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THE LEVEL CROSSING PROBLEM

IN SEMI-CLASSICAL ANALYSIS, II:
THE HERMITIAN CASE

by Yves COLIN DE VERDIÈRE

Introduction.

This paper is the second part of [3]. We want to study microlocally
the solutions of a self-adjoint system of semi-classical pseudo-differential
operators using normal forms. In our paper [3], we studied the case where
the principal symbol (called the dispersion matrix) is a real symmetric
matrix. We will consider here the case where the dispersion matrix Hclass
is complex Hermitian. There are several cases to consider depending on the
rank of the restriction of the symplectic form to the codimension 4 singular
manifold :

1. The symplectic case.

2. The elliptic corank 2 case.

3. The hyperbolic corank 2 case.

4. The case of one degree of freedom with some parameters (avoided
crossings).

Keywords: Mode conversion - Polarization - Born-Oppenheimer approximation - Eigen-
values crossing - Pseudo-differential systems - Semi-classical analysis - Normal form.
Math. classification: 35C20 - 35Q40 - 35S30 - 53D05.
Acknowledgments: many thanks to Clotilde Fermanian-Kammerer, Alain Joye and the
referee for their comments on a preliminary version.
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Our goal is to get local normal forms for these systems both for the
principal symbol (classical normal form) and for the pseudo-differential sys-
tem (semi-classical normal form). The classical normal form uses canoni-
cal transformations and gauge transforms while the semi-classical normal

form uses quantized versions of the previous transformations (Fourier inte-
gral operators and pseudo-differential gauge transforms). The semi-classical
normal form can be used in order to describe the solutions of the system
near the singular manifold (Landau-Zener type formulae, propagation of
localized states, semi-classical measures). The reader is supposed to have
already a knowledge of [3]. Some arguments work the same way and are
only sketched.

’ 

1. The geometric setting.

We will consider a d x d Hermitian system of pseudo-differential
equations

in near some point zo C TRn (with the symplectic form Q =

E7=1 dçj 1B where the kernel of the principal symbol H class is of

dimension 2. We will denote by p - the manifold ~p - 0}
(more precisely the principal ideal C°°.p) is the dispersion relation. We
can reduce the system near the point zo to a 2 x 2 system for which the

principal symbol vanishes at the point zo. We will assume that

(*) the mapping z -~ Hclass(Z) is transversal at zo to W2 -

~A) dim ker A = 2} C Herm(Cd).
The inverse image Hci:ss(W2) is then a codimension 4 manifold E of

the phase space T~R~, the singular locus; we have

Assuming always (*), we will study 4 cases:

~ The symplectic case, denoted by (HE), where E is a symplectic
submanifold of T*R’. It implies (see Lemma 1 ) that the linearization
M of Xp at zo admits 2 pairs of non vanishing eigenvalues ~~, ::i:iw

with A &#x3E; 0, w &#x3E; 0. 

The hyperbolic corank 2 case, denoted by (H), where nl is

of CONSTANT corank 2 and M admits 1 pair of real nonzero

eigenvalues ~~ with A &#x3E; 0.
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The elliptic corank 2 case, denoted by (E) , where QIE is of

CONSTANT corank 2 and M admits 1 pair of imaginary nonzero
eigenvalues with w &#x3E; 0.

~ The case of one degree of freedom with parameters, denoted
by (P), which splits into an elliptic case and an hyperbolic one
(7~): in that case, it is needed to have parameters in order to get the
transversality assumption (*).
An important remark: in the cases (H) and (S), the manifold E is

not symplectic as should be (locally) a generic codimension 4 submanifold of
a symplectic one. It implies that these cases are not structurally stable.

Nevertheless it is usefull to study these cases because they occur in
Born-Oppenheimer type systems: a system ftu - 0 is of Born-Openheimer
type if

where P is a scalar Hamiltonian. The set E is then defined by

where ~l (x)  a2 (x)  ~ ~ ~ are the eigenvalues of Q(x). The condition
(*) is then equivalent to a transversal crossing of Aj and along a
codimension 3 su bmanifold S and the non vanishing of the differential
of P restricted to ~. If is transversal to S, we are in the 1t case

(see Theorem 1).
The following Lemma, used in the case (H.6), is easy to check using

the normal forms of [1] (Appendix 6) based on results on [20] (see the 4
dimensional case at page 163); in fact one checks that in all other non

degenerate cases the Morse index of Q is even.

