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1. Introduction.

A problem of considerable interest in both mathematics and physics
is to determine the asymptotics of the distribution functions

of an orthonormal basis of eigenfunctions of a Laplacian (or similar
Hamiltonian) on a compact manifold (see [Y]). In general, it is hopelessly
difficult to obtain more than crude bounds on such distribution functions,
which of course control the £P-norms of the eigenfunctions. Numerical
analyses and heuristics from quantum chaos and disordered systems suggest
however a rich picture in which the asymptotics of Dj (t) is related to the

classical dynamics underlying the eigenvalue problem. (Some references will
be discussed at the end of the introduction.) The purpose of this paper is
to give a rather complete analysis of the limit distribution of eigenfunctions
in one of the few settings where such a detailed analysis is possible, namely
where the phase space is a toric Kahler variety (M,w).

Let us recall the definitions (see §2 for details). Toric varieties are
complex manifolds on which the complex torus (c*)m acts with an open
dense orbit. By a toric Kahler variety we mean a toric variety equipped with
a Kahler form (M, o) that is invariant under the underlying real torus Tm .
The action of Tm is Hamiltonian with respect to cv, and thus toric varieties
are models of completely integrable systems. They are of a very special
type because integrable systems usually generate an R’ action rather than
a action. Although there are rigidity theorems limiting the class of such
examples in the world of real Riemannian manifolds [LS], toric varieties
provide a plentiful collection in the world of complex manifolds.

The torus action can be ’quantized’ or linearized on the Hilbert space
completion of the coordinate ring

where L- M is a holomorphic line bundle with cl (L) - and

where denotes the space of holomorphic sections of its N-th
tensor power. This quantization is generally known as the holomorphic
(Bargmann-Fock) representation in the physics literature. The space 1t is
spanned by joint eigenfunctions of the linearized ((~*)~ action, which we
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refer to as ’monomials.’ In the fundamental case of M = CP~, the joint
eigenfunctions are the monomials given in an affine chart by

The monomials lift (by homogenization) to homogeneous monomials on
C m+1.

We consider the case where H is a smooth projective toric variety;
i.e., M = Mp, L = Lp, where P is an integral Delzant polytope (see §2).
Then the linearized Tm action is generated by m commuting operators ij , I
j = 1, ... , m on Mp which preserve H° (Mp , Lf», and the joint spectrum
of the eigenvalue problem

consists of lattice points a E NP n Here and below, cpa denotes the
¡:,2-normalized joint eigenfunction.

Our main results concern the asymptotics of their distribution func-
tions

with q E NP n as N --+ oo. The function is often called

the ’Husimi distribution’ in the physics literature, and thus our results
determine its distribution law. The norm I of ; is the

pull-back of the Fubini-Study norm under a monomial embedding of the
form

for a choice of constants E C*. The volume in Mp and the Hermitian
norm h p on L p are by definition the pull-backs of the Fubini-Study metric
and form under this monomial embedding, and the ,C2 norm on the space
Ho (M, L N) is in turn induced from the volume form and the Hermitian

pointwise norm of hp. (See §2 for details.)
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As Figure 1 illustrates, the monomial ~pa is something like a Gaussian
bump centered on the real torus where pp : Mp ~ P is the
moment map for the classical Hamiltonian T’n-action on Mp (see §1).

I+

Figure 1. 27r/N times the monomial I
and N = oo (right) for m = 2 and a = (2,3), is the 

.-

standard simplex. The variable z is chosen as 1
See Proposition 3J7 in Section 3.

Since we would like to determine the properties of eigenfunctions
NP when a is large, but not necessarily a multiple of a lattice point

in P, we shall consider a sequence of approximate multiples, as in the

following definition:

DEFINITION 1.1. Let aN E NpnZ’ be a sequence of lattice points,
and let x E P. We say that ~aN~ is a sequence of approximate multiples
of x if

Our first result gives the pointwise behavior of the eigenfunctions:

THEOREM 1.2. - Let x be a point in the interior P’ of the polytope
P, which is not necessarily a lattice point. Then there exists a non-negative
function bp E such that bp (z) - 0 if and only if z E 
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and for every sequence aN E n of approximate multiples of x, we
have

uniformly on (~* )m, where

The constant c(P, x~ is defined in (43) and (45) (and also appears in
Theorems 1.3 and 1.4).

When we consider a sequence of the lattice points of the form

aN = Na with a lattice point a, the assumption that a E P° is not

necessary. In fact, we will give the pointwise asymptotics for aN = Na
with any lattice point a E P n zm in Section 3 (see Propositions 3.5 and
3.8).

In the above Theorem, the function (x E PO) on (~* )"2 is

defined by

where , , is the vector given by the equation

Here pp is the moment map for the action on Mp (see (23) for the
definition), and we write

We can express (as in [SZ2(17)-(18)]) the function bp in the more intuitive
form as follows: we introduce the real power ’monomials’

and define
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where (cf. (20))

(The normalized monomial has sup-norm 1, attained on the torus
Then (7) is equivalent to:

As N - oo, the sequence of ,C2-normalized monomials flattens

out exponentially quickly away from the peak set Hence their

distribution functions tend to zero as N - oo for any fixed t &#x3E; 0. The

rate of decay of DNa (t) as N --~ oo is given by the following result:

THEOREM 1.3.

(i) Let aN E NP n Z’ be a sequence of lattice points which are
approximate multiples of x E Po (see (6)). Then, for t &#x3E; 0, we have

(ii) Let a E 8P n zm. Then, for t &#x3E; 0, we have

where d(a) := m + Fa being the face of P containing a.

Here - means the ratio of the left and right hand sides tends to 1, and the
constants c(P, x), c(P, a) are given by (43) and (73)-(45). We recall that
if x is a point in a face F of codimension r, then Hence

The exponentially localized behavior of the monomials suggests
studying the distribution function on various length scales. First, we show
that the DaN have a universal scaling limit on a small length scale:



1503

THEOREM 1.4.

