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THE NULL SPACE OF THE ~-NEUMANN OPERATOR

by Lars HÖRMANDER

1. Introduction.

Let Q be a relatively compact open subset with C°° boundary of
a complex analytic manifold of dimension n with a hermitian metric. As
usual we denote by 9 the part of the exterior differential operator which
maps forms of type (p, q) to forms of type (p, q + 1), and we denote by o the
formal adjoint from forms of type (p, q + 1) to forms of type (p, q), defined
with respect to the L2 scalar products given by the metric. We shall also
use the notation 6 for the closure in L2 of the 0 operator initially defined
for forms in and ðc for the closure of D defined initially on forms in

The 0-Neumann operator is then the self-adjoint operator in the
space of L2 forms of type (p, q)

If the Levi form of an has everywhere at least n - q positive or at least
q + 1 negative eigenvalues, then the null space Ker 0 is a finite dimensional
subspace of and for every form f E which is orthogonal
to Ker 0 the equation Du = f has a solution in with first order

derivatives in L2. (Here the Levi form of is defined in local coordinates

by Enj, k=1 En 1 = 0, where g is a defining function
of n, that is, o  0 in = 0 and 0 on If the derivatives of f
of order # s are in L2 then those of u of order £ s + 1 are in L2. (See e.g.
[HI], [K], [KN], [CS].)

Keywords: a-Neumann operator - Reproducing kernel.
Math. classification: 32W05 - 32A25.
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The starting point for this paper was the observation that by expan-
sion in spherical harmonics as done for the ball already in [KS] one can
obtain an explicit formula for Ker 0 in L6,n-1 (0) when Q C C~ is a spher-
ical shell (Theorem 2.2); the signature of the Levi form is then (0, n - 1) on
the inner boundary. (The referee has given a very short and elegant proof
which only relies on an elementary integration by parts and avoids spher-
ical harmonics expansions completely.) Using this formula we determine
the kernel of the orthogonal projection on Ker 0 modulo kernels which are
real analytic in a neighborhood of n. In order to find a similar model for
manifolds such that the Levi form of the boundary has signature n - q - 1, q
for a general q we also study the open set

Using spherical harmonics expansions in z’ and in z" separately we deter-
mine Ker 0 in L6,q (0) when 2q + 1. (We are indebted to the referee for
pointing out that the discussion does not only work when n &#x3E; 2q + 2.) The
result motivates the proof in Section 3 that the null space of 0 in 
where 0  q  n, has infinite dimension for any complex hermitian mani-
fold Q such that the range is closed and the signature of the Levi form has
the excluded signature (n - q - 1, q) at some smooth boundary point.

For a spherical shell Q C Cn Theorem 2.2 shows the remarkable fact
that Ker 0 C L6,n-1 (0) has n independent multipliers. In Section 4 we
prove that the only open bounded subsets SZ of Cn with this property
are shells bounded by two confocal ellipsoids (Theorems 4.1 and 4.3). For
these sets it follows that there is a description of Ker D C L 2
which is close to that for a spherical shell (Theorem 4.1). This allows
us to determine the boundary behavior of the kernel of the orthogonal
projection on Ker 0 C Lo,n-1 (0) when the range of 0 is closed, at a
boundary point z° of a complex hermitian manifold of dimension n
where 0Q is smooth and the Levi form has signature (0, n - 1 ) . (If only
Theorem 2.2 had been available it would have been necessary to assume

some compatibility between the hermitian metric and the curvature of 
However, the results in Section 4 are incomplete in the sense that we only
give asymptotics of the kernel of the projection in a distribution sense. This
is probably all that can be extracted from the explicit formulas for confocal
elliptic shells. A careful microlocal analysis along the lines of [BMS] should
remove this flaw and also give analogues for Ker D C L6,q(0) when the Levi
form has signature (n - q -1, q) at some boundary point. We end Section 4
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with conjectures on the boundary behavior of the projection kernel in that
case. By a crude microlocal analysis we prove in Section 5 bounds of the
right order of magnitude for the kernel but a proof of these conjectures
must require a much more refined analysis where the Levi form of 0Q
enters decisively.

There are three appendices. Appendix A contains some elementary
observations on how orthogonal projections in a Hilbert space change if
the norm is changed. They are needed at the end of Section 4. Appendix
B contains some remarks on pseudodifferential calculus used in Section 5.
In Appendix C finally we discuss for the sake of comparison the kernels of
projections on harmonic functions or forms. They are probably well known
although not easy to locate in the literature.

2. Spherical and hyperbolic shells.

In the first part of this section SZ will be a spherical shell SZ = ~z E
C’; Ro  z I  where 0  Ro  R1 and Izl I is the euclidean norm

which we also take as hermitian metric in Q. The Levi form of 9Q has n -1

positive eigenvalues at the outer boundary but n - 1 negative eigenvalues
at the inner one, so it has there the signature excluded in the results on
the 6-Neumann operator on (0, n - 1) forms mentioned in the introduction.
Before discussing this operator we shall first prove that the range of the 0
operator acting on functions in L2 (n) is closed.

Let Y be a harmonic polynomial in JR2n = C~ which is homogeneous
of degree m. We have a unique decomposition Y == ¿p+q=m Yp,q where Yp,q
has bidegree p, q in z, z . Since L has bidegree
p - 1, q - 1 we have AYp,q = 0 because DY = 0. If Yp,q and Yp’ ,q’ are
bihomogeneous, then the substitution z H e2e z gives

so the integral vanishes unless p - q - p’ - q’. If p + q - p’ + q’ this
implies p = p’ and q - q’. Since spherical harmonics of different degrees
are orthogonal it follows that we can find a basis Y", v - 1, 2, ..., for

harmonic polynomials such that every Y, is bihomogeneous, of bidegree
p,, q,, and they yield an orthonormal basis for L2(,~2n-1).

A general function u E C- (S2) can now be written uniquely as a sum
. if xj are the real
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coordinates, and i

I it follows that

A partial integration noting that -
and the analogue for (where H is the Heaviside function) gives

where dA denotes the Lebesgue measure and the Euclidean surface
measure. Introducing the spherical harmonics expansion we obtain

This complete separation of the different terms in the expansion makes it
easy to proceed. With r = e’, dr = et dt, and writing - we

, and the formula becomes
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0 we get at once an estimate of 0,. However, the 0 is

exceptional, for then Y, is holomorphic so i
and the square of the L2 norm is

If u is orthogonal to holomorphic functions, in particular to Yv, then
D D D

. Integration by parts gives

v n0 ’-0

and using the Cauchy-Schwarz inequality we obtain

If the decomposition of u only involves holomorphic harmonic polynomials
Yv, that is, qv = 0, and u is orthogonal to holomorphic functions, we
conclude that

r r. - - f -

On the other hand, if qv -1= 0 for all terms then
11 r



1310

Combining the two estimates and using the orthogonality we obtain since
-- i~.2~ A

J!2 J n

when u is orthogonal to the holomorphic functions in Q. Smooth functions
are dense in this space so we have proved:

THEOREM 2.1. - For the spherical shell 0 the range of the a

operator acting in L2(0) is closed, and (2.1) is valid when u is in the

domain of a and orthogonal to the null space.

When q &#x3E; 1 and n &#x3E; 2 then q(p + n - 1) ~ q + p, which easily leads
even to a bound for the in the Sobolev space We omit

the details since this is not a new result (cf. [Sl], [S2], [BS], ~CS~). We gave
a proof of Theorem 2.1 just to prepare for the use of spherical harmonics to
study the 0-Neumann operator, and nothing is new in Theorem 2.1 except
possibly the rather precise constant.

We shall now study the 9-Neumann operator on (0, Q) forms f where
0  Q  n. We shall write

The components f J are defined for all Q tuples J and are antisymmetric in
the indices; E means summation for increasing indices. By a basic identity
due to Morrey and Kohn we have for smooth (0, Q) forms in the domain
of ðc (cf. [HI, Prop. 2.1.2])

where , 1

As in the proof of Theorem 2.1 we expand fj in spherical harmonics as
and obtain with that
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Here the last term comes from the integrals over 0Q involving the Levi
form. Since

we obtain

This remains true for all f in the intersection of the domains of 9 and of
Dc in L2, Q(Q), for forms in C07Q(n) are dense in the graph norm. Hence

when f is in the domain of 0 and in the domain of Dc. When Q = n - 1
this is vacuous for a good reason. Then the right-hand side of (2.2)

This means that ) where Yv is regarded
as a polynomial of degree qv in z.

Before proceeding we change notation and write

1

where " denotes a factor which should be omitted. This means that

fj = (-1)j f J when J = 1, ... , j, ... , n with our earlier notation. We have
proved that

where gj, (() is a homogeneous polynomial of degree /,t in (. The sum is L2
convergent in Q, so gj (() = L~ convergent in 1(; 1/R1 

 1/Rol. By Hartogs’ theorem it follows that gj is holomorphic in the
ball 0 == {(; 1(1  1/Ro} and that the series converges locally uniformly
there. That f is in the domain of ðc implies that - fk - zkfj vanishes on 8Q
in a weak sense, so it follows that C
and therefore by analytic continuation when ( E C2. Since 9j (() vanishes
when (j = 0, it follows that 9j (() / (j is a holomorphic function independent
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of j, so we have proved that a form f E L6,q(f2) is in the null space of 8
and Dc, that is, in the null space of the g-Neumann operator if and only if

where F is a holomorphic function in L2(0),
When f is orthogonal to this null space we have

provided that f is in the domain of the operators in the right-hand side.
This follows from elementary functional analysis (cf. [HI], Section 1.1) if

we prove that for forms g E L6,n(O) we have

when g is in the domain of cc, and that

when h E L6,n-2(O) is in the domain of 8 and orthogonal to its null space.
The estimate (2.6) follows from (2.1) when n = 2 and from (2.2) when
n &#x3E; 2. It suffices to prove (2.5) when g = u dzl A... A dzn and u E c- (0)
vanishes on the boundary. Then the inequality means that

that is, that the lowest eigenvalue of the Dirichlet problem in Q is &#x3E;

4 (n - The lowest eigenvalue is simple so the eigenfunction has
rotational symmetry, which means that it suffices to prove the estimate

when u is a function of r = lzl. Then

and by the Cauchy-Schwarz inequality it follows that n’llull’  
and since n 2 &#x3E; 4(n - 1) we obtain (2.5), hence (2.4). (If the boundary
conditions for Dc were satisfied by the sum of the terms with pv = 0
in the expansion, we would obtain (2.4) with the constant on the left-
hand side replaced by n - 1. However, this splitting cannot be expected
in general, for if cp is a polynomial in z of degree q + 1 k, then

is harmonic, and
harmonic of bidegree 1, q -f- 1. In the boundary conditions - f3 - - fk = 0
the terms of bidegree 1, q will therefore be mixed with those of bidegree
0, q.)
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We have now proved:

THEOREM 2.2. - fZ E C"; Ro  z  is a spherical
shell then the g-Neumann operator in L6,Q (0) is invertible if 0  Q  n-1,
and the norm of the inverse is :

the null space consists of the forms (2.3) where F is a square integrable
holomorphic function in the ball f2 = { E en; I (I I  The 9-
Neumann operator is invertible on the orthogonal complement and the
norm of the inverse is ~ R1/ 

The only novelty in this theorem is the explicit determination of the
null space and possibly the explicit constants given: If SZ1 are bounded

open strictly pseudoconvex sets in en with smooth boundaries, the same
qualitative results are known 01 B Qo, even with estimates in the
Sobolev space (see [Sl], [S2], [BS], [CS]).

