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INITIAL BOUNDARY VALUE PROBLEM

FOR THE mKdV EQUATION ON A FINITE INTERVAL

by Anne BOUTET de MONVEL and Dmitry SHEPELSKY

I Louis

1. Introduction.

The general method that was announced in [4] for analyzing initial-
boundary value problems for two-dimensional linear and integrable non-
linear PDEs and was further developed in [5, 6, 7, 10] is based on the

simultaneous spectral analysis of the two eigenvalue equations of the as-
sociated Lax pair. It expresses the solution in terms of the solution of a
matrix Riemann-Hilbert (RH) problem formulated in the complex plane of
the spectral parameter. The spectral functions determining the RH problem
are expressed in terms of the initial and boundary values of the solution.
The fact that these initial and boundary values are in general related can
be expressed in a simple way in terms of an algebraic relation satisfied by
the corresponding spectral functions. This relation can be used to char-
acterize a part of boundary values which, on the one hand, are involved
in the construction of the solution of the boundary value problem but, on
the other hand, are not given as boundary data for a well-posed boundary
value problem [2].

The rigorous implementation of the method to the modified Korteweg-
de Vries (mKdV) equation

Keywords: Modified Korteweg-de Vries equation - Initial-boundary value problem -
Global relation - Finite interval - Riemann-Hilbert problem.
Math. classification: 35Q53 - 37K15 - 35Ca15 - 34A55 - 34L25.
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on the half-line 0  x  oo is presented in [1]. In the present paper,
this methodology is applied to the mKdV equation on a finite interval,
0  x  L. The main result was announced in [3]. The similar problem for
the nonlinear Schrodinger equation is studied in [9].

The problem we are dealing with is the initial-boundary value problem
for the mKdV equation in the domain 10  x  L, 0  t  T} with L  oo,

T  oo. We follow the scheme below.

Step 1. Assuming that the solution of the mKdV equation, q(x, t),
exists, carry out the direct spectral analysis. For this purpose:

· Define appropriate solutions of (2.5) (eigenfunctions) analytic and boun-
ded (in ~) in domains forming a partition of the Riemann sphere C =

C U {~}

o Define spectral functions s(1~), S(k), and such that:

1. is determined by the initial conditions q(x, 0) = qo (x), 0  x  L.

2. S (k) is determined by the boundary values q (0, t) = go (t), qx (0, t) =

3. is determined by the boundary values q(L, t) = fo (t), qx (L, t) =

9 Show that the spectral functions satisfy an algebraic relation, called global
relation, expressing the fact that qo(x), go(t), 91 (t), 92 (t), fo(t), and

f 2 (t) being the initial and boundary values for the mKdV equation, cannot
be chosen arbitrary.

Step 2. Given s(k), S(k), and determine a regular Riemann-
Hilbert problem, the solution of which gives a solution of the mKdV equa-
tion.

Step 3. Assuming that are such that the

associated S(k) and together with satisfy the "global relation",
prove that the function q(x, t) obtained from the solution of the RH problem
solves the initial boundary value problem for the mKdV equation with
initial data q(x, 0) = and boundary data q(O, t) - go(t), t) ==

qxx (0, t) _ 92 (t), q(L, t) _ fo (t), t) = 11 (t), t) = f2 (t).
In Section 2 we define appropriate eigenfunctions of the associated

Lax pair and spectral functions and study their properties. In particular,
we show that the spectral functions satisfy an algebraic relation, the "global
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relation" . In Section 3, we express the solution of the initial boundary value
problem for the mKdV equation in terms of a matrix-valued Riemann-
Hilbert (RH) problem. We show that the solution of this RH problem gives
the solution of the mKdV equation with prescribed initial and boundary
values provided that the spectral functions satisfy the "global relation" .