(i) Let aN E N PnZm be a sequence of lattice points satisfying the
condition (6) with some point x E po. Then, for 0  t  vrTe have

for 0  t  c(P, a), where d(a) = 

A sample graph of the scaling limit distribution function for P = 7E
is given in Figure 2.

Figure 2. Scaling limit distribution for

As in Theorem 1.4, the limit of the rescaled distributions has a
universal form, i.e. it does not depend on the geometry of the manifold

Mp, and is given by a logarithmic power of the form (logc/t)d/2 with
some constant d. The logarithmic power appears because the ,C2-normalized
monomials are close to Gaussian around the peak set ltp’(x) on a vector
space of dimension rrz/2 (or dimension d(cx) for the boundary lattice cases).
More precisely, Theorem 1.2 (and Propositions 3.5 and 3.8) shows that the
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function bp has a positive definite Hessian at the peak point. We then
observe that the distribution of a Gaussian function on R ,

(where A is a real positive (d x d)-matrix) is given by the logarithmic power
law 

-

relative to the normalized Lebesgue measure

Thus, the rescaled distribution of an ,C2-normalized monomial at the
Ccenter’ of its localized bump has a universal Gaussian form.

To analyze the ’tails’ of the eigenfunctions, we next use an exponential
rescaling of the distribution function so that the global distribution law has
a non-zero limit as N - oo. As may be expected, it is no longer universal
but depends on the geometry of 

THEOREM 1.5. - Let aN E NP n zm satisfy the condition (6) with
a point x E P° . Then

where A( p) is the Hessian matrix of j

A more general scaling limit law is given in Theorem 4.3. In the above

theorem, the assumption that x E P° is not necessary. In fact, we will give
similar result for a N = Ncx with any lattice point a E P (Theorem 4.3) in
Section 4.

Our strategy for proving Theorems 1.3 and 1.5 on the distribution
functions of monomials is based on their pointwise asymptotics (Theorem
1.2, and also Propositions 3.5 and 3.8 in Section 3). Pointwise asymptotics
of monomials are more or less equivalent to asymptotics of their norms.
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Since the latter are of independent interest, we state these asymptotics
explicitly in:

THEOREM 1.6. - 

(i) Let satisfy the condition (6) for a point x E Pl.
Let denote the £2k-norm of the L2-normalized monomial cpp with
the weight q C NP. Then we have

where depends on k.

(ii) Let a E P n zm with d(0152) == Then we have

We close the introduction with some general remarks and references.
As mentioned above, our results pertain to phase space distribution of
eigenfunctions (Husimi distributions) rather than to their configuration
space distribution. To our knowledge, the only prior example in dimen-
sion &#x3E; 1 for which the limit distribution of eigenfunctions has been de-
termined is the case of certain (so-called) Hecke eigenfunctions of discrete
quantum cat maps, due to Kurlberg-Rudnick [KR]. They work in a sim-
pler discrete model rather than the holomorphic model. The main result
of Kurlberg-Rudnick [KR] is that the distribution functions of (un-scaled)
eigenfunctions tend to the semi-circle law. Their method was to relate the
eigenfunctions to exponential sums studied by Katz [Ka] and to apply the
value distribution of exponential sums. Since value distribution depends
on the representation, it is not clear that the same semi-circle law would

hold for Hecke eigenfunctions in the holomorphic (Bargmann-Fock) repre-
sentation, and this appears to be a challenging and interesting problem.
Part of the motivation for this paper was to set a baseline for eigenfunction
distribution problems by studying a class of explicitly solvable examples.

It would also be interesting to study the limit distribution of real

eigenfunctions in the Schrodinger representation, i.e. on the configuration
space rather than the phase space. To our knowledge, the physics results

mainly pertain to these configuration space results. The cases most studied
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and speculated about are those of chaotic or disordered systems. When
eigenfunctions are delocalized, their spatial distribution is conjectured to be
Gaussian (see e.g. [B, FE, H, HR,M, SS, PA] ) . In the opposite regime where
the eigenfunctions of disordered systems are exponentially localized, the
expected distribution in the low amplitude (tail) region is given by a power
of a logarithm [MF], precisely the one we obtained in the high amplitude
(center) region. The reason is that the distribution law is universal and
Gaussian in the tail region for exponentially localized eigenfunctions of
disordered systems [MF], while it is universal and Gaussian in the center
for our problem (Theorem 1.2).

The only studies we have located which are related to distribution
laws of integrable eigenfunctions are those of one of the authors with J. A.
Toth (cf. [TZ]) and that of Berry-Hannay-Ozorio de Almeida [BHO], which
describes the asymptotic expansions of .c2p norms (moment intensities) of
real oscillatory integrals of several stable types. Such oscillatory integrals
define quasimodes for a quantum integrable system, and in generic cases one
can express eigenfunctions as oscillatory integrals of various kinds [TZ]. In
general, many possible kinds of oscillatory integrals could arise, including
ones associated to singular Lagrangean tori. Hence, one can only expect
complete results in special cases. To take the simplest example, our methods
could be adapted to find the scaling limit distributions of squares of the
standard spherical harmonics Ym on ,S’2 (or These eigenfunctions are
also joint eigenfunctions of commuting operators which generate a quantum
torus action. To our knowledge, the distribution laws of even such simple
eigenfunctions are unknown at this time.

Acknowledgments: This paper was written during a stay of the second
author at Johns Hopkins University on a JSPS fellowship. He would like to
express his special thanks to the faculty in the Department of Mathematics
of Johns Hopkins University.

