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MAPPING CLASS GROUP AND THE

CASSON INVARIANT

by Bernard PERRON

We use freely notations and results of [Pe].

0. Introduction.

0.1. - Let S g (resp be a closed oriented surface (resp. with
one boundary component) of genus g. Let A4g (resp. A4g,j) denote

the mapping class group of Sg (resp. that is the group of

isotopy classes of homeomorphisms of Sg (resp. in this case we

consider homeomorphisms equal to the identity on the boundary, the
isotopies being also identity on Since can be seen as a

o

submanifold of such that = D2, we have a natural (surjective)
map by extending a homeomorphism of by identity on
the 2-disc D2.

0.2. - Consider the standard embedding of in JR3 given
by Figure 0.1 and let Hg denote the oriented handlebody of genus g
bounded by Sg. Let be a homeomorphism which exchanges xi
and y. (i = 1, 2,..., g), where xi and yi are the oriented circles defined
by Figure 0.1. One can take for ig the composition PI o ... o pg where

(D(x) is the Dehn twist along the circle ~). Then
homeomorphic to S3, (-H9) being the handlebody H9 with opposite
orientation.

Keywords : Mapping class group - Johnson - Morita homeomorphismes - Homology
spheres - Casson invariant.
Math. classification : 57M05.
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Figure 0.1

0.3. - For f E let f denote its extension (by identity)
to Sg. Let My denote the 3-manifold obtained by gluing two copies of Hg
by the homeomorphism ig o /. It is obvious that, if f induces the identity
at the homological level ( e. g. f belongs to the Torelli group of 

then M f is a Z-homology sphere. Morita [Mol] shows that any Z-homology
sphere is homeomorphic to My for some f belonging to Tg,l = A4 (3) C 
where A4 (3) is defined in [J1] I (see also [Pe], Lemma 3.4).

Let (resp. A/~ i) denote the subgroup of consisting of

homeomorphisms f of such that f extends to a homeomorphism of Hg
(resp. S3 - Hg).

It is well-known that if f, g E are such that f = ~ g r~, with

ç and q C then the manifolds My and Mg are homeomorphic.

0.4. - Now, for any Z-homology sphere E, Casson [C] (see
also [GM]) defines an invariant belonging to Z, denoted by A(M). This
allows us to define a map A* : Z by setting

0.5. - We want to express A*(/) using Johnson’s homomorphisms
(see [Pe], Chap. 4). Recall from [Mol], 31, or [Pe], 6.2, that T denotes the
subgroup of (/B 2 H) &#x26;J H &#x26;JH (where H = HI generated by elements
of the following form

where
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Then Morita ~Mol~, ~ 4, defines a homomorphism 80 : T - Z by setting

where

is defined as follows. Let S. be standardly embedded in R3 (Figure 0.1 ) ,
v a non singular normal vector field on Sg, pointing outside Hg.
For b E H = Hl (Sg; Z), let b+ be the 1-chain pushed out of ,S’9 along v.
Then .~(a, b) is the linking number in JR3 of a and b+. It is easy to see that

and Bo = 0 for the other basis elements of T.

0.6. - Recall the main result of [J3], Theorem 5: the subgroup
7;,1 = M(3) c is normally generated by the Dehn twists D(fl)
and D(f2), where the circles fl, f 2 are defined by Figure 0.1. So any
element f of can be written, up to order

Our first main result is:

THEOREM 0.1. - For f E Eg, I we have

where A2 (resp. a) is the map

defined in

COROLLARY 0.2. - The map ~:7~i - Z defined by
is a ujell-defined homomorphism, where up to order,
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0.7. Remark. - The above homomorphism - Z has a more

intrinsic definition. In fact, Morita [Mol], §5, using Meyer’s 2-cocycle
(see [Mel]), defines a map d: - Z, such that, when restricted
to it becomes a homomorphism and such that if 1/J E T ,,I is a Dehn

twist along a simple closed curve in bounding a surface of genus h,
then d(o) = 4h(h - 1).

It follows from the definition of 6, that dl T9,1 = 86. So Theorem 0.1
becomes: 

0.8. Remark. - Formula above is a rephrasing (in a simpler way)
of Morita’s formula [Mol], Theorem 6.1:

(here T3(f) E T is the third Johnson’s homomorphism, and T a certain
quotient of T).

