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1565-

QUANTIZATION AND MORITA EQUIVALENCE FOR
CONSTANT DIRAC STRUCTURES ON TORI

by Xiang TANG and Alan WEINSTEIN (*)

1. Introduction.

Quantum, or noncommutative, tori can be obtained by deformation
quantization of constant Poisson structures on ordinary tori. This fact was
noticed by the second author [20] and was developed by Rieffel [16] into a
rigorous theory of "strict deformation quantization" from Poisson manifolds
to C* algebras. Earlier, Rieffel [13] had introduced a notion of strong Morita
equivalence for operator algebras, sufficient to imply the equivalence of
suitable categories of topological representations. For simplicity, we shall
refer to this notion simply as "Morita equivalence."

Motivated by applications to duality in string theory (see [18]), Rieffel
and Schwarz [17] showed, with an additional technical hypothesis, that the
algebras of functions on two noncommutative n-tori are Morita equivalent
if the underlying Poisson structures are related by a "fractional linear

transformation" whose coefficient matrix belongs to In this

paper, we will prove the Rieffel-Schwarz result without the additional

hypothesis by extending the scope of the theorem from Poisson structures
to Dirac structures, whose definition we will recall later in this introduction.

Li [9] has also proven the full theorem for the case of Poisson

structures, and in fact all of our results could be deduced from his theorem.

(*) Research of both authors partially supported by NSF Grant DMS-02-04100.
Keywords: Dirac structure - Poisson structure - Morita equivalence - Quantization.
Math. classification: 46L65 - 81 S10.
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Nevertheless, our proof is completely different, and we believe that it sheds
further light on the role of ,5’O (n, n]Z) .

A constant Poisson structure on Tn - R /Z is specified by a skew-
symmetric, real, n x n matrix II, representing a skew-symmetric bilinear
form on the space R~* of translation-invariant vector fields on the torus.

The standard deformation quantization of the Poisson manifold is

obtained by deforming the algebra of finite Fourier series on Tn using the
multiplication rule

where r and s are multi-indices in Z’ C IRn*, n is the deformation para-
meter, and e~.,.t (x) - e27ri(m,x). This product extends to the Fourier series
with rapidly decreasing coefficients and from there to a C*-completion Ann
which is known as "the algebra of continuous functions on the quantum
torus1 1r nn" . At this point, we will leave the world of deformations by setting
~ = 1 so that we have, for each skew-symmetric form n, the algebra ,An
of functions on 1r n. This algebra may also be described as the C*-algebra
determined by n unitary generators E1, ... , En (lower indices here are in Z
rather than Z’) subject to the commutation relations Ej Ei = EiEj .

One sees immediately from the commutation relations that two kinds
of operations on II do not change the isomorphism class of An. Adding a
matrix with integer coefficients does not change the algebra at all. Also,
if A C GL(n, Z), then the algebras An and AAlqnAt are isomorphic via the
map which takes Ei to fl, 

Much less obvious are operations for which the quantized algebras
are not isomorphic but are still Morita equivalent. The first of these was
discovered by Rieffel [14] when n = 2. The matrix II then has the form
( o 0), where 0 is a real number. The first of the two kinds of operation
above adds an integer to 0, while the second leaves 0 fixed or simply changes
its sign. Rieffel proved in [14] that a third operation, namely replacing 0
by 1 /8, preserves the Morita equivalence class of the algebra. The three
types of operations are contained in, and in fact generate, the action of the

group GL(2, Z) on the real numbers by fractional linear transformations
0 H (pO + + s)-1; hence, the algebras corresponding to 0 and 8’ are
Morita equivalent if 0 and 0’ are in the same GL(2, Z) orbit. The converse
is also proved in [14].

1 Sometimes is itself referred to as the quantum torus, but since this terminology
does not agree with normal usage when 11 = 0, we prefer not to use it.
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To a large extent, the main result of [17] extends to higher dimensional
tori the "if ’ part of the classification above (but not the converse, which
is false unless n = 2 or the tori are "generic" [6]). The group O (n, of

automorphisms of Rn e3 preserving the indefinite inner product

has subgroups and SO (n, defined in the obvious way. An

element of O (n, may be written in block form as

where A, B, C, and D are n x n integer matrices which satisfy =

0 = Bt D + Dt B and At D + Ct B = 1. Such a matrix "acts" on the space
Tn of skew-symmetric n x n matrices by taking II to

The word "acts" is in quotation marks because the right hand side is not
defined when the denominator CII + D is singular.

