ko98],
which contains a similar result in implicit form, we prefer to give an
independent, more general statement.

8.3. Pseudo-volume and ricci forms.

We need to recall some classical notions. See, for example, [Ko98],
Chapters 1 and 7 for more details.

Let M be a complex manifold. We say that v is a pseudo-volume
f orm (with holomorphic degeneracies) on M if it is a form of type (p, p)
on M, with p := dim(M), such that locally, in any coordinate system

with 

a is a holomorphic nonzero function, and T a smooth (i.e. C°° ) everywhere
positive function locally defined on M.
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For such a form v, its Ricci form is the real (1,1)-form

and its Ricci function is

Both are well-defined independently of local coordinates, because
changing charts multiplies T by the square of the modulus of the Jacobian,
the log of which has vanishing dd~ .

From the definitions, one gets also immediately the functoriality
of these notions. If f : N--+M is a dominant holomorphic map, with
p = dim(N), and if v’ := f*(v), then the definitions apply to v’, and
one has both Ricci(v’) = f *(Ricci(v)) and Kv’ = f *(Kv).

Remark 8.18. The Ricci form is thus the special case for -KM
of the notion of curvature form of a singular hermitian metric on a line
bundle, neglecting the singular part (cohomologically significant, however)
of the curvature current.

Assume that v has holomorphic degeneracies. Then we say that v has
negatively bounded Ricci curvature if (-Ricci(v)) is an everywhere positive
or zero ( 1,1 )-form, and if 2013~ ~ C for some constant C &#x3E; 0, everywhere
on M.

Observe that I~v is then nonpositive from the condition on Ricci(v),
and that Kv may take the value (-oo) at points where a vanishes. Note that
if M is compact and -Ricci(v) everywhere positive, then v has negatively
bounded Ricci curvature.

Observe too that v’ has negatively bounded Ricci curvature if and

only if so has v, for v’ = f * (v) as above.

Example 8.19. - We give the examples used in the proof. As said
above, these are bounded domains.

( 1 ) The unit disc. Take, in the linear coordinates,

Then Ricci(v) = -v, and Kv = -1.
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(2) The unit disc with origin removed D*. Take, in the linear coordinates,

Once again Ricci(v) = -v, and Kv = -1. Actually the forms in
the preceding two examples correspond under the universal covering
map from D to llJ)*. This can be checked explicitely using the Poincar6
upper half plane as an intermediate step. An important property used

in the proof is that . Of course, the domain
J 10 (r)

over which the integral is taken is the disc of radius r with origin
deleted.

One again has Ricci(v) = -v, and 20131. Again, one has
p

The above volume forms have thus negatively bounded Ricci function.
We give in the next section the example used in the proof in an essential
way.

8.4. Pseudo-volume forms on varieties of general type.

Let Y be a p-dimensional manifold of general type, that is with KY
big. From Kodaira’s lemma, for m large enough, we can write mKY =

H ~ A, with H effective and A very ample. Let L be a free linear subsystem
of the complete linear system IAI, such that the associated regular map
A : Y --+pN (N = dim L) is an embedding. Let (~) := (SO, ~i? - - - ? SN) be a
complex basis of H + L, and h a section of Oy (H) vanishing exactly on H.
Define 

- I

J ,

Then w is a pseudo-volume form with holomorphic degeneracies along H,
since it is written in local coordinates as w - ~ with

if a is a local equation for H, and

using the notation introduced in Section 8.2 above.
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Notice that L being free, wl is a smooth volume form on Y. We now
compute its Ricci form.

By its very definition, we have Ricci(w) _ -A*(8), where 0 is, up to
a positive constant, the curvature form of the Fubini-Study metric on the
tautological line bundle 

This is in accordance with Remark 8.18: the Ricci form of w is just
- A * (8), since the singular part of the metric is given by h.

The Ricci form of w is thus negative everywhere. As a consequence,
:= (Ricci(w)P/v) is negative everywhere and -oo on H. By the

compactness of Y, we conclude that this function is negatively bounded
by some constant -1/C, for some C &#x3E; 0.

Remark 8.20. For j C f 0,..., N~, define wj (’mp2. 
This is still a pseudo-volume form with holomorphic degeneracies on Y.
The function Wjjw is obviously smooth on Y, and thus bounded. There
exists B &#x3E; 0 such that Bw, Vj E f 0,..., N~.

8.5. The lemma of Ahlfors-Schwarz.

Despite its simplicity, it is a very powerful tool to obtain bounds on
the growth of pseudo-volume forms. We give the simplest version, sufficient
for our applications.

LEMMA 8.21. - Let v be a pseudo-volume form with holomorphic
degeneracies on JI))(p). Assume that  0 everywhere on 
Then v x (3, where ~3 is the volume form on with constant Ricci

function -1 defined in Example 8.19 (3) above.

Sketch of proof. See [K098], (2.4.14) for details. One can reduce, by
introducing the volume forms relative to polyradii r  1, to the case when
the quotient smooth function := v j (3 has a maximum at an interior point
b of the closure of JI))(p). Obviously, v does not vanish at b. The real (1,1)-
form ddc(logk) = is then nonnegative at b. By functoriality,
it is sufficient to check this on a complex parametrised curve. But then,
100(log k) = (82(logk)j8s2 + 82(logk)j8t2)ds A dt in real coordinates

x = s + it, and the claim follows.