For every open set Q C en (or any complex hermitian manifold)
the null space of the O-Neumann operator 0 in is continuously
embedded in so it has a reproducing kernel, the kernel of the
orthogonal projection on Ker F-1. Using Theorem 2.2 we shall now calculate
the kernel when p = 0 and q = n - 1 for the spherical shell

where 0  Ro  Ri . Every f E KerD can then be written in the form (2.3)
with F holomorphic in (2 = ~~ E en; 1/R1  1(1  and

Here we have used that since the inversion z ~ ~ is
conformal with dilation factor IZI-2 in the radial direction. We can easily
calculate the Bergman kernel K of 03A9 with the norm in the right-hand side
of (2.7), for if F ( ~ ) is holomorphic when 1(1  I /Ro then F
and 

~

where t = (|g1|2 in the middle

integral. The inner integral on the right is equal to + n - 1 ) !, a
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higher dimensional beta function. Since the monomials
orthonormal basis in the Hilbert space of holomorphic functions F with
the norm defined by (2.7), it follows that

oJ /

The series can be summed explicitly if one omits the last denominator, and
since

the error then committed is real analytic when Hence

is real analytic in a neighborhood of the closure of SZ x 0.

For every holomorphic function F E we have

If we write ( recall that (

and multiply we obtain

Set

Writing (0, n - 1) forms f as

and identifying f with ( f 1, ... , f n ) we conclude that

reproduces KerD, since all its elements are of the form (2.3). The range
is in Ker D since this is true for for fixed w and k, and
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the operator is hermitian symmetric so it is the orthogonal projection on
Ker. The difference

is real analytic in a neighborhood of the closure of Q x Q which means
that we have a complete description of the singularities of the reproducing
kernel in the case of the spherical shell. In Section 4 it will serve as a model
for more general manifolds Q.

As a preparation for discussing manifolds where the Levi form of the
boundary has signature (n - q - 1, q) for some q  n - 1 we shall now try
to adapt the study of the spherical shell to the set

where 2/~(~1,..., zn_q_ 1 ), z" = (Zn-q, - - -, zn ) . The signature of the Levi
form is (n - q - 1, q) on the inner boundary and (q, n - q - 1) on the outer
boundary. We want to study the g-Neumann operator in which

is in the exceptional case on the inner boundary and also on the outer
boundary if 2q = n - 1.

In the computations we introduce polar coordinates r = Iz’l and s =
Iz"l so that Q is defined by R2  -r2 + S2  R 2 with 0  r  s. Note that

on the boundaries s

so for large r the two bounding hyperbolas are very close.
Choose spherical harmonics Yv (z’) and Zp,(z") as before, and write a

function u E C’(f2) with compact support as

the bidegree of Yv is and that of Z~ is p~, q~ . Since spherical
harmonics are orthogonal to all polynomials of lower degree it follows that

is smooth even when r = 0. To examine the range of 8 on scalars

we write with the notation n‘ = n - q - 1, n" - q ~- 1 = n - n’

In the first sum we integrate first with respect to z’ for fixed z" and then
with respect to z", and in the second sum we integrate in the opposite
order. Introducing the notation
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we obtain by the old identities in the case where q = n - 1 that

Assume to exclude an exceptional case that n’ &#x3E; 2 and that n" &#x3E; 2. Since
~ , it follows that

When ~ is holomorphic, and since ]
we have then

where . We introduce
:2 which makes w defined by

With a positive increasing function M to be defined in a moment we observe
that when F(r, S) = 0 for large r we have

where ,S’ is regarded as a parameter, hence

Assuming that we define M by
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Since we need to estimate M from below, that
is, I /M from above. We claim that

if A’ &#x3E; 0. It suffices to prove the opposite inequality for the derivatives,
that is,

or equivalently 1  A + A-1 { ~" - 2) /A’ where.
is obvious if A" ) 2, and then it follows that

which proves that

Applying this to with

have )...’ ~ 3 so 4/~’~  ~, and we obtain

without using the minimizing condition but with u smooth and of compact
support. It extends right away to all u E for which the left-hand side

is finite and au E L2(0), first by cutting off with a function with

c ~ 0 and then smoothing as usual. (Note that z" ~ 2  ~  21 z" ~ 2 . )
We shall now study the 9-Neumann operator in L6,q(0), first for forms

f E with compact support. Let g003A9 denote the inner boundary
is a defining function and let a1 03A9 be the

is one. We write as us

where £’ indicates summation for increasing sequences I of indices but f I
is defined for all I and antisymmetric in I. The basic estimate of Morrey
and Kohn for the a-Neumann operator states that for an arbitrary defining
function p
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where 6 is the Dirac measure at the origin and

since f is assumed to be in the minimal domain c

where the indices in I’ are # n’ and those in I" are &#x3E; n’, so that

for defining K by omitting an index j E I gives a contribution ±|fjK|2
with the sign depending on whether j  n’ or j &#x3E; n’. If f I is decomposed
in the same way as u above we obtain

where cvtl and 0,,, depend on I also. If we use r as parameter then

and if we use s as parameter we obtain similarly

where and 80w, 81w are the two
parts of the boundary. Since t’ is a decreasing function of R, for fixed t"
while t" is increasing for fixed t’, we have
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last equality may not be valid then.
the contribution to the last term in (2.12)

and we add the contribution to the preceding term in (2.12) expressed
by (2.11). Altogether the contribution becomes, if we now also temporarily
drop the subscripts v and p of 0,,, in addition to the subscript
I which we already suppressed,

Next we shall examine if, for arbitrary I - q and arbitrary
it is possible to choose a’, a" so that the coefficients of I’Ø 12

are at least non-negative, for if that is the case we should be able to find
the null space of the a-Neumann operator by examining each such term
(depending on I,v,J1) separately. Note that the preceding decomposition
extends by continuity to all f in the domain of the a-Neumann operator
in 

The first problem is to decide if it is possible for arbitrary p~, p~ , q~
to choose a’ and a" with a’ - a" = 11’1 - 11"1 so that

These inequalities imply that

and when p this requires that

that is, 2 ~I’ (  n - 2. Since min(q, n - q -1 ) this is true if n &#x3E;, 2q + 2,
that is, n’ &#x3E;, n", or n  2q, that is, n’  n" - 2. 2q + 1, as
we shall assume from now on, it follows that and
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then (2.13) is fulfilled with

We shall now examine when one can

add the same quantity E to these values of a’, a" so that the inequalities
(2.13) remain valid and one of them is fulfilled with strict inequalities. This
will yield an estimate ~ (t’, t" ) ~ 2 e2tf dt’ dt" so that the component in
question is absent for elements in the null space of the a-Neumann operator
D. At first we shall assume that n’ &#x3E; 1.

all inequalities (2.13) become strict so that 0 = 0 if f is in the null space

thus n = 2q. We postpone discussion of
these cases.

(ii) If 11’1  ~ I"  q then we can take

conclude that 0 = 0 if f is in the null space of D.

(iii) If ( = 0, we get strict inequalities (2.13) if a, - ±’ 2
and a" = q ± -1 provided that p" &#x3E; 0 or 0 respectively, so = 0 unless

q’ = p" = 0. Then we must take a’ = 0 and a" = q and observe that if f
is in the null space of 0 then

where we have used that n" - 1 = q. This means that there is a constant

C such that

If we reintroduce the subscripts v, p this means that

that is, t, so that

Here Yv is a holomorphic homogeneous polynomial of degree pv and Z~ is
an antiholomorphic homogeneous polynomial of degree q~ . The L 2norm is
finite if and only if

Since n" - q+ I the exponent of s is - so the integral with respect

the remaining integral with respect to r the integrand is asymptotic to a
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constant times r

Convergence requires that T  -1, that is, T  -3 since T is odd, which
means that P’ + n  qu + 2q. Hence, introducing also the dependence on
I in the notation now, we have when I

where is a bihomogeneous holomorphic polynomial in ( = (’, (") of
bidegree v, J1 where v + n , p + 2q and the sum is L2 convergent in O. By
Hartogs’ theorem it follows that

is locally convergent to a function 91 which is holomorphic in 00,

This is a strictly pseudoconvex domain, for the Levi form of the defining
function

can only vanish when t" - 0 and 1("It’ = 0, and ~" ~ 0 on the boundary.
As in the proof of Theorem 2.2 we can now use the minimal boundary
condition for c at the outer boundary to conclude that gj(() = 
if n’  j Í- I, where 9 is also holomorphic in (10 and is a locally uniformly
convergent sum of monomials ~’a~"~ with lal -f- n  101 + 1 + 2q. We have

where we recall that As in (2.7) we have

Every monomial in the Taylor expansion has a norm , Ilf 11 which again
gives the condition lal + n - 2q - 1 x IØI for the monomials (’c’("O which
can occur in the expansion of g.

(iv) If n = 2(q + 1) so that the arguments above
allow another possibility with I’ ( - q, 11"1 = 0, ~v - 0, q~ - 0 which

Since this does not give a function in L2
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if 0 it follows that (2.16) determines Ker 0 completely even in this
case.