0.9. - Next we want to compute A*(f) for any f E so extending
the formula of Theorem 0.1 (or equivalently Morita’s formula (0.8)).
For any f E A4_q,,, set

For f E Ig,i , defined in [Pe], Corollary 4.5, an element E /B3H c
03 H, where n3H is the injective image of the homomorphism /B3 H -+ ~3H

group of permutations of the 2, 3}. Moreover Al (f) = - T2 (f ) where
T2 is the second Johnson’s homomorphism. Write for f E Ig,1 :

where (a,, bz, i = l, ... , g) is the symplectic basis of H = HI (,S’9,1; Z),
respectively equal to the homology class of the oriented circles zz, yz of

Figure 0.1, and Rf is a sum of terms of the form a A b A b and a A a A b.
This basis verifies ai - aj = bz - bj = 0, ai - bj = -b~ ~ a2 = 6zj (the Kronecker
symbol). Then we have the following:
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THEOREM 0.3. - Let f E -’ written as

above. Then

The proof of Theorem 0.3 will use the main result of [Mo2],
Theorem 4.3:

THEOREM 0.4. - For f ,g E we have

(Be aware that in [Mo2], the role of (3ijk and have been

interchanged.)

0.10. - Finally we want to restrict our attention to a special
subgroup of .Jli( 9,1, the hyperelliptic mapping class group, denoted by 
This is the subgroup of A4g,1 generated by the Dehn twists along the circles
.ri,..., Xgl yl , Cl , , ... , defined by Figure 0.1. Remark that these

circles are invariant by the symmetry sg along the axis xx of Figure 0.1.

In [PV], it is proved that is isomorphic to the usual braid group
B2g+ 1. The isomorphism can be described as follows.

Let f ai ; i = 1,..., 2g~ be the canonical generators of B2g+ 1: send

Moreover a homeomorphism f E belongs to if and only
if f commutes (up to isotopy) with the symmetry sg.

LEMMA 0.5. - The second Johnson’s homomorphism

is zero. So 1 1 (see [J1] for the definition of T2 and
[Pe], (4.6), for the definition of A1 ) .

Remark. - when identified to B2g+l is the kernel of

the reduced Burau representation (see [B], §3.3) when evaluated at t = - 1.
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0.11. - Finally, we have a simple geometric interpretation of the

mapping d : Z, when restricted to Hg,l’ As we have seen above, d is
the core of Casson’s invariant, and quoting Morita, d is a rather mysterious
invariant. Morita [Mo6] gives a geometric interpretation of in terms

of Hirzebruch’s signature defect of the mapping torus of cp, with respect
to a certain canonical framing of it tangent bundle. But it seems that this
interpretation does not help for computations. Pitsch [Pi] gives a purely
cohomological construction of the mapping d.

Our last result gives a very simple geometric interpretation of d, when
restricted to Hg,,, using a nice formula of Gambaudo-Ghys [GG].

PROPOSITION 0.6. - For f E we have the following
formula

where:

1) f is the link in obtained by closing the braid f, and s is the
classical signature of a link.

2) u(f) = Bo(f)(6g) - 6g, where (.) is the symplectic intersection
form on H = Hl (,S’9,1; ~) , Bo ( f ) is the isomorphism induced by f at the
homological level and (

is the homology class of the circle xj of Figure o.1.

3) is the abelianization homomorphism sending each
generator ai (i = 1, ... , 2g) on 1 E Z.

THEOREM 0.7. - One has d(D(x.,)) = d(D(yi)) = 2 for i = 1,... ,g
and 3 for i = 1, ... , g - 1, where yz , Ci are the circles
defined by Figure 0.1.

Notation. - In the remainder of this paper, for f E A4g,,, we will
denote by f * the isomorphism of H = Hl ( S9,1; Z) induced by f. We used
the notation instead of f * in [Pe].

1. The mapping d : --t Z.

1.1. - We use the notations of [Pe], Chapter 3. For f in 
let B(f) denote the Fox matrix of f (Definition 3.1 of [Pe]). This belongs
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to GL2g(Z[F]) where F = 7fl (,5’9,1, ~ ) . Applying the abelianization homo-
morphism F --4 H, we get a matrix B( f )ab E GL2g(Z[H]). We set

LEMMA 1.1. - k is a crossed homomorphism, that is satisfies

where f ,g E and x is the operation in Z [H] induced by the law in H.

