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ON HOLOMORPHIC MAPS INTO COMPACT
NON-KÄHLER MANIFOLDS

by Masahide KATO &#x26; Noboru OKADA

Introduction.

In this paper, we shall consider the extension problem of holomorphic
maps of a Hartogs domain into compact complex manifolds. Fix an integer
n &#x3E; 2. By a Hartogs domain, we shall mean a domain in complex
n-dimensional Euclidean space (Cn defined by

Put

Let X be a compact complex manifold and o- : H;!p -+ X a
holomorphic map. We consider the holomorphic extendability of a. Suppose

Keywords: extension of holomorphic map - Envelope of holomorphy - Non-Kahler
manifold.
Math. classification: 32D15 - 32H02 - 32J17 - 32J18.
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that a extends holomorphically to 3- : A’ B A ~ X outside a closed
subset A of 0’2. If X is a projective algebraic manifold, then it is well-

known that for any a, A can be chosen to be an analytic subset of complex
codimension 2 Ivashkovich [11] proved the same fact for compact
Kahler manifolds. If X is compact non-Kahler, then there are many

examples where A are necessarily non-empty subsets with complicated
structures. There are examples of compact complex manifolds for which
a cannot be extended across closed sets with interior points([Kt2]), or with
various fractal dimensions([O] ) .

Motivated by Krachni [Kr], we think we may be able to obtain
some informations of the complex structure of a given compact complex
manifold, by considering holomorphic maps of Hartogs domains into the
given manifold. This paper is our first attempt to probing manifolds by
holomorphic maps. We shall give the definition of an index which measures
the extendability of holomorphic maps and study its properties.

This paper is organized as follows. In section 1, we shall recall

some facts on analytic continuations of holomorphic maps and give basic
definitions. In section 2, we shall define the holomorphic extension index.
In section 3, we shall give a kind of characterization of the index (Theorem
2). In section 4, we shall prove some properties of the indices (Theorems
4, 3, 4). In section 5, we shall give examples. Lastly in an appendix, we
shall give proofs of some properties on Hausdorff dimensions in relation to
holomorphic maps. Some of them are used in earlier sections. Applications
of our results will be published elsewhere. Obviously, it is unavoidable to
consider also meromorphic extendability, which we shall consider in the
forthcoming papers.

1. The maximal extension of a holomorphic map.

Let SZ and M be complex manifolds and 7r : Q - M a holomorphic
map. We say that (Q, Jr) is an 6tale domain over M, if SZ is connected and
7r is locally biholomorphic. Fix a complex manifold X and a Stein manifold
M. For an étale domain over M and a holomorphic map f : SZ --~ X,
we call the triple (Q, 7r; f ) a map element to X over M.

DEFINITION 1 (Extension). - Consider map elements (Oa, 7ra; fa)
and (0,6, 7r,6; f,6) over a Stein manifold M. We say that (0,6, 7ro; f,6) is

an extension of over M, if there exist an étale map 



1829

Qo such that fa = f,~ o 7r, = 7ro o We denote this ex-

tension (Qo, 7ro; f,) by (Qo, 7ro, Ai3,; fo). Further, uTe say that an extension
(0, 7r, Aa ; f) of fa) is said to be maximal over M, if, for any ex-
tension (Qo, 7ro, f,~) of (Oa, 1ra; fa) over M, there exists an etale map
A, : °ø ~ SZ such that Aa = A, o 7ro _ 1r o A, and f,~ = f o 

THEOREM 1 (Malgrange). - Let X and M be complex manifolds.
Then, for any map element (Oa, 1ra; fa) to X over M, there exits a maximal
extension of f a over M, which is unique up to isomorphism.