(v) If n = 2q, 11"I we encountered the possibility that
Then q &#x3E; 3 since we have assumed

the inequalities (2.13) become

If pv &#x3E; 0 we make them strict by taking ) we can do so

which gives c,

is not finite when 0 unless

Since the exponent of r is  -1 when n’ &#x3E; 2, this does not happen, so

(2.16) is still a complete description of Ker 0.

(vi) The remaining case n’ = 1 can be handled along the same lines
but requires a detailed and lengthy study of several cases. We shall omit it
since the complete description (2.16) of the null space of the g-Neumann
operator for (0, q) forms in (2.10) when n # 2q + 1 and n‘ ~ 1 is an ample
motivation for the constructions in Section 3.

3. Infinite dimensionality of the null space
of the O-Neumann operator.

Although the representation (2.3) of the null space of the g-Neumann
operator in a spherical shell is very exceptional, we shall now show that it
has quite general consequences:

THEOREM 3.1. - Let Q be an open subset of a complex analytic
hermitian manifold of dimension n, and let z° be a point in the boundary
8Q where it is in C3 and the Levi form positive and q negative
eigenvalues where n - 1. Then the null space of the g-Neumann

operator + in L 2, has infinite dimension if the range is closed.

The crucial assumption that the range is closed is a global condition
which in general is very difficult to check, for example if the Levi form does
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not have a constant signature. Thus the theorem just affirms that when the
Levi form has the critical signature at some point, then the O-Neumann
operator is flawed in the sense that either the dimension of the null space is
infinite or else the range is not closed (or both). Since the range of a closed
linear operator between Banach spaces is closed if it has finite codimension,
the theorem means precisely that the critical signature of the Levi form at
z° implies that the range of the 9 operator from to L 2 has
infinite codimension in the null space of the 8 operator from L 0 2, q (Q) to
L20,q+1 (Q) .

We shall prepare the proof with two lemmas. The first is a very special
case of the classification of hypersurfaces in [CM] but the proof is so short
and elementary that we give it in detail for the convenience of the reader,
in a form which will be useful later on but is more precise than necessary
now.

LEMMA 3.2. - At a point zo E an where 8Q E C3 and the Levi
form is non-degenerate one can choose local complex coordinates vanishing
at z° and a defining function o such that the metric is ~~ 2 at zO and

where 0 for j = 1, ..., n - 1.

Proof. Starting from a defining function o E C3 such that
= 1 we first choose zn so that 8g = dzn /i at zo and extend to

a local coordinate system orthonormal at z°, which gives

where H is a hermitian symmetric quadratic form in z’ - (2~1,..., Zn-1),
A(zj is a holomorphic quadratic form, and B(z) is a complex linear form.
Since H is nonsingular by assumption we can by a unitary change of the z’
variables attain == ¿~-1 0. Replacing - by
zn - 2i Im Zn we obtain

If we divide o by (1 + ImB(z)) and take ,
new coordinate instead of zn, we obtain a C3 defining function in the new
variables of the form
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where Ao is a holomorphic cubic form and are holomorphic
quadratic forms. Hence

If we divide o(z) by 1 + 2 Im An (z) and introduce

as new coordinates, we obtain a new C3 defining function such that

(3.1) is valid with the new coordinates. The coordinates have remained

orthonormal at z° in every step of the proof.

If one allows a change of the hermitian metric at z° then one can
choose ~1, so the quadratic form in the right-hand side is determined
by the signature of the Levi form apart from the order of the terms.

It is more natural to state the next lemma in terms of real variables:

LEMMA 3.3. - Let o be a real valued and 0 a complex valued
function, both in C2 in a neighborhood of 0 E and assume that at 0

where A and B are quadratic forms and Q (x) - 2 A(x) - 
is positive definite when XN == 0. If x is a continuous function witch

support close to the 0, is a continuous function witch

when z E C an d Re z &#x3E; 0, then

where

Proof. - We can take + Re B(x) and xN ~- Im B(x) as new
coordinates instead of and x~ in a neighborhood of the origin. The
Jacobian of the change of variables is then equal to one at the origin, so we

may assume in what follows that B = 0. Then Q(x) = !A(x) is positive
definite when xN = 0, and the condition o(x)  0 can be written
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so it implies that IX12  for some constant C if ~ lxl is sufficiently
small. Hence -xN + o(xN) &#x3E; 0 and ~~(x) ~ &#x3E; IX"I + o(xN) &#x3E;

Ix"1/2 then. Hence the expression in the left-hand side of the statement is
well defined if supp x is sufficiently close to the origin, and with the new
variables y’ = V7-x’ and y" - Tx" it becomes

Since when o(x)  0 and X(x) =,4 0,
we have an integrable majorant by the assumed bound for (D, and when
T - oo the limit becomes

which proves the lemma if we first integrate with respect to ~’, changing
the sign of yN .

Before beginning the proof of Theorem 3.1 we shall also rewrite

Theorem 2.2 with Ro == 1 by moving the origin to (0,..., 0, -i) . Then
the defining function 1 -IZ12 at the inner boundary becomes 1- , IZ + Z012 =

The nth component of the argument of F in (2.3) becomes

If we set

and set ~(~) = it follows that for every T &#x3E; 0 and

is annihilated by a and cc when p  0, and in fact annihilated by 9 and
in a neighborhood of 0.

Proof of Theorem 3.1. - If T is the maximal 9 operator from

(0, q - 1) forms to (0, q) forms and S is the maximal a operator from (0, q)
forms to (0, q + 1) forms, in L2, then the range of the a-Neumann operator
TT* + S*S is closed if and only if the range of T and the range of ,S’ are

closed, and then the null space has the same dimension as the quotient of
the null space of ,S’ by the range of T. (See e.g. ~Hl~, Section 1.1.) Thus
the hypothesis and conclusion in the theorem do not change if we locally
replace the hermitian metric by an equivalent one, so we may later on
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assume that the metric at z° is whatever will prove convenient. By [HI],
Theorem 1.1.3, what must be proved is that there is a sequence fk of (0, q)
forms which is bounded in L~ but has no convergent subsequence although

- 0 in L2 .

Assume at first that q = n - 1 and choose local complex coordinates
vanishing at zo such that a C3 defining function p for Q in a neighborhood
of zo has the form

which is possible by Lemma 3.2. We may assume that the hermitian metric
is the standard Euclidean metric in these coordinates. With this function o
and a function X E Co with support in a small neighborhood of the origin
which is equal to 1 in another neighborhood, we now set, following (3.3),
with some K &#x3E; -In + 3

and we define f, = 0 outside supp x. Then the boundary condition for
cc is fulfilled since fT is the inner product of a (0, n) form with We

can apply Lemma 3.3 with j ,; then

which is positive definite when Im zn = 0. Hence has a positive limit
when T - and since f, -~ 0 uniformly outside any neighborhood of 0
there is no L2 convergent subsequence. and the terms where X
is differentiated also converge to 0, and in the other terms we can replace
o by the remainder term r. Then the terms where r is differentiated twice
have coefficients and those where r is only differentiated once have
coefficients so it follows from Lemma 3.3, 1 or 1~ = 2, that
their L2 norms converge to 0. Thus + - 0 when T -~ +oo,
which completes the proof when q = n - 1.

In the general case we can choose the local coordinates so that

As suggested by (2.16)
we define
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a. The only change in the
argument for the case q = n - 1 is that now we have

definite when 1m Zn = 0, it follows as before that fT is in the domain of c~~
and that 2013~ 0 while has a positive limit when T - +00,
and there is no L2 convergent subsequence. The proof is complete.

If the range of the g-Neumann operator in is closed then one
-11~ I ,

such that IlgT ~~ - 0 as T - 00.
T is in the null space of the )-Neumann operator and

in terms of the local coordinates at z°, then

locally in L2 when 2 Im zn + A(z’, 0)  0 and T - Here z’ =

. In fact, the contribution from
gT tends to 0 since I I g, I - 0. (Note that we have not pulled FT back as a
form.) We shall prove in Section 5 that the left-hand side is bounded on
compact subsets for every L 2bounded sequence F, in the null space of the
a-Neumann operator.

4. Confocal ellipsoidal shells.

If SZ1 are bounded connected open sets in C’ with smooth

boundaries, then the special case of (2.3) with a constant F has an analogue
for Q = 01 B Qo, for let I~ be the harmonic function in Q which is equal to
1 on and 0 on and set

Then ) since I~ is harmonic,
and c~ f - 0 since Since H(H - 1)
is a defining function for Q, it follows that f is in the minimal domain

of -0, so f is in the null space of the 6-Neumann operator. The formula
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(2.3) for the spherical shell, with a constant F, is a special case for

However, (2.3) also implies that for the spherical shell there are n
functions z~ / ~ z ~ 2, j - 1, ... , n, which are multipliers on the null space of
the a-Neumann operator, and this is a very special property. In fact, for
Q = Qo and H as above, a multiplier cp E must satisfy

n

and we shall prove that these equations cannot have n solutions with

linearly independent differentials unless SZ is a confocal ellipsoidal shell as
described in Theorem 4.1 below. There are n linearly independent equations
(4.2) for dcp at a point where dH :~ 0. The second set of equations in

(4.2) means that an operator ~ 1 annihilates p if it annihilates H,
which amounts to n - 1 linearly independent conditions. The commutator
of two such operators is of the same type since it also annihilates H.

However, we cannot have n solutions of (4.2) with linearly independent
differentials unless every commutator of ~ and an operator

j is a linear combination of the operators
in (4.2) (the Frobenius condition). With 8/8zj and 8/8zk denoted by
subscripts j and k, we have

which is in the span of the operators in (4.2) if and only if

for all j, k, m, l. If Hn i- 0 for example, it suffices to take k = n, j  n,

and m = n, l  n (in the second condition). At a point where 0 for

every j, the second condition in (4.3) means that 
is independent of l , which gives if we take 1 = j and l = k that

Conversely, (4.4) implies that 
which does not depend on l, so (4.4) is equivalent to the
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second part of (4.3). We shall use this to integrate the equations (4.3)
when Q is a Reinhardt domain, that is, invariant under rotation in each of
the coordinates zj . Then the harmonic function H which is equal to 1 on
9Qi and 0 on 8Qo must also be invariant under these rotations, that is,
H(z) = h(t1,.’., tn) where tj = With the notation hj(t) - 

we have 8H/8zj = and the equations (4.4)
become

From (4.5) it follows that

which means that the level surfaces of h are hyperplanes. Conversely, this
implies (4.5).