Proof. From Lemma 3.2 of [Pe], we see that

where = ( f * (a2~ ) ) . Lemma 1.1 follows. D

Recall that we have defined in (0.9) an embedding A~77 2013~ 03 H,
whose image is denoted by A3 H. We also have the canonical projection

~3 77 -~ /B3 H. It is obvious that 7r o i = 6 On /B3 H we define
the contraction map C : A~ 77 -~ H by the formula

In [Pe], Chapter 4, we have defined a map such

that AliI 1 is a homomorphism whose image is n3H. Also, in [Pe], (4.6),
we have set Al = 7r o The maps Al , A1 satisfy the following property
(crossed product, see Lemma 4.1 of [Pe]):

We then have:

LEMMA 1.2. - One has:

belongs to H (a priori, it belongs to Z [H]) -

Proof. By Lemma 1.1, k(f) is a unit of Z[H], sent by the
augmentation onto det (Bo ( f ) ) = 1. So 
belongs to H, proving (a). Point (b) is proved in Proposition 6.15 of [Mo5]
(remark that A1 = -T2, where T2 is the second Johnson’s homomorphism,
Proposition 4.4 of [Pe]).
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1.2. - To prove point (c) of Lemma 1.1, using computations in the
proof of Proposition 5.1 of [Pe] (or the proof of Proposition 6.15 of [Mo5]),
we can verify that = = 0 and = bi+l - bi, using
additive notations for H. On the other hand, again using computations in
the proof of Proposition 5.1 of [Pe], we have

By the definition of C, point (c) is true for D(Yi), D(Ci). Since these
Dehn twists generate and since k and ~C o A1 are both crossed
products (that is satisfy ~ g , point (c) follows. D

Remark. - In the remainder of this paper, considering Lemma 1.2 (a),
formula of Lemma 1.1 will be written k(fg) = + where + is the

law in H.

1.3. - Now we can define a 2-cocycle on with values in Z

(the action of A4g 1 on Z being trivial):

where ( . ) is the symplectic form on H.

Remark that this 2-cocycle coincides with the 2-cocycle of Morita
[Mol], § 5, since k(f) = by definition.

1.4. 2013 We now come to Meyer 2-cocycle on the symplectic
group Sp(2g,Z) (see [Mel] or [Me2]). For a pair of symplectic matrices
A, B E Sp(2g, Z), define a R-vector space YA,B by

Consider the (possibly degenerated) symmetric bilinear form:

given by ( where ( . ) is the symplectic
form, whose matrix ~). Then we set :
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LEMMA 1.3 (see [Mel], [Me2]). - The signature 2-cocycle satisfies the
following properties:

This defines a 2-cocycle on A4g,1 via the representation

The remarkable fact, noted in [Mol], §5, is that the 2-cocycle c + 3T on 
is in fact a coboundary. So there exists a 1-cochain d : - Z (necessarily
unique, since is perfect for g &#x3E; 3 by [Po]) such that 6d = c + 3T.

1.5. - The mapping d satisfies the following properties.

PROPOSITION 1.4 (see [Mol], Proposition 5.1). - For any f , g E 
we have:

Having in mind that k(a) = 1~(c~-1 ) this is exactly Proposition 5.1
of [Mol].

PROPOSITION 1.5 (see [Mol], Proposition 5.3). - Let Tg,1 = 
be the subgroup generated by all Dehn twists on bounding simple
closed curves. Then the mapping -+ Z is a homomorphism.
Moreover if f E is a Dehn twist on a bounding simple closed curve of

genus h, then d( f ) = 4h(h - 1).

1.6. - In Chapter 3, we will need the following result.

LEMMA 1.6. - 1) Let u be the simple closed curve given by Figure 1.1.
Then d(D(u)) = d(D(X2)) + 4, where X2 is the curve defined by Figure 0.1.

2) One has = d(D(Y2)) + 4, where Y2,y’ are curves defined
by Figure 0.1.
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It is easy to see that

Setting (
. By Proposition 1.4 (iii), we get

Since 6 E -Tg,,, by Lemma 1.1, Lemma 1.2 (b) and Lemma 4B of [Jl], we
have

So d(D(u)) = d(D(X2)) - 4b2 - u*(b2). But u,,(b2) = [u] + b2 = a2 + b2
(where [u] denotes the homology class of u) and the result follows.

1.7. Proof of 2). - Let sg be the symmetry of Sg, 1 along the
axis xx (Figure 0.1 ) . Let S),i be the surface obtained from by adding
the collar x [0, 1] along as9,1 x ~01. Extend the map s9 : sg,l by
the map x [0, 1] --~ x [0, 1] defined by
for e- c and t E [0,1 . Then the map represents an
element denoted A2

It is well known that A2 can be expressed as the composition

(see Figure 0.1 for the definition of yi, xi, 
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The reason for the notation A2 is that A2 is the square of a

homeomorphism Ag E A4g,l which will be used later.

again (1.2) and Proposition 1.4 (iii) we obtain

We will see that

§4.2. The Dehn twist D (y2 ) act non trivially only on a2 by

Lemma 1.6, 2) follows.

2. Proof of Theorem 0.1.

Theorem 0.1 depends on two results of Morita.