Rescaling v, we assume that C = 1. Now, 100(log k) = 
100(log B) = 0, if V and B are the functions such that
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v = Y ~ and ,~ = B . We get Ricci(v). Hence also
and the conclusion

follows. 0

We now state an extension criterion which is used crucially in the
proof.

. 

PROPOSITION 8.22. - Let s E be such that

for some r  1. Then s extends to a me-

romorphic section of mKD,. Moreover, the poles of this extension are of
order at most m - 1 along ~0~ X IDP-’.

The proof is given in [Ko98], (7.5.7-8). The proof reduces to the
case when p = 1 and the elementary fact that a holomorphic function
on the punctured unit disc which is L(2~m) on some  1 extends

meromorphically with a pole of order at most m - 1.

8.6. Proof of the orbifold version.

Setting. We consider in this section the following data: f : X ---~ Y
is a fibration of general type, 0 : U --+ X is a meromorphic map which is
dominant (i.e. submersive at some point), X and V are connected complex
manifolds, with X compact, and j : U C V is a Zariski dense open subset,
complement of some divisor D of V. f o ~ : U --+ Y. Blowing-
up X and Y if needed, we shall assume that f is holomorphic, that Y is

projective, and that f is high (see 1.31). We let p &#x3E; 0 be the dimension

of Y, and A := be the multiplicity divisor for f, as defined in 1.1.4.
Our purpose here is to establish that 0 extends meromorphically to V.

PROPOSITION 8.23. - Let m &#x3E; 0 be an integer such that m0 is
Cartier. Then:

(1) f defines an injection of sheaves f * :
suitable modifications of X and Y.

(2) In particular, let s E H° (Y,
Recall Y has dimension p.

Proof. Just as in the proof of 4.17, because we have an injection
of sheaves (also denoted f * ) f * : it is sufficient

to check the above injection outside a codimension two subvariety of X,
provided f is "high".
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So we first assume that we are near, in the analytic topology, the
generic point of Ai. But the assertion follows here from an easy local
computation. Indeed mi divides m = m’mi by assumption, and we can
choose local coordinates (x) - (Xl, ..., xd) near the generic point of the
divisor Di C X, a component of mapped surjectively to Ai by
f in such a way that in suitable local coordinates (y) := (YI,..., Yp), near
the corresponding generic point of Ai, one has f (x) = (~) - (yl, ..., yp),
with for j &#x3E; 1, with m" some appropriate
nonnegative integer. Local equations for Di and Ai being respectively 
and 

Thus we get a local generator of + the form

and this expression is equal to

up to a nonzero constant factor, where d(y) .- dyl A ... A dyp and
d(x) :== dxl A ... A dxp. Hence the claim, since the exponent of xl in

the last expression is obviously nonnegative.

We thus see that f * is well-defined outside the finite union B of all

divisors of X which are mapped to codimension two or more analytic
subsets of Y. By a suitable composition of blow-ups u : and

v : Y--~Y, we get f’ : X’-Y’ holomorphic such that f o u = v o f’,
and moreover such that the strict transform B’ of B in X’ has all of its

irreducible components mapped onto a divisor of Y’ by f’, depending on
the component, of course.

Then
I 

is holomorphic outside a
codimension two or more analytic subset A of X, the indeterminacy locus
of u-l.

But then + A(/’))) injects into over X - A.

By Hartog’s theorem, for example, this injection extends through A.
Now composing with we see that ( f’)* injects

as asserted.

The second assertion is an immediate consequence of the first. 0

The first part of this argument (in simpler form) applies to give the
following proposition.
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PROPOSITION 8.24. - Let u : be a 0-nice covering, in the
sense of 4.16. But we choose u such that it ramifies at order exactly mj
above each component Aj of A(f). Then:

(1) u defines an injection of sheaves 2

(2) In particular, let s

We now come to the crucial point of our modification of the proof
of the extension theorem of Kobayashi-Ochiai. In a first step, we proceed
as in Section 8.4, by the construction of a pseudo-volume form on Y with
meromorphic - not holomorphic - degeneracies.

Notations 8.25. - Let 0 : : ll))(p) --+ X be such that 0 := f o 0 :
--+ Y is nondegenerate. We need to extend V) meromorphically to
Since is big on Y, we can write, by Kodaira’s lemma

m(K -I- 0)=H + A, with A very ample and H effective on Y, m being
choosen sufficiently divisible (by the l.c.m of the mi’s) and sufficiently big.
Let h E H° (Y, Oy (H)) be an element defining H. Let 6 E H° (Y, Oy 
be a section vanishing exactly on m0, with the right multiplicities. For
a E IAI, the complete linear system defined by H, we denote buy 8 := ho7 E
H0 (Y, m(KY + A)).

Let now u 0, ... , a basis of H° (Y, A) and let also 8 j : == haj, for
j E J := {0,...,A~}. Let These are meromorphic
sections of mKY .