Next we shall examine the first condition (4.3). Since

the condition reduces to

Division by hjhk gives the equivalent condition

If we use (4.5) and drop 2 on both sides, we obtain

Since the level surfaces of hj are hyperplanes, we have (at least locally)

for some smooth functions aj of one variable. Differentiation gives
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When we divide by /~ the second term becomes independent of j, and
(4.6) means that

when Lz ar (s)tl = 1, hence by the homogeneity for all t. The coefficient of
tl divided by al is

so this must vanish for all j, k, l. Thus we must have a relation

that is, = -)1(s), and this is also sufficient. If F’(s) = -)1(s)
it follows that there are constants Cj such that l lai (s) = C, + r(s), that
is,

Thus the level surfaces of H are ellipsoids in a family of confocal quadrics.
We pause a moment to recall some classical facts on this notion.

If C1  C2  ...  Cn are real numbers then the quadrics in Ilgn
defined by 

-

with a fixed A are said to be confocal, for reasons which are obvious when
n = 2. If x E R n and all coordinates are different from 0, this equation
of order n for A has n different real roots for there is one with precisely k
negative denominators for k = 0, ... , n - 1. Taking these n roots as local
coordinates one obtains an orthogonal coordinate system which implies
that the Laplacian has a simple expression in terms of them.

Here we shall only use the coordinate which corresponds to ellipsoids.
Let 61,..., bn be positive numbers and let

where -y &#x3E; 0 be the shell between two confocal ellipsoids. In a neighborhood
of Q the equation
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defines A as an analytic function of tj = = 1,..., n, which is equal
to 0 and to 7 on the two boundaries. With the modified notation

differentiation of the equation Nl - 1 gives if A~ = 8A/8tj and Ajj -

hence

1 1

The harmonic function H must have the same level surfaces as A, so we
have L for some 0, which gives

Hence

so H is harmonic if and only if for some constant C

Since we require that H = 0 and H = 1 on the two boundaries, we have
the boundary condition ~~0) = 0, and (

Next we shall determine the multipliers on the null space of which
we know must exist. For ,j = 1,..., n it is clear that = zjX(A) satisfies
the second set of equations (4.2), and cp satisfies the first equation (4.2)
also if

which simplifies to
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with the solution

multiplier. Note that ; ] and that

Since solutions of (4.2) form an algebra, this

is in the null space of D acting on forms in L6,n-1 (0) if F is a holomorphic
polynomial or just a holomorphic square integrable function in {( E

 1 ~ . The formula becomes even simpler if one introduces
the ( variables throughout. In fact, we have

and in working out the exterior product in (4.8) we can only choose the
dA term in one of the factors. The product of dA with all (bl + A)d(i in
increasing order for 1 :A j and l can be obtained in two ways. If j  k
it will appear with a factor (-1)3(j(-J)k-’Ck from the jth term and with
the factor from the kth term, and they cancel. Hence

which is even simpler than (4.8). The function A is hidden in the trans-
formation, that is, 1

which implies that
This is equal to 1 in the spherical case. 

’

It remains to prove that every element in the null space is of the form

(4.8). To do so we must prove that every f E Lo,~_ 1 (SZ) n Do n is a

sum of an element in the range of 9 acting on Lo ",,_2(Q), an element in
the range of cc acting on L5,n (0), and an element of the form (4.8). In the
proof we may assume that f E CO!n-1 (f2) for this is a dense subset in the
graph norm. The component of f in the range of D, is equal to 
where (o~d~)-1 is the Green operator for the Dirichlet problem in O. Hence
it is in CO!n-1(0), and replacing f by f - we may assume in

what follows that 6f = 0. The representation of the orthogonal projection
on the space of forms (4.8) by a Bergman kernel given below shows that
the component of f there is also in C’o~,-,(f2). What remains to prove is
thus that if f E COn-1(0), 8 f = 0, and f is orthogonal to all elements
in the null space of the form (4.8), then f is in the range of 9. This will
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follow if we prove that f can be extended to a 8 closed form in the ellipsoid
which is the convex hull of Q. Such an extension is possible if and only if
for every multiindex a we have

(Cf. [CS], Theorem 9.2.2 and the references to earlier literature given there.)
Now orthogonality of , ~ to the form

Since ( this is equivalent tc

If we define m(A) so that n
and m(~y) - 0, then nt(0) # 0 and the integral differs only by a constant
factor from

which by Stokes’ formula is a non-zero constant times (4.9). This completes
the proof of the following extension of the main point in Theorem 2.2:

THEOREM 4.1. - Let Q be a shell bounded by two confocal ellip-
soids,

Then the null space of the a-Neumann operator in L6,n-1 (0) consists of
the forms (4.8) where F is a square integrable holomorphic function in the
ellipsoid

There is a natural extension with ellipsoids replaced by paraboloids
such as
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Adding a term c21znl2 with a small c &#x3E; 0 we get the ellipsoid

The confocal ellipsoids are defined by
,,-l

When E - 0 and A this converges to the paraboloid

Note that this equation determines A as a decreasing function of Im z,,.
Our ellipsoidal multipliers + Ae) converge + A) after
division by E2, when 1  j  n. The last multiplier

converges to after subtraction of the constant i~2 and division by ~4 .
The harmonic function converges after appropriate normalization 
where 

-

We have when 1  j  n and

the substitute for the trivial multiplier
In the paraboloidal

where -y &#x3E; 0, the preceding arguments suggest and it is easy to verify that
the form

is in the null space of the ~-Neumann operator in Q if it is in L2 and F is

holomorphic in
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It seems plausible that this describes the null space completely, but we
leave this question aside in order to return to a general discussion of the
integrability condition (4.3).

Recall that (4.3) describes the Frobenius integrability condition for
the system (4.2). To find the most general solutions we shall examine a
neighborhood of a point where H is real analytic, the differential is not
equal to 0, and the level surface of H has a definite Levi form. We can place
the point in question at the origin and choose the orthonormal coordinate

system in en so that H~ (0) - 0 when j # n, thus H~ (o) ~ 0; as above,
subscript k (resp. 1~) will denote differentiation with respect to 
In a neighborhood of 0 the conditions (4.3) with k = m = n can be written

and since ~ is harmonic we also have

In particular this gives Hjn(O) = 0 when j  n and Hlj(O) == 0 when I  n,

j  n, so the last sum in (4.11 ) vanishes of third order at the origin. By
Taylor’s formula

n

Here

Multiplication by (

where ajk is hermitian symmetric and
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Thus the level surface ~z; H(z) = is tangent of second order to the

ellipsoid (or paraboloid) E defined by

for this is on the surface. It is not true for any other hermitian

symmetric matrix (ajk -E- bjk), for if 0 in the real

hyperplane where Re(Hn (0)zn ) = 0 then this is true for all z. Note that, in
view of (4.11) - (4.13), (ajk) and Hn (0) determine the second order Taylor
expansion of H - H(O) at 0 apart from the fact that only the real part and
not the imaginary part of Hnn(O)j Hn(0)2 is determined.

By a unitary change of variables and a translation we can transform E
to an ellipsoid or paraboloid Eo for which we have already found a harmonic
function satisfying (4.3) and vanishing on Eo. Going back to the original
variables this gives a solution H of the equations (4.11 )-(4.13) vanishing
on E. After multiplying H by a suitable real constant we conclude that the
derivatives of H-H(o) and of H of order  2 are the same at the origin with
the possible exception that and 

might differ. The following proposition will prove that H - H(o) is equal
to H though.

PROPOSITION 4.2. - Suppose that H is a real valued solution of

(4.11), (4.12), (4.13) in a neighborhood of 0 E CCn such that H~ (o) - 0
for j  n but 0, and the Levi form of the level surface where
H = H(o) is non-degenerate at the origin. Then H - H(O) is uniquely
determined by Hjn (0) for j  n, and 

for j, k  n.

Proof. As a harmonic function H is real analytic so it suffices to
prove that all derivatives can be calculated at the origin. When doing so it
is no restriction to assume that the Levi form at the origin is diagonalized,
that is, that 0 when j  k  n, which implies that the diagonal
elements Hjj with j  n are not equal to 0. We shall write

and use the notation at - (a1,..’, an-I), = (!31,..., !3n-1). Taking
into account the consequences of (4.11), (4.12) at 0 we know when

1 ~ I a I + 10 1  2 except when an - 2 or $n = 2; and we also know

Re(Hnn(O)j Hn(0)2). We shall prove recursively that H‘x~~ can be calculated
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for arbitrary a, /3. By the hermitian symmetry we may of course always
assume that 1/31. -

First let + 1/31 = 3. Then is obtained by differentiation of
(4.12) if 2. If = 1 then |B|  1, and if 101 - 1 then xn = 1 and
we can calculate by differentiating (4.11) or its complex conjugate
instead when 0,, = 1 or = 1. If or’ - 0 and an = 2 we can find by
differentiating the complex conjugate of (4.11) when ~,C3’ ~ = 1. If /3n = 1 we
can use (4.13) to reduce to cases with = 1 and = 1 which we have

already studied. This gives all with lal + 1/31 = 3 and lal ~ 1/31 except
those with /3 = 0 and 2.

Calculating when + 1/31 = 4 by two differentiations of

(4.11), (4.12), (4.13) requires some care since we do not even know Hnn (0)
completely and have not yet found Hjnn(O). Taking l = j in (4.12) and
noting that = 0, we obtain at the origin

Differentiation of (4.11 ) gives at the origin

so is real, hence is real at the origin. By (4.12) we have
at the origin

is real. Using (4.14) we can now
conclude that is real which means that Hnn (o) is also

known. Next we shall calculate when j  n by observing that

(H3n)jj can be calculated at the origin by two differentiations of
(4.11 ) . On the other hand, if we differentiate

with respect to zn and Zj then third derivatives will only appear at the
origin in the terms

and only the middle term is not already calculated. Since 0 this

means that we have now calculated when lal + 101 = 3 except when
an = 3 or ,8n = 3. This implies that only already known terms will appear
in the right-hand side of (4.11) or (4.12) when we differentiate twice, for
one derivative must fall on each factor Hk with k  n.
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If lad + 1/31 = 4, 1/31 ~ lal we can thus calculate Ha,!3 by differentiation
of (4.12) or its complex conjugate unless 1 and 1. Then an § 1
and we can use the complex conjugate of (4.11) unless 01 = 0, and if /3n 7~ 0
we can use (4.11) unless a’ = 0. This leaves only the case = 1, /3 == 0,
an = 3, and the case cx’ - 0, ,C3’ = 0, an ) 2. If an  4 in the latter case

then ~3n &#x3E; 0 and we can use (4.13) to reduce to the cases already handled.
Hence we have calculated for all a, /3 with lal + 101 fi 4 and 101 ~ lal
except those with /3 = 0 and an ) 3.