PROPOSITION 2.1 (see [Mol], Proposition 3.5). - The mapping

defined in 0.4 is a homomorphism.

PROPOSITION 2.2 (see [Mol], Proposition 4.5). - Let 1/J E 7;,1 be a
Dehn twist along a bounding simple closed curve -y of genus h of ,5’9,1. Let
(ul , ... uh ; Vl, - - - vh) be a symplectic basis of the homology of the compact
surface bounded by q. Then

where ( is seen in T (see 0.3) and 8o has been defined in 0.5.

2.1. - Let f h be the simple closed curve of genus h, given by
Figure 0.1. By a fundamental result of Johnson [J3], Theorem 5, any
element f of 7-g,l can be written, up to order, as
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By Corollary 4.3 and Lemma 6.2 of [Pe] we have

where s 1 is the following element of T (see [Pe], (6.2))

Using Propositions 2.1 and 2.2 we obtain

We claim that _ -1. To see this, set a’ - and

b2 = wj* (bl) . By the definition of 00 given in 0.5 and the well-known formula
.~(u, v) - ~(v, u) _ -u ~ v we find

Since the symplectic form (. ) is invariant by elements of it follows

that

Now recall that we have defined in [Pe], ( 7.1 ) , a homomorphismo7 : (A~77) 0
H (9 H -+ T by (9 c (9 d) == (a A b) ~ (c A d) E T. When
restricted to T, 9 1 T is 4 idT . So we have proved Theorem 0.1.

Corollary 0.2 is obvious, since A*(f) and not depend on
a particular writing of f as a product (up to order)
- / 1"

As observed in 0.7, the homomorphism -~ Z defined by
6(f) = the restriction of 1 d, where d is the map defined

in Chapter 1 (use Proposition 1.5).

COROLLARY 2.3. - For f c we have
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2.2. Remark. - This is a reformulation of a formula of Morita

[Mol], Theorem 6.1, put in a simpler way. Morita’s formula is

where --~ T = T/To is the third Johnson homomorphism. Here To
is the subgroup of T generated by elements of the form (u A v) --&#x3E; (w n t) -

(u A w) - (v A t) + (u A t) - (v n w) (remark that s, E To). Since

the homomorphism 80 : T - Z does not factor through T, Morita has
to correct 80 by a homomorphism d : T - Z such that Oo + 3 d factors
through T. The main advantage of the method of [Pe] is that we have an

invariant a o the T level, and so a unified formula.

Of course we have

since we have proved in [Pe], Lemma 7.1, that po a o A2 = -12T3, where
p : T -~ T = T/To is the canonical projection.

3. Proof of Theorem 0.3.

3.1. - For f belonging to set

(the difference between the first and second member of the desired equality
of Theorem 0.3). Thus, we have to show that G = 0 on Lg,l’ We will
first prove that G: Lg,l - Q is a homomorphism. For this we need some
computations.

3.2. - Let Wa, denote the subgroups of A3H (~ /B3 H,
see 0.9) generated respectively A (a only), {c A a,, A b~ ~
(at least one a and one b), ~b2 A bj A (b only). Of course we have a
decomposition

Corollary 4.5) and decompose
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3.3. - In [Pe], Lemma 4.2, we have defined a bilinear map
F : (~3H) ~ (©3H) - ~4H by setting F = C34 - T23 ~ C35 where

We also consider the map 1
where 7r is the canonical projection and is the map defined in Theorem 0.1.
We will need to compute 00 o 5- o F on the subspace (X3-H) 0 (A3H) of ~6H.

the other basis elements of T.

Two subspaces A, B of n3H are said to be orthogonal for 00 0 a o F
if = 0 for any (~x, ~3) e A x B U B x A.

LEMMA 3.1.

1 ) The subspace Wa (resp. Wb) is orthogonal to Wab (resp.
Wab).

2) If the sets of indices f i,j, kl, f i’,]’, are different,

3) 

4) For a, 0 E Wab, we have
the contraction on A3H defined by (
and (. ) the symplectic intersection form on H.

3.5. Proof. By definition of F and eo, it is clear that

unless the set dj ; i, j = 1,2,3} is the union of three pairs I

1~ E ~1, 2, ... , This proves points 1) and 2).
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3.6. - The construction of the term corresponding to C34 in
Oo o cr o F(ai A aj A ak, bi 1B bj A bk) is non zero only when a term a on the left
is coupled with a term b on the right with same index. This contribution
is easily seen to be equal to 12.

The contribution of the term -T23 o C35 is easily seen to be zero. This
proves 3).