Define v ~ Thus is a global pseudo-volume
form with meromorphic degeneracies on Y.

Notice however that, by Proposition 8.23 above, is, for any j, a

holomorphic section of (Q’ )0’. This is simply because in local coordinates
on Y, we can write tj - for some holomorphic function Tj, where
d (resp. dy) is a local generator of the ideal defining m0 (resp. Ky).
(I thank M. Paun for this important observation). The assertion thus
follows from 8.23 and the fact that dy/d is a local section of m(KY + A).

In particular, ~* (t~ ) is a holomorphic section of mKM, with M = 
and so w := ~* (v) is naturally a pseudo-volume form with holomorphic
degeneracies on M.

For the same reason, f*(sj) is, for any j, a holomorphic section of

(QX) m
Exactly in the same way we defined w .- y * (v), we can define a

pseudo-volume form with holomorphic degeneracies w on M by w . :=
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Notice that here, however, there is no

pseudo-volume form v on Y such that w = 

The crucial point is now the following lemma.

LEMMA 8.26. Ricci(w) = Ricci(w) = ~* (-11* (O)), if A : is

the regular map defined by the complete linear system IAI on Y, and 0 the
curvature form of the Fubini-Study metric on JFN. In particular, Ricci(w)
is thus negative everywhere, and there exists C &#x3E; 0 such that 

everywhere on D"B

Proof. Write again tj - as above. We deduce that

v = vol(y) , if h is a local equation for H, and vol(y) a local
volume form on Y. Here 1

Now, from 8.23 again, we see that ~ , for

a certain holomorphic function G defined on 7jJ-l(U), for U C Y, the open
subset where the said trivialisations and charts are defined. Recall that

-100V = 2013A* (6), by 8.4 above. A computation of the Ricci curvature
then gives the first assertion for w.

The assertion for w is deduced from the fact that w = 

so that these two pseudo-volume forms have the same Ricci-form. We then

differentiable, and h locally bounded from above everywhere on Y.

To express things differently, one can compute the Ricci function of
w symbolically, as if it were of the form y* (v), with

By the argument given in Section 8.2, to show 8.2, it is sufficient to

show that each of the extend meromorphically to and this is

true if the integral of w over D(P) (r) is convergent, for some 0  r  1.

To show this convergence, we simply need, by the Ahlfors-Schwarz
Lemma, to show that w has everywhere negatively bouded Ricci function,
by some constant -1/C  0. But this exactly what the preceding Lemma
8.26 claims. This concludes the proof of the first assertion of 8.2.

Remark 8.27. - Observe that the preceding proof shows with minor
adaptations, using 8.24, the following orbifold version of Theorem 8.2.
If (Y/0) is an orbifold of general type, Y smooth and A supported on
a normal crossings divisor, then any nondegenerate meromorphic map
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0 : : U --+ (Y/0) extends meromorphically to V. Here, to say that 0 is

a meromorphic map to the orbifold (Y/0) means that any point u E U at
which 0 is holomorphic, with y := 0(u) a smooth point of the support of
A, lying on Ai, then 0 lifts locally around u to a holomorphic map to the
ramified cover of Y near y, ramifying at order exactly mi above ~i.

8.7. Extension of pluri-canonical neromorphic forms.

We now want to control the order of the poles along D of the meromor-

phic extension to V E H’(U, for s E H°(Y, m(Ky ~-0)).
More precisely, notations being as above:

PROPOSITION 8.28. - For any m &#x3E; 0 sufficiently divisible and

s any element of 0( f ))), 0*(s) extends to (~’)*(s) E

°

Proof. Recall that the support of A is of normal crossings. We
can assume that 0’ is holomorphic, because the assertion holds for V

if it does for any of its blow-ups. Recall that s can be written in lo-

cal coordinates as follows, s being a section of + ~(/))? s =

... y;-I/mp))0m, if ~ has local equation the denominator
of this expression. Some of the mi may be one, and so the correspon-
ding terms don’t contribute. Let now (v) _ (vi, ..., vn) be local coordinates
near a generic point of some component D’ of D, such that D’ has local

equation w .- v, = 0. We can assume that near this point the map V)’
is given by ~’ (v) _ for integers ri and nowhere vani-

shing functions Yi of (v). Computing, we get, letting r be rl + ... + rp,
(~’)*(s) _ (wr-18/wr-sY’)0m, for some holomorphic p-form 0 on V,
and Y’ a nowhere vanishing function on V, the product of the Yi’s, and
s := n/mi + ... + rp/mp. This shows the proposition, because sm is a
positive integer, since each mi divides m. 0

8.8. Proof that H’-specialness implies log-rational connectedness.

We prove here Proposition 8.14. We use the notations and setting of

8.1, 8.12 and 8.7.

Proof. We just need to show that any element s’ of

H° (Y, (SZy ) ®m ( (m -1 ) D) ) vanishes, provided it is on U of the form (s")
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for some s" E H° (X, (n~)0m). For this, we shall just show that its res-
triction to any F :_ ~w~ x I~1 (C) C V has to vanish for any w E W. The
argument is similar to, and motivated by the one showing that sections of

(n~ )0m vanish if X is rationally connected (see [Ca95], for example).
Let SZq denote the restriction of to F, for q &#x3E; 0, and let N be the

(trivial) dual of the normal bundle of F in V.

