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LOCALLY CONNECTED

EXCEPTIONAL MINIMAL SETS OF

SURFACE HOMEOMORPHISMS

by Andrzej BI015B , Hiromichi NAKAYAMA (**)
and Pawe0142 WALCZAK (***)

In 1977, Fathi and Herman [5] proposed the following problem: Does
there exist a Coo diffeomorphism f of a compact manifold such that f
admits a minimal set which is locally homeomorphic to neither a Euclidean
space nor the product of a Euclidean space and the Cantor set?

Certainly, there is no Coo diffeomorphism of the circle with such a
minimal set. Although Handel [8] constructed a Coo diffeomorphism of a 2-
dimensional manifold with such a minimal set (in fact, it is a pseudo-circle),
their problem still indicates some intrinsic property in dynamical systems,
in particular in 2-dimensional case. However it is difficult to treat the

condition that a minimal set is not locally homeomorphic to the product of
a Euclidean space and the Cantor set.

In this paper, we replace this condition by the local connectivity
of a minimal set and examine the topological types of minimal sets for
homeomorphisms of closed orientable surfaces. The condition of local

connectivity appears in topological dynamics in a natural way either as a
property of the space carrying the dynamics or as a property of minimal sets
which is either assumed, proved or disproved. For example, the results of [17]
show that a wide class of homogeneous flows admits no locally connected
minimal sets while Kim [11] has shown that locally connected minimal
sets of flows of compact separable metric spaces reduce to either single
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for Scientific Research No. 11554001 (**), Japan Society for the Promotion of Science,
Japan, and European Commission contract No. ICA1-CT-2002-70017 (***).
Keywords : Locally connected minimal sets - Surface homeomorphisms.
Math. classification : 37E30 - 37B45.
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points or circles whenever they have cohomological dimension (with respect
to Alexander-Spanier cohomology with coefficients in a principal ideal

domain)  1. Our results here begin with the following

THEOREM 1. - Let f be a homeomorphism of a closed orientable
surface E different from the torus T~. If a minimal set VJ1 of f is locally
connected, then VJ1 is either a finite set or a finite disjoint union of simple
closed curves.

THEOREM 2. - Let f be a homeomorphism of T2. If there exists a
locally connected minimal set VJ1 which is neither finite., nor a finite disjoint
union of simple closed curves, nor the whole T2, then 9R is the unique
minimal set of f . This set VJ1 satisfies the following conditions 1)-5), where

denotes the family of all the connected components for the
com pl em en t of 9~:

1 ) Each Ui is the interior of an embedded disc (i = l, 2, ... ) .

2) ~Ui ~i=1,2,... is a null sequence (i.e. the diameter of Ui tends to 0

as i -~ cxJ ) .

3) Ui intersects Uj at most at one point when i :~ j, and their intersection
(if non-empty) consists of a locally separating point ofVJ1.

4) There is no finite chain Uil, Uin (n &#x3E; 1) such that

5) 97t is connected.

If, instead of conditions 3) and 4) of Theorem 2, we assume that {Ui}
consists of mutually disjoint sets, then 9A appears to be homeomorphic to
the Sierpinski which is obtained from T 2 by removing the interiors
of a null sequence of mutually disjoint closed discs whose union is dense
in T2 (compare [2]). Thus we obtain the following:

COROLLARY 1. - Let f be a homeomorphism of T 2 . Any locally
connected minimal set without a locally separating point either is finite, or
coincides with the whole T2, or is homeomorphic to the Sierpinski T2-set.

The next (and last) result here shows that the assumption of absence
of locally separating points cannot be deleted from Corollary 1.

THEOREM 3. - There exists a homeomorphism of T2 having a locally
connected minimal set which admits a locally separating point and is not a
finite disjoint union of simple closed curves.
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In §I, we will construct a homeomorphism of T2 satisfying the
condition of Theorem 3 by pinching holes of the Sierpinski T2-set.
Theorems 1 and 2 are proved in §3 and §4 respectively. In order to establish
these theorems, we will show in §2 (Lemma 2) the non-existence of cut
points in any connected minimal set.

Note that by results of Chu [3] the construction similar to that of
Theorem 3 cannot be performed for flows (or actions of arbitrary connected
topological groups).

1. Pinching Sierpinski T2-sets.

Let X be a compact metric space and ,S be a subset of X. As usually,
we denote by as the frontier of S and by int S its interior. Furthermore,
diam S denotes the diameter of S, i.e., the smallest upper bound for the
distances of points in S. A countable collection ~,5’i~i=1,2,... of subsets is
called a null sequence if, for each E &#x3E; 0, only finitely many of the sets Si
have diameter greater than E (see [4]). In other words, limi~~ diam Si = 0.

A point z of ,5’ is called a cut point of ,S’ if ,S’ B ~z~ is not connected
in S. Also, a point z of a subset ,S’ is called locally separating if there
exists a connected neighbourhood U of z in ,S’ such that is not

connected. Finally, let us recall that a subset ,S’ is locally connected if, for
any point z of ,S’ and any neighbourhood U of z in S, one can find a
connected neighbourhood of z contained in U.