2. Background on toric varieties and moment polytopes.

We summarize here some basic facts and terminology on toric varieties
from [STZ]. Recall that a toric variety is a complex algebraic variety M
containing the complex torus
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as a Zariski-dense open set such that the group action of (c*)m on itself
extends to M. We consider here smooth projective toric varieties; they can
be given the structure of a symplectic manifold such that the restriction of
the action to the underlying real torus

is a Hamiltonian action (see §2.2). These toric varieties can be constructed
from Delzant polytopes either by symplectic reduction (see [Gu]) or by
gluing affine toric varieties described by the normal fan of the polytope
(see [Fu]). However, for our analysis, it is more convenient to define the

toric variety Mp associated to the Delzant polytope P through a monomial
embedding as follows (see [GKZ Chapter 5]). Suppose that P is a Delzant
polytope and let

We shall write ¿aEP == (Recall that a Delzant polytope is

a convex integral polytope in with the property that each vertex is
incident to exactly m edges and the primitive vectors in parallel to
these edges generate 

To define the monomial embedding, we fix an arbitrary
Then, we define

i.e.,

The toric variety Mp = Mp is defined as the Zariski-closure of the image
Qcp((C*)m) of the monomial embedding Qcp in the complex projective space
CPd

Since our polytope P is assumed to be Delzant, ~~ is an embedding
and the variety Mp is smooth. The symplectic (or Kähler) form on Mp is
given by
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where u z denotes the Fubini-Study Kahler form on CPd
with homogeneous coordinates ((0, ... , ~d). On ((C*)"2, we have

The volume form on Mp is given by 

2.1. The line bundle L p and associated circle bundle X p.

We define the line bundle L) - Mp by L p - L~ := 
where 0(1) denotes the hyperplane section bundle on CP . Recall that the
spac6 of holomorphic sections Ho (Cpd, C~ ( 1 ) ) consists of the linear functions
A : Cd+1 --+ C, and that the Fubini-study metric on C7 ( 1 ) is given by

which has curvature form c We endow L p with the
Hermitian metric h p : :- 4)’*hFS, which has curvature w p .

Each monomial xa with a E P n zm corresponds to a section of

HO(Mp, Lp) and vice versa. To explicitly define this correspondence, we
make the identifications:

More generally,

and a basis for H° (Mp, L N) is given by the sections NP n 

corresponding to the monomials ~x.y ~ . These sections are given by

where ~31, ... , ON E P n z, such that -Y = {31 + ... + /3~ (see[Fu, STZ]).
So far, we have not specified the constants c~. For studying our

phenomena, the choice of constants defining the toric variety Mp is not

important. However, when our polytope P is the full simplex pE, we shall
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use the special choice ca = (~) 1~2, where (~) is the multinomial coefficient
(see §2.4).

The associated principal S1-bundle X p = X p of the line bundle
Lp - Mp is defined by

where Ivlp denotes the norm of v with respect to the Hermitian metric on
L p 1 induced by /~p.

We identify sections s~r of LN with equivariant functions SN on X
by the rule

It should be noted

where x E X p is in the fiber over z denotes the norm with

respect to the Hermitian metric on L~ induced by the metric he
In particular, for a E the ’monomial’ xa E HO(Mp, L p ) given

by (15) lifts to an equivariant function 5~p on the circle bundle X) - 
and we write

S2d+1 is the lift of the embedding 
(d = #P - 1), that is, the restriction to X p of the natural inclusion

Lp~ ~-~ 0(20131). (Of course, depends on c, which we omit to simplify
notation.) We also consider the monomials

so that is the equivariant lift of ma to X p. In terms of local coordinates
(z, 0) on 7r-1((c*)m) C Xp, we have
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Since its absolute value is independent of 0, we can write

We give the inner product

and the ,C2 norm ~ I We note that the sections

are orthogonal but not normalized. We normalize them to obtain an
orthonormal basis for H° (Mp, LN) consisting of the sections

Their equivariant lifts form an orthonormal set of monomials on 

We include below a table of notation to help the reader keep track of
the various monomials:

2.2. Moment maps and torus actions.

The group (C*)’ acts on Mp and the subgroup T’~ acts in a

Hamiltonian fashion. Let us recall the formula for its moment map g1) :
M) - on the open orbit (~* ) "2, we have
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For any c, the image of Mp under equals P. The moment map pp
is invariant under the T~-action on Mp. By the identification (~*)m ’"

x the moment map pp defines a map from to P, which is a

diffeomorphism between and the interior P° of P.

The action of the real torus lifts from M~ to X p and combines
with the S’ action to define a action on Xp. Recall that under the
monomial embedding

is given by

The action (24) lifts to an action on LpI:

Since the circle bundle is invariant under this action, (25) also
gives a lift of the action (24) to X p .

We also have the standard circle action on X p:

which commutes with the Tm-action (25). Combining (25) and (26), we
then obtain a on X p:

2.3. Fourier analysis.

In this section, we shall explain an aspect of Fourier analysis on toric
varieties which describe the complete integrability of the system.

The Hardy space is the Hilbert space spanned by the

equivariant lifts of sections to functions on ~p with the inner product
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where ap is the contact 1-form defined by the Hermitian connection on

L-1 such that dap - 7r*Wp. Under the identification H Q£ the

inner product is the same as the inner product on 7-~ _ 
given by (21). Alternately, consists of the functions F E 

satisfying abF = 0 (see e.g., ~SZl,Ze~).
Under the action, the Hardy space then has the orthogonal

decomposition

where consists of elements s E that s(ei® , x) -
eiNfJs(x). We recall that the (equivariant) ’Szego projectors’ HN are the
orthogonal projection onto If denotes an

orthonormal basis of L p ), and Sf denote their lifts to X, then
the projector IIN is given by the kernel function

We now describe how one can combine the eigenvalue problems given
by (3) for varying N into a homogeneous scalar eigenvalue problem on X.
To do this, we define for each N E N, the ’homogenization’ NP C zm+1 of
the lattice point in the polytope NP to be the set of all lattice point a~
of the form

where p &#x3E; 1,61. We also define the cone It is

well known that rays NS in this cone define a semiclassical limit.

In this section, we use the more precise notation for the £2-
normalized monomial (since N is not specified in the latter), for
â E 11p.