LEMMA 1. - Let Q be a quadratic form on T*JR2 with signature
(+, -, -, -). The Hamiltonian linear vector held XQ associated to Q admits
(~~, with A &#x3E; 0, w &#x3E; 0 as eigenvalues.

If d = 2 and

we define:
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(IT is the Pfaffian of the antisymmetric matrix and
1

THEOREM 1. - We get the following classification:

1. The symplectic case (HE) corresponds to ll(zo) 54 0. The ratio

which is a function of z’ E E, called the Ray Helicity in [16], is given by

2. The hyperbolic corank 2 case (?-~) corresponds to the vanishing of
II on some neighbourhood of zo in E and 6(zo) &#x3E; 0.

3. The elliptic corank 2 case (S) corresponds to the vanishing of II
on some neighbourhood of zo in E and 6(zo)  0.

Proof. - A basis of the image of M is the set of Hamiltonian vector
fields 1,..., 4. The restriction of Q to ImM admits the matrix

in this basis. We have II2. This gives the first condition.
The map M is given by

4

so that the matrix of the restriction of M to ImM is with = 1

-1 if i &#x3E; 2. We get 4!n! = Aw and 46 = A2 - W2 , hence K. The
ratio r := cJ /A is given from K by

In the corank 2 case, the square of any of the nonzero eigenvalues of
M is 46 (zo). 0

Examples of these cases have been studied in various papers:

1. The symplectic case (~l~) in [9] and [11]: it is the case where E.B # 0
with the notations of these papers.

2. The hyperbolic corank 2 (?-~C) in Born-Oppenheimer approximation,
[3], [12] and [10]. In [9], it is the case where E.B = 0 and [E[ &#x3E; 

3. The case of one degree of freedom with parameters is studied in [5]
(adiabatic limit, hyperbolic case (P,7-t) ) (see also [15] and [19]) and
in [7] and [8] (elliptic case: band crossings, (7~-)).
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2. The general strategy.

We will proceed for each case along the same lines:

1. Reduction to a 2 x 2 system. This part is always the same and is
recalled in Section 3.

2. Finding a normal form for the dispersion relation: this part works by
o Finding a "Birkhoff normal form" along the singular manifold .

o Using Sternberg’s Theorem in order to get a normal form for the
hyperbolic part.

3. Using a general result stated in Section 4, we pass from a normal form
for the dispersion relation to a normal form for the dispersion matrix.

4. In order to get the semi-classical normal form, we need to solve the
following type of homological equation

where Ho is the classical normal form, R is given, ,S’ is an unknown

real valued function and C an unknown matrix valued function.

Fortunately, this equation is the linearization of the classical normal
form, so that we can solve it for free!

The realization of this program is more difficult than in [3], especially
in the corank 2 case which is not structurally stable.

3. Reduction to a 2 x 2 system.

It is well known (see [2] or [3]) that near a point zo E T*R’ such that

we can split microlocally the system into a direct sum of a (d - 2) x (d - 2)
elliptic block and a 2 x 2 block whose principal symbol vanishes at zo.

The dispersion relations of the initial system and the small one are
the same. In what follows, we will always assume that this splitting has
been done and therefore we have a 2 x 2 system to study.

For convenience, the transversality hypothesis (*) has been formu-
lated in Section 1 for the big system.
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4. A lemma about gauge transforms.

The following Lemma will be used several times:

LEMMA 2. - Let H : JR1 x Herm(2) be a smooth map such
that

There exist uniquely deened E = ±1, 0152 == :í:1 and a smooth germ of map
J : JR4 x GL(2, C) such that

The proof follows exactly the same lines as the proof of Lemma 5 in

[3].

5. The symplectic case.

5.1. The normal form for the dispersion relation.

PROPOSITION 1. - Assuming (*) and (H£) (uTe are in the symplec-
tic case), near the point zo of the singular set E, there exists a canonical
transformation x and two invertible positive (&#x3E; 0) germs e(z) and b(T, z’)
so that:

where are canonical

coordinates near 0 E We have b2(0, z’) = 2 r(z’) (see Theorem 1), so
that Ray Helicity defined in Theorem 1 is given by K = b - i and hence
is only (a function of) the first term of a complete Birkhoff series.