From the exact sequence

Notice that all these sequences are split. We now fix q = p &#x3E; 0, and denote

respectively by B := APN the kernel, and A := the quotient
of the corresponding exact sequence (@).

From this same split exact sequence, we get now for (OP)0m a

decreasing (split) filtration by subbundles:

with successive quotients WOIWI = AQ9m, = 

..., W, = BQ9m. Notice that, for k = 0, ... , m, the bundle B k
is isomorphic to OF (-2(nt - k)) tensorised by a trivial vector bundle Nk
on F.

We now take local coordinates ((w), t) on V near (w, 0), where (w) :==
(wi, . - . , w,- i) are local coordinates on W, and t is a a local coordinate
near 0 C The map takes the form 0((w), t) - tOd), for

holomorphic functions 0., of ((w), t), with d := dim(X), in local coordinates
near a E X, since §(W x {0}) == ~a~, by our H’-speciality assumption.

Locally, if o-" is a p-form on X near a, then ~’ :- 0* (a") is written

a’ = dt A cx + tj3, for cx and j3 forms in the dwi’s. If now ~" is a p-form, then
with the same conditions.

We now consider the case when s’ - 0*(s") for some

s" E H° (X, (SZX ) ®"2 ) . From the preceding remarks, we can write s" =
so + ’ -’ + s~ +... + s’m, where each of the s~ is the tensor product of m - k
terms of the form tp-ldt n ce, and of k terms of the form So that, for
each k, s~ is actually the piece of degree of s" for the above graduation,
and so turns out to be a section of the bundle Am-k 0 Bk defined above,
and vanishing at 0 to order
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Now, we assumed that s" has a pole of order at most m - 1 at

the point at infinity of F. Thus s" defines a meromorphic section of

k)) 0 Nk , with Nk a trivial bundle, this section vanishing
at 0 to order m (p - 1) + 1~ at least, and having a pole of order m - 1 at
most at infinity.

This section thus has to vanish, because otherwise the number of poles
should be the opposite of the degree. But here (m - 1) - m (p - 1) - k 
2 (m - k) for any integers m, p &#x3E; 0 and 0 x k x m. This concludes the proof
of 8.14. a

9. Relationships with arithmetics and hyperbolicity.

The next Section 9.1 formulates and discusses two conjectures concer-

ning the Kobayashi pseudometric of a compact Kahler manifold X. The
first one (9.2) states that special manifolds are exactly the ones having zero
Kobayashi pseudometric dx. The second one (9.15) states that for any X,
dx is the lift by the core cx : X --+ C(X) of the orbifold Kobayashi pseu-
dometric of the base orbifold of cx, defined in 9.10, and that this orbifold

pseudometric is a metric outside some algebraic subset S of C(X). Recall
that the orbifold base of cx is of general type (if not a point), so this second
part of the Conjecture 9.15 is the orbifold version of Lang’s hyperbolicity
conjecture.

The next Section 9.2 is the exact analog for arithmetic geometry. First,
special projective manifolds are conjectured to be exactly the ones which
have a "potentially dense" set of rational points; then nonspecial projective
manifolds X are conjectured to have their rational points mapped by the
core to a proper algebraic subset of C(X), this for any field of definition
(finitely generated over the rationals). This naturally extends Lang’s arith-
metic conjecture to any orbifold X. As observed by P. Eyssidieux, one may
also consider the function field versions (see 

We give a very brief discussion, here, because we simply refer only to
known results by many authors.

We end this section by a brief discussion and comparison of specialness
with two of its variants, for X E C: the first one (weak-specialness) means
that no finite 6tale cover of X has a fibration onto a variety of general type;
the second one (gcd-specialness) is defined exactly as specialness, except
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that multiplicity of a (pure-dimensional) fibre is classically defined using
the gcd of the multiplicities of its components, and not their infimum. These
notions lead to interesting and natural comparison problems, especially in
hyperbolicity and arithmetics.

9.1. The Kobayashi pseudometric.

We refer to [K098] for a systematic treatment of the following notions,
and to [Ca01] for a more detailed discussion.

Let X be a complex manifold. Let dx be the Kobayashi pseudometric.
on X, which is the largest pseudometric d on X such that h* (d)  p~ for
any holomorphic map h : D-X, where D is the unit disc in C and p~
is the Poincar6 metric on D. Recall that a pseudometric on X is a map
d : X x X-[o, +oo) satisfying all the axioms of a distance, except that
d(x, y) may be zero, even if x =1= y. For example, it is easy to check that:
dcn m 0, and using the Ahlfors-Schwarz lemma, that: p~ = dD.

A fundamental property of d, immediate from its definition, is that

holomorphic maps are distance decreasing: if h : X -~Y is any holomorphic
map, then dx. Hence if h : C-X is holomorphic, then dx
vanishes on the (metric) closure H of the image of h. Thus dx will vanish
identically if, for example, H = X, or if any two points of X can be
connected by such a chain of Hi’s. Rational and elliptic curves, or complex
tori, for example, have thus vanishing d.