Proof. Our proof is a copy of the argument of [M] pp.28-32. We
define a sheaf of germs of holomorphic maps of M into X. Let z E M .
Consider the set of holomorphic maps into X of open neighborhoods of z.
We introduce an equivalence relation in this set of maps by identifying two
maps cp and if cp - 0 on a neighborhood of z. The equivalence classes
are called germs of holomorphic maps into X at z. The germ defined by cp
at z is denoted by The stalk of germs of holomorphic maps into X at z
is denoted by The sheaf of germs of holomorphic maps into X on M
is defined by

A complex analytic structure can be put on C~M in the following way. Let
z E M and let cpz E cpz is represented by a holomorphic map ~p defined
on a neighborhood U of z. For every w E U, cp defines a germ w. We

define

to be a neighborhood of It is easy to verify that this defines a topology
on Oj and 0~ is a Hausdorff space.

For the map element (f2a, 1r a ; fa) over M, take a point z E f2a and
put z = 1ra(z). Then there is a neighborhood Uz of z in S2a such that 1ra!Uz
is biholomorphic. Put U = 7ra(Uz). Then the holomorphic map p = 
of U defines a germ in 0; C We define a map Aa : 0~ by
setting

vvhere z = Let n be the connected component of in 

Let w : the natural projection and put 7r Let

extension ot 



1830

To verify this, take any extension (SZ~, ~r~, ~,~a; f,~) of (f2a, 1fa; fa)’
Then by the same argument as above, we have a map ; I
setting

where z = 7ro (i). Since 7ra = 7ro o À/3a and fa = f/3 o regarding 7r0 as
a map of a neighborhood of 7ra(z) to a neighborhood of À/3a(z) E n/3, we
have

for z E Qua. Therefore C Ao (Q,3). Since Qo is connected by
definition, we see that A,3 (Qo) is contained in Q. Thus (f~7r,Ao;;/) is

maximal.

Let and (Q2, ~r2, ~2; , f2) be two maximal extensions
of (Qa, 7r a , fa)’ By the maximal property, there exist two étale maps

A12 : Q2 - A21 : Q2 such that ~2 = A21 o ÀI and A12 o A2-
For z E we have

Hence A12 o ~21 = id on ÀI(OaJ and A21 o ~12 - id on À2(OoJ. Therefore
A12 o A21 = idQ, and A21 o A12 = ido2 holds. Thus the maps A12 and A21
are isomorphisms. D

DEFINITION 2. - Let M be a complex manifold. If an extension

(SZ, ~r, ~a; f ) of a map element (00, 7ra; fa) over M is maximal, the holo-
morphic map f : Q - X is called the maximal extension of fa, and 0 is
called the maximal domain of definition for fa over M.

Let (Q,, 7r,) be an étale domain over a Stein manifold M. Let

be a set of holomorphic functions on no. We say that

(0,6, 7r,6, À,6a; F,6) is an extension of (00, 7ra; Fa), if there exist an étale

map ~,~~ : Qua - 0,6 and holomorphic functions on Q, such
that for any fa = f~ o 7ra = 7r, o In this situation, we say
that (Q,3, 7ro, F,6) is a simultaneous extension of Fa from (00, 7ra; Fa)
over M.
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Let Fa be a set of holomorphic functions on an étale domain (Oa, 
on M. A maximal simultaneous extension (0, 7r, Àa; F) of Fa is a simulta-
neous extension of Fa ) such that, if 7ro, A,a ; F~) is any simul-
taneous extension of (Oa, 7r,; Fa), then there is an étale map A,3 : 0,6 ---+ 0
such that, for all i E I, f ~ = f? o A and Aa = A, o A,a. It follows that

= We can prove the existence and uniqueness up to isomorphisms
of a maximal simultaneous extension of a given system (S2a, 1fa; Fa) over
M in a manner similarly to the case a maximal extension. When we take as
Fa the set of all holomorphic functions on Oa, we abbreviate (Oa, 1fa; Fa)
to (Oa,1fa).

DEFINITION 3. - Let (Q, 7r) be an etale domain over a Stein manifold
M. The maximal simultaneous extension (f2, 1r, À) (A : 0 ---+ f2, 7r = 1roÀ) of
all the holomorphic functions on (S2, vr) is called the envelope of holomorphy
of Q over M.

Note here that the étale is not necessary injective.