The torus action on Xfi can be quantized to define an action of the
torus as unitary operators on ?-~2 (X p ) . Specifically, we let Î1,... Îm denote
the differential operators on X p generated by the T"2 action:
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We recall the following observation from [STZ]:

PROPOSITION 2.1. - For 1 ~ j’ ~ m,

(ii) The lifted monomials

Furthermore, we note that

Thus, the monomials 1§$a are the solutions of the joint eigenvalue problem

with the commuting operators:

The joint eigenvalues are the lattice points a E 1~~.

2.4. Monomials on pro jective space.

In the case of the £,q-norms of the monomials PE can be
evaluated explicitly in an elementary way. We give the details in this
section.

When the polytope P is the unit simplex E, we have Mr = 
furthermore Lr is the hyperplane bundle 0(1). We can identify L.1 =

with cm+1 with the origin blown up, and the circle bundle
is identified with the unit sphere The

equivariant lifts to Xr of sections of C7(N) _ Lfl consist of homogeneous
polynomials

in m + 1 variables. The induced Fubini-Study metric on C?(N) is given by
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(Here the constants ca are taken to be 1.) Identifying F with the polynomial
f (z) = F(1, zi, ... , the norm can be written

and the inner product is given by:

We are interested here in the case P - pE. Then 
and the line bundle LpE is identified with the p-th tensor power 
of the hyperplane section bundle. The circle bundle XpE is the lens

space Xpz = By lifting equivariant functions from the lens
to the sphere S’2~+I , we see that

Hence, we shall replace the N-th Hardy space ’,
below. Then the equivariant lift ;

I is given by the homogenization:

In this case, we shall use the special choice of the coefficients of the
monomial embedding:

so that by (14), we have

Furthermore,
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where the last equality follows by differentiating the identity
~. Note that this choice gives us the scaling formula

As before, for each m-dimensional multi-index /3 with p, we

define an (m + I)-dimensional multi-index 7J by

Recall that

The Lq-norms of the monomial can be evaluated explicitly as
follows.

PROPOSITION 2.2. - For rx E pE n we have the precise formula:

Proof - We write , which we consider as a function in

For q &#x3E; 1, we set

where denotes Lebesgue measure on We shall compute the

integral Iq (N) in two ways. First we use polar coordinates on cm+1. The
measure cM is expressed as

Then we have
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To relate the volume form do, on s2m+1 to that on XpE, we recall that
PwFS and therefore the volume form on Xps is times the Fubini-

Study volume. Recalling our convention that B
we then have dVolXpE = 2:=+1 da, and hence

On the other hand, if we use polar coordinates for each component
xi of x E cm+1, we have

Hence we obtain

and therefore

Since , the identity follows from (36)-(37). D

The following proposition is a direct consequence of Stirling’s formula
and Proposition 2.2.
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In particular, again by Stirling’s formula, we have

In the next section, we will obtain similar formulas for monomials on

general toric varieties.

3. Pointwise asymptotics on general toric varieties.

We now consider the case of general toric varieties. Our first purpose
is to find the pointwise asymptotics of the monomials and to prove Theorem
1.2. We then asymptotically determine their £2k-norms.

3.1. Pointwise asymptotics: interior points.

First of all, we shall consider a sequence cxN of lattice points in NP.
We assume that aN is an approximate multiple of a point x E P° as in
Definition 1.1; i.e.,

Hence, the point ANIN is in the interior P° of the polytope P for
sufficiently large N. Thus the analysis is performed on the open orbit

(C*)"B and hence the coordinate

will be useful. The moment map pp is also invariant under the Hamiltonian

T"2-action, and it is well-known ([Fu]) that it induces a diffeomorphism:

In these coordinates, the function bp defined by (7) can be written simply
as
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where the function k(p) is the ’polytope character’

The vector Tf (z) in (8) is given by

We also define the symmetric real m x m matrix

LEMMA 3.1. - The real symmetric matrix

is positive definite, for all z E (~C*)’n.

Since

constant on P n z,, the Cauchy-Schwartz inequality in (44) is strict. 0

In particular, the matrix

is positive definite.
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For a point x E P°, we now define the constant

LEMMA 3.2. - In the coordinates ; the volume

form on Mp is given by

Proof. We note that

where The conclusion

follows from (46), recalling that

It should be noted that grows as Ipl I - oo, as stated in the
following simple lemma.

LEMMA 3.3. - Let K c P° be a compact set. Then there exists

positive constants R &#x3E; 0, c &#x3E; 0 such that f (x, p) -&#x3E; clpl for (x, p) 
lpl &#x3E; R

If x E P°, then the polytope P - x contains the origin in its interior.

Thus, clearly we have &#x3E; 0 for any (x, p) E PI x (R’ B 0). Next,
we note that the function (x, p) - is continuous. To see this, let

(xn, Pn) be a sequence such that
any {3 E P n zm,
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By using this inequality, we can show that

Now, for a compact set K C P°, we set

We set co - minBEPnZm Ic,a12. Since P n is a finite set, there exists

/3 = p) such that M(x, p) _ ( p, O(x, p) - x ) for (x, p) with x E P° and
Ipl = 1. Thus, for x EKe P° and p # 0, we have

for x e K and p ~ 0, which completes that proof. D

Completion of the proof of Theorem 1.2 : Recalling that z = we

write instead of By the definition of the Hermitian
metric on L~ , we have

where, in the right hand ] denotes the usual norm in Cd+1.
By the definition (12) of the monomial embedding ~p, we have

Hence, we have

where the function f (x, p) for x E P° is defined in (40). We note that, since
O (N-1 ), we have

for every multi-index L. By Lemma 3.2, the .c2-norm of the un-normalized
monomial xaN is given by
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Here it should be noted that det A(p) is a positive integrable function on
JRm. By Lemma 3.3, we can choose R &#x3E; 0, c &#x3E; 0 such that I  R and

clpl for any R and N. Thus, by choosing a cut-off
function g(p) suitably, we may write