9.1.1. Hyperbolically special manifolds.

DEFINITION 9.1. The manifold X E C is said to be Hyperbolically
Special (H-special, for short) if dx vanishes identically on X x X.

For example, rationally connected manifolds and complex tori are H-
special.

CONJECTURE 9.2 (IIIH-conjecture). - X E C is special if and only
if X is H-special.

This conjecture holds for curves, rationally connected manifolds, and
surfaces not of general type. A crucial class for which it is open is the class
of manifolds with K = 0, or even with cl (X ) = 0. The case of Calabi-Yau
manifolds seems to be especially difficult. See [Vo02] for an approach to the
measure-hyperbolic aspect.
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Let us mention two properties shared in common by the classes of
special and H-special manifolds: the surjectivity of the Albanese map (5.3
and 9.24); manifolds connected by chains of subvarieties in either class are
in the class.

9.1.2. Geometric variants of H-specialness.

The vanishing of the Kobayashi pseudometric of X E C should be
interpreted as the existence of "many" or "large" entire curves in X (i.e.
nonconstant holomorphic maps h : 

We now define a class of manifolds by a geometric condition of this
type, strong enough to show specialness.

DEFINITION 9.3. - Let X be a compact complex connected manifold.
Recall (8.12) we said that X is H’-special if there exists a meromorphic
nondegenerate map 0 : W x C --+ X such that:

(1) W is quasi-projective,

(2) ’lj; is constant along W x (i.e. takes on a constant value ’lj;( w) ==
a C X at the generic point w of W x {0}~.
We say that X is strongly H-special (SH-special, for short) if the map

~ can be chosen such that, moreover:

(3) the image of 0 is dense in X (for the metric topology, of course).
Notice that X E C is H-special if it is SH-special. Possibly the H’-

specialness and SH-specialness might be equivalent properties. Examples
of SH-manifolds are complex tori, rationally connected manifolds, (Cn-

dominable manifolds, and manifolds covered by 

Remark 9.4. - Rephrased in our terminology, the main result of [B-
LOO] says that CC2-dominability, H’-specialness, and ,S’H-specialness are
equivalent properties for projective surfaces.

This may however be a low-dimensional phenomenon, due to the fact
that rationality and rational-connectedness are equivalent in dimension
two. See below for questions naturally arising in this context.

Let us ask:

Question 9.5. - Let X be a projective rationally connected threefold:

(1) Is X CC3-dominable?

(2) If X is (C3-dominable, is it unirational?
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The answers are not necessarily expexted to be affirmative. For

example, there is no obvious reason that a general three-dimensional
quartic-which is not expected to be unirational-should be (C3-dominable.
Another interesting example is K. Ueno’s threefold U: it is rationally
connected and (C3-dominable, but it is unknown if it is unirational. Recall
([Ue75], 11.7.1, p. 137) that U is the quotient of E3, E the Gauss elliptic
curve, by the cyclic group of order four generated by the multiplication by
A on each factor.

In Section 8.2, we proved the following result, as a consequence of an
orbifold version of Kobayashi-Ochiai extension theorem.

THEOREM 9.6. - Let X be H’-special. Then X is special. Thus, in
particular, X is special if it is in C, and either SH-special, or 
or covered by C~, with n = dim(X).

A positive answer to the following (difficult) question would then
establish that H-special manifolds are special (i.e. one half of conjecture
IIIH ).

Question 9.7. - If X is H-special, is it H’-special?

9.1.3. Fundamental group and H-specialness.

By combining the abelianity Conjecture 7.1 and Conjecture IIIH
(9.2), we obtain some conjectures about the fundamental group of H-special
manifolds.

CONJECTURE 9.8. - Let h : C-X be a holomorphic map. Assume
that X E C, and that h has metrically dense image. Then is almost

abelian.

One might even just assume that the image of h is Zariski dense. The
gap between this conjecture and the proved results can be measured by the
fact that the much easier conjecture of S. Iitaka (which is equivalent to the
particular case when X is covered by (Cn above) is still open.

9.1.4. The orbifold Kobayashi pseudometric.

The conjectural description of the Kobayashi pseudometric for an
arbitrary X in C using Conjecture IIIH starts with the following remark.
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Remark 9.9. - Let cx : X -~C(X ) be the core of X E C. If Conjecture
9.2 holds, then dx vanishes on every fibre of cx, by the metric continuity
of dx, and there exists a unique pseudometric 6x on C(X) such that
dx = (cx)*(~x)- We shall now give a conjectural description of 6x as
the orbifold Kobayashi pseudometric on (C(X)IA(cx)), which needs first
to be defined.

DEFINITION 9.10. - Let (Y/D) be an orbifold. An orbifold map
h : : is a holomorphic map h : such that, for any
z C D such that a = h(z) is a smooth point a E D~ of the support
of D, the ith-derivative h~2~ (z) belongs to the tangent space Ta(Dj) for

Define now D(YID) as the largest pseudometric d on Y such that

h* (d)  dD, for any orbifold map h : 

An orbifold will be, of course, said to be H-special if its orbifold

Kobayashi pseudometric vanishes. The orbifold version of conjecture IIIH
now becomes (with the same name):

CONJECTURE 9.11 (IIIH-conjecture). Let (Y/D) be an orbifold,
with Y E C smooth, and the support of D of normal crossings. Then (Y/D)
is special if and only if it is H-special.