3.7. - To prove 4), we have only to consider the case a = ai A aj A bk
and Aak, and the case when cx and (3 are permuted. This amounts
to exchange a and b: this changes the sign 
since ( . ) is antisymmetric.

3.8. - Using 3.4 we have only to consider the following three cases:

I k distinct;

, k distinct;

distinct.

3.9. - The contribution of the term corresponding to C34 in each
case is non zero only if the b term on the left is coupled with the a term on
the right with same index. This contribution is respectively -4, 0, -4.

3.10. - The contribution of the term corresponding to -T23 o C35
in each case is non zero only if an a term on the left is coupled with the b
term on the right with same index. For the cases 1), 2), 3), the contribution
is respectively 4, -2, 2.

Then point 4) of Lemma 3.1 follows immediately. 0

3.11. - We are now ready to prove:

LEMMA 3.2. - is a homomorphism, equal to 0 on

~,i=~(3).

Proof. By definition, for f, g E Ig,1

By Theorem

By additivity of A1 on
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3.12. - From the properties of A2 (see [Pe], Lemma 4.2) and d
(see Proposition 1.4) we have:

(see Theorem 0.1 ) .

- With the notations of 3.2 and Lemma 3.1 we get

By definition of f1a, and Lemma 3.1:

.A w

By the definition of C (Lemma 3.1 ) and Lemma 1.2 it is easy to see that

This proves that I

The last part of Lemma 3.2 follows from Theorem 0.1. R

3.14. - By Lemma 3.2, the homomorphism G factors through a
hornornorphisrn g : such that because of the exact

sequence
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3.15. - So, to prove that G = 0, it is sufficient to show that C = 0.
For this purpose we will study some symmetries of G.

LEMMA 3.3. - Let C R 3 be the surface of genus g, with one

boundary component, standardly embedded in JR3 as shown by Figure 3.2
below. Then:

(a) For each pair (s,t) (1  s  t  g), there exists a homeomorphism
Ps,t E c 1 ( see 0.3 for the definition and 

which exchanges the handles hs and ht of Figure 3.2. More precisely, at the
fundamental group level the action of p,,t is

where zi = xi or yi, (s,t) is the transposition of sand t, and a(s,t,z2) is a
product of commutators.

(b) Al (ps,t) = 0 and k (p s , t) = 0, for any pair (s,t).

3.16. - Proof : It is easy to construct an isotopy (i = 1, 2,
u E ~0, 1~ ) of R3fixed outside a big compact set such that Ti = has the

following properties:

(i) T, leaves invariant the surface S2,1 of genus 2 of Figure 3.1;

(ii) is the identity outside the disk 2Di;

(iii) is the rotation of angle 7r around the axis Zz .

3.17. - It is also easy to construct an isotopy pu (u E ~0, 1~ ) of R 3
fixed outside a big compact of JR3 such that p’ verifies:

(i) pl leaves the surface 52,1 of Figure 3.1 invariant;

(ii) is the identity on o9(2D)

(iii) the rotation of angle 7r around the axis Z.

3.18. - Now set p = Tl o T2 o pi. Then p is time 1 of an isotopy
of R3 which has the following properties:

(i) p leaves invariant the surface S’2,1;

(ii) p is the identity on as2,l ;

(iii) p exchanges the handles hi and h2.
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At the fundamental group level, p satisfies the formula of Lemma 3.3,
with 5=1 and t = 2. We can even arrange things such that

where fi is the homotopy class of 2Di (with suitable orientation and path).

Figure 3.1

3.19. - Now let (s, t) be a pair of integers such that 1  s  t  g,

and r be an embedded circle on surrounding only the feet of the handles
hs, hu (see Figure 3.2). Then ~ is the boundary of a genus 2 subsurface E
of Then there is an isotopy Hu (u E [0, ]) of JR3 such that Hl
preserves and sends onto ,S’2,1 seen as a subsurface of Then

ps,t = H1l 0 PI 0 Hl satisfies point 1) of Lemma 3.3.

è)

Figure 3.2

3.20. - Then, using the definition of A1 (see [Pe], Chapter 4) and
the fact that a( s, t,_z2 ) is a product of commutators, it is easy to see that

0. Then 0 by Lemma 1.2 (c). This finishes the proof of
Lemma 3.3. D
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Proof. Part 1) comes from Lemma 7.1 of [Pe] and 2) from

Proposition 1.4. 0

we have

where pst* = Bo (pst ) and pst*. stands for the action

Proof. By Lemma 3.4 we have Therefore

Since the effect of pst* on H is to permute as with at and bs with bt, it

follows from the definition of Oo (see 0.5) that A (pst o f o = A ( f) .
Since pst E Arg,l (Lemma 3.3), from 0.3, it follows that

On the other hand, it is easy to see that

This proves point 1) of Lemma 3.5. Point 2) follows from the definition
of g and the formula: Al (Pst 0 f o = pst* Al (f ) (see [Pe], Lemma 4.1).