Recall that b: (p) == 0 if and only if p = pp, and that p = pp is the unique
critical point of bp . The Hessian of b~ at p = pp is the positive definite
symmetric matrix A(P, x). Thus, by the Morse lemma, there exists a change
of coordinates from a neighborhood of the origin to a neighborhood of

pP such that x(0) = pp and that

By choosing the cut-off function g suitably, we get

where is a compactly supported function in ~ such that

and the function is defined in (48). By (49), the derivatives of
G N (x, ç) with respect to ~ are all bounded uniformly in N. Therefore, by
using the Plancherel formula and a formula for the Fourier transform of
the Gaussian functions, we obtain

which, combined with (48), completes the proof. 0

Remark. - Since is a monomial, the asymptotics of 
is essentially the same calculation as the asymptotics of the norm

of another monomial. Thus, determining the pointwise asymptotics of
monomials is equivalent to determining the asymptotics of their norms.
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3.2. Pointwise asymptotics: boundary lattice points.

Next, we consider the ray IVa for a lattice point a C P n which

is allowed to lie in the boundary 8P. In such a case, we need to work
with other coordinates than the usual coordinates on the open orbit (c*)m
([SZ2]), since the open orbit ((C*)m does not cover the set Mp1(ap).

In the following, we mean that the faces are disjoint, and the facet
is a face of codimension one. Thus we call the closed face (or facet) F the
closure of F in the minimal affine subspace containing F. To describe the
coordinates, let vo be a vertex of P. Since our polytope P is Delzant, we
can choose lattice points a1, ... , I am in P such that each ai is in an edge
incident to the vertex vo, and the vectors vi vo form a basis of 

We choose (open) facets Fj, j = 1, ... , m incident at vo so that aj rt Fj.

LEMMA 3.4. - Let a E and z E Mp. Then, xa (z) = 0 if and
only if

Proof. If z E (c*)m then automatically we have ~a (z) ~ 0. Thus,
we may assume that z E First, assume that pp (z) E F for some
closed facet F which does not contain a. The last formula in (23) for the
moment map is globally defined, for the function Im:12 is globally defined.
Since p p (z) E F, the coefficients in pp(z) of the lattice points fl V F must
vanish. Thus, we have = 0. Conversely, assume that pp(z) E aP is
not in the set described in (50). In our convention, the faces are disjoint
and the boundary 8P is the disjoint union of faces. Thus, that E 8P

is not in the set described in (50) is equivalent to say that there exists an
open face E such that a E F and p p(z) E E. Let vl , ... , vl be the set of
vertex of E. Since vj and a are lattice points, there exists a positive integer
no such that noa = -j=, njvj with nj integer such that E nj - no. Thus
we have

Since pp (z) is in the interior E of the face (polytope) E, each
not vanish, and hence xa (z~ ~ 0.

To apply Lemma 3.4, we set
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which covers Mp as vo varies over all vertices. We define

The map q is a diffeomorphism and the inverse is given by

where e~ is the standard basis for (or for cm over C), and r is an
m x m-matrix with det r == :f:1 and integer coefficients defined by

By definition, we have the obvious formula:

By Lemma 3.4, -t 0 if . Since Fj , we have

The set ((C* )"’1 is the union of the and hence the map q
extends a homeomorphism:

zo = the fixed point corresponding to vo.

By this homeomorphism, the set corresponds to the set (q E
qj = 01. This coordinate 71 = ~r~l, ... , r~~.,.t) is useful to explain toric

subvarieties corresponding to faces. Namely, let F be a closed face with
dim F = m - r which contains vo. Since vo E F, we can choose Fil , ... , Fir
such that F = n ... rl Fir’ Then the subvariety jjp1(F) corresponding
F is expressed, in the coordinate neighborhood Uvo, by

Now, we fix a lattice point a in a (relatively open) face F of dimension
dim F = m - r such that vo E F. Without loss of generality, we may assume
that 

To state a result for the lattice point a in the boundary corresponding
to Theorem 1.2, we need to find a function corresponding to the function 6~. *
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Since our coordinate q is based on the lattice points aj - vo, it is reasonable
to introduce a new polytope defined by the affine linear transformation

which maps 2m bijectively onto itself. We set Q := r(P). Then Q is

contained in the positive orthant ~x E 01, and we have
r(Fj) = ~x E Q ; x3 - 01. The face of Q corresponding to F is then
given by

We denote a point in ~. In

this expression, ( = (0, () is a local coordinate of the submanifold J-lp1(F).
The modulus square of the monomials with a E P n zm is, in this

coordinate, given by

We then introduce the ’moment map’ corresponding to the face F by:

where and the function is given by

As mentioned above, the submanifold J-tp1(F) has the coordinate
, and the torus Tm-r acts on it. Thus, it is natural

to use the coordinate

Then, we write 77 = (~0 = (~, p) for ( = eP/2. Since we have assumed
a E F, we may write 

-
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We also define

PROPOSITION 3.5. - In the coordinate yy == (~, () as above, we write
for the modulus square of the We also write

r( 0152) == (0, 6z), which is in the interior of the polytope QF. Then we have

where the function p) is given by

and (m - r) x (m - r) positive definite matrix A(F, ex) is given by

We shall prove Proposition 3.5 in the rest of this subsection. First of

all, we need the following simple lemma:

LEMMA 3.6. - In the coordinate (
Uvo , the volume form is given by

where dm(~) denotes the Lebesgue measure on C~~ and the function L(~, p)
is given by the determinant of the following m x m matrix:

where K(~, p) is the function defined in (52).
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Proof. For the function f (~, () on Cr X (c*)m-r independent of
the variable 0 in ( = then the derivatives

is given, respectively, by

We write 77 == (~, (). Then, by this relation, we have

where L(~, p) is given by (59). But, we have

where dm(~) denotes the Lebesgue measure on cm-r. Combining this with
(47), we obtain the assertion. 0

The following lemma can be shown by the same argument as in the
proof of Lemma 3.1, and we shall omit the proof.