A relative version of Conjecture IIIH is:

CONJECTURE 9.12. - Let f : X-Y be an admissible model of a

special fibration defined on X E C. Then dx = In particular,
6x - the Kobayashi pseudometric of the base orbifold of
cx . Recall that 6x was defined in Remark 9.9 above.

This conjecture can be proved in the next two particular cases.

THEOREM 9.13. - Let X be smooth and projective. Let rx :

X--+R(X) be its rational quotient (see 3.23). Then dx = 

(No orbifold structure appears, here, because rx has no multiple fibre in
codimension one, by 3.29~.

Proof. Clearly, there exists a pseudometric d on Y := R(X) such
that dx = We have d &#x3E; dy, by the decreasing property of dx under
holomorphic maps. When Y is a curve, the result holds true, because rx has
then a section, by [G-H-S01]. The general case follows from the algebraic
approximation result of [D-L-S94]. D
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One can also rephrase in our terminology the main results of [B-LOO]
and [Lu0l] to give another case of a positive answer to the second part of
conjecture 

THEOREM 9.14. - Let X be smooth and projective. Let f : X -~C
be a fibration over a curve, with generic fibre an abelian variety. Then
dx - 

9.1.5. The core and the Kobayashi pseudometric.

We can now give a conjectural qualitative description of the Kobayashi
pseudometric on an arbitrary X E C, using the core of X.

CONJECTURE 9.15 (IVH-conjecture). - Let (Y/D) be an orbifold of
general type, with Y smooth and D of normal crossings. Then D(YID) is a
metric outside some proper algebraic subset SD C Y.

This is thus simply the orbifold extension of Lang’s hyperbolicity
conjecture (see [La86] and 

Notice that, combined with Conjecture 9.12, it gives the following
simple description of dx for arbitrary manifolds in C, namely:

CONJECTURE 9.16. - Let X E C. Then dx = where 6x =

d(C(x)/o(~X )) is the Kobayashi pseudometric of the base orbifold of cx.
And 6x is a metric outside some proper algebraic subet S of C(X).

Remark 9.17. - One can also consider in Conjectures IIIH and IV H
the p-dimensional Eisenman length function on for arbitrary p &#x3E; 0. It

is then natural to conjecture that this length function vanishes identically
on X if and only if p &#x3E; ess(X), and is obtained as the pull-back by cx of the
appropriately defined orbifold Eisenman length function on 
if p  ess(X) = dim(C(X)). And that this orbifold length function should
then be nonzero outside some proper algebraic subset of C(X).

9.2. Arithmetics.

We assume now that X is a projective complex manifold, and that
K C C is a field of definition of X, finitely generated over Q. We denote
by X (K) the set of K-rational points of X.
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PROPOSITION 9.18. - The fibrations cx and Jx are defined over K.

Proof. This follows from standard arguments on Galois group
operations, as explained to me by F. Bogomolov. See We actually
do not use it here.

DEFINITION 9.19. - The complex projective manifold X is said to be

arithmetically special (A-special, for short) if X(K’) is Zariski dense in X,
for some finite extension K’/K. This notion is usually called "potential
density". The above terminology gives a more unified point of view.

One could of course replace above the Zariski topology by the me-
tric topology. It is then a difficult question whether the two notions of
aritmetical specialness would coincide.

CONJECTURE 9.20 (IIIA-conjecture). - The complex projective ma-
nifold X is special if and only if it is A-special.

This conjecture is presently known to hold for curves and Abelian
varieties, but not even for rationally connected manifolds, although the
analogous property in the complex function field case is known to be true

(see for a more detailed discussion).

CONJECTURE 9.21 (IVA-conjecture). - Let cx : X--+C(X) be the
core of a nonspecial projective manifold X, defined over K, a subfield of
C finitely generated over the rationals. Let K’/K be any finite extension.
There exists a proper algebraic subset S C C(X) such that cx(X(K’)) c
S.

Remark 9.22. - It is actually in this situation natural to define

(YjD)(K), the set of K-rational points of an orbifold (YID) defined over
K, and to conjecture that this set is contained in a proper algebraic subset
of Y if (Y/D) is of general type. And moreover that is contained

in if cx is the core of X, any complex projective manifold
defined over K. E. Peyre explained me how to define (YID)(K) 
The definition is inspired from the function field case, discussed in [CaDI].

We end this short discussion with the particular case of subvarieties of
complex tori, a small class of varieties for which the preceding conjectures
have been essentially solved.
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9.3. Subvarieties of complex tori.

THEOREM 9.23. - Let W be a subvariety of a complex torus T.
Assume that W is of general type. Then,

(1) dw is a metric on W if T is a simpLe torus.

(2) W(K) is almost contained in S(W), if K is a held of definition of W,
where S(W) is the projective vatiety which is the union of maximal
complex subtori of T contained in W. Being almost contained in ,S’(W )
means that the set of points of W (K) not belonging to S(W) is finite,.

