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PARTIALLY DEFINED COCYCLES

AND THE MASLOV INDEX FOR A LOCAL RING

by Amedeo MAZZOLENI

1. Cocycles in general position.

DEFINITION 1. - Let G be a group. Let Y be a subset of G. We

say that Y is 0-dense 0. Let m ~ 1. We say that Y is m-dense if

for all ~i,...,~~ E G.

EXAMPLE 2. - Let G be a topological group. If U is an open dense
subset of G, then U is m-dense for all m &#x3E; 0.

Proof. - This follows from

1. the set g - U is an open dense set, for g E G;

2. the intersection of two open dense sets is an open dense set. D

LEMMA 3. - Let Y be an m-dense subset of G. Then there exists

(gl,... , gm) E Y"2 such that g.,g,+, ... g,+3 E Y, for 1 ~ i -- m and

0 j m-i.

Keywords: Cocycle - m-dense - Simplicial set - Lagrangian - Transversal - Sympletic
group.
Math. classification: 20J06 - 11E08.
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Proof. - We prove the lemma by induction on m. The lemma is true

We suppose that m &#x3E; 1. By the induction hypothesis there is

(gl , ... , g~-,-L-1 ) in such that the product E Y, for

... gm E Y, for I x i ~ m. This proves the lemma. 0

Let rn ) 1. We assume that Y is an m-dense subset of G. Let

Let B be an abelian group with trivial G-action. We consider the

complex (of groups)

where ( I and

DEFINITION 4. -- Let 0 ~ 7Z ~ m - 1. An element of ker dn is called

n-cocycle for Y. We denote by the group ker dn/ im 

THEOREM 5. - Let m &#x3E; 1. We assume that Y is a 2m-dense subset

of G. Let 0 ~ m - 1. Then the natural embedding Yge,, --+ Gn induces
an isomorphism between Hn (G, B) and Moreover, if c is an n-

cocycle for Y, then there is an n-cocycle c such that its restriction to Ygen
is c.

This result will be proved in Section 3. A consequence of this theorem
is the following corollary:

COROLLARY 6. - Let G be a topological group. Let U be an open
dense subset of G. Then the natural embedding Gn induces an

isomorphism between H* (G, B) and Hû(G, B). Moreover, if c is an n-

cocycle for U, then there is an n-cocycle c such that its restriction to Ugen
is c.
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2. The generalized Mayer-vietoris sequence.

DEFINITION 7. - Let X be a CW-complex. We say that X is -1-

acyclic if X fl 0. 0. We say that X is k-acyclic if X is -1-acyclic
and Hn (X ) = 0, for all 0  k. We say that X is acyclic if it is k-acyclic
for 

Let X be a CW-complex which is the union of a family of non-empty
subcomplexes Xa, where a ranges over some totally ordered index set I.
Let K be the abstract simplicial complex whose vertex set is I and whose
simplices are the non-empty finite subsets J of I such that the intersection

naEJXa is non empty. We denote by the set of the p-simplices of K.
Then (cf. [1] 166-167).

PROPOSITION 8. - We have a spectral sequence E such that

Let K be a simplicial set. Recall that K, the geometric realization
of K, is a CW-complex. Moreover T~(~) = H* (K) . We say that K is

k-acyclic if K is k-acyclic. The following corollary is a consequence of the
Proposition 8.

COROLLARY 9. - Let K be a simplicial set which is the union of a

family of non-empty simplicial subsets Kco where cx ranges over some index
set I. We suppose is k - n + I -acyclic
for all 1  n  k + 2 and for a1l C I. Then K is k-acyclic.

3. Proof of Theorem 5.

Let X be a subset of the group G. We first assume that 1 E Y. We

let Xo - X. Let n &#x3E; 1. We let Xn - ~(90, gn ) E I Y for

all i  J’}. The two following assertions are straightforward.
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We consider the simplicial set Ky (X) whose n-simplices are the

the face operators are the Oi’s and the degenerency

LEMMA 10. - 0. Let X, Y C G such that 1 E Y. Assume
that

for all gl , ... , Then is (k - 1 )-acyclic.

Proof. We prove the lemma by induction on k.

If k = 0 then X z,4 0. Hence Ky (X) is -1-acyclic and the lemma is
true.

We assume that k &#x3E; 0. Let g E X and denote by Kg the simplicial
subset of Ky(X) whose the n-simplices are the Xn such

The geometric realization of Kg is a cone, hence Kg is acyclic. Let
such that g2 -¡. 93 , for 1 # j. We put

since m + 2(k - m + 1) ~ 2k.