Proof. We start using the same kind of arguments as in the proof
of Theorem 2 in [3]. We get then a (formal) Birkhoff normal form along
the singular set E of the form:

with A a smooth function which satisfies
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There is a minus sign in front of the T2 term because it is the only way
to get the appropriate signature (+, -, -, -) for p" along E. Using Taylor
formula, we can rewrite A as follows

Using Sternberg’s linearization as in [3], we get the result. We use the
following version of Sternberg’s Theorem whose proof can be given using
the same arguments as in Nelson’s book [18]:

THEOREM (Sternberg). - Let X be a smooth vector field on T*R’
and E - (xi = x2 = ~2 = 4~. Let us assume that X = Xo + Xl with
Xl is compactly supported and Xl = We assume

with Yo tangent to all codimension 2 subspaces Xl = a, b. There exists

a diffeomorphism x which is tangent of order oo to the identity along E
such that

Moreover, if X and Xo are Hamiltonian vector can be choosen

to be symplectic.

D

Remark l. - The normal form is convergent in the case of 2 degrees
of freedom and analytic data. This is implied by a result of Moser [17].

5.2. The gauge transform.

Using Lemma 2 with xl, X2 - Ç1, X3 = bx2, X4 - b~2, we
get a gauge transform. The value of cx can be changed to -i-1 using the
canonical transformation (xi, Ç1) - (-xi, -Ç1).

Both signs of E in the classical normal form give non equivalent
Hamiltonians. Using the notations of Equation (1) in Section 1, we have:

So E = 1 if the orientations of the normal bundle to E given by 
and are the same and E - - 1 if they are not the same. It is clear that
E is invariant by gauge transform, the group GL(2, C) being connected.
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Remark 2. - We can see that in a more topological way: let us

denote by A- # A+ the eigenvalues close to 0 of the dispersion matrix. The
open cones C:1: C p-1 (o) which correspond respectively to A- - 0  À+
(A-  a+ - 0) are well defined near : Morse indices differs by 1 on

those cones. Moreover, both cones are oriented by p &#x3E; 0. The spaces

~z’ - constanti are co-oriented by the z’ symplectic structure, hence
oriented. It follows that the basis of the cone C+ n = constantl (a
2-sphere) is a well defined homology class of the germ of C+. Hence the
polarization bundle have a well defined first Chern class on C+ and both
signs in the normal form gives both signs in the Chern class.

5.3. The classical normal form.

Using the previous results, we get:

THEOREM 2. - We assume that Hclass satisfies (*) and (HE) (the
symplectic case). Then there exists a canonical transformation x and a
gauge transform J E GL(2, C) such that:

where

) is smooth.

5.4. The semi-classical normal form.

THEOREM 3. - We assume that Hclass satisfies (*) and 1. (the
symplectic case). Using FIO and gauge transform, we get the following
microlocal normal form:

where

. B is an elliptic W DO whose total symbol is &#x3E; 0 and depends only on

~2 ~ ~2 and z’.
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o The full symbol of R is flat on Y.

Proof. Using the same method as in the proof of Theorem 3 in [3]
(Lemma 4), we need to solve the following homological equation:

where R is given and ,S’ (real valued) and C (matrix valued) are unknown
functions. This can be done directly by solving the normal form problem
for Hsymp + cR which satisfy our basic hypothesis ( (~) and 2.) for all small
é (this case is structurally stable) and taking the first order term in é. 0

5.5. Microlocal solutions.

A study of the solutions of the normal form in terms of 2-scale semi-
classical measures is given in [9] and [11].

For simplicity we will restrict our discussion to the + case (of the
normal form) and 2 degrees of freedom (n = 2). The - case is similar. In
this case, the singular manifold is the point zo - (o, 0) in T*R 2 . The
classical dynamics is integrable and easy to discuss. There is a stable (resp.
unstable) manifold of dimension 1. The trajectories which are not included
in these manifold are helices.

Let us denote by Bh(X 2 + ~2) the symbol of B. Following [9], we can
solve the normal form as follows:

PROPOSITION 2. - Let us denote by pj the usual orthonormal basis
dx2) such that with cj &#x3E; 0, po = coexp(-x2/2h) and

a = -ha~2 ~ X2 is the creation operator.