The above hypothesis that T is a simple torus above is certainly
unnecessary: the conclusion should then be that dw is a metric on

( W - ~(~)). This should be proved by refining the proof of (1).

Proof. (1) follows from the theorem of Bloch- Ochiai ([B126], ~Oc77~ )
asserting that there is no nonconstant map from the complex line to W.
This implies that de is a metric ([Ko98], [Ko76]). The statement (2), which
contains Mordell’s conjecture, is simply the main result of [Fa94]. D

We showed in 5.3 that the Albanese map of a special manifold is,
among other properties, surjective. Due to IIIH- and IIIA-conjectures, this
should imply that the same holds for H-special and A-special manifolds.
Indeed:

COROLLARY 9.24. - Let X -~Alb(X) be the Albanese map of a
manifold X E C. Then is surjective if either

(1) X is H-special, and Alb(X) is a simple torus, or

(2) X is A-special.

Proof. - Assume not. Let then u : Z := be the Ueno

reduction of Z C Alb(X). Then W is a subvariety of general type and
positive dimension of some quotient torus T of Alb(X). The conclusion
thus follows from 9.23, just above.

Remark 9.25. - Of course, due to conjectures IIIH and IIIA, one
concludes that ax should be connected and without multiple fibres in
codimension one if X is either H- or A-special. The connected part of
the assertion should follow from extending 9.23 to the case of varieties
W of general type and generically finite over some complex torus. It is
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possible that the techniques of Noguchi-Winkelmann might give the answer
for multiple fibres, in the case of H-special manifolds.

We now define two other notions of specialness and core, which need
to be compared with the one defined and used above.

9.4. Weakly-special manifolds.

DEFINITION 9.26. - X E C is said to be weakly-special (w-special for
short), if there is no pair (u, f’) in which u : X’ -X is a finite 6tale covering,
and f’ : X’ --~ Y’ is a surjective meromorphic map onto a manifold Y’ of
positive dimension and of general type in the usual sense.

From 1.8, we get the following proposition.

PROPOSITION 9.27. - If X is special, it is w-special.

Proof. It is the same as in 2.33. Assume by contradiction that a
triple (u, X’, f’) as in the preceding definition exists. We can assume the
cover u to be Galois, of group G. If f’ is G-equivariant, then f’ descends
to f : X --+ Y := (Y’IG), and f is of general type by 1.8. Otherwise, just
replace f’ by the least upper bound f" of the finite family 
Now f " is G-equivariant, and maps X’ to Y", which is of general type,
by 2.30. D

Example 9.28. - All the examples listed in 2.3 are thus w-special.

Notice that, contrary to the case of special manifolds, it is obvious

that any finite 6tale cover of a w-special manifold is again w-special. For
surfaces, the converse is also true.

PROPOSITION 9.29. - A weakly special surface is special.

Proof. The list of special surfaces given in 3.33 shows the claim,
once one observes that for an elliptic fibration f : X-C from a surface X,
the absence of multiple fibres implies the existence of a reduced component
in each fibre, which follows, for example, from the list of singular fibres

given in [B-P-V84]. D

The same assertion for threefolds is not true, as was asked and

expected in [CaOl]. The following example is due to Bogomolov-Tschinkel.
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THEOREM 9.30 ([B-T02]). - There exists a simply-connected pro jec-
tive threefold X which is weakly-special, but not special.

Their construction can be briefly sketched as follows: X = B x c S,
where B is an elliptic surface with K(B) = 1, equipped with a second
non-elliptic fibration f : B--+C = I~1 having a fibre F such that B - F
is simply-connected, while g : ,S’-~C is another simply-connected elliptic
surface such that g : S--~C has some multiple fibre. The elliptic fibration

0 : X -~B (which is the core of X) is thus of general type, although its base
B is a special surface with r, = 1. Because X is simply-connected, and does
not map to a surface or curve of general type, it is W-special. 0

9.5. The related conjecture of Abramovich and Colliot-Th6l6ne.

It has been conjectured (see [H-TOO]) by D. Abramovich and J.L.
Colliot-Thelene that weakly-special manifolds defined over number fields
are potentially dense (i.e. A-special).

The above Example 9.30 of Bogomolov-Tschinkel thus shows that
their conjecture is not compatible with the Conjecture IIIH (9.20) above:
their conjecture claims that the above X is A-special, if X and 0 are defined
over a number field K, which can easily be realised, while 9.20 claims that,
for any finite extension X(K’) does not map to a Zariski dense
subset of B(K’). So let us ask explicitely:

Question 9.31. - Let X be a Bogomolov-Tschinkel threefold (as in
9.30 above), defined over a number field K. Is then X A-special?

The natural approach to this question is to show that, if (B/D) is the
base orbifold of the core 0 : X -~ B of X, then is contained in

some proper algebraic subset ,S’ C B, this for any number field K’, K C I~’.
A simpler question is asked in 9.35, below.

One may, of course, also consider the (much easier) hyperbolic version
of 9.31.