From Lemma 3.5, we deduce 1B aj = g(aj A ai = 0,
i, j. We have the same result by replacing a by b, and when we have

three a or three b. So, to prove that 9 is identically 0 on we have just
to show that g(ai n a2 n A b, A b2) = 0.

3.21. Computation of Q( a1 A a2 A bi).

LEMMA 3.6.

, where X2 and u are the simple
closed curves given by Figure 3 . 3 ;
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Figure 3.3

Proof. The same letter u, x, y, f will denote either the closed path
or the element of the fundamental group F = equipped with
paths as indicated in Figure 3.3.

3.22. - Then straightforward computations show that

(where [a, b] denotes the commutator and

(composition of paths is written from left to right).

3.23. 2013 This proves that D(u) E I by a
result of [G], Theorem 10.1, which says that a homeomorphism of Sg,l
belongs to if and only if it leaves the normal subgroup of F generated
by ~~1, ... , invariant. This implies that A* (D(z2 ) ~ ~ D (u) = 0.

3.24. - Using Chapter 3 of [Pe] we find:

(using the identification 

H Q9 (H Q9 H) ; see Lemma 1.1 of [Pe]). This proves point 1) of Lemma 3.6.

3.25. - Remark that in order to compute 80 o a o only
necessary to know the terms of the matrix A’ 2 (f ) on the ascending diagonal:
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this comes from the remark of 1.3 of [Pe] and the fact that 8o is non-zero
only on terms such as ai A bj . By 3.22 we find

belonging to .J~129 (n2H) ^_J n2H ~ H ~ H (by Lemma 1.1 of [Pe]). Applying
the homomorphisms a: A2 (defined in Theorem 0.1 ) and
80 : T - Z (see 0.5), we find that 80(~ o A2(D(x2)-1D(u))) = 2.

By Lemmas 1.3, 1.6, Proposition 1.4 and the fact that k(D(X2)) = 0
we get d(D(x2)-1D(u)) = d(D(u)) - d(D(X2)) = 4. This finishes the proof
of Lemma 3.6. 0

3.26. Computation of g(ai A bl n b2).

LEMMA 3.7.

3.27. - Proof: by Proposition 4.4 of [Pe] and [Jl], Lemma 4.B, we
have

Moreover , since y2 , y2 bound a 2-disc in the
handlebody Hg. Set 6 = D (y2 ) D (~2 ) -1. Then we have

Then is equal to
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3.28. - As in the proof of Lemma 3.6, using the isomorphism

This finishes the proof of Proposition 0.3. D

Chapter 4. The hyperelliptic mapping class group.

4.1. Proof of Lemma 0.5.

4.1. - In 0.10 we have defined the hyperelliptic mapping class group
as the subgroup generated by the Dehn twists along the curves
yi , xl, ... , I Cl, C2,..., Cg- i of Figure 0.1. In [PV] we have described
an isomorphism between the usual braid group B2g+l and as follows:

let 92gl be the standard generators of B2g+ 1. Then send 92i
(i = 1,...,g) onto D(xi), ~1 onto and a2z+1 (i = 1, ... , g - 1)
onto D(Cz)’

4.2. - Moreover an element f E A4g,l belongs to if and only
if f commutes (up to isotopy) with the symmetry sg along the axis x’x of
Figure 0.1. This symmetry can be seen as an element of (in fact
of after composition with a half-twist (see 1.7). As an
element of sg is represented by

The reason of the notation

LEMMA 4.1. E Hg, I we have:

is the isomorphism
induced by {3 at the homological level (see remark below).

Proof. By Lemma 4.1 of [Pe] we have
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But (O9)* _ -idH since it represents the symmetry along the axis x’x.
Point (i) follows from the fact that {3 and Ag commutes. Point (ii) is proved
in the same way, using Lemma 1.1. D

Lemma 0.5 is a direct corollary of Lemma 4.1.

4.3. Remark. - For {3 E B2g+1, (3* = Bo(/3) is a conjugate
of the reduced Burau representation of B2g+1 eveluated at t = -1 (see
[B], §3.2). In fact if we write the matrix of D(Cj) in the

homology class), we find exactly the Burau representation when t = -1.

As a consequence is identified with the kernel of the Burau

representation of B2g+l when t == -1.