We claim now that using the equations (4.11)-(4.13), their complex
conjugates, and the derivatives at the origin of order  N, we can for every
N &#x3E; 2 calculate all Ha,(3 with lal + 1/31 ~ N + 2, 1/31 ~ lal and an  N
if $ = 0. This is what we have just done for N = 2, so we may assume
that N &#x3E; 2 and that the statement has been verified with N replaced by
N - 1. Then we know Ha,(3 when lal + 1/31 = N except when an = N (or
/3n = N), and when I a + ~,C3~ = N + 1 except when 0 - 0 and N (or
the complex conjugate). Our first task is to calculate Ha,(3 0 and

cx’ - 0, an = N by differentiating (4.15) twice with respect to zj and N - 2
times with respect to zn . To produce a non-zero term at least one derivative
must fall on the factor Hj in the first term, and if the remaining N - 1 all
fall on the factor Hj n then one of them is a derivative with respect to zj and
we obtain a derivative of order N + 1 which is already known; if only the
N - 2 derivatives with respect to zn fall on Hjn we get a derivative of order
N which is already known. In the second term in (4.15) two derivatives
must fall on H? to produce a non-zero term, so all terms obtained are
already calculated except Expressing H3,, as the33 n

complex conjugate of (4.11) we find that can be

calculated, hence we have found that can be calculated.

Next we shall calculate when j  n by differen-
tiating (4.15) once with respect to - and N - 1 times with respect to Zn-
On one hand, this can be calculated using (4.11) as a derivative of H3n,
on the other hand we see from (4.15) that at the origin the only term
obtained which involves a derivative of order N ~- 1 with no z derivative

is 2HjJôN+1 Hjôzjôz;; j Hn, so we have calculated when /3 = 0 and

px’ j = 1, c~n = N. Thus Ha,(3 is now known when lal + 1/31 ~ N -+-1 except
when a~

We are now free to differentiate (4.11) and (4.12) as we did before
when 1V = 2, so the argument made then can be repeated. If = N-~ 2
and 1!31 ( differentiation of (4.12) gives H0152,{3 unless 1 and
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1/3’1 ~ 1. Then N/2 and we can use the complex conjugate of (4.11)
instead unless ~3’ = 0. If ~3n = 0 too, then an ) N + 1, and if ~3n &#x3E; 0 we can

use (4.13) to pass to terms with 0 and ,~’ ~ 0 which we have already
handled. This completes the inductive proof.

Summing up, we have proved:

THEOREM 4.3. - If C’ are open sets with smooth

boundary, Q = 01 B Qo, and the null space of the g-Neumann operator
acting in L6,n-1 (0) admits n independent multipliers, then 0 is with

suitable orthonormal coordinates a confocal ellipsoidal shell as described
in Theorem 4.1.

Our next goal is to prove an analogue of (2.9) for the confocal

ellipsoidal shell SZ defined by (4.10). By Theorem 4.1 the null space of
o in L6,n-1 (0) consists of the forms (4.8) where F is a holomorphic square
integrable function in

hence also in its convex hull. We have
p r n

To pass entirely to the ( variables we observe that since ;-
have

and since we havE

This gives

for the factor d(j n d(j annihilates and 1

Hence (
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For the norm (4.16) in the Bergman kernel I~(~, 0) can be computed
along the same lines as for the spherical shell in Section 2 if one introduces

bj(j = wj as new variables. With these variables f2 is defined by
n n

The computation of the reproducing kernel K depends as in the spherical
case on evaluation of integrals I, and summation of a power series with
coefficients 1/Ia. The details of this are given in [H2], and we content
ourselves here with listing the main singularities of the kernel obtained
after returning to the ( variable:

in a neighborhood of the diagonal of the outer
boundary of S2 and smooth elsewhere. (The leading term on the diagonal
follows from [HI], Theorem 3.5.1, and the results of [BMS] imply that the
remainder is (

have

When F E L () is holomorphic we

With ( , and the shorthand

notation

As in the spherical case it follows that (Kjk) is the kernel of the orthogonal
projection on KerD in Lo, n-1 ( S~2 ) . Since
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we obtain the main singularities of Kjk(Z, z) at the inner boundary of the
annulus Q

For the sake of brevity we have only used the leading singularity of K(z, z)
at the diagonal, which as already pointed out is easy to justify. We shall now
see that (4.17) has an interesting interpretation in terms of the curvature of
the inner ellipsoidal boundary, where A == 0. Since’
we have

1

When A == 0 it follows that

so (4.17) can be written

We shall compare this with the product of the eigenvalues of the Levi form
for A in the complex tangent plane of {~;A(~) = 01, that is, the product
of the eigenvalues of

Quite generally, if H is a hermitian symmetric n x n matrix and 0 ~
W C CCn, then the product of the eigenvalues of the form (Hz, z) _ (Hz, z~
restricted to the orthogonal space of w is equal to

In the proof we may assume that w is the unit vector en along the zn axis
so that the orthogonal space is defined by zn = 0. When zn = 0 and t E C
then
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and as a hermitian form in C’- 1 s9 C = (Cn the determinant of the

corresponding matrix is equal to the product of the eigenvalues of (Hz, z)
when zn = 0 and (H-1 en, The determinant of the map

is (H-1en, en), so it follows that (H-1en, en)2 det H = k(H-1en, e~), which
proves the claim. Since H-1 det H is the algebraic complement of H which
is always well defined, it makes sense as a limiting case for arbitrary H.
Hence it follows that the product n of the eigenvalues of the Levi form

(4.18) is

Since 1,9A/,9zl’ - 1/N2 it follows that

Note that multiplication of A by a positive constant q would change both
terms by the same factor ’yn+1, so (4.19) remains valid with A replaced by
any function o such that - o is a defining function for Q at the boundary
point considered. On the diagonal the matrix defines a

hermitian symmetric form on (0, n - 1) forms at z. Since (Kg, g) is the

supremum of ( f , g) ( 2 when , we have

as a limiting case when supp g tends to z

where f is identified with ( f 1, ... , fn ) . Thus (K(z, z)t, t) is the supporting
function of the range of f (z) when f E Ker D and 1, which is

obviously convex. By (4.19) the product of the form by o(z)n+1 is equal to

where is the product of the eigenvalues of
restricted to the plane where L::~ = 0. Changing notation we
conclude that

when f E L6,n-1 (0) is in KerD, 1, and t is now a form of type
(0, n - 1) at z. As a first step toward a localization we shall prove:

PROPOSITION 4.4. - Let z° be on the inner boundary of the

ellipsoidal shell 0 C C" defined by (4.10) (n &#x3E; 2), and let WI be
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open neighborhoods of zo. If f
and the minimal boundary conditions four () are satisfied in wi rl an, then
(4.20) is valid when z E Q n 1.

Proof. Choose X E equal to 1 in a neighborhood WI 2 of (Do
so that 0  X  1. Then x f , defined as 0 outside supp x, is in the domain
of Dc and that of ~ in ]
f is the orthogonal projection in L6,n-1 (0) of x f on Ker 0, then 11111 ~ 1,
and (4.20) is valid with replaced by /(~). Since n &#x3E; 2 by assumption
we have

where and Nn denote the inverses of the a-Neumann operator
in L5,n-2(0) and in L5,n(O); the latter is essentially just the solution
operator for the Dirichlet problem. The two terms subtracted from x f
are respectively the orthogonal projection on the range of the 9 operator
from (0, n - 2) forms and the ðc operator from (0, n) forms. The operators
aNn-2 and are both L2 continuous, and we have bounds for 
and 8(x f) in L2; both vanish in SZ n By the local regularity theory
of the a-Neumann problem (Theorems 4 and 5 in [KN]) we conclude that
the terms subtracted from x f in (4.21) are bounded in COC; (0 n úJ 1), 2 hence
uniformly bounded in Q n wo. Thus we have a uniform bound for f (z) - f (z)
when z E Q f1 wo, so I
and since

for some constant C,

the statement follows.

Remark. - When n = 2 we still have a decomposition like (4.21);
the range of 8 acting in is closed and No should be interpreted as
the inverse of cc8 on the orthogonal space of the holomorphic functions.
However, we lack a reference to a local regularity theorem which could
replace those of [KN] used in the preceding argument.

Proposition 4.4 gives an upper bound for the kernel of the orthogonal
projection in Lo,n-1 (Õ) on Ker 0 when f2 C Cn is an arbitrary open set
which is equal to the ellipsoidal shell Q defined by (4.3) near a boundary
point. When the range of in L6,n-1 (Õ) is closed, there is a lower bound
of the same kind:
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PROPOSITION 4.5. - Let zo be a point on the inner boundary of
the ellipsoidal shell 0 C defined by (4.10) (n &#x3E; 2), and let-f2 C ~n be
another open subset such that the range in LQ,n_1 (S2) is closed.

for some open neighborhood w of z°, then

in a neighborhood of zO . Here - (! is a defining function for nand is

the product of the eigenvalues of restricted to

the plane where

Proof. By Proposition 4.4 we have an upper bound of the form

(4.22), for if f E L6,n-1 (f2) and I If I  1, then the L2 norm of the restriction

to (2 Q n w is ~ 1, so (4.20) is applicable. The lower bound in (4.22)
is trivial unless A ap (Z) 12 &#x3E;&#x3E; 

Choose X E Cü(w) equal to 1 in an open neighborhood wi of z° so
that 1, and let wi be another open neighborhood of z°. With
wewo anda(O,n-1) form t at w with |t| = 1 let

where 1C is the kernel of the orthogonal projection on Ker 0 in 
which also acts on distribution forms of compact support. Since K is the
kernel of a self-adjoint projection we have

The support of the form is contained in w Bw1, and it has

a uniform bound independent of w E Wo since 1C is smooth outside the

diagonal, which implies a uniform bound for the norm in L5,n-1 (Õ). Since
by hypothesis the range of the g-Neumann operator D is closed there, it

follows that we can find gw,t E L5,n-1(Õ) with = 

and C. Hence j is in the null space
of D in and since 0 when z (

it follows from Proposition 4.4 that C~(~) 2~+~) for some
constant C’. Hence

here
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As observed at the beginning of the proof there is nothing to prove unless
and then we have

hence

which implies a lower bound as in (4.22) and completes the proof. 