Let f be a homeomorphism of X. A non-empty subset 9N of X is called
minimal if 9Jt is closed, invariant under f (i.e., = and minimal

with respect to the inclusion among all non-empty closed f-invariant sets.
By Zorn Lemma, any homeomorphism of a compact metric space has a
minimal set. When the whole X is a minimal set, the homeomorphism f is
called minimal. Then all its orbits are dense.

Typical examples of minimal homeomorphisms of surfaces are minimal
translations of the torus T2 defined as follows: Let a and j3 be irrational
numbers such that ex/ j3 is also irrational. A homeomorphism f of T 2
defined by

for x, y E R / Z is minimal and called a minimal translation of r2 .
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Whyburn [18] showed that the Sierpinski curve (called also Sierpinski
carpet) can be characterized as a subset of the sphere S2 obtained by
removing the interiors of a null sequence of mutually disjoint closed discs
whose union is dense in 32. His arguments can be also applied to such
subsets of the torus T2 (and arbitrary closed manifolds, [2]). Thus we may
define the Sierpinski T 2 -set as a subset of T 2 obtained by removing the
interiors of a null sequence of mutually disjoint closed discs whose union is
dense in T2.

Aarts and Oversteegen [1] constructed a homeomorphism of the
Sierpinski curve with a dense orbit. They inserted mutually disjoint discs
into ,S’2 and extended a homeomorphism of S2 with a dense orbit to a
homeomorphism of ,S’2 with the union of inserted discs invariant. This
construction can be performed also in the case of a minimal translation
of T2 (see [2] for a detailed description), so we can obtain in this way
a homeomorphism f of T~ with a minimal set 9J1 homeomorphic to the
Sierpinski T2-set and such that the consists of mutually
disjoint sets for any connected component U of T2 B 00t. By suitable use
of this homeomorphism, we will construct soon a homeomorphism of T2
satisfying the conditions of Theorem 3.

Remark 1. - A diffeomorphism of T2 with a minimal Sierpinski
T2-set has been constructed by McSwiggen [13] for any c &#x3E; 0. To get it, he
chooses an Anosov diffeomorphism of T3 and modifies in a suitable way the
first return map of a global cross section of the unstable foliation.

A diffeomorphism of T2 is called of Denjoy type if it is semiconjugate
to a minimal translation by a continuous map h such that h-1 (x) is a single
point for all but countably many x. Norton [15] and Norton-Sullivan [16]
showed the non-existence of C3 diffeomorphisms of Denjoy type under
certain conditions.

Proof of Theorem 3. - Let f be the above mentioned homeomorphism
of T~ with a minimal set 9K homeomorphic to the Sierpinski T 2-set and
such that the sets are mutually disjoint for any connected
component U of T 2 B 9N.

Let ~Ui~i=1,2,... denote the family of all the connected components
of Let us choose a properly embedded (i.e., such that the

intersection n 8Ui coincides with the pair of end points of .~) arc
contained in Ul. Since tUili-1,2.... is a null-sequence, diam ¡n(f) converges
to 0 as n - ±oo. Let us define the equivalence relation - by zi - Z2
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(where Zl, Z2 E T2 ) whenever either zl - Z2 or both, zi and z2, are

contained in for some n E Z (Figure 1). Let 7r: T2 --+ T /- denote
the quotient map. The family of the closed and the points of
T 2 forms a so called decomposition with respect 
This decomposition is shrinkable (in the sense of [4], see also [2] and [14]),
and therefore is homeomorphic to T2 by Theorem 6 in [4], p. 28.

(Certainly, 7r itself is not a homeomorphism but just a near homeomorphism,
i.e., it can be approximated by homeomorphisms in the sense described
in [4].) Let us define a homeomorphism g of by _ 

Figure 1. Pinching process

We will show that is a minimal set of g. Suppose that K is a
non-empty closed g-invariant set contained in Then f1 9J1 is

closed, f -invariant and contained in 9J1. Thus the set 7r-l (K) ~l 9R is either
empty or coincides with 9J1. In the first case, ~r-1 (K) would be contained
in Ui. Since the sets are mutually disjoint, the o-limit set
of a point of ~r-1 (K) would be disjoint from Ui, a contradiction.
Thus 7r-l (K) n 9J1 coincides with 9J1, and 7r-l (K) contains 9N. Therefore,
K = 7r( 7r-l (K)) coincides with 1f(9J1) and this implies that 7r(M) is

a minimal set of g indeed.

Next, we show that 1f(9J1) is locally connected. Let p be a point
of 7r(9J1) and U a neighbourhood of p in T 2 . First, suppose that p does not
belong to Let q denote the unique point such that = p.