LEMMA 3.7. - The (m - r) x (m - r) matrix defined by

is positive definite for every p E 

Note that, the map JRm-r ---+ Q’ is a diffeomorphism, and the
lattice point 0152 is in Q’. Thus, the vector p~ = ~p~(~) is well-defined.

Hence, the (m - r) x (m - r) matrix
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Completion of proof of Proposition 3.5. The modulus square of the mono-
in this coordinate is given by

where the function is defined by (55). Thus, as in the proof of
Theorem 1.2, what we need to analyze is the .C2-norm

where we have used Lemma 3.6. We note that the function .~F (~, p) defined
in (55) is of the form

where e’ are the standard basis for Rl-. The function r (~, p) is of order

&#x3E; 4 in ~, and hence its derivative up to the second order vanish at ~ = 0.
Thus, the function sa(ç, p) has only one critical point (~, p) _ (0?P~)- It is
not hard to show that the Hessian of the function (55) at the
critical point (0,pFx) is given by

where the (m-r) x (m-r)-matrix A(F, a) is given by (57), and we have used
the coordinate with Ej = xj + iyj. Here, it should be noted that
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the polytope Q = r(P) contains the standard basis in = RI x 

Thus the lattice points (e’, 0) with the standard basis e~ in RI is in the
polytope Q, and hence the functions fj are all positive. This combined with
Lemma 3.7 shows that the Hessian H Sa (0, Pa) is positive definite. By the
same argument as in the proof of Lemma 3.3, the function -E- ~F (~, p)
tends to oc ~ oo . Therefore, by the standard Laplace method
as in the proof of Theorem 1.2, we have

A direct computation will show that

and hence, the asymptotics (63) can be written in the form:

Dividing by the above, we conclude the assertion. D

When our fixed lattice point a is a vertex, say a = vo in the

description of the coordinate q, the matrix A(F, a) is not defined suitably.
However, clearly the similar asymptotics can be deduced by the same
method.

PROPOSITION 3.8. - Suppose that cut is a vertex of the polytope P.
Then we have

where the function on em is given by (52). We also have -

where zx is the fixed point for the Hamiltonian Tm-action such
that I1p(za) = cx.

Proof. In the description of the coordinate q, we put a - vo.

Then, clearly we have , where the fixed point za
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corresponds to the origin q = 0 and the function K (r¡) is defined in (52).
In this case, we just use the coordinate q itself without change of variable.
In this coordinate, the monomial is given by

The volume measure is of the form:

with the Lebesgue measure dm( r¡) on C~. It is straightforward to see that
the critical point of the function log K(q) is the origin, and the determinant
of the Hessian at the origin is given by

By using these facts with the Laplace method, we obtain the assertion. 0

3.3. Moments and norms.

As an application of the pointwise estimates, one can prove that
eigenfunctions ’localize on tori’. We also determine £2k norms of the
monomials. Before proceeding with the discussion on asymptotics of ,C2~
norms, we need the following simple lemma, which asserts that, in view of
the pointwise asymptotics (Theorem 1.2), monomials decay exponentially
as ~V 2013~ oo, away from the invariant torus 

LEMMA 3.9. - Let x be a point in the interior of the polytope P, and
let aN C NP n Z~ be an approximate multiple of x. Then, there exists
positive constants c &#x3E; 0 and R &#x3E; 0 such that we have

Proof. By using Lemma 3.3 and the definition of the function bp,
there exists constants Co &#x3E; 0, Ro &#x3E; 0 such that
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where we set. We note that XN 2013~ 0 as N 2013~ oo.

Thus, we only need to choose c &#x3E; 0 and R &#x3E; 0 so that co - ~ ] &#x3E; c for

sufficiently large N and R &#x3E; c). D

The following is easily shown by using Theorem 1.2, Propositions 3.5,
Lemma 3.9 and 3.8, and the argument is the same as in their proofs, and
hence we shall omit the proof (see also the proof of Theorem 3.12).

PROPOSITION 3.IO.

(i) Let E NP n Z be an approximate multiple of a point x E P° .

Then, the measure 12 dvolmp weak* -converges to the normalized Haar
measure on the m-dimensional i.e.,

for a E C(Mp).

(ii) Let a be a lattice point in P with dim / . Then,
we have

where d0 up-1 (x) denotes the normalized Haar measure on the (m - r)-
dirnensional torus T"2-r.

In the above proposition, if a is a vertex, then the left hand side
denotes the Dirac measure at the fixed point Za E Mp of the Hamiltonian
T~-action corresponding to a.

We note that invariant under the Tffi action. We denote the

Hilbert space of Tffi invariant functions by We can restate the

conclusion as follows: if ( I, then we can regard it as a function
on the polytope P. We can also regard I rprv Q I:¿ as a function, say (1) 1 z,
on P, equipped with action variables I. We then have:

Next, we determine the asymptotics of the £2k-norm of the C2_
normalized monomials.
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THEOREM 3.12.

(i) Let aN e NP n zm be an approximate multiple of a point
x E po. Let denote the of the L2-normalized monomial

Spp with the e NP n Then yve have

where the depends on k.

(ii) Let cx E P be a lattice point with dim¡Lpl(a) - m - r. Then,
for r  m - 1, we have

For a vertex fx, we have

Proof. The proof of (67) is the same as that for (66), so, first of
all, we shall give a proof of (66). By Theorem 1.2 and Proposition 3.5, we
have

where wa is given by (56). As in the proof of Proposition 3.5, the critical
point of ~a is only the point (0, with I , and

which is non-degenerate. We have ~a (o, pa ) - 0. Thus, by the standard
Laplace method, we have
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Therefore, the assertion follows from (64) as in the proof of Proposition 3.5.