The main result of [17] may now be stated as follows.

THEOREM 1.1. - If II E Tn is such that g. II is defined for all

g E SO(n, then the algebras Ag.n are all Morita equivalent to one
another.

We note that [17] contains a counterexample to the converse of this
theorem when n = 3, while Schwarz [18] proves a converse using a refined
notion known as "complete Morita equivalence" .

The proof of Theorem 1.1 in [17] uses a decomposition of the general
element g E SO (n, as a product of generators of three types, analogous
to the three types described above for n = 2. As a result, it does not

establish the Morita equivalence of II and go - II if the action on II is defined
for a particular go but not for all g. The key idea of the present paper is
to circumvent this difficulty by enlarging (in fact, compactifying) Tn to
the space of Dirac structures, on which the action of and hence

that of ,S’O(n, n I Z), is everywhere defined. This idea was suggested by the
appearance of the bilinear form (2) in both the Rieffel-Schwarz theorem
and the definition by Courant [4] of Dirac structures, which we now recall.

DEFINITION 1.2. - A Dirac structure on a vector space V is a

maximal isotropic subspace of V E9 V* witll respect to the non-degenerate
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symmetric bilinear form (2). A Dirac structure on a vector bundle E is
a subbundle of E* which is a Dirac structure on each fibre. A Dirac

structure on a manifold M is a Dirac structure on TM whose space of

sections is closed under the Courant bracket

The space of all Dirac structures on the vector space R~ will be denoted

by Dn .

Dirac structures on a manifold M include the Poisson structures

and closed 2-forms (identified with the graphs of the corresponding skew-
symmetric bundle maps T*M - T M or TM - T*M), as well as the
foliations (identified with direct sums F e3 F°, where F is an integrable
subbundle of TM, and F° is its annihilator).

From now on, we will be concerned exclusively with constant (i.e.
translation-invariant) Dirac structures on tori Tn. Since all the terms in the
Courant bracket involve derivatives, these are just the translation-invariant
Dirac structures on the tangent bundle Tyn, or equivalently the Dirac
structures on the vector space JRn of constant vector fields (which may be
identified with the tangent space at any point).

The "action" of on antisymmetric matrices now has the

following interpretation. We identify each n E Tn with the map 
of which it is the matrix with respect to the standard basis and its dual.
Then we identify II with its graph

an element of D~ . The group O (n, acts in the obvious way on Dn,
and the correspondence II H rn is O (n, equivariant with respect to
the action (3). Thus, if a product of generators g = gr ~ ~ ~ gl maps II to
II’, even if g1 II, g2gllI, ... are not all defined as antisymmetric matrices,
they are defined as Dirac structures. Our strategy for proving the Rieffel-
Schwarz theorem, then, is to attach an algebra Ar (more precisely, a Morita
equivalence class of algebras) to each Dirac structure r, and to prove that
this Morita equivalence class is unchanged when F is transformed by any
member of a certain set of generators of O(n, n]Z) .

Remark 1.3. - The apparent extension of the Rieffel-Schwarz the-
orem from SO (n, to O (n, is illusory. As we will see in Corol-

lary 2.3 below any g E which transforms some Poisson structure

into another one must lie in ,S’O (n, n I Z). On the other hand, by passing to
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we will not only bypass the "obstruction" in the original proof,
but we will reduce from three to two the number of kinds of generators
which must be dealt with.

To construct Ar, we begin by recalling from [4] (Proposition 1.1.4)
that to every Dirac structure r on the vector space R~ there corresponds
a natural bivector IIr on the quotient of Jaen by R~ n F. (Here, we are
identifying with the subspace Rn (D ~0~ of Conversely (with
a proof similar to arguments in Section 1.1 of [4]), the intersection n r

and the bivector IIr determine r.