2. Eigenfunctions and spectral functions.

2.1. Lax pair

The modified Korteweg-de Vries equation

is the compatibility condition for the Lax pair

where

We denote ~3 the commutation operation ada3:

for any 2 x 2 matrix A. The Lax pair (2.1) can be rewritten as

where
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In turn, (2.4) can be written as

where

and W is the exact 1-form defined by

2.2. Eigenfunctions

Assume that there exists a smooth real-valued function q(x, t) satis-
fying ( 1.1 ) in {0  x  L, 0  t  T} (if T = oo then it is also assumed

a sufficient decay of q (x, t) as t - oo). Define = l, 2, 3, 4 as
2 x 2-matrix-valued solutions of the integral equations

where (xi, ti) = (0, T), (X2, t2) - (o, 0), (X3, t3) - (L, 0), (X4, t4) = (L, T),
and the paths of integration are chosen to be parallel to the x and t axes:
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The domains where the exponentials are bounded, are separated by the
three lines Lo, L1, L2 where vanishes: Lo U L1 U L2 - ~1~ E C I
Im A~ =0}. The relevant domains in the k-plane are labelled I, II, ... , VI,
see Fig. 1.

/ B

Figure 1: Domains of analyticity and boundedness of eigenfunctions

Let us denote u (1) u(2) the columns of a 2 x 2 matrix u = (A (1) u(2) ).
Then the columns of pn are analytic and bounded in the following domains
in the complex k-plane (where the exponentials involved in the correspond-
ing integral equations are bounded):

eigenfunctions domains of analyticity and boundedness

Thus, in each domain I,..., VI, one has an analytic and bounded 2 x 2
matrix-valued eigenfunction, consisting of the appropriate vectors ~c ~~ ~ , n =
1,2,3,4, j = 1,2.

For particular values of x or t, the domains of boundedness of the

eigenfunctions are larger than indicated above. In particular, for t = 0, the
domains of boundedness of p2 and p3 are:

eigenfunctions domains of boundedness

for x = 0, the domains of boundedness of pi and p2 are:
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for x = L, the domains of boundedness of ~3 and p4 are:

2.3. Spectral functions

Since the eigenfunctions pj are solutions of the system of differential

equations (2.4), they are simply related (in the domains where they are

defined) :

Relations (2.9) suggest the introduction of the 2 x 2-matrix-valued spectral
functions

From (2.9) and (2.IO) it follows that s(k) is determined by the initial values
of q(x, t), whereas S (k) and are determined by the boundary values
at x = 0 and x = L. Namely,
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where ~3(~0, ~), 0  x  L is the solution of the integral equation
T

Similarly,

where J-l2(0, t, k) and p3 (L, t, k), 0  t  T are the solutions of the integral
equations

,-t

respectively. Note that is determined by q(x, 0), whereas Q(O, t, k)
is determined by q (0, t), t), and qxx(O, t), and Q(L, t, k) is determined
by q(L, t), and t).

In what follows, s(k), S(k), and ’9i(A;) will be used to construct a
Riemann-Hilbert problem (more precisely, a family of Riemann-Hilbert
problems parametrized by x and t), whose solution gives the eigenfunc-
tions J1n and hence q(x, t), the solution of the mKdV problem.

2.4. Symmetry properties

Due to the particular symmetries of the equations of the Lax pair
(2.1), the spectral matrices s(k), S(k), and can be written as
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2.5. Global relation

Writing A3 (0, 0, k), /-12 (0, T, k), and p4 (L, 0, k) in terms of s(1~), S (k), and
respectively (see equations (2.10)), and using eq. (2.8d) to evaluate

/14(0, T, k), eq. (2.16a) becomes

where

is an entire function which is 0 t(1 ~ as k - oc.

which is valid for l~ E I U III U V.

Equation (2.18) for T  oo, resp. (2.19) for T = oo, is an algebraic
relation between the spectral functions. We call it "global relation", because
it express, in spectral terms, the relations between the initial and boundary
values of a solution of the mKdV equation.

2.6. Direct and inverse spectral maps
~ The spectral maps S, Q. The direct spectral map

is defined following (2.10a), (2.15a), by the second column of the solution
0, k) of equation (2.12) where Q = 0) is given by (2.2) with qo (x)

instead of q(x, t) : 
-
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Thus, this direct spectral map is the same as in the inverse scattering theory
on the whole line for the Dirac equation

restricted to the potentials with support on the finite interval [0, L]. The
analysis of the linear Volterra integral equation (2.12) gives the following
properties of a(k) and b(k):
9 a(k) and b(k) are entire functions, bounded for Im k  0;

o they have the asymptotic behavior, as k - oo:

The fact that Q has zero trace together with the behavior as k - 00 given
above imply that 1 which, in terms of a(k) and b(k), reads

Define a sectionally holomorphic, matrix-valued function 
i / (2~ ~ I A 1 B B

where R is chosen to be sufficiently large such that the disk E 
R} contains all the zeros of a(k) with 0.