To prove (65), we use Theorem 1.2 and Lemma 3.9 to find

where we set RN ( p) = ~N » and f is a cut-off function around p;.
Note that the function RN ( p) and its derivatives are dominated from above
by the function RN ( p) itself, since NXN = 0(1). Thus, as in the proof of
Theorem 1.2, we obtain the asymptotics (65) by using the standard Laplace
method. 0

By using Proposition 3.5, we can determine the limit of the sup-norm
||aPNx||2 ~.

To do this, we prepare the following lemma, which shows that, when
x E P° and 7N is an approximate multiple of x, the monomials 
look like Gaussian on a ball around the invariant torus of radius

0(~V-~). .

LEMMA 3.13. - Let x be a point in tlle interior of tlle polytope P,
and let aN be an approximate multiple of x. For any positive number r,
we set

which is a neighborhood of the invariant torus ppl (x) corresponding to x.
Let c be a positive number. Then we have

Proof. Taylor expansion for the function bp around the point pp
shows
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Now, let with c. Then, we have

For such a z E we also have

because xN = Thus, the Taylor expansion concludes the asser-
tion. 0

PROPOSITION 3.14.

(i) Let aN E NP n zm satisfy (38) with a point x E po. Then we
have

(ii) Let c~ be a lattice point with r, r - m - 1 -
Let (ÇN,PN) be the point where attains its maximum. Then, we
have

For a vertex a E P, we have

Mp is the unique fixed point for the T m such that = cx.

Proof. First of all, we shall show (71). The function wa(ç,p)
defined in (56) attains its minimum at the point (0, and it tends to 0o as

outside a compact neighborhood On a compact neighborhood B
of (0,/~), we have
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Now (71) follows from the above inequality. The same argument with
Proposition 3.5 shows (72).

Next, we shall prove (70). By Lemma 3.9, the 
attains its maximum on a compact set around the point pp . We set

be the point such
: for some constant c &#x3E; 0

independent of N. Then, by Theorem 1.2, we have

Since

expansion for the function bp ((69)), we can choose a constant a &#x3E; 0 such

that

Thus, we obtain
Then, by Lemma 3.13, we have

and hence

3.4. Asymptotics on pro jective space.

The values of the .c2k norm in Proposition 2.2 and in the projective-
space case of Theorem 1.6 may seem to be different. However, we can check
that these two coincide by noting the following simple lemma.

LEMMA 3.15. - The determinant det A(p~, a) of the matrix A(p~, a)
is given by
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Proof. By applying the differential operator

where 61j is the Kronecker’s delta, and we have set We

Then, by (35), we have and Ip

From this the second equation follows. Substituting
cx for x in the above formula, we obtain

We set = det A(p, cx) with a - (01521,...,0152m). Then a
simple computation shows that

Thus the lemma follows by induction on the dimension m. D

Note that, for the simplex pE, the faces containing the origin is again
a simplex in lower dimensional vector space. Therefore, Lemma 3.15 can
be applied to compute det A(F, a).

In the case of projective monomials, the function can be expressed
as follows.

PROPOSITION 3.16. - For z E ((~*)m,

where log i3 = (log ao, ... , log âm).

This is a direct consequence of the formulas (

and ( as mentioned before.

The pointwise asymptotics of the L2_normalized projective monomials
is given in the following proposition.
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PROPOSITION 3.17.

uniformly ((C*)m.

uniformly c, where is the diagonal matrix with entries
x1, ..., xm

The assertion (1) in the above is a restatement of Theorem 1.2 for
the projective monomials. The assertion (2) follows from (1) and a Taylor
expansion of the function 

4. Asymptotics of distribution functions.

In this section, we find asymptotics of rescaled and un-rescaled

distribution functions. Fix a lattice point a in P, and let r denote the
codimension of the face of P (possibly the open face P°) containing cx. In
analogy with (45), we define the constant c(P, 0152) by

In the following discussion, we give the details for the case where
Na with a lattice point a E P n Z~. For general aN E NP n Z~

satisfying (38) for a point x E P°, one needs only to put r = 0 and replace
Nx and x by xN andx.



1537

4.1. Rescaled distribution functions.

We would like to understand the limit distribution of the measures

namely, the limit of their distribution functions

However, by Theorem 1.6, the k-th moments of the measure 
tends to infinity as N tends to infinity. Therefore, we need to re-normalize
the monomials.

We write

so that

By Proposition 3.14, we know that . exists and we have

Furthermore, by Theorem 1.6, we have

We consider the limit distribution of the sequence of measures

on the real line. The distribution function of the measure vN,r is

given by
(7QB

The distribution function FNa defined above can be expressed, in terms of
the distribution function DNa for the measure as
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We should note that the total mass of the measure vN,r is

and hence it tends to infinity as N goes to in-
finity. But its moment satisfies, for each positive integer k,

By Proposition 3.14, the support of the measure vN,r is contained in
a bounded interval in [0, +(0) which is independent of N.

Furthermore, by (80), the measure XdVN,r(X) is a finite measure on

the real line whose support lies in a bounded interval in [0, +00) which is
independent of N. This implies that the sequence of the finite measures

XdVN,r(X) on the real line has a weak limit, say J-l, and it must satisfy

Thus, the weak limits of the measures XdVN,r(X) are probability
measures, and they have supports contained in the interval [0, c(P, 0152)].

LEMMA 4.1. - Let c be a positive constant, and let h be a positive
integer. Let p be a probability measure on the real line such that

Then p must coincide with the measure dx where

Proof. We shall use the following formula:

to compute the Fourier transform
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of the measure p satisfying the condition in the lemma. Substituting
s = h/2, w = k in the above formula, we get

and hence ji(g) = p~,h (~) . This completes the proof. 0

As a corollary to Lemma 4.1, we have the following.

COROLLARY 4.2. - The sequence of the finite measures 

converges weakly to the probability measure Pc(P,a),r dx, where the density
pc(P,a),r is given by (82) with c = c(P, cx) and h = m + r.