Since 9J1 is locally connected, there is a neighbourhood V of q in T 2 such
that the intersection V n 9J1 is connected and contained in 7r- I (u) n 9Jt.
By one of the properties of Sierpinski T2-sets (see [18]), aV can be further
assumed to be disjoint from UnEZ Then 7r-l7r(V) is equal to V.
In fact, if r is a point of 1f-l7r(V), then 1f(r) lies in 7r(V), and there is a
point z of V such that 7r(r) == If r = z, then obviously r lies in V. On
the other hand, if r 7~ z, then there is n c Z such that both, r and z, belong
to Since is disjoint from av, r belongs also to V. Thus the
set is contained in V and, consequently, V. Therefore,
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7r(V) is open in T2 . Moreover, 7r(V) n coincides with n 9Jt)
because of the following: If zi C V and z2 E ~l2 are such that 
and z2 , then there is n E Z such that both, z, and z2 , belong to f n (.~) ,
and hence z2 lies in V. This implies the required equality

Thus 7r(v) n is a connected neighbourhood of p in which is

contained in U. Next, consider the case when p is a point of 1T(UnEZ /~(~)).
Let j denote the integer such that p is contained in Jr ( f3 (1) ) , and ql and q2 -
the end points of f-l’ (f ). We can choose neighbourhoods Y (z = 1, 2) of q2
in T2 such that vi n 9J1 is contained in 1T-l (U) n 9Jt, vi is connected

and

Let W = VI U V2. Then n 7r(9n) ( = U2 1 is a connected

neighbourhood of p in contained in U by the same reason as above.
This shows that the set ~r(~2) is locally connected indeed. (The local
connectedness of 7r(9n) can also be shown by general arguments: Since 7r is
the quotient map, it is continuous, and the continuous image of a locally
connected compact connected set is locally connected (Theorem 5 in [12],
p. 257). This argument was communicated to the authors by A. Koyama
and T. Yagasaki.)

Finally, we shall show that our set 7r(M) has a locally separating
point. Let z, and Z2 denote the end points of .~. For any 1 - 1, 2,
there exists a neighbourhood Vi of zi in T2 such that Vi n 9A is

connected, n = 0 and V, n V2 n 9Jl == 0. Therefore,
n (V1 U Y2 ) n 7r(9n) is a connected neighbourhood of p = 7r(f) in 7r(m) (by
the same argument as that in the proof of local connectedness of 7r(9n)).
Moreover, 7r(VI) B ~p~ and 7r(V2) B fpl are disjoint open subsets of 
Therefore, ~r (.~) separates 9n locally. 0

Remark 2. - A point which is not contained in 7r(UnEZ is

not locally separating. Thus the minimal set 7r(9n) is a locally connected
continuum (i.e., a compact connected set) which is not homogeneous and
admits a minimal homeomorphism. Another one-dimensional continuum
which is not homogeneous and admits a minimal homeomorphism was
introduced in Theorem 14.24 in [7]; that continuum is not locally connected
(compare also [6]).
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Remark 3. - In the proof of Theorem 3, we inserted just one

properly embedded arc into the closure of a connected component of the
minimal set. We can modify this construction easily by inserting a null-
sequence of infinitely many pairwise disjoint properly embedded arcs in
there.

Remark 4. - Aarts and Oversteegen [1] showed that the Sierpinski
curve admits no minimal homeomorphism while Kato [9] proved that the
Sierpinski curve admits no expansive homeomorphism (compare [1] again).
Our article is in fact strongly stimulated by these papers.

2. Cut points of minimal sets.

In this section, we provide some general properties of minimal sets
for homeomorphisms of arbitrary compact metric spaces. Although there
exists a compact metric space which is not homogeneous but admits a
minimal homeomorphism (see Remark 2 in §1), such minimal sets enjoy
’homogeneity’ of certain kind.

Throughout the paper, the following simple observation will be used
for several times.

LEMMA 1. - Let 9J1 be a connected minimal set of a homeomorphism f
of a compact metric space. Then there is no non-empty compact proper
subset K of9N such that K, f(K),..., f n(K) (n &#x3E; 0) are mutually disjoint
and either is contained in K or contains K.

Proof. First, we consider the case when is contained in K.

If such a compact set K exists, then its cv-limit set

is compact, f-invariant and contains . Hence

9J1 coincides with w(K). On the other hand, w(K) is contained

in. which is also contained in Thus we have

However, this contradicts the assumption K 54- 9)1 when n = 0 and that of
connectedness of m1 when n &#x3E; 0.

One can complete the proof by replacing f with and 

with K in the case when contains K. D
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LEMMA 2. Let 9J1 be a connected minimal set of a homeomorphism f
of a compact metric space. Then 9)T has no cut points.

Proof. - Assume that ~ has a cut point z. Certainly, each of the
points n G Z, cuts 9A as well. By definition, consists of

two non-empty sets VI and V2 such that both of them are open in 9R.
Let Ki (i = 1, 2) denote Vi U Then Ki’s (i = 1, 2) are closed in 9J1 (just
because are open). Furthermore, Ki’s are connected. In fact, if one

of them, say Kl, were not connected, then there would exist two disjoint
closed subsets A1 and A2 of 9J1 such that Kl = Al U A2 and zEAl. Then
the sets A1 U K2 and A2 would be disjoint and closed in 9J1 contradicting
the connectedness of Thus we have two continua Kl and K2 contained
in 9N and such that K1 n K2 consists of the single point z, K, U K2 = ~?
and both, K1 and K2, contain more than one point.