For a constant Dirac structure r on the intersection Rn nr defines

a foliation known as the characteristic foliation of the Dirac structure, while
the bivector IIr defines a Poisson structure transverse to this foliation.
The idea behind what follows is that the function algebra of the quantized
Dirac manifold (Tn, r) should be obtained from a foliation algebra for the
characteristic foliation (specifically, the groupoid algebra of the leafwise
fundamental groupoid of the foliation) by "deformation" via the transverse
Poisson structure. This idea, already suggested by Block and Getzler [1]
(see also [21]), is at best inconvenient to apply directly in our setting, since
it requires the extra data of a so-called Haar form. Instead, we restrict
the fundamental groupoid of the foliation to a subtorus M C which is

a complete transversal to obtain an equivalent 6tale groupoid. M carries
a Poisson structure IIr,M, from which we can obtain a quantum torus
algebra the usual way. The restricted groupoid turns out to be a
transformation groupoid for an action of a lattice on M, and so we may form
the crossed product algebra of Arj,,m with the lattice. This algebra depends
on the choice of M, but we will show that its Morita equivalence class
depends only on F. This "independence of transversal" proof, carried out
in detail (in a more general context) in [19], is the only analytic ingredient
in our proof. Its use is thus an extension of the idea of Connes (Section
8.{3 in [2]), that the original Rieffel theorem for T 2 is a consequence of the
Morita invariance of ordinary foliation groupoid algebras under change of
transversal.

Acknowledgments. - We would like to thank H. Bursztyn,
M. Crainic, K. Fukaya, H. Li, M. Rieffel and A. Schwarz for helpful sug-
gestions.
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2. Linear algebra of Dirac structures.

We begin with some notation and definitions related to Dirac struc-
tures on a vector space V.

We will identify V with the subspace of The projection
V EB V * -~ V* will be denoted by p*. The annihilator in V* of a subspace
E C V will be denoted by Eo.

DEFINITION 2.1. - The characteristic subspace C(r) of a Dirac
structure r on V is T n V. The dimension of C(r) is the nullity N(r) of r.
r is called even or odd according to the dimension of its nullity.

The maximal isotropic property of F immediately implies that

LEMMA 2.2. - The spaces of even and odd Dirac structures are the

connected components of Dn . The action of SO(n, leaves each com-

ponent invariant, while the action interchanges
the components.

Proof. We follow Courant [4] and rewrite as an orthog-
onal direct sum P e3 N, by choosing a positive definite symmetric inner
product b on Rn and letting P be the graph of the corresponding map

R~*. Its orthogonal complement N is the graph of the map cor-
responding to -b. P and N are maximal positive and negative definite
subspaces of R~ E9 and the Dirac structures on are the graphs of
anti-isometries from P to N, with which they may be identified. If we fix one
such anti-isometry K, namely the one identified with E9 {0}, each Dirac
structure h may be identified by composition with K-1 with an isometry
L from P to itself, and the characteristic subspace of r is then identified
with the fixed space of L. Since the codimension of the fixed space of L

is even or odd according to whether L preserves or reverses orientation,
the dimension modulo 2 of the characteristic subspace is constant on each
component of D~ .

To analyze the effect of O (n, on parity, it suffices to look at the
maximal compact subgroup O (n) x O(n) which leaves the subspaces P and



1571

N invariant. An element of this subgroup is a pair (A, B) of isometries
of P and N respectively, and it takes the Dirac structure associated

with K-1 L : P - P to the structure associated with K-1 BLA-1. The
last part of the lemma now follows from the identity 
det K-1 L det B det A. 0

Since Poisson structures are even Dirac structures, we have the

following corollary, which gives one explanation for the appearance of the
special orthogonal group in the Rieffel-Schwarz theorem.

COROLLARY 2.3. - Any element of O (n, which transforms

one Poisson structure to another must lie in SO(n, 

We now introduce further notation in and O (n, n ]Z) . Let (et,...,
en ) and ( f 1, ... fn) be the standard basis of and its dual basis. For any
subset I of {I, 2, ... , we denote its complement by I’ and its cardinality
by III. R, and will denote the subspaces of R n and spanned by
the ei (or fi) for i E I. Note that JRI’ *. We will also use this
"exponent" notation for subgroups of Z~ and ~n .

The element of which exchanges ei with f i for all i E I

and which leaves all other basis elements fixed will be denoted by If A

belongs to GL(n, Z), we will denote by p(A) the element of O(n, which

acts on the first summand of R n E9 R n* by A and on the second summand
by (At)-l. If N is a skew symmetric n x n matrix with integer entries, v(N)
will denote the map (x, y) H (x + Ny, y). (When applied as a fractional
linear transformation, v(N) just adds N to each Poisson structure.) The
additive group of all v(N)’s is generated by its elements Vij for i  j, where
vi~ is the sum of the identity with the rank 2 matrix which maps f to ej,
fj to -ei, and all other basis elements to zero.

It is proven in [17] that is generated by the p(A)’s, the
vij’s, and It follows easily that O(n, is generated by the p(A)’s,
the and But in fact even more is true.