Let E(’) be the oriented contour in the complex k-plane consisting of
the real axis and the circle hR = = of radius R, and let be

the sectors bounded see Fig. 2.



1486

Similarly to J-l3(X, 0,1~), 1 0, k) in (2.22) is determined by (2.8b)
for t = 0, where in Q(x, 0) is replaced by qo(x). Then the limits

of as k approaches ( C E(x) from are related by
the jump matrix ~I{~&#x3E; (x, ~):

The inverse spectral map

is defined as

In 0.,..B

where is the solution of the following RH problem:

9 is a sectionally holomorphic function relative to the contour
E(X).

The limits M1x)(x,() of M(x) (x, k) as k approaches ( E E(x) from O:i:
are related by (2.23), where the jump matrix (x, () is constructed from
a(k) and b(k) following (2.24).

Remark 1. - In [1] the corresponding inverse spectral map was
defined via the solution of a singular RH problem, where can

have poles (at possible zeros of a and a). In that case, residue relations
were also added to the formulation of the RH problem. Here we give a
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formulation of the inverse map which is based on the solution of a regular
RH problem relative to a contour containing the circle r R as additional
part (see [13]). In such a formulation, we do not need any assumption on
the zeros of a(k). Notice that the cyclic conditions for the jump matrices at
1~ = R and k = -R, the intersection points of £16’~) , which are necessary for
the solvability of the Riemann-Hilbert problem, are automatically satisfied
by the construction of J(x).

~ The spectral maps S, Q and 51, Q1. The direct spectral map

is defined following (2.10b), (2.15b), by the second column of the solution
/12(0, t, k) of equation (2.14a) where Q = Q (0, t, k) is determined by (2.3)
with q, qx, and replaced by go (t), gI (t), and g2 (t), respectively:

, .. I

Similarly, the direct spectral map

is defined following (2.loc), (2.15c), by the second column of the solution
t, k) of equation (2.14b) where Q = Q(L, t, k) is determined by (2.3)

with q, qx, and qxx replaced by fo (t), and f2 (t), respectively:

The properties of A and B are discussed in [1], and and B1 have the
same properties. In particular:

~ If T  oo, A(k) and B(k) are entire functions, bounded in I U III U V.
If T = oo, A (k) and B (k) are only defined in I U III U V, being analytic and
bounded there.

~ A(k) and B(k) have the asymptotic behavior, oo:

9 A(k) and B(k) are related by the relation
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Define a sectionally holomorphic, matrix-valued function

where R is again chosen to be sufficiently large such that the disk ~1~ E C ~ I
 R} contains all the zeros of A(k) with Imk3 &#x3E; 0.

Let E be the oriented contour in the complex k-plane consisting of
the lines L2 and the circle rR = Ik I lkl = RI of radius R, and let
f2:f: be the sectors bounded by E, see Fig. 3.

Figure 3: The contour E

Similarly to ~2(0, ~ ~), pi (0, t, k) in (2.32) is determined by (2.8a) for
x = 0, where q (0, t), and qxx(O, t) in Q (0, t, k) are replaced by go (t),
gl (t), and g2 (t), respectively. Then the limits () of as k

approaches ( E ~ from the domains are related by the jump matrix

J(~) (t, ()1
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The map

inverse to S is defined as follows:

where l’ are given by the large k-asymptotic expansion

of the solution of the following RH problem:

~ k) is a sectionally holomorphic function relative to the contour ~.

~ The limits of M(t)(t,k) as l~ approaches ( C E from are

related by (2.33), where the jump matrix J(t) (t, () is constructed from A(k)
and B(k) following (2.34).

The spectral map
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inverse to 51 is defined via the solution of a similar RH problem, with gk,
A, B replaced by fk, Al , B1.