~ ’

The supremum in the left-hand side of (4.22) is equal to z)t, t)
if i~ is the kernel of the orthogonal projection on Ker 0 in LÕ,n-1 (f 2).
We would like to extend the conclusion to an arbitrary open relatively
compact subset SZ of a complex hermitian manifold of dimension n &#x3E; 2

such that the a-Neumann operator D in LÕ n-1 (n) has a closed range and
zo is a boundary point where 8Q E C°° and the Levi form is negative
definite. However, the methods used in this paper only allow us to give
corresponding asymptotics for IC(z, w) in the distribution sense:

THEOREM 4.6. - Under the preceding hypotheses on Q and zo let
z1, ... , zn be complex analytic coordinates at zo vanishing at zo such that
8zi , ..., 8zn are orthonormal at zo and the complex tangent plane is
defined by 8zn = 0. Set z’ - (zl , ... , zn_ 1 ), write (0, n - 1) forms f as

in a neighborhood of z°, and let Kjk(Z, w) be the corresponding matrix of
the projection IC in on KerD. is a defining function of Q
at z’ then

when £ -~ + 0. Here
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~ is the product of the eigenvalues oft ] and

Proof. The first step is to show that the statement is independent
of the choice of the local coordinates zl , ... , zn and the defining function
- o. If we multiply o by a positive constant c then r, is replaced by 
and F by cF, so the statement is unchanged. If p is multiplied by 1 + a
where = 0 then F is unchanged since r~ vanishes of second order at the
origin, of third order when zn = 0, which proves the independence of o. The

Taylor expansion of order two 8g(0) /8zn zn + ~ zj zk
as well as its complex conjugate are invariant under analytic changes of
coordinates, and so is the Levi form in the complex tangent plane, which
completes the proof of the invariance of the statement in Theorem 4.6. The
right-hand side of (4.23) is well defined in Qo x Qo, for

j,k=1

is positive if z, w E Qo.

The next step is to verify the statement when SZ is the ellipsoidal shell
(4.10), zo is a point on the inner boundary and the metric is the standard
Euclidean metric in With zl , ... , zn now denoting the coordinates in
~n we have when I 1 and Kjk is defined
accordingly, since
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The first order terms are

and the Taylor expansion of El 1 in the complex tangent plane
at z° is N2 times that of A. If we recall that
that

it follows

which gives (4.23) when Z = cZ’ +c2 Z" where Z’ is in the complex tangent
plane at zo and Z" is in the orthogonal direction 8A(zO)/8z. (Note that
cross product terms involving both Z’ and Z" are of higher order and

play no role, and that the second order tangential derivatives of with

respect to z vanish for ] since the level surfaces

are hyperplanes, and c

Now we turn to the general proof. By Lemma 3.2 we can choose
local complex coordinates at zo so that the coordinates of zo give a

point on the unit sphere and there is a defining function -g of S2 at z°
such that g(z) = 1 + ZOI4). The hermitian metric at zo is

a positive definite quadratic form. By a unitary transformation we can

bring it to diagonal so we may assume that the metric

at zo has this form. If we take blzl as new coordinates the hermitian

metric becomes the standard Euclidean metric, zo becomes a point on the

ellipsoid ~ 1 ~ 1, and Q has a defining function - g at zo such that
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What remains is to prove that the

limit (4.23) will be the same for the projection in L6,n-1 (0) as for that in
where Q is the ellipsoidal shell defined by (4.3) with some 1 &#x3E; 0.

Let f be a (o, n - 1) form with constant coefficients in en and norm
1 (at a fixed point), let p E and set

where Z’ is in the complex tangent space at z° and Z" is orthogonal to
it. Then supp fe cOn S2 when £ &#x3E; 0 is sufficiently small, and the norm

life Ilõ in is equal to the L2 norm of cup, which is also equal to the
limit as E 2013~ 0 of Ilfelln. Here we use the given hermitian metric in 0 and
the standard Euclidean metric in Ö. Recall that they coincide at z°. Let P
(resp. P) be the orthogonal projection in (resp. Lo,~_1 (SZ)) on
KerD. By the case of (4.23) already proved we have

lim (Pfe, fe) 
e ~+0

if f is considered as a vector in C’ - Conversely, this implies (4.23) for

f2 at z°, for by polarization it follows that (4.23) is valid for the scalar

product when E and this implies convergence
in x Qo) by the Schwartz kernel theorem. In the same way (4.23)
will follow for SZ if we prove that

In the proof we may assume that the hermitian metric of SZ expressed in the
local coordinates at z° is equal to the euclidean metric in a neighborhood
of zo and not only at zo. In fact, for every 6 &#x3E; 0 we can choose a metric

in SZ with this property which lies between 1 + 6 and 1 - b times the given
metric. If Pa is the corresponding projection and ( ~, ~ ) ~ the corresponding
scalar product in L6,n-1 (0) we shall then have

and C6 by Lemma A.1. Hence it will follow that

fE)O - fF)f2 -~ 0 when E -~ 0. (From Lemma A.2 it follows that
the inverse of the 9-Neumann operator in L5,n-1 (0) on the orthogonal
space of the null space, defined with the modified metric, has a bound

independent of 6.) To simplify notation we assume in what follows that the
given metric in Q is itself the Euclidean metric in a neighborhood of z°
with the fixed local coordinates.
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In the local coordinates, I

Here

The representation of fi fe by the kernel shows that it is O(~n+1 )
outside any neighborhood of zo and well defined in SZ n w for small F

if w is a sufficiently small neighborhood of z° . If 0 E Co (w) is equal
to 1 in another neighborhood of z° then and its derivatives

are o(Fn+’). If we replace (j by (j + rj in the kernel of P then 
becomes an element ge, in the domain of the 9-Neumann operator in Q.
To estimate 8ge and ccge we note that the terms where derivatives fall on
the cutoff function 1/J are 0(c~~). In the others we may replace (j + rj
by rj because 9P = 0 and cP = 0. (Here we assume that the metric for
Q is the Euclidean metric in suppo.) When rj is differentiated we have a

bound O ( ~ z - z° ~ 2 ) for the derivatives, and derivatives falling on the other
factors in the kernel of P give at most a loss of a factor Iz - in the

estimates while rj = zOI3). Hence it follows = 

and that O(E); the subscript Q refers to L2 norms in SZ with
the given hermitian metric. (Cf. the proof of Theorem 3.1.) The hypothesis
that the range of D in Lo,n-1 (0) is closed implies that the 8 operators
from L6,n-2(0) to L6,n-1 (Ó) and from to Lo,n (Q) have a closed
range, so it follows that IIPgé - 0 (E). Hence

hence that

which is the desired lower bound for 

To give an upper bound for we assume at first that

Q n w c SZ n w for some neighborhood of zO. As before we choose
1/J E Co (cv) equal to 1 in another neighborhood of zo. In f2 we have
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where ge E L5,n-2(f2), 0, and hE E L5,n(f2) vanishes on ôf2. When
E -~ 0 we have 9E -~ 0 weakly in LO,,,-2(Q) and he -~ 0 weakly in Lo ",(Q),
for IE -~ 0 weakly in L5,n-1 (f2). Since it follows from the

regularity of solutions of the Dirichlet problem for the Laplacian that
hE -~ 0 in cvl ) if wi is any neighborhood of zo, and that he is

bounded in the Sobolev space H(l) (f2) which implies that 0 when

E - 0. Since = 0 and 8ge = fe - fi fe - cche we also have ge --&#x3E; 0 in

wi) by Theorems 4 and 5 in [KN]. Hence

where re - 0 in Here is orthogonal to and since

0 we can estimate (Pf,, by the product of the norm in

H(-.i) of the restriction to 8Q of P fe and that of the restriction of Qhe in
H~ 2 ) . The former is bounded 1 and P fe satisfies an elliptic
differential equation. An elementary but tedious estimate of h, using local
estimates of Green’s function in S2 shows that

where denotes the distance from z E fl to 9Q. This is applicable on
an when |z - zOI ] is small since - O(lz - z0 |4 ) then. For first order
tangential derivatives of £he along we have similar estimates which

implies that the norm in H( 2 ) of the restriction of he to aSZ is 0(£2). Thus

which proves that 11 ) as claimed.

If there is no neighborhood cv of zo with can replace
Q by a slightly larger Q and repeat the argument above to complete the
proof. The only difference then is that we can only achieve a small positive
bound 6 for the H(.1) norm of he on an, but since 6 is an arbitrary positive
number the conclusion is not affected.

The preceding proof is admittedly very sketchy but there seems to be
no point in elaborating it further, for the right approach must be a detailed
microlocal analysis which should yield Theorem 4.6 in full generality with
C°° convergence. The restriction n &#x3E; 2 above should then disappear, and
an analogue for (0, q) forms when the Levi form has signature (n - q - 1, q) at
some boundary point should emerge. We shall now give a formal argument
suggesting what the analogue of the results on the boundary behavior when
q = n - 1 might be in general.

Let Q be a relatively compact open subset of a complex hermitian
manifold of dimension n and let z° be a boundary point where an is smooth
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and the Levi form has signature (n - q -1, q) . By Lemma 3.2 we can choose
local coordinates vanishing at z0 and a defining function p there such that

the hermitian metric is the Euclidean metric at zo and Aj &#x3E; 0 when

j  n - q - 1 while Aj  0 when n - q  j  n - 1. For reasons which
will be explained later we assume that A,-q = ... - Àn-1, and we set
An = An-1 = -1 /R. Adding does not change this local normal
form, which means that we can as well assume that

If we take as a new variable instead of zn then z° -

at zo with the new coordinates. Thus Q is locally well approximated by

which is essentially of the form discussed in Section 2. Set for

when ?T2013~~j~~.As suggested by

is in the null space of the a-Neumann operator D in L6,q(Ö) if g is

holomorphic in

and there is some reason to believe that every element in the null space is

of this form.