LEMMA 2.4. - The group is generated by and

p(GL (n, Z)). °

Proof. The subgroup generated by and p(GL(n, Z) ) contains
for all i. Hence it contains = 911,21. A straightforward

computation shows that where A maps ei to ei + ej
and fixes all the other basis elements of R~. 0
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Remark 2.5. - Elimination of the generators vi~ is important for
our proof. Although these generators act trivially on the quantization of
Poisson structures, this is not true for general Dirac structures.

Our quantization of Dirac structures will make essential use of the

following result of elementary linear algebra.

LEMMA 2.6. - For any F E Dn, there is a subset I -

n - N(r) for Wllich RI is complementary to C(r).

We will also use:

LEMMA 2.7. - If is complementary to C(r) (so that, in

particular, N (IF)), then N (oj (r)) =0; i.e. is a Poisson structure.

Conversely, if III = N(r) and aI(F) is a Poisson structure, then is

complementary to C(I’).

Proof. - Taking annihilators in the direct sum decomposition

and using (5) gives the dual decomposition

Now aI(r) is a Poisson structure if it has zero intersection with or,

equivalently, if r n aI(JRn) == {0}. Suppose, then, that (X,~) 
Since a, (Rn) - e3 R,*, it follows from (7) that 0. Now we have
(X, 0) E r with X E R,’, which by (6) implies that X = 0 as well.

For the converse, it suffices to prove that, if is a Poisson

structure, then {0}. But if X is an element of this intersection,
then (X, 0) E h, and c~(X,0) = (X, 0). Since is a Poisson structure,
we must have X = 0. D

We will see below that, when the constant Dirac structure on Tn
given by r is quantized by our method, the resulting algebra is just that
obtained by quantizing the Poisson structure 

In general, there are many which can convert a given Dirac
structure to a Poisson structure. However, the ones with minimal length
are those given by Lemma 2.7. This follows from the following lemma and
its corollary.

LEMMA 2.8. - For any Dirac structure r and any i, 
N(r) + 1.
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Proof. It follows from (5) that the statement is true if

Writing alil as 1 + R, where R has rank 2, we find that

Since p* R(r) has dimension at most 2, it follows that

Since ujzj is an involution, we also have

and the result now follows from Lemma 2.2. 0

COROLLARY 2.9. - Ifu I (r) is a Poisson structure, then &#x3E;, N(r).

3. Quantization.

In this section, we will define the quantization of a constant Dirac
structure on a torus as a Morita equivalence class of algebras. In fact, we
will see that quantizations can all be realized as quantizations of constant
Poisson structures.2

From now on, we will identify each constant Dirac structure on T’
with the corresponding h E Dn. The subspace C(r) then determines the
direction of the characteristic foliation.

-- 

It follows from Lemma 2.6 that C(r) has a complementary subspace
M having a basis with rational components; we will often work with com-
plements of the special form given by selecting a subset of the coordinate
axes, but any rational complement can be put in this form by a change of
coordinates in GL(n, Z). The projection of any rational complement into
T n is a compact subtorus M which is a complete transversal to the char-
acteristic foliation.

The Dirac structure h induces a transverse Poisson structure IIr,M
on the transversal torus M. We will construct an algebra by using
this Poisson structure to "quantize" the groupoid algebra of the restriction
to M of the fundamental groupoid along the leaves of the characteristic

2 We are indebted to Marc Rieffel for pointing this out.
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foliation of r. The full fundamental groupoid is naturally isomorphic
to the transformation groupoid associated with the translation action of

C(r) on T n; its restriction to M becomes the transformation groupoid
of the translation action of a lattice. The subspace and lattice may be
identified with and its integer lattice Zk respectively. In
more geometric terms, we may consider T n as a principal M bundle over
the quotient torus Tn / M whose fundamental group is the lattice The

characteristic foliation is a flat connection on this principal bundle, and the
homomorphism M giving the translation action is the holonomy of
this foliation.

The translation action on the torus M clearly induces an action on
the quantum torus algebra which enables us to make the following
definition.

DEFINITION 3.1. - With notation and terminology as above, we
define the algebra to be the crossed product C* -algebra ,A.nr, M x 

Remark 3.2. - We may think of the crossed product 
x Zk as a "quantization" of the algebra C(M) x Zk . The latter

is the groupoid algebra of the transformation groupoid M x 7~~ -::3 M

associated to the translation action of Zk on M. We may therefore think of
as the groupoid algebra (but not the function algebra) of a quantum

groupoid. It may thus be considered as a (strict) deformation quantization
of a noncommutative algebra, in the spirit of [1] and [21]. We refer to [19]
for more details.