Proof of Theorem 1.4. The rescaled distribution function for t &#x3E; 0

of the measure VN - given by

where is the characteristic function of the interval (t, +00). Now
set = and write

By Corollary 4.2, we know that the sequence of finite measures tiN

converges weakly to the probability measure dx. For fixed t &#x3E; 0,
by approximating the function (x) by a sequence of continuous
functions, and by using the Lebesgue convergence theorem, one easily
obtains that, for every 0  t  c(P, a),
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4.2. Non-rescaled distribution functions.

In the previous section, we derived the limit of the rescaled distri-
bution functions FNa (t). In the definition of the rescaled function (t),
the parameter t is rescaled by the factor (N/27r)(m+r)/2 so that it tends to

as N - oc. Then the corresponding volume

is of order N-(m+r)/2. This was the reason why we need to multiply the
volume (83) by the extra factor (N~2~r) ~’n+~’»2 in the definition of the

rescaled distribution functions. As a result, the limit distribution has a
universal form (Theorem 1.4). However, one may ask, of course, what the
limit of the non-rescaled distributions is. But, for each fixed t &#x3E; 0,

0 as N --+ oo by Theorem 1.2 and Proposition 3.5. Therefore,
we need to replace DNa (t) by DNa (WN (t) ) for an appropriate sequence
~WN (t) ~ of positive functions in t &#x3E; 0 which compensate for the flattening
rate. Our sequence will satisfy the conditions WN (t) -~ 0 as N ---~ oo and

for a function W (t) &#x3E; l . We then have the following limit distribution law:

THEOREM 4.3. - Let satisfy (84). Then

In particular, by taking the function WN as WN (t) = e-Nt, we have

If x is in the interior P° of the polytope P, and if aN E NP n be

an approximate multiple of x, we have
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Proof. We note that (86) follows from (85) and Lemma 3.6. So, first
of all, we shall prove (85) for the boundary case. The set UvQ introduced
in Section 3 is dense in Mp, and hence we may consider the volume of the
set

so that = Let (ç-,() E We write ( -
Then, by Proposition 3.5, we have

where C is a constant, and aN is a function of order 0(7V ~). Thus, we
obtain

This combined with Lemma 3.6 shows the assertion.

Next, we shall show (87), or rather general version (85) for the case of
interior points x E po. Let WN (t) satisfy the condition (84). By Theorem
1.2, implies

where C &#x3E; 0 is a constant and aN ( p) - uniformly in p E 
From this and Lemma 3.9, the set

is bounded. Thus, since xN = = 0(1/7V), the function

( p - pp, xN ) is of order O(1/N) uniformly around ,S’N(t) for all N. The
right hand side of (89) tends to W(t) as N --~ oo uniformly in p. Hence we
have (85) for the case of interior points x E P°. 0

Our final aim is to prove Theorem 1.3, which gives the asymptotic
limit of the distribution functions DN (t) itself without any rescaling. Since,
by Theorem 1.2 and Propositions 3.5 and 3.8, the monomial decays
exponentially away from the corresponding invariant torus it is
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obvious that DN (t) tends to zero as N --~ oo. So, a problem is to find the
decay rate of DN (t) for any (but fixed) t &#x3E; 0.

For every N and 0 ~ r  m, we set

LEMMA 4.4. - Let t &#x3E; 0. Let a E P be a lattice point with
dim = m - r and lie in a face F with dim F = m - r. Let (~N, 

Then, we have

locally uniformly in t &#x3E; 0.

Proof. For every c &#x3E; 0, we set

Then, by the argument in the proof of Proposition 3.5, we can find positive
constants co, Co such that

Therefore, by Proposition 3.5, we have

with some constant C. Therefore, we obtain

which implies the assertion. D

Thus, to obtain the asymptotic estimate of the distribution function

DN(t), we need to find that of the monomial on the ball of

radius O (rN ) around the point (0,p~), where is defined in (90).
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LEMMA 4.5. - Let c &#x3E; 0. We denote points as (E, () =

where the Hessian H~a (0, pa ) of the function at the

point (o, pa ) is given by (~)2)

Proof. By a Taylor expansion, we have

From this and the estimate in Proposition 3.5, the assertion follows for

I x r ~ m - 1. For r = 0, m, precisely the same argument replacing was
or log K with Theorem 1.2 and Proposition 3.8 will show the

assertion. 0

Remark. - Lemmas 4.4 and 4.5 are valid for interior points .r c P’
and approximate multiples aN. To see this, we note that the set

is contained in a ball around pp E Thus, by the Taylor expansion for
the function bp, there exists constants c &#x3E; 0 and C &#x3E; 0 such that

From this, we have I , where ray

and SN - log ~ 2 ~ m~ ~ . By Theorem 1.2 and the Taylor expansion, we have
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Proof of Theorem 1.3. - For every t &#x3E; 0, we set

Then, by Lemma 4.4, there is a constant c &#x3E; 0 (depending on a fixed
such that t

. Then, by Lemma 4.5, (~, () E SN (t) if and only if

where aN (w, u) is a function of order uniformly in (w, u)
with Iwl2 + c2 , and c(P, a) is define in (73). This is equivalent to the
following estimate:

Therefore, by Lemma 3.6, we have

DNx (t)

where we set, for simplicity, Changing the variables (~, p)
to (w, u), we have

A Taylor expansion gives

with the error term u) = O (rN ) uniformly for I Thus,
we obtain
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Note that ~ 2013~ oc while rN --~ 0 as N - oo. The function aN (w, u)
tends to zero uniformly in + lul2 ~ c2. Therefore, we conclude, for a
fixed t &#x3E; 0,

By (64) and the well-known formula for the volume of the unit disk in
we conclude the assertion. For the case of the interior points of the

polytope P, these can be proved by using the fact proved in Remark given
above. 0
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