Hence, by induction hypothesis, is (k - m)-acyclic. From
Corollary 9 follows that Ky(X) is (k - 1)-acyclic. This proves the

lemma. 0

It follows from (1) and (2) that there is a simplicial set Ky (X) whose
the non degenerate n-simplices are the (go, ... , gn) E XY and the face
operators are the 0z ’s defined above.
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LEMMA 11.

assume that

Proof. We have that

Clearly

for all gl, ... , G. Hence this lemma is a consequence of Lemma 10.0

We consider the complex C = (Cn , where

3. for n _&#x3E;- 1, Cn is the free abelian group generated by the elements of
-- I I , ~.......-. 1"1 I 1 - -"....... - - -, _

4. 60 : Co -~ C_ 1 is the augmentation map,

1 is defined by

COROLLARY 12. - Let m ~ 1. Let Y be a 2m-dense subset of G.

Proof. This corollary is a consequence of Lemma 10 and

Lemma 11. D

Proof of Theorem 5. - Let 0  m - 1. The complex C
defined above is a complex of G-modules, where the G-action is de-

fined by g - (go, ... , g~ ) _ (ggo,..., ggk). Then Ck is free with basis

~, for k x 2m. This means that
there is a free ZG-resolution of Z such that C,,+, = C,+,. Hence

is isomorphic to Hn (G, B) . Clearly the isomorphism is induced
by the natural embedding Gn . This proves part one.

We now prove the second part of the theorem. We consider an n-

cocycle c and an n-cocycle for Y c such that the class of the restriction of
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c to in HY (G, B) is the same of the class of c. There exists f E 
such that c = But Hom(Cn-l, B) maps onto CY-1. This means
that there exists f in Hom(Cn-l, B) which maps to f. It then follows that
the n-cocycle c’, defined by c’ (gl , g2 ) = c(gl , g2 ) - f (gl ) - f (gl ) + 
maps to c. D

COROLLARY 13. - Let Y be a 2m-dense subset of G. Let 0 ~ 
rn - 1. We consider two n-cocycles c, c’. We suppose that there exists g E G
such that

for all I Then c and c’ are cohomological equivalent.

Proof. Let ?~ ~ m - 1. The set is a 2m-dense subset of G.

The map rg : G 2013~ G defined by rg(h) = induces two homomor-

phisms Z’9 : i and

the following commutative diagramm

where iy and igyg-1 denote the isomorphisms induced by the natural

embeddings Ygen - Gn and - Gn . Note that ig : ~"(G,E) ~
H~ (G, B) is the identity map. This proves the corollary. D

4. An application.

In the second part of this paper we give an application of Theorem 5.

Let A be a local commutative ring such that 2 E A*. Let 9R denote the
maximal ideal of A and K = Let V be a free A-module of dimension

2n with a non-degenerate alternating form cp. For a subset W of V, we set

A direct summand of V is called su bspace and a Lagrangian for V is a
subspace W of dimension n such that W = W 1. Let X denote the set of
the Lagrangians in V. Let Ll, L2 E X. We say that Ll is transversal to L2,
denoted Ll ftl L2, if Ll + L2 = V.
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Let W be a submodule of V. We let W = W 0A K and V x V - K
denote the non-degenerate alternating form induced by ’P. Finally X
denotes the set of the Lagrangians in V. We have

LEMMA 14. - Let v2n ) be a basis of V. Then there exists
a basis u2n ) of V such that 

Proof. The space Y’ denotes the dual of V. Then d. : V - v’
defined by c~(.c) =(/?(2013, x) is an isomorphism because ~o is non-degenerate.
We consider the dual basis ~zl , ... , z2n E of ~vl , ... , and we let

COROLLARY 15. - Let vi, v, E V such that vl, ... , vn are

linear independents in V. Then there exists Un I a subset of V
such that 6ij. Moreover, if L2 is a Lagrangian of Y transversal
to Ll E X and IV1, - - - , Vn I is a basis of Ll, then there exists a basis

wn ~ of L2 such that = 6ij.

Proof. We prove only the second part of the corollary. We consider
a basis of Ll and ~Vn+l, - - -, V2nl a basis of L2. There is

a basis W2nl of V such that cp(vi, w~ ) = 6zj. This means that
wl , ... , Wn E But L2 = L2..l, hence is a basis of L2. 0

COROLLARY 16. - X maps onto X.