4.2. Computation of k(A2).
LEMMA 4.2. - One has

where ai is the homology class of the oriented circle xi (see Figure 0.1).

Proof. Recall that O9 is the symmetry of along the axis x’x,
followed by a half twist. We have first to find the effect of O9 on the
generators xi , y2 (i = 1, 2 ~ ~ ~ g) of r = 7fl(Sg,l, * ) .

The image by O9 of the oriented curve y2 equipped with path qz is

the oriented curve gi of Figure 4.1 equipped with the path ~y2.

Figure 4.1

4.4. - A careful inspection of Figure 4.1 shows that

Where
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4.5. - The image by Og of the oriented curve zz (with path pz)
is with path p’ given by Figure 4.2. 

71

Figure 4.2

Recall that k(A2) = By Lemma 1.2, a), we know
that belongs to H (rather than ZrHl). Let ( be any
element of H. Written multiplicatively it becomes ci ... Applying the
commutative Magnus representation (see [Pe], 2.6) and taking the term of
degree one, we recover the additive writing of a. So ( 1 + k(f)) is equal
to the 1-jet (in the sense of Definition 2.1 of [Pe]), of the determinant of

Since -I, we obtain that 1 ) using
properties of the determinant. Now, by 4.4 and 4.5, trace (B1 (O9)) is

equal to

degree 1 term of

= degree 1 term of

= degree 1 term of

= degree 1 term of

This proves Lemma 4.2.
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4.3. A formula of Gambaudo and Ghys for the signature of a link.

4.6. - Let Q E Bn (the usual braid group with n strings) and Q be
the link in R3 obtained by closing {3 according to Figure 4.3:

Figure 4.3

For a link k in S3 , we recall the definition of the signature of k, denoted
by s(k) (see [GL], § 2). Let V be an orientable surface embedded in S3,
bounded by k. Let N denote a closed tubular neighbourhood of V: this is
a I-bundle ~0, 1~ ) over V. Let V denote the corresponding 97-bundle
and let T : H1 (Y) --~ be the transfer map. Then define the bilinear

form gv on by: = linking number of (~x, T(~3) ) . It is shown
in [GL] that w is symmetric. Then s(k) is the signature of Qv.

PROPOSITION 4.3 (see [GG], Theorem 1.1). - Let E B2g+1. Then

where T is the Meyer 2-cocycle defined in 1.3, associated to a, 0 identified
to elements of Hg, I (^_~ B29+1 ), by 4.1.

4.4. Proof of proposition 0.6.

4.7. - We now restrict d to Hg,l’ The signature defines a map
by setting s(a) = s(a). From Proposition 1.4 and Proposi-

tion 4.3, the mapping d - 3s : satisfies

In cohomological terms, the 1-chain d - 3s on Hg,i has it coboundary
equal to the 2-cocycle c on defined by c(a, (3) = -k(a) . c,,,k(13). Using
Lemma 4.1, this 2-cocyle is given by
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4.8. - Let be the 1-cochain u(a) = -k (A2).
Obviously u satisfies u(ca) + u(,~) - c(a, (3) by the above formula.
Remark that u takes a priori its values in ( Z. But we have seen in Lemma 4.2
that I

belongs to Z.

4.9. - By 4.7 the mapping is a homomorphism.
From the presentation of B2g+l, it is well known that the

abelianization of B2g+l is isomorphic to Z, the canonical homomorphism
7T: B2g+ I ---+ Z sending each generator (i = 1,..., g) onto 1 E Z. So there
exists an integer such that d - 3s - u = no7f.

4.10. - To determine the value of no, it is enough to evaluate
the two terms of the equality above on the element D(/i) ( f 1 is the circle

defined by Figure 0.1). The Dehn twist D(/i) is known to be equal to

(~2 al)6 C 12g+1 .

By Corollary 0.2, Since D(fl) belongs to
). Then formula 4.9 gives

Claim: ,*2al)6) == -8 and so no = 2. We can compute the signature
of the link (a2al)6 by the method of [GL], using the diagram of (a2al)6
given by the braid (a2a1)6, or use the formula of Proposition 4.3.

COROLLARY 4.4. - The mapping d takes the following values on the
Lickorish generators of 

( The circles xi , yz , ~Z , Cj are defined by Figure 0.1. )

4.11. Remark. -- A prior2 d depends on the choice of the symplectic
basis bj ; i = l, ... , Morita [Mol] proved that is independant
of the choices.
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Proof. It is easy to see that u(D(yl)) = u(D(xi)) = 0 for

i = 1, ... , g (u is defined in 4.8). So d(D(yl ) ) = 2 by Proposi-
tion 0.6.