Remark 2. - As in the case of the x-problem, the two inverse spec-
tral t-problems described above are based on regular RH problems: the
residue conditions at zeros of A in the singular RH problem [1] are re-
placed by additional jump conditions at the auxiliary part hR of the con-
tour. Here again, the cyclic conditions for the jump matrices at the points
of self-intersection of E are satisfied by the construction of JC t) .

3. The Riemann-Hilbert problem.

Relating the vector solutions of (2.4a)-(2.4b) (analytic in domains
I, ... , VI) by using (2.9) and the definitions of the spectral functions (2.11)-
(2.13), we find

where are the limit values (as k approaches E from n:f:) of a
sectionally holomorphic function M(x, t, k) defined as follows:

where

The jump matrix J(x, t, k) has an explicit (x, t)-dependence:

where Jo (k) is constructed from the elements of the spectral functions:
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ImA; &#x3E;0, 

* for A; e E, ImA; &#x3E; 0, lkl = R,

*for kc E, Imk0,

for k E E, |k|  R.

Here

and R is such that all zeros of a(k), d(k), and dl (k) with Im k  0 are in

the disk lkl  R.

Remark 3. - Since
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the jump data for the RH problem (3.4) are determined by:

The main result on the inverse spectral problem is the following:

be smooth functions such that:

~ the associated spectral functions s(1~), S(k), and satisfy the global
relation (2.18) for T  oc, or (2.19) for T = oc, where c(k) is an entire

function such that c(I~) = 0 ((1 as oo.

Let M(x, t, k) be a solution of the following 2 x 2 matrix RH problem:
~ M is sectionally holomorphic in k E C B ~.

9 At k E E, M satisfies the jump conditions (3. 1), where the jump matrix
J is defined in terms of the spectral functions a, b, A, B, Al and B1 by
equations (3.4)-(3.6).

Then: 

1. M(x, t, k) exists and is unique;
2. q(x, t) defined in terms of M(x, t, k) by

satisfies the mKdV equation (1.1);
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3. q(x, t) satisfies the initial and boundary conditions

Proof. The proof follows the same lines as in the case of nonlinear
integrable equations on the half-line. For the mKdV equation on the half-
line, see [1]; for a more detailed presentation, see [10] in the case of the
NLS equation. The main steps of the proof include the following.

Step l. The RH problem in question is regular; its unique solvability
is a consequence of a "vanishing lemma" for the associated RH problem
with the vanishing condition at infinity M = oc (see [12]).

Step 2. The proof that the constructed q(x, t) solves the mKdV equa-
tion is straightforward and follows the proof in the case of the whole line
problem; see [11].

Step 3. The proof that q satisfies the initial condition q(x, 0) -
qo (x) follows from the fact that it is possible to map the RH problem for
M(x, 0, k) to that for M (x) (x, k) such that

where is piecewise holomorphic relative to E and P~~&#x3E; (x,1~) _
1+0 ( ~ ) as k - oo. For instance, for Im k &#x3E; 0, one has

Now (2.21), (2.30), and (3.7) imply that r is 0 Q) in IUIII and 
in II, respectively. Therefore, P~(.r,~) = I ~- P~~~ (x,1~),

where P~~~ (x,1~) is off-diagonal and exponentially decaying oo for

1m k 1:: 0, so that the asymptotics (2.25) and (3.9) for t = 0 yield qo (x) _
q (x, 0).

Step 4. The proof that q satisfies the boundary conditions q(0, t) ==
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q_- _, (L, t) = f 2 (t), is, in turn, based on the maps t, k) H k) and

In this case, the fact that and pit) in the different sectors I,..., VI
are I + 0 (i), is a consequence of the global relation. For instance, for
Im k &#x3E; 0, one has

where GR(k) is the l.h.s. of the global relation (2.18 . Therefore, it is the
global relation (2.18) for k E V that gives I

and, consequently, and t  T. Similarly,

Now (2.18) in I U III gives

hence,

Finally, one obtains where

a diagonal matrix is off-diagonal and exponen-

tially decaying as Similarly, (t, k) -

k) + k) with the same properties. Now the fact that
the multiplication by a diagonal matrix does not affect the r.h.s. of (2.35)
provides the boundary conditions at x = 0 and x = L. 0
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