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LOCAL WELL-POSEDNESS

FOR THE INCOMPRESSIBLE EULER

EQUATIONS IN THE CRITICAL BESOV SPACES

by Yong ZHOU

1. Introduction.

In this paper, we consider the incompressible Euler equations in 
N &#x3E; 3,

where v(x, t) E JRN stands for the velocity field, P(x, t) is the pressure,
while f (x, t) is the force, which will be assumed as zero just for simplicity.
Our main results can be gone through for any f E L~(0, T; B’P, 1

For the local well-posedness of the sysytem (1.1), we mention the
following results. Given vo E m &#x3E; N/2 + 1, Kato [9] proved local
existence and uniqueness for a solution belonging to C([O, T]; Hm(JRN))
with T = Later on, many various function spaces (see [3], [4],
[5], [10], [13]) are used to establish the local existence and uniqueness for the
incompressible Euler equations. For example, with s &#x3E; N /p + 1,
1  p  oo is used in [10] and Fp,q for s &#x3E; N/p 
is used in [3]. In particular, Vishik [17] showed the (global) well-posedness
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for 2-D incompressible Euler equations in the critical (borderline) Besov
spaces Bp~p~1 (I~2). Later, Vishik [18] proved the existence (N = 2) and
uniqueness (TV ~ 2) result for (1.1) with initial vorticity belonging to a
space of Besov type. The purpose of this paper is to establish local well-

posedness of ( 1.1 ) in for any 3.

THEOREM 1.1. - Let 1  p  oo. Given any i

there exists a T = and a unique solution (v, VP) to (1. 1)
p1‘

such that

The maximum local existence time, say T*, is called the lifespan of
the solution. If T* is finite, we say that the solution blows up at time T*.
In our case it is limsuPt~T* ||v (.,t) oo. Beal, Kato and Majda [1]

p,l

established the following blow-up criterion for the smooth solution v (x, t)

JU

where w - curl v is the vorticity field. Later on, some refined results were

proved in ~11~, [12]. The blow-up criterion for our case reads

THEOREM 1.2. - The local solution constructed in Theorem l.l

blows up at time T* if and only if

2. Littlewood-Paley decomposition and Besov spaces.

We start by recalling the Littlewood-Paley decomposition of temper-
ate distributions. Let S be the class of Schwartz class of rapidly decreasing
functions. Given f E S, the Fourier transform is defined as

One can extend and .~-1 to S’ in the usual way, where S’ denotes the
set of all tempered distributions. Let 0 E S satisfying
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for ~ I

any f E S’, we define

Then the homogeneous Besov semi-norm and Triebel-Lizorkin

semi-norm are defined by

The space Bp,q and Fp,q are quasi-normed spaces with the above
quasi-norm given by Definition 2.1. For s &#x3E; 0, (p, q) E (1,00) x we

define the inhomogeneous Besov space norm and inhomogeneous
Triebel-Lizorkin space norm of f E S’ as 

p,q

The inhomogeneous Besov and Triebel-Lizorkin spaces are Banach spaces
equipped with the respectively.

Let us now state some classical results.

LEMMA 2.2 [14], [16] (Bernstein’s Lemma). - Assume that k E Z~,
and Supp . then there exists a

constant C(k) such that the follouTing inequality holds.

For any k E Z+, there exists a constant C(k) such that the following
inequality is true.
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LEMMA 2.3 [14], [16] (Embeddings). - Let p E (1, oo), then

PROPOSITION 2.4 (Product).
belong to . , and

In particular, for , , there holds

This proposition will be showed in the appendix.

with

3. Proof of Theorem 1.1.

In this section, C denotes a absolute constant, which maybe different
from line to line.

Consider the following linear system

We have the following local existence theorem for (3.1), which will be proved
in the appendix.

PROPOSITION 3.1. - Assume that div w = 0,
for some T &#x3E; 0. Then for any

unique solution
r-

to (3.1). And consequently, B7 P can
be determined uniquely.
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In order to prove the existence part of the main theorem, we consider
the following approximate linear iteration system for (1.1)

where v° = 0. In [3], Chae used a similar (not same) iterative system to
construct the local solution. But unfortunately, the linear system (3.32)-
(3.33) on page 671 of [3] is not solvable, since the system itself lacks

consistence.

If we have the uniform estimate for the sequence v" by induction,
which satisfies the conditions in Proposition 3.1, then the system (3.2) can
be solved with solution 

Uniform estimates.