Since, for i = 1,..., g, the circle Ci cuts transversally in one point the
circle xi , the corresponding Dehn twists D(Ci) and satisfy the usual
braid relation, which is equivalent to

By Lemma 1.1, Proposition 1.4 (iii) and the fact 0, we
have

By [Pe], 5.2, and Lemma 1.2 we get k(D(Ci)) = bi+1 - bi. Point 2) follows.
Point 3) follows from the same type of argument, using the fact that

the circle yi cuts transversally in one point the circle xi . Point 4) follows
from Lemma 1.6 (ii). 0

4.12. Remark. - Corollary 4.4 contradicts an afhrmation of [Mol],
§5, line above Proposition 5.1, which says that the values of d on the
Lickorish generators is 3. This afhrmation cannot be true, since we have

proved above that d(D(Ci)) = d(D(xi)) + 1.

COROLLARY 4.5. - Let {3 C (which is equivalent to say,
by Remark 4.3, that (3 belongs to the kernel of the Burau representation
when t == -1). Then the Casson invariant of the homology-sphere M(3 is

given by

where 7T and s are defined in Proposition 0.6.

The object of the next proposition is to describe geometrically the
3-manifold MB when E For a braid y E B2n denote by y
the closure by "plats" (see Figure 4.4).

Then we have:

PROPOSITION 4.6. - For {3 E B2g+1, the 3-manifold M~ is
homeomorphic to the 2-fold covering ofS3 branched along the link y where
’Y = 072 ... (remark belongs to B29+2 ) .
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Figure 4.4

Proof. Recall the construction of the 3-manifold M!3’ Let 
be standardly embedded in JR3 C S3 - JR3 U bounding the

handlebody H9. . Let x’x be the symmetry axis of 

intersecting ,S’g (resp. Hg) at points Pi, 2 = 1, ... , 2g + 2 (resp. segments
~=[P2z-i,~]~=l,...~+l).

Denote by C the circle of S3 defined by C = (x’x) U {oo}, and let
(qz ; I = 1,. . . , g +1} the trace of C on Hg. More precisely yl = [P2i, P2i+l] I
for 1  I  g is the segment of C with ends P2g+2, PI containing
OC E S3 (see Figure 4.5).

Figure 4.5

The quotient of Hg (resp. by the symmetry along xx’ (resp C)
is homeomorphic to a 3-ball B (resp. B’). The image of the fixed points

L = 1,..., 2g + 2} are denoted {Qi; i = 1,..., 2g+2}. The image of
the set of fixed points i = 1,..., g + 1~ (resp. {~i ; i = 1, 2 - - -, ~ + 1})
are denoted {ai} C B (resp c B’ ) . They are arcs in the interior of B
(resp B’) whose ends are the points (see Figure 4.6)

The mapping - ) is the 2-fold cyclic covering
ramified along the (resp. 
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Figure 4.6

By definition, an element {3 of A4g,l belongs to the hyperelliptic
mapping class group B2g+l if 0 is the lift of the braid {3 E B2g+1
by the 2-fold cyclic covering 7fls g, C 0Hg - 08 - D2 where D2 is a small
disc centered at P2g+2.

Then M(3 is the 2-fold cyclic covering over B U(3 B’, where Q is

seen as a homeomorphism of o9B - D2 (we extend it by identity on D2 )
leaving i = 1, ... , g - 1} globally invariant and fixing P2g+2, the

, , ,

set of ramification being Equivalently, if Q E ~329+1 is

represented by 2g + 1 strings in (aB - D 2) x [0,1], let {3’ be the 2g + 2
strings of 08 x [0, 1] obtained by adding the trivial string P2g+2 x [0, 1].
Let ,C be the link in S3 = B3 U B’3 obtained from the braid {3’ by Figure 4.7
or Figure 4.8.

Clearly the link ,C is isotopic to the link ,C’ of Figure 4.9.

The link ,C’ is obtained from the braid q = a2 ... by closing by
plats. This concludes the proof of Proposition 4.6.

COROLLARY 4.7. - Let / and ~ the braid of B2g+2
given by q = (72 ’ - - 0. Denote by M(2) ( j~) the two-fold cyclic covering
of S3 ramified Then the Casson invariant À( M(2) 7)) is given by

Proof. This follows from Corollary 4.5 and Proposition 4.6.
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Figure 4.9

Final remark. - One should compare formula of Corollary 4.7 with
Mullins formula [Mu] giving the Casson invariant of the 2-fold cyclic
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covering of S3 ramified along a link L

where YL (t) is the Jones polynomial of L (be aware that Mullins formula
in Theorem 5.1 of [Mu] gives two times Casson’s invariant).
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