We claim that either f (Kl) n Ki = 0 or f(K2) n K2 - 0. Since 9A
contains at least three points, z is not fixed by f. Hence z does not belong
to n f (K2) because f1 f (K2) = n K2) - f f (z) 1 7~ 
First, suppose that z V f(K2). Then f(K2) n Kl and f(K2) n K2 are
disjoint closed sets. Since f (K2 ) is connected, f (K2 ) is contained in

either Kl i (z) or K2 1 (z) . The second possibility is excluded by Lemma 1.
Thus f (K2) c Kl and hence f (K2) n K2 - 0. In the same way,

n Kl = 0 if f (Kl ) does not contain z. Thus one can always
find i E ~ 1, 2} for which f ( Ki ) n Ki = ~ . In the following, we will assume,
without loss of generality, that does not intersect Kl .

Now, using the same argument as above inductively, we will show
that all the sets Kl, f (Ki), f 2 (Kl ), ... are mutually disjoint. Suppose that

(n &#x3E; 1) are mutually disjoint but inter-

sects for some m (0  m  n). Then intersects Kl.
Since Kl, /(7~i),. " , are mutually disjoint, intersects K,
(~ =0). If does not contain the cut point z, then the connected
set is contained in Kl , what contradicts Lemma 1. Thus the

point z is contained in Since z is not a periodic point, z

has to lie in B f zl). Then does not contain z. Thus

the set is contained either in or in In the

second case, contains Kl , what contradicts Lemma 1. Thus

(K2) has to be contained in Ki B In particular, (K2 B fzl)
is contained in Since f (Kl) is disjoint from Kl, we obtain
that B f (Kl ) _ 0. This implies that f n (K2 B ~z~) n K, = 0,
and hence contains Kl , what contradicts the assumption. Thus all
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. are mutually disjoint indeed. (Let us remark
consists of mutually disjoint sets just

Since (k E Z) are non-empty open sets, the comple-
ment of the union is f-invariant, closed and different
from M, and hence it has to be empty. In other words, the family
A - ffk (Ki B covers M. Since 9A is compact, some finite subfa-

mily of A covers 001. Since, as was observed before, the sets B f z 1),
1~ E Z are mutually disjoint, this contradicts the assumption that 9N
is connected. D

Next we provide some properties of locally connected continua without
cut points. These will be used frequently in the proofs of Theorems 1 and 2
in §3 and §4.

LEMMA 3. - Let 9Jt be a connected and locally connected compact
metric space without cut points. If there exist a compact subset K of 9Jt
and an arc .~1 in Ti such that K contains at least two points and K n .~1
consists of a single point z, then there is an arc .~2 in 9Jt such that one
of its end points is z, the other end point w of £2 is contained in K B ~z~,
and .~2 B ~z, w~ is disjoint from K (Figure 2).

Hereafter, by an arc we mean an injective continuous image of a closed
interval.

Figure 2.

Proof. Let x denote the end point of different from z.

Denote by VI the path-connected component of containing x.

Let by definition.
By Mazurkiewicz-Moore-Menger Theorem (see [12], p. 254), any complete
locally connected metric space is locally arcwise connected, therefore our
set 9J1 is locally arcwise connected (and arcwise connected too). Thus V,
and V2 are open in VJ1 B (z). Since 9J1 is assumed to have no cut points,
the set V2 has to be empty. Let us choose an arbitrary point p of K, p # z.
Certainly, p belongs to Yl. Thus we can find an arc .~3 joining points p and x
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and contained in 9J1 B f z I - Denote by /3 the connected component of .~1 N £3
containing z. The end point q of /3, q i= z, is connected with a point of K
by a subarc .~4 of 13 which intersects K only at its end points. Let .~2 denote
the union of {3 and .~4. The arc .~2 satisfies the conditions of Lemma 3. D

COROLLARY 2. - If M is a connected and locally connected compact
metric space which is not a single point and has no cut points, then 9J1
contains a simple closed curve.

Proof. Let x and y be two distinct points of 9R, £ an arc joining
x and y in 9J1 and z a point of £ different from x and y. Denote by f 1 the
subarc of £ between z and x, and by I~ the subarc of I between z and y.
There exists an arc .~2 in 9J1 satisfying the conditions of Lemma 3. The
union U .~2 contains a simple closed curve (which is obviously contained
in 9A). 0

3. Complements of minimal sets.

In order to consider locally connected minimal sets, it is important
to examine topological properties of their complements. In this section, we
will prove some facts (Lemmas 4 and 5) concerning simple closed curves
in the boundary of such complements. These facts will be used to prove
Theorem 1 in the final part of this section.