First multiply (3.2) coordinate by coordinate with 
where is the 1-th coordinate of the vector field vn+l, and integrate
over JRN. Taking the divergence free property of Vn into account, we have

therefore,

Note that for p = 2, multiplying (3.2) by and integrating by parts,
we have

Now takingAj on (3.2), we get

Multiplying (3.4) coordinate by coordinate with
and integrating over we have
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Then apply ’. on (3.5) and take summation,

Now we turn our attention to the estimates for B7 pn+l. Taking divergence
on the both sides of (3.2), it follows that

thus

Thanks to the divergence free property of vn, we obtain

For 1  p  m, it was proved [14], [16] that - and Ri is bounded
from LP into itself [8], [15]. Due to Bernstein’s lemma, we have

It follows from (3.7) that

where we used that Ri is bounded from Bp,q into itself [8].
Combining (3.3), (3.6), (3.8) and (3.9),
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Note that although the above constants C maybe depend on N and p,
it is nothing to do with n, therefore we can obtain uniform estimates by
induction.

In fact, suppose that the initial datum vo satisfies
then the following inequality holds

for all n &#x3E; 0, provided that Tl (independent of n) is sufficiently small.

(3.11) can be showed easily by mathematical induction. First, it is

true for n = 0. Suppose (3.11) holds for n, we want to prove it is true for
n + 1. It follows from (3.10) that

Hence, (3.11) holds, if we choose Tl so small that

Moreover, Tl is independent of n. 
’

Convergence.

To prove the convergence, it is sufficient to estimate the difference

of the iteration. Take the difference between the equation (3.2) for the

(n + l)-th step and the n-th step, and set

then we get the equation as follows
I - -11 1 ~ - ~ I 1 ~

Just as what done for vn+l, multiplying (3.12) coordinate by coordinate
with Thanks to Holder’s inequality, we have

Taking A. on (3.12), we get
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Multiplying (3.14) coordinate by coordinate with
integrating over R , we have

Then apply 2 jnlp on (3.15) and take summation,

Combining (3.13) and (3.16), we have

We can estimate B7IIn+l as follows. From the equation (3.2), it follows

Thanks to the divergence free of vn, we have
11 T

Therefore, we have
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where we used the Holder inequality and embedding Lemma 2.3. And
similarly,

where we used (2.6).
Then integrate (3.17) on the time interval (0,T) by taking (3.18) and

(3.19) into account,

So if we choose T2  Tl sufficiently small such that

where C1 is the constant obtained for the uniform estimate, then it follows
from (3.20) that

Hence due to (3.21), it is clear that

as n tends to infinity.

Therefore, the solution to the system (1.1) is obtained by taking the
limit for the approximate sequence vn+’. Moreover, from the equation, we
have v E C(o, T; BP 1p+1 ) . This completes the proof of local existence part.

Uniqueness.

Suppose (vi, PI) and (v2 , P2 ) are two solutions to ( 1.1 ) with the same
initial datum. If we set v = vl - v2 and P = Pl - P2, then we get a similar

system as (3.12)
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Just as what done for the convergence part for the sequences, we obtain,
from (3.22),

If we choose T x min{T1, T2} such that

where C1 is the constant obtained by the existence part such that

then, (3.23) tells us, on (0, T),

this implies the uniqueness.

4. Proof of Theorem 1.2.

The proof is easy. Indeed, just as the uniform estimate which was
done in section 3, we have the following estimate for the solution to (1.1).

On the other hand, the pressure can be estimated as

Therefore, it follows from (4.1) and (4.2) that
/ rot t

Then use the known fact that

where P is a singular integral operator homogeneous of degree -N and A is
a constant matrix. By the boundedness of the singular integral operator [8],
we have

So Theorem 1.2 follows from (4.3) and (4.4).
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5. Appendix.

Proof of Proposition 2.4. - We use Bony’s decomposition [2], [5] to
present the product as

where

By compactness of the supports of the series of Fourier transform, for any

it follows that

Similarly,

It follows from Bony’s formula that

Therefore, by Minkowski inequality, we have
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Then (2.5) follows from (5.1), (5.2) and (5.3).

Remark 5.1. - Actually, we can prove the following Moser type
inequality

provided that

Proof of Proposition 3.1. - The idea is to approximate (3.1) by
linear transport equations. First it is easy to check that (3.1) is equivalent
to the following system.

So we approximate (5.4) by linear transport equations

The existence theorem for (5.5) is well-known for each n. Just as the proof
of Theorem 1.1, we should give a uniform estimates for the sequence vn+1
and the convergence of the corresponding sequence. In order to do so, we

only need to do a priori estimates for the equivalent system (5.4).

The estimate for the pressure is easy now,

Therefore, it follows from (5.6) that

Apply Gronwall inequality on (5.7), then
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Since we have the a priori estimate (5.8), the existence and uniqueness of
solutions for the system (5.4) can be obtained by the approximate sequence

solutions to (5.5). This finishes the proof of Proposition 3.1.
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