If IC is the reproducing kernel of Ker 0 in LÕ,q(!1) and t is a 0, q form
then
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When ; a , and f is of the
form (4.26) then only the part of t which is a form in di" will contribute,
and ( f , t) does not change if (k is replaced by (k when 1 ~ 1~  n - q -1
and 0  8~  27r. The average over all such rotations is independent of
the first n - q - 1 variables, and the norm is at most equal to that of f.
In examining the supremum in (4.27) it is therefore enough to consider
forms (4.26) where g is a holomorphic function of (" when 1("I  1/R. In
computing the norm of f we have to take into account that

This gives that if f is defined by (4.26) then

We can compare this with
r

Since

by the well known formula for the Bergman kernel in a ball, we are led to
the bound

R)R/lz"12, so this can be rewritten as
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We have

which finally suggests that when

where x(z°) = R-q is the product of the absolute
values of the eigenvalues of the Levi form and 11’1- stands for the norm
of the restriction of a form q at z° to the orthogonal complement of the
space spanned by the n - q - 1 eigenvectors corresponding to positive
eigenvalues of the Levi form of p at z° . (The formal arguments above give
no real support for this unless all the negative eigenvalues are equal or
q = n - 1, for otherwise Ker 0 contains no element which is a form in dz"
since confocal quadrics are never homothetic except in the spherical case.)
If (4.28) is true one might also ask if the inequality can be replaced by an
equality when the range of 0 is closed.

5. A crude microlocal approach.

If u is a square integrable harmonic function in an open set Q C R N
then by the mean value property

where ||u|| is the norm of u in L2 ( SZ) , CN is the volume of the unit ball in
JRN, and d(x) is the distance from x to 8Q. The best bound for

is smaller by a factor 22-N (N -l)/N at a C’1 boundary by Proposition C.1.
A crude bound of the same order of magnitude can be obtained as follows
when 8Q is smooth. The restriction u° to 8Q of a harmonic function u in

SZ with 1 is bounded in the Sobolev space H(_ 2 ) (o~SZ~, and u = Ku°
where I~ is a Poisson operator. In terms of local coordinates at a point
in 8Q such that Q is defined by xN &#x3E; 0 the Poisson operator is of the

form K XN (x’, D’) where the symbol K XN (x’, ç’) satisfies the hypotheses of
Proposition B.2 with N replaced by N - 1. Taking s = - 2 and a = 0 we
have p = N - 1 there and obtain a bound of the form (5.1).

The justification for this more complicated proof of a weaker result is
that it can be adapted to other situations. If Q C C’ - JR2n and 8Q e C2
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then the simplest estimate of the Bergman kernel gives an estimate of the
form

when u is holomorphic in Q, and the exponent n + 1 of 1jd here is smaller
than the exponent 2n provided by (5.1) if n &#x3E; 1. This can be also be

derived from Proposition B.2 as follows. If u is a harmonic function in Q
with boundary value u° then the boundary value of is equal to

where Zj is a first order pseudodifferential operator in 8Q. If u is
holomorphic then Zj u° = 0 for j = 1, ... , n, hence

We shall prove that the hypotheses of Proposition B.2 (with N = 2n - 1)
are fulfilled for this operator with p = 1, and then 2s - (N + p) /2 = - 1 - n
which gives an estimate of the desired form. It suffices to calculate the

principal symbol of the operator in (5.2) at one point in 8Q, which we
place at the origin so that Im zn &#x3E; in Q. In a neighborhood of the
origin we can Re zj and Yk - Im Zk as local coordinates on 8Q,
with j , n and k  n; we use the notation x and y’ for them and let ~ and 7/
be the dual variables. In terms of these coordinates i

is a pseudodifferential operator in aQ with principal symbol -3 where
: at the origin. The principal symbol of 2Zj is içj - qj

when j  n and i~n - is when j - n, so the principal symbol of the
operator in (5.2) is at the origin
~ 1 ~ 1

The form on the right vanishes only on the Çn axis which proves the claim.

(The full principal symbol vanishes only on the positive gn axis.)

Again this is a much too complicated proof of an elementary fact.
However, it has the virtue that it can adapted to the study of the null
space of the 9-Neumann problem. Let f E L6,q(O) and a f = 0, vc f = 0,
and write as usual

Since the coefficients f I are harmonic functions so they
have boundary values
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That gf = 0 in Q means that

To express the condition D f = 0 in terms of f ° we need a lemma.

LEMMA 5.1. - If u E L2(fl) is a harmonic function with boundary
value u° then the boundary value of 8uj8zj is 2ju° where Zj is a first

order pseudodifferential operator and

Here Rj is a pseudodifferential operator of order 0, o is a defining function
of Q with = 1 on aSZ, and ,l1 is the square root of -AaQ.

Proof. - It suffices to examine the principal symbol at 0 E 8Q
assuming that -dyn there. With the notation used before in this
section the principal symbol of 2Zj is there igj + ?7j for j  n and ign + iu
for j = n while that of 2Z~ is for j  n and + i"7 for j = n.
Hence the principal symbol of 2(Zj -~- is equal to 0 at the origin when
j  n but equal to 2iu when j = n. Since o9g(O)/o9zj -- 0 when j  n and

i/2 the lemma is proved.
The equation -of = 0 can be written

which means that

I so it follows from Lemma 5.1 that

From (5.3) and (5.4) it follows by the usual proof that c8 + 9~ == -A/4
that

where A is the operator in (5.2) acting on each component II and R is a
first order (~) x (~) matrix of first order pseudodifferential operators. The
proof of Proposition B.2 remains valid for such a weakly coupled system,
so we obtain:
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THEOREM 5.2. - bounded and smooth then

when f is in the null space of the a-Neumann operator in L6,q(n). Here
d(z) denotes the distance from z to an.

Only minor modifications would be required to prove that Theo-
rem 5.2 remains valid when SZ is an open relatively compact subset with
smooth boundary of a complex hermitian manifold. The arguments in Sec-
tion 4 suggest that d(z)-n-1 can be replaced by o(d(z)-n-1) when z ap-
proaches a boundary point where the signature of the Levi form is not
n - q - 1, q. We have also suggested in (4.28) an upper bound depending
on the eigenvalues of the Levi form at such points which might be opti-
mal when the range of the a-Neumann operator is closed. A study of these

questions must obviously require a much more detailed discussion of the
boundary reduction than the calculation of principal symbols above, for the
eigenvalues of the Levi form only occur at the next level in the symbols.

Appendix A. Generalities on orthogonal projections.

In this appendix we shall present two elementary functional analytic
lemmas needed in the main text.

LEMMA A.l. - Let H be a Hilbert space, let Ho, HI be two closed
subspaces, Ho C HI C H, and denote by P the orthogonal projection in
H on HI e Ho. Let H be the space H with an equivalent norm,

where 0  6  1, and let P be the H orthogonal projection in H on the H
orthogonal complement of Ho in Then

Proof. - If Pj and Pj denote the H and H orthogonal projections
of H on Hj, j = 1,2, then
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Hence

which proves (A.1 ) .
The next lemma concerns a short complex of operators in Hilbert

spaces. Let Hl , H2, H3 be Hilbert spaces and let T : HI -7 H2 and
S : H2 - H3 be closed linear operators with ,5’T - 0. Then (see e.g.
[Hl , Section 1.1]) the range of T and the range of ,S’ are both closed if and
only if there is a constant C such that

which is equivalent to the estimate

and that 0 has a closed range. Another equivalent condition is that

which again is equivalent to

In this formulation there are no orthogonal spaces involved. If h#j are the
spaces Hj with equivalent norms,

then the last estimates remains valid with C replaced by C( 1 + 6)1(1 - 8).
If 0 is the analogue of D defined with respect to the norms in ilj, it follows
that

Thus we have proved:

LEMMA A.2. - Suppose that the selfadjoint operator C7 = TT* +
S’* S on H2 has a closed range and let M be a bound for the inverse on the

H2 orthogonal space of Ker D. Denote by [~ the analogous operator defined
with Hilbert spaces Hj equal to Hj but with equivalent norms satisfying
(A. 2). Then it follows that D also has a closed range, and the inverse in the
H2 orthogonal space of the null space has the bound + 8) / (1 - j))2.
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Appendix B. Some metrics and weights.

In this appendix we shall discuss some metrics and weights which
are useful in the microlocal study of reproducing kernels in Section 5. Let
p E assume that

where (g) = ( 1 + lçI2)!. (We use the notation of [H3], Chapter 18.) From
the inequality

I _//nBI2 ~ _/nB/_/W ~ n i 11 / , I i I - /w2 I . u , B ’- rt.

applied with g(t) =
follows then that

Since

Since we also have

Hence the metric

is slowly varying (see [H3], Def. 18.4.1), and p(x, ç) as well as (ç) is G

continuous (see [H3], Def. 18.4.2). Since

we have

is bounded it follows from [H3], Prop. 18.5.6 that G is a temperate (see
[H3], Def. 18.5.1 ) . However, we shall give a direct verification in the simple
case at hand that more precisely
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Since G is slowly varying this is true if y, g - 7]) is small enough,
so we may assume that for some constant c &#x3E; 0

Since (ç)2 ~ p(x, ç)2 and (1])2 _ p(y, 1])2, this implies

hence

which verifies (B.4) as well as its analogues for p(x, ~), and (~) in
this case.

hence

which implies

The estimate

(B.5) remains valid with another factor (r¡)2 in the left-hand side and (ç)2
in the right-hand side, which gives (B.4) in this case.

. Since (ç)2 /p(x, ç) has a positive lower bound and (77)’/p(y, 1]) --
it follows that

which completes the proof of (B.4).
In the course of the proof we have also verified that 1 /p is a, G

temperate (see [H3], Def. 18.5.1). This is also obvious for ~ H (~), in case
c) because (q) ~ p(y, r¡). Summing up, we have proved:

PROPOSITION B.1. - When p E satisfies (B.1) it

follows that the metric G defined by (B.3) is a-temperate. Moreover, the
weights p(x, ~) and ~ H (~) are a, G temperate.
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i be a symbol with real non-negative positively
homogeneous principal symbol a2. To study the solutions of the equation

we choose p E R N) satisfying (B.1 ) with principal symbol a2 .