Any solution U of the normal form is of the form:

where

and, for j &#x3E; 0,



1432

The solutions of Equation (3) obeys a 1 dimensional normal form and
then are well described by a Landau-Zener type formula (see [15] and [5])
with transmission coefficient

Let J(h) be given so that

We can decompose

by cutting the sum in Equation (2) at the index J(h).

The solution 0 LZ is microlocalized on the union of the stable and un-
stable manifold according to a Landau-Zener type rule, while the remainder
Or obeys usual propagation along nonsingular trajectories.

6. The corank 2 case.

6.1. Singular perturbations and homological equations.

6.1.1. Introduction.

The corank 2 case is more difficult, because it is not structurally
stable: a generic perturbation of the dispersion matrix will be in the sym-
plectic case. In the subsection 6.1.3, we will find the space of infinitesimal
deformations of the corank 2 case. In the subsection 6.1.4, we will look at
a Birkhoff normal form for the Taylor expansion along E of the dispersion
relation. In the subsection 6.1.5, we will look at the homological equation
needed for finding the semi-classical normal form.
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6.1.2. Singular deformations of E.

DEFINITION 1. -

A smooth deformation ~~ of E is called singular if the corank of is

constant (= 2).
A deformation (F, G, A, B) given by

E, - ~x1 = cF(a), Ç1 = cG(a), X2 = cA(a), X3 = EB(c) I a E El
is called infinitesimally singular if it can be modified by O(E 2) terms so
that the new deformation is singular.

LEMMA 3. - The space of infinitesimally singular deformations is
the SDace

where F, G, T are arbitrary functions on E.

Proof. Let us start with a singular deformation whose infinitesi-
mal deformation is given by (F, G, A, B). We see that the pull-back of 
on E is given by:

We have

whose vanishing implies there exists T such that

Conversely, let us start with the infinitesimal deformation given by
(F, G, T). Let S - T + ç1F - x1 G. Let Xc the flow at time E of the
Hamiltonian vector field xs generated by S. The deformation £e = 
is singular. It is easy to check that the infinitesimal deformation associated

D
ae2 ’ E3

6.1.3. Singular perturbations of the dispersion matrix.

Let us denote by Hhyp (resp. Hii) some dispersion matrices given by
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DEFINITION 2.

o We say that a smooth deformation

is singular if it satisfies the hypothesis (H) (resp. (~)~ of Section 1 for
E small enough.

. An infinitesimal deformation Ko is singular if it can be embedded into
a smooth singular deformation.

LEMMA 4.

. In the case (7-~), an infinitesimal deformation Ko is singular if and
only if there exists T : E 2013~ R so that

o The same result holds in the elliptic (E) case by replacing the previous
condition by: 

-

Proof. Lemma 4 is an easy consequence of Lemma 3. 0

6.1.4. Homological equation to high order.

We will give a Lemma in the hyperbolic case, the elliptic case works
similarly:

LEMMA 5. - Let HN be the space of function homogeneous of
degree N w.r. to (X1,Ç1,X2,X3) and po = X1Ç1 - (x2 -~ x3). We can solve
the following equation:

where p E HN is given. The unknowns functions are:

0 UEHN.



1435

. W E HN-1 an homogeneous polynomial of degree N - 1 w.r. to the
variables (~2,~3) with coefficients in 

. V E 

O 

Proof. The proof is very close to the proof of Lemma 2 in [3]. We
decompose everything into sums of monomial terms in (~2~3). At the last
step, we fail to be able to solve unless we add a term to p. A bit

more specifically, we decompose every function F into monomial w.r. to

(~2~3)1

We then decompose equation (5) according to the powers of into a

system of equations (Ei,j), I+ j # N. We first solve equations (Ei,j), i~ j 
N - 1 recursively by increasing the values of i + j:

by choosing so that there is no resonant term (powers of X1Ç1) in the
right-hand side.

Then we are left with the following system:

All equations involve only functions on E. We solve them recursively from
the last. The first one defines T. D

6.1.5. Matrix homological equation.

LEMMA 6. - Let us consider the homological equation

where R (self-adjoint) is given and S (real-valued), B, T are the unknowns.

. In the hyperbolic case Ho = Hhyp, equation (6) can be solved with
/ - ~ , ~ ~ ., , I
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9 In the elliptic case Ho = Hell, equation (6) can be solved with

with t real valued.