PROPOSITION l. Let (Oa,1fa), (0,6,1f,6) be étale domains over a
Stein manifold. Let (fla, 1r a, Àa), be envelopes of holomorphy.
Let Qua - Q, be an 6tale map. Then there is an 6tale map

/L,6a : f2, ---+ fl,6 such that A, o ~,~a = /L,6a o Aa.

Proof. - Set Fa = ~c~aC~~, where 0,6 is the set of holomorphic
functions on Then is a simultaneous extension of

(Oa, 1fa; Fa), where Fa = A* - 1 (F,). Note here that ~~ : Fa - Fa and
0,6 ---+ Fa are bijective. Since (SZ~, ~r,~, ~,~) is a maximal extension of

(Q,3, 1f,6; 0~), we see that the simultaneous extension 1r,6, A~ o of

(Oa, 1fa; Fa) is maximal. Therefore there is an étale map /L,6a : fl,6
with the required property. D

2. The holomorphic extension index.

In this section, we shall give the definition of the holomorphic exten-
sion index of a complex manifold and discuss on its properties. Fix n &#x3E; 2.

Let X be a complex manifold and a : holomorphic map. By the

argument in section 1, we can consider the maximal extension o’ : Q - X
of the map element (Hn where Q is étale over the polydisk An,
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Q - H P -~ A’ is the inclusion. As we shall see below, the
maximal domain S2 of definition for a is not always a subdomain 

DEFINITION 4. - Let X be a complex manifold. A holomorphic map

is called an n-probe into X, if the maximal domain of definition for o, over
A’ is a subdomain in A’.

DEFINITION 5. - A complex manifold is said to be n-probable, if

every holomorphic map 
--- ----. ----

is an n-probe.

H;!,p -+ X be an n-probe whose maximal domain is Q. Put

Then A~ is a closed subset and is called the singular set of the probe.
Considering the Hausdorff dimension d(A~) of Aa, we shall define an index
of X as follows.

DEFINITION 6. - The n-th holomorphic extension index Hexn (X ) of
a complex manifold X is defined by

where a runs over all n-probes into X.

Here we put

By definition, Hexn (X) is a real number satisfying

If Hexn (X) = 2n, then every n-probe extends to a holomorphic map of On
into X outside a closed set of Hausdorff dimension zero. For m &#x3E;, n, let

by
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Then for any n-probe a, we have an m-probe a on and the inclusion relation

Therefore d (A~ ) + 2(m - n). Hence

where T runs over all m-probes. Thus we have a relation

provided that X is both n- and m-probable.

Obviously, Stein manifolds are n-probable with Hexn = ~oo for any
n &#x3E; 2. Any Moishezon manifolds are n-probable with Hexn &#x3E; 4 for any
n &#x3E; 2. By Ivashkovich [II], we know that compact Kahler manifolds and
any compact complex surface are n-probable with Hexn &#x3E; 4 for any n &#x3E; 2.

Any subdomain of an n-probable manifold is n-probable. The compact
complex 3-manifold of Example 1 in section 5 is n-probable for any n &#x3E; 2

with Hex2 = 0. Many flat twistor spaces over conformally flat real 4-

dimensional manifolds have fractal Hex2 and Hex3, see Example 2. In

general, however, there are non-probable compact complex manifolds, see
Example 3 in section 5.

We have the following easy sufficient condition for a map to be a
probe.

PROPOSITION 2. - Let X be a complex manifold and a : ---* X a

holomorphic map. Suppose that a extends holomorphically A ---+ X,
where A is a closed subset with d(A)  2n -1. Then a is an n-probe.

Proof - Put SZ = A. Let S2~ be the maximal domain of
definition over An . Then we have the following commutative diagram of
the canonical étale maps:

Put Qo = A(Q). It is clear that A is injective and 
is biholomorphic. Since p is étale, we have



1834

Therefore SZ~ B ~c-1 (A) is connected. Since Qo C SZ~ B ~c-1 (A), we see that
Qo coincides with 00- B /L -I (A). Hence p is injective. m

3. A characterization of the index.

For n-probable manifolds with Hexn (X) &#x3E; 2, we have the following
property.