I. The equation (B.6) implies q(x, D)a(x, D)u = 0,

timated by H, and it follows from the calculus that 1 - R(x, g) -
q(x, g)a(x, g) E S(H, G). Hence it follows from (B.6) that for every pos-
itive integer v

Assuming that u C H(s) (JRN) we want to estimate where

for every v, uniformly in the parameter t E (o,1 ) . (This is true for the
Poisson operator for the Laplacian, with t equal to the boundary distance.)
Since

it follows that

v

If u satisfies (B.6), hence (B.7), then

where is bounded in G) for fixed v, so we have

OJ

The integral on the right for )g)  1 is finite even for t = 0, and when
1 and lwl = 1 we have

so the integral can be estimated by a constant times
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The integral converges if 2v + 2s &#x3E; N. We have proved:

PROPOSITION B.2. - Let a E S2, o(RN x JRN) be a symbol with
real non-negative positively homogeneous principal symbol a2, and let Kt
be symbols depending on a parameter t E (o,1) satisfying (B.8) uniformly
in t for every v. Then

for all u E H(s)(IRN) such that a(x, D)u = 0. If a2 (X, ç) is bounded below
by a positive semidefinite quadratic form in ~ with null space of dimension
J-L then the right-hand side is if 2s - (N -f- J-L)/2  0.

Appendix C. Reproducing kernels
for harmonic functions and forms.

If u is a square integrable harmonic function in an open set Q C RN
then

I / W ~ m m 2 m w N i ~·. -

where ))u)) is the norm of u in L2(0), CN is the volume of the unit ball
in and d(x) is the distance from x to 8Q. This follows at once from

the mean value property, and implies that the orthogonal projection P in

L2(0) on harmonic functions has a kernel Kn,

where KQ is harmonic in x and in ~, x), so Ko E
. We have

and the supremum is attained when u(y) = ~/). It is easy to compute
the reproducing kernel KQ(x, y) when Q is the half space JR~ == ~x E
R ; xN &#x3E; 0}; we shall denote it by K+ instead of KRN. To do so we observe
using Fourier transforms in ; and

d~c = 0 then
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Hence by Cauchy-Schwarz

if x’ - 0 there is equality only if . To calculate the

inverse Fourier transform we note that

is harmonic when XN 54 0 and a continuous function of XN with distribution
values while the limit of 8U/8xN is ~~(x’) when XN -t :f:0. Hence

AU = -2bo, and since U is homogeneous we conclude that -U/2 is the
standard fundamental solution,

where v is the area of the unit sphere in 

and in particular

More generally, 1

It is now easy to prove a well known asymptotic result for more general
open sets S2:

PROPOSITION C. 1 . - JRN is an open set with C1 boundary
and d(x) denotes the distance from x E 0 to 8Q then

when x E nand Ixl is bounded while d(x) -~ 0.

Proof. Assuming at first that 0 E an and that eN = (o, ... , o,1 )
is the inner unit normal at 0 we shall prove (C.2) when x = Ee N and E 1 0.
With ue (r) = éNKo(éx,éeN) we have
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and Choose a sequence --~ 0 such that

and UEJ (x) converges in RN to a harmonic function u with u(eN) - S.
By Fatou’s lemma , so it follows from ( C .1 ) that

if Q is convex, for K+ then since SZ C R N. To prove (C.2) for a
general Q with a C1 boundary we also have to give a lower bound. Let

ve (r) = which is well defined except when x = -Ee N , which is
not in Q for small E. Then

by dominated convergence, and
Since

the proof of (C.2)is completed when x approaches 8Q along the normal at
a fixed point. A moment’s reflection proves that the conclusion is uniform
in that point as long as it belongs to a compact set, which completes the
proof.

The proof of Proposition C.1 is easily adapted to the case of "har-
monic" p forms, 0  p  N, that is, p forms u in Q C JRN such that du = 0
and d* u = 0, where d is the exterior differential operator and d* its formal

adjoint with respect to the L2 scalar product of forms. These equations im-

ply that -Au = d* du + dd* u = 0 so the components of u are harmonic and
therefore reproduced by the kernel KQ above, but it projects on the much

larger space of all forms with Du = 0. However, we shall now study the ker-
nel of the orthogonal projection P on the harmonic p forms Hp (Q) c L 2 (Q).
It is clear that P has a C°° kernel y), x, y C 0, where y) is a
linear map from p forms (at y) to p forms (at x), y) * - x),
such that JCn(x, for fixed y c 0 and p form W at y is in Hp (Q) - If cp is
a p form at x and C then
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and when the supremum is attained then u(y) == for some

constant C; we have u(y) = ICQ (y, x)rp if u is normalized so that (u(x), w) -
w) °

Again we shall begin by looking at the case of the half space
Q == and we write /C+ instead of Ko then. First we shall determine
the exponential solutions

where f is a constant p form, ~’ _ (Ç1,’ .. , ~N-1 ) C and ÇN == .

Then du is the exterior product i ~~, dx~ A u, so du = 0 means that f
is divisible by this one form, f - where h is a p - 1 form.

Since Çn i- 0 we can replace dxn by ((~,~.r) 2013 (~’, dx’) )/~n in h; then h
becomes a form in dx’ only since the first term drops out. The equation
d* u = 0 means that (~, dx) A h) = 0, and since (~, ~) - 0 and

h this is equivalent to
particular çNdx N A ((~ ,6~c)j/z) = 0, so = 0. Thus the most

general exponential solution is

where hg, is a p -1 form in the orthogonal space of ~’ in lifted to JR N .
When N = 2 and p = 1 the equations for u are equivalent to the Cauchy-
Riemann equations so the reproducing kernel can be identified with the
reproducing kernel of holomorphic functions, for ul - iu2 is a holomorphic
function of xl -~- ix2 . We shall therefore assume that N &#x3E; 2 in what follows.

For the harmonic p form

we have

Here hg, is a p - 1 form in the x’ variables orthogonal to ~’ . To determine
the supremum of the first step is to maximize (( (ç’, dx’) +

for fixed I hç, I. Writing

we have
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and in the last term we use that

where the second term is orthogonal to hg, since (ç’, = 0. Hence

and to maximize we must take h~~ = which is indeed annihilated

by (~’, dx’)..J. Then we obtain, if x’ = 0,

which gives that

for the extremal function, and that

What remains is to make this result explicit.

Multiplication by j on the Fourier transform side corresponds to
-18/8yj when j  n, and multiplication by corresponds to 
so

If cpN - 0 this is equal to - with the notation

used in the proof of Proposition C.1. (Here we regard cpo as a form in dy
with constant coefficients.) If cpo = 0 we note that

Since d2 = 0 the first term on the right gives no contribution to /C+ (y, 
and we obtain
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which differs only by the sign from the result for the other component of
cp. Summing up, and exchanging the roles of x and y we obtain for general
x, y E and p form cp at y

When x - y we can also calculate (1C+ (x, cp) directly using (C.3) and
noting that the cross products between the two terms in will give no
contributions since they are odd with respect to ~’, which gives

r

If we expand 2 in the first integral on the right-hand
side then the contribution from the cross products vanishes and since

the integral is equal to

To evaluate the second integral we observe that

and since cpN is a p - 1 form it follows that the integral is equal to

hence

The proof of Proposition C.1 allows us to carry (C.5) over to more general
open sets Q:

PROPOSITION C.2. - is an open set with C1 boundary,
d(x) denotes the distance from x to 8Q, and 1C~ is the kernel of the
orthogonal projection in L2 (Q) on the harmonic forms Hp (Q), then

ulhen x E SZ converges to a boundary point xo with unit normal v, cp is

a constant p form and p = wo + (v, dx) 1B cpv where cpv = (v, The

convergence is uniform when xo is in a bounded set.
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We shall now discuss a complex analogue where Q c C" is an open
set with smooth boundary and the object is to study the kernel of the

orthogonal projection in L 2,q(Q) on Ho,q = fu E L2 au = 01,
with no boundary conditions. Here 0  q  n. This implies Du = 0 so
it is again clear that the orthogonal projection on Ho,q has a C°° kernel.
As in the real case we begin by examining the half space = (C+ of C"
where Im zn &#x3E; 0, with the Euclidean metric, and denote the kernel of the

projection by JC+ . We write z = x + iy and let be the dual variables.

Taking Fourier transforms in ~ and r~’ = (r~l , ... , r~~_ 1 ) leads us to look at
exponential solutions

where f is a constant form of type (0, q). Since

when j  n but not when j = n, it is clear that

au - 2 (~, dz) A u, so the equation 8u = 0 means that f = 
where he, is of type 0, q - 1. From now on we assume that q = 1 which
is a great simplification of the calculations but still allows us to show the
essential difference from the real case. Then h is just a complex number
and u automatically satisfies the equation Du = 0 since ((, () = 0, and we
can write every u E in the form

With

J J

denoting a 0,1 form with constant coefficients

and Z = (o, ... , 0, it), t &#x3E; 0, we want to determine (K+ (Z, z)(p, p) -

By Cauchy-Schwarz we obtain

and since equality occurs when 2 it follows that
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If we expand ) the cross product terms give no contribu-
tion since they will be odd in at least one variable (j with j  n. What

remains is therefore to evaluate

where T = 2t. It is clear that h = ... = In-1, and we have

where we have used that

N = 2n we now obtain using the earlier expressions for the derivatives of
U that

or since

1

The Fourier transform of the distribution limit of the harmonic function

JC+(z,Z) when Im zn - 0 has the components (j(k231(1-2 = (k
gn)-1 , equal if A; == n and j  n, equal to E + Çn if j k - n; if

j, k  n we can also write them in the form (j(k(S+çn)/(lç’12 + 11]’12). They
are positively homogeneous of degree 1. When j, k  n the wave front set
outside the origin is the conormal bundle of the half line where g’ = q’ = 0
and gn &#x3E; 0. By [H3], Theorem 8.1.8 it follows that the wave front set of
the boundary values of ]C+(z, Z) outside the origin is equal to one half of
the conormal bundle of the complex tangent plane defined by 0, so
the singular support is equal to that plane. Since ICQ(Z, z) increases when
SZ decreases the arguments in the first part of the proof of Proposition C.1
can still be applied to give an analogue of (C.8) for the asymptotic behavior
of ICQ at the boundary when Q is convex, but the fact that Z)
cannot be extended across the complex plane ~ z E (Cn; Zn = 0} makes
the argument used in the non-convex case break down. It seems plausible
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that the result remains true if 8Q E C2 is strictly pseudoconvex, for it

should then be possible to localize and change coordinates locally to make
the boundary convex. However, we shall not pursue this argument since the
main purpose of this appendix has been to emphasize how important the
boundary condition for -0 in the g-Neumann problem is for the boundary
behavior of the kernel of the orthogonal projection on the null space.
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