The construction just described becomes much more concrete when
the complement M is taken to be of the form RI’ for suitably chosen
1’. (As we remarked earlier, any complement can be put in this form by
a transformation in GL(n,Z).) C(r) is then the graph of a linear map
j3 : whose composition with the inclusion R, and the

projection - gives the holonomy action of Z~ on If, for

convenience (and without loss of generality), we number the coordinates so
that ~’ _ ~ l, ... ,1~~, then h has a basis consisting of the rows of the block
matrix.

where the l ’s represent identity matrices.

We may see from this description of r that the crossed product algebra
.A.r,M is generated by n unitary elements which satisfy the commutation
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relations associated with the Poisson structure

The Dirac structure corresponding to this Poisson structure has a
basis given by the rows of the block matrix

which is obtained from (8) by interchange of the second and fourth columns,
i.e. by the action of the 0(n, nIZ) element a¡.

In addition to reproving part of Lemma 2.7, we have thus proven:

PROPOSITION 3.3. - If h is a constant Dirac structure on T n , and
is a complement to C(r), then the crossed product algebra is

isomorphic to the quantum torus algebra 

Remark 3.4. - Although Ar, M depends only on rand M, the Pois-
son structure also depends on the choice of a torus complementary
to M. However, changing the complement changes the Poisson structure
by one with integer coefficients, which does not affect the quantization.

THEOREM 3.5. - The Morita equivalence class of Ar,M is inde-

pendent of the choice of M.

Proof. We give an outline of the proof, with analytic details to
appear in [19]. It will be an instance of a quantized version of the fact (see
[11]) that Morita equivalent groupoids have Morita equivalent C*-algebras.

Let Mi (i = 1, 2) be transversal tori, used in Definition 3.1 to

produce algebras Ar,m,. These algebras are quantized versions of the
groupoid algebras of the transformation groupoids G2 - Mi x Mi,
which are the restrictions to M1 and M2 of the transformation groupoid
G = T n T n associated to the characteristic foliation. An equivalence
of groupoids between the Gi is given by the "bibundle" M1 ~- Q ~ M2,
where Q is the set of morphisms in G with target in M1 and source in M2,
the "moment maps" Q - Mi are given by the target and source maps
of G, and the (free) actions of G1 and G2 on Q are given by left and right
G-multiplication respectively. It is clear that these satisfy the equivalence
condition that the orbits of each action are the fibres of the moment map
of the other.
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If our groupoid algebras were not quantized, the corresponding bi-
module would simply be C(Q), as in [11]. To adapt to the quantized
groupoid algebras, we must also quantize C(Q). We do this by observ-
ing first that the /-1i’S are covering maps, so we can pull back the Poisson
structure by pi to give a Poisson structure IIQ on Q. Since the
Poisson structures on M1 and M2 are obtained from an invariant trans-
verse bivector to the characteristic foliation, the source map p2 is then

anti-Poisson.

We now use TIQ to quantize the functions on Q, obtaining an algebra
,A~ into which and the opposite algebra to embed as mutual

commutants, making ,AQ into a Morita equivalence bimodule. The Hilbert
module structure is a "quantized" version of the one used in [11]. 0

Theorem 3.5 makes the following definition a valid one.

DEFINITION. - If r is a constant Dirac structure on a torus, the

quantization of r is the Morita equivalence class of algebras containing
,Ar,M for any subtorus M which is a complete transversal to the charac-
teristic foliation of h.

Example 3.7. - If r is already a Poisson structure, we must take
M to be a point, and so we recover the usual quantization of Poisson
structures. On the other hand, if r = F e3 Fo, where F is a (constant)
foliation, then the transverse Poisson structure is zero, and we obtain the
usual foliation algebra associated to a complete transversal. When n = 2,
any odd Dirac structure is of this form, and the quantized algebra is a
"rotation algebra." Then (r) is a Poisson structure whose quantization
is the same algebra. This gives a geometric analog of the equivalence
between rotation algebras and quantum 2-torus algebras.

Remark 3.8. - Although the translation group of preserves the

constant Dirac structure h, it does not act on the algebra In

some sense which it would be interesting to clarify, it acts "up to Morita
equivalence."