LEMMA 4. - Let f be a homeomorphism of a closed orientable surface
E with a connected and locally connected minimal set 9Jt. Let U be a

connected component If there exists a simple closed curve C
contained in the frontier aU of U and satisfying the following conditions
(Figure 3) :

1) ~ B C consists of two disjoint connected open sets VI and V2,

2) VI contains U, and

3) V2 is disjoint from 9J1,
then 9J1 coincides with C. (In particular, U = Vl.)

Proof. Assume that 9J1 does not coincide with C. Let p be a point
of M ~ Vl . Since 9K is connected, there exists an arc 11 of 9H joining p and a

point q of C such that 11 B ~q~ is disjoint from C. Applying Lemma 3 to V2
and ~y1 as I~ and f 1 respectively, we can find a properly embedded arc £1
of Via contained in M.
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Figure 3.

We claim that V1 B £1 is connected. In fact, if V1 B £1 consists of two

disjoint open sets Wl and W2, then both Cnw1 and C n W2 are non-empty
arcs with common end points (just because the end points of .~1 cut C into
two arcs and V1 is connected). On the other hand, either W1 or W2, say W1
contains U. Then C is contained in Wl because C c 8U. However this
contradicts the condition C n w2 :~ 0. Thus V1 B £1 is connected indeed.

Let q and q’ denote the end points of £1 and r be a point of C
different from q and q’. Since M is a minimal set, the orbit starting from q
accumulates at r. Furthermore, q is a branch point of C U f 1. Thus the

image of a neighbourhood of q in 9N by this orbit cannot be contained in C.
Therefore, condition 3) of our lemma implies that, arbitrarily close to r,
there exists a point of ~2, which lies in V1 but not in C. Since 9R is locally
connected, there exists a small arc close to r and contained in 9A which
intersects C only at one of its end points. Applying Lemma 3 we get an arc
.~2 contained in 9Jt and such that .~2 intersects C U £1 only at its end points
and one of the end points is contained in C. Then V1 B (fl U ~2 ) is connected
because, if not, two sides of .~2 would be contained in distinct connected

components of V1 B U .~2 ) one of which contains U, therefore aU could
not contain C as above.

Proceeding inductively, we obtain infinitely many arcs ~2? - - - in 9R
such that fi intersects C U .~1 U .~2 U ... U £i-1 only at its end points and
V1 B U .~2 U ... U li ) is connected for all i = 1, 2,....

Finally, choose a regular neighbourhood R of C
Let

Then the Euler characteristic X(E2) of E2 is smaller than or equal to 2

(just because E2 is connected). The Mayer-Vietoris sequence yields
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where g is the genus of E. On the other hand,

Since this is impossible for a sufficiently large i, 9~ coincides with C. 0

In the case when C does not separate E, we need some additional
consideration because U may accumulate at C from both sides.

LEMMA 5. - Let again f be a homeomorphism of a closed orientable
surface E ulith a connected and locally connected minimal set 9R. Let U
be a connected component of E B VJ1. If aU coincides with VJ1 and there
exists a simple closed curve C contained in o9U such that E B C is connected

(Figure 4), then VJ1 coincides with C.

Figure 4.

Proof. Assume that TI does not coincide with C. As before, we
will construct by induction infinitely many arcs £2, ... in 9Jt such that £i
intersects C U ... U £i-1 at its end points U ... 

is connected for i = 1, 2,....

The first step of induction (existence of .~1 ) follows from Lemma 3 as
in the proof of Lemma 4.

Suppose that .~1, .~2, ... , .~n (n &#x3E; 1) satisfy the above conditions. Let ,5’n
denote U... URn. Since ,S’n has finitely many branch points, there is an
arc c 9K such that intersects ,S’n only at its end points and one of the end
points of £ is contained in C B U ... U £n). Suppose that E B (,S’n U £) is not
connected. Let VI and V2 denote the connected components of E B (Sn U £)
such that U is contained in Vi. Then 8U (= M) is contained in Vi , and
hence Y2 is disjoint from Since intersects C at C B (£i U ... U in), the
set (C n V2 ) B U .~2 U ... U fun) contains a non-empty open arc a. Then a
one-sided neighbourhood of a in V2 is disjoint from U. Next, let us choose
as above another arc £’ of 9K such that £’ intersects S’n only at its end
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points, one of them being contained in a. Since V2 is disjoint from 9J1, .~’ is

disjoint from V2. Suppose also that £ N U .~’) is not connected. Let V/
and V2’ denote the connected components of E B (S’n U fl) such that U is
contained in Then V2’ is disjoint from U as above.

By the same argument as for .~, CnY2 contains a non-empty open arc a’
contained in a such that one of the end points of c~’ is an end point of .~’.
Since f’ is disjoint from V2, both sides of cx’ are disjoint from U. Since this
contradicts the assumption that C is contained in we obtain that either

E B or E B is connected so we can put either = .~ (in the
first case) or = .~’ (in the second one). As promised, induction provides
infinitely many arcs .~2, ... such that each fi intersects C U f I U ... U fi-l
at end points and all the sets E B (C U f 1 U ... U are connected.