Proof. Let ..., Tn E VI be a basis of L, a Lagrangian for V.
We consider a lift of in V and

m = I Vj) = 0 for all I x i, j x We prove the corollary by
induction on n - m.

If n - m = 0, then the corollary is true.

Let n - m ~ 1. We choose ul, ... , un E V such that = 6i3.

Clearly ~iT,, ... , i~, I is a lift of ~v 1, ... , vn ~ because for

all 1 ~ i ~ m. Moreover CP(Vi, Vj) = 0 for all 1 ~ i, j -_ m + 1. This proves
the corollary. D

COROLLARY 17. - Sp(V) acts transitevely on X.

Proof. Let Lo , L l E X. There are such that
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Now we consider (Ll, L2, L3 ) E X3 such that Lz rh Lj for i 

We define 0 : Ll EB L2 EB L3 - V = vi + v2 + v3 . Then

1/; is surjective and IC123 = ker 0 is free of dimension n. We define the

quadratic form q : 1C 123 - A by = Then q is a non-
degenerate quadratic form and the Maslov index of (Ll, L2, L3), denoted
by m(Ll, L2, L3), is the class of q in W(A).

In comparison with [3], we do not define the Maslov index for all

in X3, but, using theorem 5, we obtain (Theorem 24) an
extension

as in Theorem 2.2 of [3].

Proof -- The proof is exactly the same as in the proof of Proposi-
tion 1.2 of [3]. 11

LEMMA 19. - Let A be a local ring such that m. Then,
given m Lagrangians Lo, Li,..., Lrn , there exists a Lagrangian L such that
LrhLi, for 0 -- i -- m.

Proof. It follows from Corollary 16 that we just need to prove this
lemma when A = K a field.

Assume the dimension of V is 2. Then K has more than m 1-

dimensional subspaces and the lemma is true. We prove the lemma by
induction on dim V.

We show that there exists v E V, v V This is proved if

K = oo. Suppose K = q. Then a space of dimension l has cardinality ql .
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Let VI = v1 and Vi = Let Li be the image of Li n Vi in
Vi . Then (Lz ) 1 0  i x m} are Lagrangians in Vi. By induction on the
dimension of V, there is a Lagrangian L in VI such that L rh L.,, for

0  i ~ m. We consider L the subspace of Yl of dimension n such that

L/(v) = L. Then L is a Lagrangian in V and D

COROLLARY 20. - Let A be a local ring such that m. We

fix Lo E X and we consider
m-dense.

Now we fix Lo E X and define c : ) as follows:

PROPOSITION 21. - Let A be a local ring such that 6.

Then c is a 2-cocycle for YLO which defines a central extension

This extension is independent of the choice of Lo.

Note that is a field. Hence 6 implies that 7.

Proof. Let E X such that L,, rf1 L~ , for i # j . We remark
that L2, L3) = L2, g ~ L3), for g E G. It then follows that
c is a 2-cocycle for YLo . Hence, using Theorem 5 and Corollary 20, we see
that c induces (*).

We are now left with proving that (*) is independent of the choice of
Lo.

Let Ll E X. We consider c’, the 2-cocycle for YL1 defined by

We choose g E G such that g . Lo = Lie. Let
that
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Hence the proposition follows from Corollary 13. 0

In the last part of this paper we will prove that c can be reduced to

We consider the map t : YLo -+ W(A), defined by t(g) = (idn), where idn
denotes the bilinear space (An, in) defined by

LEMMA 22. - c’ is a 2-cocycle for YLo and (

Let L, Lo C X such that L rh Lo. We choose B = tvi, ... , vn) a basis
of L and Bo = f u I, ... , a basis of Lo. M ((L, B), (Lo, Bo)) denotes the
matrix The matrix M ((L, B), (Lo, Bo)) is in GLn(A)
because L rh Lo.

PROPOSITION 23. - Let (LI, L2, L3) E X3 such that L2 rh L3 for

basis of L2 and B3 = ~wl , ... , a basis of L3. Then

where Al,, denotes the matrix BZ ), (L3, B,)), the map a : W (A) ~
A* / (A* ) 2 denotes the signed determinant and det denotes the homomor-
phism between GLn (A) and A* / (A* ) 2 ind uced by the determinant.

Proof. The proof is exactly the same as the first part of the proof
of Proposition 2.1 of [3]. 0

THEOREM 24. - Let A be a local ring such that 7. Then

c is a 2-cocycle for YL. which induces a central extension
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