Proof It is enough to choose T so that R + T is an infinitesimal
singular deformation and to take the term in ~1 in the classical normal form
result for a singular deformation Hhyp + c(R -E- T) + O(~). D

6.2. The normal form for the dispersion relation.

PROPOSITION 3. - Assuming (*) and (H) or (S) (we are in the case
where one pair of eigenvalues does not vanish), near any point zo of the
singular set E, there exists a canonical transformation X, a smooth function

a(x3, a) and an invertible positive germ e so that:

. In the hyperbolic case (H) :

~2?~3?~3~~ == (x’, ~’)) are canonical coordinates
near 0 E T*JRn and a E E.

o In the elliptic case (~) :

The proof follows exactly the same lines as in [3].

6.3. The classical normal form.

Using the same tools as before and [3], we get

THEOREM 4. - Assuming (*) and (H) or (£) (we are in the case
where one pair of eigenvalues does not vanish), near any point zo of the
singular set E, there exists a canonical transformation X, a GL(2, C) valued
gauge transform J(z) and a smooth real valued function a(x3, a) so that:
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. In the hyperbolic case (H) :

where are canonical coordinates near

. In the elliptic case (E):

6.4. The semi-classical normal form.

From the previous subsections, we deduce the following semi-classical
normal forms

THEOREM 5.

o In the hyperbolic case (H):

where 1 is a self-adjoint pseudo-differential operator of order 0 whose
Weyl-symbol is independent of (Xl, Ç1, X2).

9 In the elliptic case (E) :

where q is a self-adjoint pseudo-differential operator of order 0 whose Weyl-
symbol is independent of (Xl, Ç1, X2).

The microlocal solutions of the previous models can be studied

following the same lines as in [3]. The main property is that they look
like:

where Q commutes with x 1 and aa 1 in the hyperbolic case
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where Q and R commute with x, and a- in the elliptic case.,9xl

7. One dimensional systems with parameters.

7.1. Normal forms.

In this section we will consider the case of a system

where H(A) is a d x d self-adjoint system in one variable x, and depending
smoothly of an external parameter A E 2. Usually A contains
some spectral parameter.

We will assume that

~ (x 1 ~ y , ~) - Ç1, À) satisfies the transversality hypothesis
(*) of section 1 at (o, 0, Ao).

~ (x 1, ~1 ) - det(Hclass(X1’ Ç1, Ao)) admits at the origine a non degen-
erate critical point. We have two cases the elliptic one and the

hyperbolic one 

The hyperbolic case is strongly related to [5] (see also [19]) while the
elliptic normal form has been introduced as a model in [7] and [8]. Using
the previous methods, one can show the following:

THEOREM 6. · Elliptic case: near (o, 0, AO), one can reduce the
system using a A-dependent gauge transform and FIO’s to

~ Hyperbolic case: near (0, 0, Ao), one can reduce the system using A-
dependent gauge transform and FIO’s to

The proof is as follows: first apply the isochoric Morse lemma [6] to
the dispersion relation. The gauge transform is obtained from Lemma 2.
We can then solve the homological equation by linearization of the classical
normal from.
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7.2. Solutions of the elliptic normal form.

For completness, we reproduce here the solution of the normal form
in the elliptic case which is studied in [7] and [8].

We want to solve near (o, 0) E T*R the folllowing system:

We get, using the notations of subsection 5.5:

o If ah = 0, bh -I 0, no admissible solution

no admissible solution

Let us assume that N - 2 (E, t) where E is a spectral
parameter and Ao = (Eo, to). We have ah = fh(E, t), bh = gh(E, t) where
(E, t) - (ah, bh) is a diffeomorphism. We assume . Then we

have a macroscopic (h-independant) gap in the spectrum for t  to as well
as for t &#x3E; to, but we get that one eigenvalue is moving from one band to
the next one as t passes through to (see Figure 1).

Figure 1: one eigenvalue is moving from the upper band to the lower one
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7.3. Hyperbolic normal form and avoided crossings.

The hyperbolic case allows to recover the results of [5] (see also [15]
and [19]) on the adiabatic limit. We consider a system:

where A(A, t) is an Hermitian matrix and A(Ao, to) admits an eigenvalue
Ao of multiplicity 2. The previous results apply near the point (to, Ao) of
the phase space. We can recover that way a Landau-Zener formula.

Global computations including several crossings are presented in [4].
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