One can complete the proof by the same arguments as those in the
final step of the proof of Lemma 4. 0

Proof of Theorem 1. - Let 91 be a connected component of the
minimal set 9R. Certainly, any connected component of a locally connected
space is open. Hence the complement of f-invariant
closed set, and has to be empty. In other is an open

covering of 001. By the compactness of 9J1, 9A coincides with the union of
a finite subfamily Consequently, there exists j E Z such
that the equality f3 91 holds. We assume that jo is the least positive
integer j satisfying this equality. By the minimality of 9J1 coincides

with f n (9q), and 91 is a minimal set of 

By assumption, the Euler characteristic of E is different from zero.
Hence, f has a periodic point (see, for example, [10], p. 330, Exercise 8.6.2),
denoted here by p. Let m denote its period. Then p is a fixed point of fmja.
Since 91 is connected and minimal for f3° , 91 is - by Theorem 2.28 in [7] -
minimal also for Thus we have only to show that any connected
and locally connected minimal set 9J1 of a homeomorphism f of a closed
orientable surface E with a fixed point p coincides with either a single
point or a simple closed curve.

Suppose that 9Jt is not a single point. Then p cannot belong to 9J1.
Let U be a connected component of E B 9J1 containing p. Then f (U) coincides
with U, and hence f(8U) coincides with Since 8U is a closed invariant

set, our minimal set 9J1 coincides with 8U too. By Corollary 2, 9J1 contains
a simple closed curve C. If C does not separate E, then 9J1 coincides with C

by Lemma 5. If C separates E, i.e. ~ B C is the union of two disjoint
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open sets VI and Y2 (without loss of generality, we may suppose that U
is contained in then V2 is disjoint from 9J1 (just because 9J1 coincides
with 8U (c Vi)), and again 9J1 coincides with C, this time by Lemma 4. D

4. Homeomorphisms of the torus.

Let f be a homeomorphism of T2 and U a connected component of
the complement of its minimal set 9J1. If f (U) coincides with U, then aU is
closed and f-invariant, therefore 8U coincides with 9J1. Corollary 2 obtained
in the course of proof of Theorem 1 yields the existence of a simple closed
curve contained in 8U in this case. In the case when the sets f n (U), 
are mutually disjoint, this argument does not work. In order to find a simple
closed curve in we need several preparatory facts (Lemmas 6, 7 and 8).

LEMMA 6. - Let f be a homeomorphism of T 2 and let 9J1 be a

connected and locally connected minimal set which is neither a single point
nor a simple closed curve. Then, for any connected component U of T 2 B 9J1,
its consists of mutually disjoint sets.

Proof. Let us assume on the contrary that the 
are not mutually distinct. Then there is 1~ ~ 0 such that = U. Since

9J1 is connected, 9J1 is also a minimal set of f. Now 8U is a closed set
invariant under f. Thus 8U = 9J1. By Corollary 2, 9J1 contains a simple
closed curve C, and furthermore 9J1 = C by Lemmas 4 and 5 as in the proof
of Theorem 1. This contradicts the assumption. D

LEMMA 7. - If 9N is a compact connected subset of the torus which
has infinitely many complementary connected components Ui, and if 9J1 is
locally connected, then tuiii.1,2.... is a null-sequence.

Proof. Assume that fUj lj=1,2,. ** is not a null sequence. Then there
exists E &#x3E; 0 such that infinitely many of Uj’s have diameter greater than c.
Denote by {Vi}i=I,2,... the collection of all such Uj’s. Denote by d the
standard metric on T2 and, for each i C N, choose points xi and yz of Y
such that d(xi, yz) &#x3E; c, and an arc -yi in Y joining xi and yi. Let zi be
a point of qz such that and &#x3E; Passing several
times to a subsequence (if necessary), we may assume that f xi (yz) and

converge (as i -~ oo) to points and z, respectively (Figure 5).
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Figure 5.

Then we have d(x, z) 2: ~ c and d(y, z) 2: ~ c. Furthermore, z is

contained in 9J1 because, if not, z would belong to some connected

component Uk of T~ B 9J1, and - since Uk contains at most one point
of the sequence this sequence would not be able to converge to z.

Since txil and converge to x and y respectively, there is N &#x3E; 0 such

that I and if only i &#x3E; N. Let

The points xi and yz do not lie in D when i &#x3E; N. By the local connectivity
of M, there exists a neighbourhood W of z in T 2 such that W is

contained in D and W f1 ~2 is path-connected. Replacing eventually W
by its connected component containing z we may assume that W itself is
connected as well. Let L be an integer greater than N and such that zi
lies in W whenever i &#x3E; L. For j - L, L + 1, L + 2, the points xj and yj
are not contained in D, and hence we can choose properly embedded arcs

13j contained in D n qj and passing through zj. The arcs 13 L, ,QL+1, 
split D into four closed discs. Among these discs, there are two whose
boundaries consist of two arcs chosen and two

others contained in 8D. Since z does not belong to the boundaries of
these two discs, one of them (denoted by A from now) does not contain z.
Without loss of generality, we can assume that 8A consists of 13L, 13L+1 and
two arcs contained in and furthermore that 13L+1 is closer to z than 13L
(i.e., z and 13L are contained in different components of D B 13L+1).