4. Invariance under Action.

We are now ready to prove our main theorem. Given the Morita
equivalences established in Section 3, the proof will be very short.
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THEOREM 4.1. - If two Dirac structures on are in the same

orbit of the action, then their quantizations are the same Morita

equivalence class.

Proof. In view of Lemma 2.4, it suffices to show that the quanti-
zation is unchanged under the action of p(GL (n, Z)) and of 

Any A E GL(n, Z) acts on and the invariant nature of our con-

struction implies that the algebras and are isomorphic.

For a {1}, our argument is based on the following diagram.

aI (T)
To prove that T and a {1} T have the same quantization, we first apply

Lemma 2.8 to conclude that N(h) and differ by ~1, which
allows us to assume that = N (r) + 1.

We now apply Proposition 3.3 and represent the quantization of r

by the quantum torus algebra where - N(r) and is a

Poisson structure. Now is a Poisson structure, so

by Lemma 2.8 and Corollary 2.9, I I - and hence the

quantization of all 1 (IF) is also represented by 0

In view of the O(n, equivariance of the identification of Poisson
structures with their graphs, we have:

COROLLARY. - If II E Tn and g E SO(n, are such that g. II

is defined, then the algebras ,,4.n and Ag.n are Morita equivalent.

This is exactly extension of Theorem 1.1 conjectured in [17] and
proved in [9].

5. Final remarks.

Remark 5.1. - In [18], A. Schwarz defines a refined notion of Morita
equivalence-complete Morita equivalence, which requires that there be a
connection on the Hilbert bimodule, compatible with constant curvature
connections on the noncommutative tori of both sides. He showed that
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any two noncommutative torus algebras must be in the same orbit of
if they are completely Morita equivalent. The statement of

our main theorem 4.1 is also true for complete Morita equivalence. The
key point is that the bimodule constructed in [19] can be identified with
a Heisenberg module as defined by Rieffel in [15]. The complete Morita
equivalence then follows from Rieffel’s result on Heisenberg modules. The
relation between our bimodule and the bimodule constructed in [17] will
be studied in [19].

Remark 5.2. - Our proof of Theorem 4.1 is not optimal. We would
like to find a uniform construction which takes an O(n, nlZ) element
and produces a Morita equivalence bimodule. The possibility of such a
construction is related to the -structure of the "Picard groupoid" in which
the objects are pairs (r, M) and the morphisms are isomorphism classes of
Morita equivalence bimodules between the corresponding algebras.

Remark 5.3. - Our approach in this paper may be related to open
string theory in the following way. In string theory, a subtorus M may
be considered as a "k-brane." Strings ending on this brane are geodesics
perpendicular to M with respect to some background metric. Therefore
they lie in a foliation transverse to M. If we are also given a "B-field"
on M, represented by a constant bivector, then there is a unique Dirac
structure F on the torus for which the characteristic foliation C(r) is the
given one and the transverse Poisson structure IIr,M is the B-field. The

field theory of of this open string is described (see, for example, [7]) by the
crossed product algebra in Definition 3.1.

The action of alil, can be seen as a t-duality in the i-th direction.
Lemma 2.4 above shows that O (n, nlZ) is the full group generated by t-
duality. And Theorem 4.1 shows that different open string theories related
by t-duality are Morita equivalent.

Remark 5.4. - There is another geometrical explanation of our Defi-
nition 3.1, which shows a relation to algebraic geometry and homological
mirror symmetry.

For a torus we consider the moduli space of flat connections on

its trivial line bundle. Each such connection can be identified with its

holonomy, a homomorphism from the fundamental group of Tn to the
structure group ~1. It is easy to see that the set of all flat connections

is an n-torus, but its typical tangent space is naturally identified with the

typical cotangent space of Tn. Therefore, we call this new torus the dual
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torus of Tn, written as Tn.

When a Dirac structure F E Dn has positive nullity, it is not a Poisson
structure. However, when we fix a transversal M to C(F), it is not difficult
to see that r defines a Poisson structure on an n-dimensional subtorus

M x Mo in Tn x particular, when F is {0} x R~, it defines the zero
Poisson structure on 

The group O(n, nlZ) acts on T n x ~n naturally. The subgroup
p(GL(n, Z)) fixes the product decomposition of T n x while maps

the i-th component torus to its dual.

The picture above can be seen as a real analog of the theory of
Mukai transformations [12] of abelian varieties. We hope to elucidate this
connection and its relation to Kontsevich’s homological mirror symmetry
[8] in a future publication.
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