THEOREM 2. - Let X be a complex manifold which is n-probable
with Hexn(X) &#x3E; 2. Let (Q, Jr) be an étale domain over a Stein manifold
M with dimc M = n. Then, for every holomorphic map a : Q - X,
the maximal domain Oa of definition for a over M is a subdomain of Õo-
satisfying

where na is the envelope of holomorphy for na over M.

Proof. We can clearly assume that Q = Q, without loss of

generality. Take a Hartogs domain H = H~.p and consider a holomorphic
open embedding cp : H - Q such that is also injective. Put T = cp(H)
and T = 7r o cp(H). Note here that 7rlt : T -+ T is biholomorphic. Put
A = Since M is of Stein, 1r o p extends to cp : A - M and cp
is biholomorphic onto its image AT := cp(0). Let UT be the connected
component of which contains T . Put UT = 1r(ÛT) C AT.

Consider the holomorphic map aT : - ~ o (~r ~ T ) -1 : T - X. Since X is
n-probable, there are a closed set AIT in AT with 2n - Hexn (X ),
and a holomorphic map which extends Then, since

(Q, 7r; 6) is the maximal domain of extensian for a over M, there is an
étale map p : AT B by which (Q, 7r, p; ~) becomes an extension of

I t; over M, where t : the natural inclusion.

Since t - 7r o p, p is injective and we have 7r = on p(AT ) Note

that p(AT ) AaT) is a subdomain contained in and contains T .
Therefore AIT) is contained in UT.

Suppose that there is a point x E UT B p(AT ) AIT)’ Since UT C Q,
there is a neighborhood (IT) of x where a is defined. Since 7r is étale,
we can assume that 1r(W) is neighborhood of which is biholomorphic
to W. Therefore cry is defined on 1r(W). Hence E ’AT B This is

absurd, = X (AT B Hence we infer that AaT)
coincides with UT .
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Therefore 1 , is a biholomorphic map. We glue
4lT and SZ by identifying and UT by to obtain a new domain

AT U Q. It is clearly étale over f2.

Thus, taking holomorphic open embeddings cpa : H --~ SZ such that
7r o CPa are injective, we form the union

by the method described above. Then, there are a closed subset Aa
in Aa = AT, with 2n - Hexn(X) and a holomorphic map

such that By the definition of Ô,
1r : [2 -+ M extends to an étale map of K : Ô -+ M. Put

It is easy to check that Aa n = A, n Da . Therefore A is a closed set in
S2. Note also that d(A) - 2n - Hexn (X) in f2.

LEMMA 1. The domain f2 is of Stein.

Proof. - It is enough to show that f2 is p7-convex by [DG]. Take any
holomorphic open embedding p : such that 3t o cp is injective. If

cp(H) C Q, then cp extends to a holomorphic map (~ of 0 into f2 by the
definition of f2. Suppose that cp(H) ct Q. We have to show that p extends
to a holomorphic map ~b of A into S2.

We consider a projection (D : 0 -~ ð. n-l x ~0,1) defined by

and a projection p : A 2013~ A’-’ defined by

For any set G, we put For a point z E A, we
Note that d(p(G) )  d(G) holds for any set G in A.

The set B is a closed subset of H

d(p(B))  2n - 2. To show that cp extends to a holomorphic map of A into
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fi, fix a point o E H satisfying lo, n B = 0, and take an arbitrary point
aEH.

First consider the case where fa n H g B. Replacing a with a point
in (fan H) B B, we can assume a / B without loss of generality. Since
d(B)  2n - 1, there is a continuous path : [0,1] -~ H B B with = o

and a. Consider a number

to = supft E ~0,1~ : ~p extends to a neighborhood of £w(s) for 0  s  ~}.