We claim that W f1 001 n int 0, ~ 0. Indeed, since W is connected,
there exists an arc al in W joining z and ZL. Then x1 intersects 13L+1.
Thus there exists a subarc a2 of al properly embedded in A and such that
one of the end points is contained in 13L while the other one in 13L+1. Since
13L C VL and 13L+1 n VL = 0, one can find a point q of a2 contained in the
intersection of sVL and int A.
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Since q E 9J1 n W, q can be connected to z by a path in 9J1 n W.
However, this is impossible since such an £ would intersect which is

disjoint from 9N n W. is a null sequence indeed. 0

Any disc is contained in a Janiszewski space without a cut point,
which is homeomorphic to ,S’2 (see [12]). By Theorem 4 in [12], §61, II, we
have the following.

LEMMA 8. - Let X be a free of cut points and locally connected
continuum contained in a disc D and such that c~D is contained in X. Let U

be a connected component of D B X. Then U is the interior of a disc.

LEMMA 9. - Let f be a homeomorphism of T2 and U a connected
component of the complement of a connected and locally connected minimal
set neither a single point nor a simple closed curve, then U
is the interior of a disc.

Proof. By Corollary 2, 9J1 contains a simple closed curve C. By
Lemma 3, there is an arc of T2 which is contained in 9J1 and intersects C

only at its end points. Then the 0-curve (compare [12], p. 328) C U .~ of T2
belongs to one of the three types according to the number of the connected
components of its complement (which is always smaller than or equal to
three) .

First, we consider the case when T2 B (C U .~) is connected. Then the

manifold obtained by cutting T2 along C U .~ becomes a closed disc D1
after pasting a circle to T2 B (C U .~) along the boundary. Since C U .~ is not
the whole 9Jt, int D1 contains a point p of 9J1. Let dl denote the distance
between 8Di and p. By the minimality of 9J1, for any point q of aU, there
is n E Z such that the distance between f n (q) and p is smaller than! d1.
Furthermore, by Lemmas 6 and 7, we may assume that diam f n (U) is also
smaller than! d1. Hence f n (U) is contained in the interior of Del . Thus

is a connected component of D1 B 9J1 such that f n (U) is disjoint from
o9D, - By Lemma 8, there is a disc D2 in int D1 such that int D2 = 
The disc D2 remains embedded in T 2 after pasting the boundary of D1
along C U .~. Thus U is the interior of the disc f -n (D2 ) contained in T 2 .

Next, we assume that T2 B (C U £) has three connected components.
Then the manifold obtained by cutting T2 along C U ~ consists of two
discs E1 and E2 and a one-punctured torus ~3 . The discs E1 and E2 are

adjacent by an arc. If the interiors int 1 and int2 are disjoint from 9J1,
then the intersection E 1 n ~2 contains a closed arc a "isolated" in 9J1 (in the
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sense, that 9J1 is locally homeomorphic to an arc in a neighbourhood of any
point of a different from end points). By the minimality of 9J1, 
covers M. Furthermore, by the compactness of 9N, finitely many of the
sets cover 9A. Therefore, 9J1 is a simple closed curve, which
contradicts the assumption. Thus either int El or int E2 contains a point p
of 9J1. By the same argument as in the case when T2 B (C U .~) is connected,
we can show that there exists n c Z such that is contained in

either El or E2, so that fn(U) n (C U .~) = 0, and hence U is the interior
of a disc as above.

Finally, we consider the case when T2 B (C U .~) has two connected
components. Then the manifold obtained by cutting T2 along C U £ consists
of a disc 1 and an annulus E2. Replacing C by if necessary, we

may assume that C itself bounds El. If int El intersects 9J1, then U is the
interior of a disc by the same argument as in the case when T2 B (C U .~) is

connected. Thus we may assume that int El is disjoint from 9J1. The orbit
starting from a branch point of C U .~ accumulates at a point of C B .~, and
there is a small arc in E2 n 9N such that one of the end points is contained
in C B .~. By Lemma 3, there is an arc £’ of 9J1 such that £’ intersects C U £
only at its end points, one of them being contained in C B .~. If E2 B (.~ U .~’) is
connected, then the manifold obtained by cutting E2 along U £’ is a disc
adjacent to Ei (Figure 6 (a)).

Figure 6.