Another variant of the core has been constructed by D. Abramovich
in [Ab97], motivated by Harris’s conjecture that varieties with no map
onto a variety of general type should be potentially dense, if defined over a
number field. Abramovich construction enjoys many nice properties, but is

very unstable with respect to finite 6tale covers. This conjecture of Harris
has been thus disproved in [CT-S-S97]. I thank J.L. Colliot-Th6l6ne and

D. Abramovich for learning me the references above.
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Recall from Proposition 5.3, a property common to special and
weakly-special manifolds:

PROPOSITION 9.32. - Let X be w-special. The Albanese map of X is
then surjective and connected.

Observe that, in contrast to the case X special, this result does not
assert that the Albanese map of X is multiplicity free if X is w-special.

9.6. Classical gcd-multiplicities.

We can still introduce a third notion of special manifold, which
interpolates between the preceding two ones (weakly-special, and special).
It is based on the classical definition of multiple fibres, using gcd instead
of in f . We shall be brief on this. The first version of the present paper
was written in terms of these gcd-multiplicities. After reading it, S. Lu

also observed independently that one could, without changing proofs or
statements of this first version, replace these gcd-multiplicities by the zn f -
multiplicities used in the present text.

DEFINITION 9.33. - Let f : X-Y be a fibration, and let A C Y
be an irreducible reduced divisor. Let where

while f (R) has codimension two or more in Y. Define
the gcd-multiplicities m- as m- (0, f ) . = gcd(mj, j E J) . Obviously, m-
divides the multiplicity used in the present text.

Now using this definition of multiplicity, one can define, exactly as
we did, with the same proofs, the notion of base orbifold and Kodaira
dimension of a fibration. This leads to the gcd-versions of fibration of
general type, and special manifold. The gcd-core can be constructed also
with the same properties. One property only is possibly lost: gcd-fibrations
of general type are no longer naturally in bijective correspondance with
Bogomolov sheaves.

On the other hand, the additivity result 4.2 and its proof, even
becoming slightly simpler at a point, remain. So it may happen that the
gcd-core is still a fibration of gcd-general type.

Let us notice the following obvious points: a special manifold is gcd-
special, because a fibration of general type is of gcd-general type. A gcd-
special manifold is w-special, by the gcd-version of 1.8. Observe that for
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surfaces, the three notions coincide, because the two extreme do, by the
previous section.

At this point, one may wonder:

(a) Are the two theories actually different?

(b) If yes, which one is the "right" one?

Concerning the second question (b) above, assuming a positive answer
to (a): it seems that the version given here (with in f , not gcd) is the right
one. This is supported by the correspondance with Bogomolov sheaves,
which provides a direct link between fibrations of in f -general type and
geometric positivity properties of cotangent sheaves. Moreover, the in f -
notion is obviously better suited to the study of Kobayashi pseudo-metric.

The only feature in favour of the gcd-theory is that it is more closely
related to the fundamental group. This property however does not seem,
by far, compensate the other advantages of the in f -notion.

Concerning (a), although no counterexamples are known, it seems

plausible that the three notions are distinct.

The first possible example would be a gcd-special, but not special
threefold. Observe that the example of Bogomolov-Tschinkel (9.30) is w-

special, but not gcd-special.

There are two possible sources of threefolds which may be gcd-special,
but not special: fibrations onto a curve with generic fibre either K3 or
special surfaces with r,(F) = 1. Such a fibration should be then of general
type, but not of gcd-general type. The construction of such examples would
then give a negative answer to the following question, which has a positive
answer when F is an abelian or rational surface, for example:

Question 9.34. - Let f : X-C be a fibration of a threefold X
to a curve C, with generic fibre F a special surface. Does one have

We now state separately Conjectures IVH and IVA in the special case
that the base is a curve. Because this case seems accessible by extending
the existing techniques, used to solve the gcd-version, already known.

PROPOSITION 9.35. - Let f : X -~C be a fibration of X E C onto a
curve C. Assume that f is of general type. Let h : be a holomorphic
map. Then f o h is constant.
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Proof. This is clear, by Liouville’s theorem and uniformisation,
if the genus g of C is two or more. When g  2, this is an immediate

application of Nevanlinna theory, using [Nog76]. I thank J. Noguchi for
this reference. D

PROPOSITION 9.36. - Let f be as above, of general type. X(K)
contained in -finitely many of the fibres of f, if K is a field of definition
for f, and finitely generated over Q.

An affirmative answer can be deduced from the orbifold version of

Falting’s theorem ([D-G95)].

Remark 9.37. - An interesting case is that of general type fibrations
f : with smooth fibres of general type, and S a simply-connected
surface. They provide new test cases for Lang’s conjectures.

Concerning the easier gcd-version:

PROPOSITION 9.38. - Let f : X-C be a fibration of X, projective,
onto a curve C. Assume that f is of gcd-general type.

(l) Let h : C-X be a holomorphic map. Then: f o h constant.

(2) X(K) is contained in finitely many of the fibres of f, if K is a
field of definition for f, and finitely generated over Q.

Proof. There is a finite 6tale cover X’ of X which maps onto a curve

of general type. The conclusion now follows for (1) from uniformisation for
curves, and for (2) from [Fa94] and the theorem of Chevalley-Weil (see
[H-SOO], exercise C7, p.292) D
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