On the other hand, if E2 B (.~ U .~’ ) is not connected, then the manifold
obtained by cutting E2 along U £’ is the union of a disc and an annulus

(Figure 6 (b)). Here this disc is also adjacent to the disc El. In both cases,
U is the interior of a disc according to the same argument as in the case
when T2 B (C U £) has three connected components. D

LEMMA 10. - Let f be a homeomorphism ofT2 and 9J1 be a connected
and locally connected minimal set of f. Let denote the family
of the connected components for the complement of 9J1. If 9R is neither a

single point nor a simple closed curve nor the whole T2, then
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1) Ui intersects Uj at most at one point when i ~4 j, and the
intersection Ui n Uj consists of a locally separating point of 9N (if non-
empty) ;

such that

Proof. - First, we will show that Ui intersects Uj at most at one point
when i ~ j . Assume that Ui n Uj contains two points PI and p2 . Since Ui
and Vj are discs, there is an arc -yl (resp. q2) contained in Ui (resp. U~ )
such that both "1 and -y2 join PI and p2 and, furthermore, "1 (resp. q2)
intersects aUi (resp. only at its end points. Since Ui n ø, the
union y1 U q2 is a simple closed curve, denoted hereafter by C. By Lemmas 6
and 7, and converge to 0 as n --+ oo. Thus there

is N &#x3E; 0 such that f N (C) bounds a disc Di. Let zt (f - 1, 2) be a point
of N different from pi and p2. Since (resp. f N (z2 ) ) is a point of

(resp. the interior int D 1 intersects f N ( Ui ) and 
Therefore, there is a point q of int D1 which belongs also to m1. Let d1
denote the distance between 8Di and q. Since is a null sequence
and m1 is a minimal set, there is an integer L such that

Then, f L ( Ui U is contained in int Di just because belongs
to f1 Uj). In particular, is contained in int Di . The simple
closed curve f L (C) bounds a disc D2 contained in int Dl . Now the boundary
of coincides with ~D2 . If were different from D2,
then our surface would be homeomorphic to the sphere, but this is not the
case. Therefore, fL-N (Dl) = D2 and, in particular, c int Di .
Thus n is contained in DI n 001. By Lemma 1, is not a

minimal set of fL-N. In particular, 9A is not a minimal set of f, what
contradicts our assumption and shows that Ui intersects U~ at most at one
point (when i ~ j ) .

Next, we assume that there exists a finite chain Ui2’ ..., Uin
(n &#x3E; 1) such that Ui, n (j = l, 2, ... , n - 1) and U21 n ø.

Then, joining suitable arcs properly embedded in Ui,, we obtain a simple
closed curve C contained in Uj=1,2,...,n Uij (Figure 7). By the same argu-
ment as above, this is impossible. This yields our condition 2).
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Figure 7.

Finally we will show that the intersection of Ui and Uj consists

of a locally separating point (if non-empty). Let z denote the unique
point of Ui n Uj. Choose an arc a contained in Ui U Vj and such that

= z 1, and anUj =I 0. Let V be a neighbourhood
of z in T2 which is cut by c~ into two pieces. Then the pathwise connected
component w of 9)1 n V containing z is a neighbourhood of z such
that W B ~z~ is not connected. Thus, z is locally separating. 11

Proof of Theorem 2. - First we will show that 9)1 is connected.

Assume that this is not the case. Let 91 be a connected component of 9)1. By
arguments of the proof of Theorem 1, there is N &#x3E; 1 such that fN(91) = 91
and =I 91 (i = 1, 2,..., N - 1), and furthermore, 91 is a minimal
set of f N . Let g = f N . Denote by V the connected component of T~ B91
containing j(m). Since fN+l(91) == f(91), both, g(V) and V, contain j(91).
But, g(V) is also a connected component of Thus 9 (V) - V and
hence g(8V) = o9V. Therefore, av is a g-invariant closed set contained
in 91. Since 9q is a minimal set of g, aV coincides with 91. By Lemma 9,
8V is a simple closed curve. Since (as in proof of Theorem 1) 9)1 has finite
number of connected components, this contradicts our assumptions on the
structure of our minimal set 9Jt. Therefore, 9)1 is connected indeed.

By Lemmas 7, 9 and 10, the conditions 1), 2), 3) and 4) of Theorem 2
are satisfied. The remaining problem is the uniqueness of minimal sets.

Suppose that there exists another minimal set 9J~. Then one of its connected
components has to be contained in some connected component U of the

complement of 9A. By Lemma 6, all the sets are mutually
disjoint. Then the orbit starting from a point of the intersection n U

never approaches to this point again, a contradiction. 1:1

Remark 5. - A connected component of can be invariant

under f . Moreover, it is possible that the union just connected.
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Such an example was communicated to the authors by Takashi Tsuboi:
Let 9 be a minimal translation of T2. We choose a point x and a (straight)
segment joining x and g(x). Inserting mutually disjoint discs along the
orbit as in 31, we obtain a homeomorphism h of T2 whose
minimal set 9N is homeomorphic to the Sierpinski T2-set. Then the arcs
corresponding to f gn are contained in 9Jl and are mutually disjoint.
Thus the decomposition with respect to these arcs is shrinkable. By the
same argument as in the proof of Theorem 3, we can collapse these arcs and
obtain a homeomorphism f such that U’, Ui is connected and invariant
(where, as before, Ui’s are connected components of the complement of the
minimal set).
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