It is clear that to &#x3E; 0. Put b = w(to). Let U(c, c) indicate the open polydisk
in A~"~ with the center c and the common radius E &#x3E; 0. Let G be the

domain defined by

where c &#x3E; 0 is such a small number that G is contained in H B B. We
can choose 6 &#x3E; 0 so small that the point is in G for any t with

to - 6  t  to. Then there is a small connected open neighborhood V
I = (to - 6, to), such that cp extends to a biholomorphic map

~p’ : G U p-1 (Y) ~ f2. Put B’ = (A) c G U V. Since p (B) is a closed
subset with d(p(B’))  2n - 2, there is an open polydisk V’ C Y ~ p(B’).
Put

Then, the Hartogs domain

is contained in (G U V) B B’. Thus cp’ : and cp’(H’) is a member of
Ta’s in (1). Hence embeds the polydisk

into (2. This contradicts the definition of to. Hence to cannot be less than
1 and we have to = 1. The above argument shows that the set

[0, 1] : ~o extends to a neighborhood of for 

is closed in [0, 1]. Therefore cp extends also in a neighborhood of fa. Thus
we are done.



1837

Next consider the case where fa n H C B. Letting EI, ... , be

complex constants with small absolutes values, we introduce a new system
of coordinates on A by

and projections

with respect to the new system of coordinates. The complex line with

respect (wl , ... , wn ) is given in ( zl , ... , by

where a = (a1, ... , an). Since d(B)  2n - 2, for almost all (n - 1)-
vectors (E1, ... , En-1) E the line fa does not intersects B except
possibly the point a, by virtue of a result of Shiffman [Sh, Corollary p. 119].
Therefore, we can repeat the argument in the first case where f a n H g B,
and we see that p extends to a neighborhood of Hence we conclude that

extends to a holomorphic map (~ : A - Ô. n

LEMMA 2. is the envelope of holomorphy for Q over M.

Proof. Since Q - f2 B A with d(A)  2n - 2, (fi, 3t, j) , j : Q - SZ,
is the simultaneous extension of all the holomorphic functions on 
Since f2 is of Stein, (f2, ir, j) is maximal. Thus (f2, ir, j) is the envelope of

holomorphy for (n,7r) over M. 0

Thus Theorem 2 is proved. D

As a corollary, we have the following

PROPOSITION 3. - Let X be a complex manifold which is n-probable
with Hexn(X) &#x3E; 2. Let S an analytic subset in a Stein manifold W with
codimension 1, and A a closed subset of W B S with d(A) - 2n - Hexn (X ) .
Let G be a domain in W which intersects every irreducible component
of S. Then any holomorphic map T : G U (W B (S U A) ) ---+ X extends

holomorphically to W B B, where B is a closed subset in S U A with
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Proof. Put W * = G U (W B (S U A)). W * -~ W be the

natural inclusion and we regard W* as an étale domain over the Stein
manifold W by t. Let (WT , 7r, /1; r), /1 : W * ~ W~, be the maximal domain
of definition for T over W. Since i = Jr o p, we see that p is injective. Let WT,
j : W,* be the envelope of holomorphy for and if : W§ - W
the natural étale map. Then we have ifoj = 7r. By Theorem 2, the canonical
étale map j is injective and the inequality d(W~ B~’(W~)) ~ 2n - HeXn (X)
holds. Therefore, ~r is also injective, since j o p : W * -~ WT is injective and
-k o j o /-t = t. Since G intersects every irreducible codimension 1 component
of S, every holomorphic function on W* extends to W. Hence it extends
to W~. Since WT and W are of Stein, this implies that if : W; -+ W is
biholomorphic. This proves the proposition. D

4. Some properties of holomorphic extension indices.

If there is a surjective holomorphic map between n-probale complex
manifolds, we have the following.

THEOREM 3. - Let X and Y are n-probable complex manifolds and

f : X --~ Y a surjective holomorphic map. Let be any open covering
of Y. Then ule have the following inequality

Proof. - Put Suppose that
a : H - X be any n-probe. Then T = f o a is an n-probe of Y. By the
assumption, there is a closed subset AT C A with 2n - Hexn(Y)
such that T : AB~4~- 2013~ Y is the maximal extension of T. On the other hand,
there is a closed subset such that

(7 : A B Aa -t X is the maximal extension of a. Since f o (7 : A B Aa -t X is
an extension of a, we have AT C Hence d( Aa) holds. Suppose
that Aa and take a point a E Choose Ua such E Ua
and consider a neighborhood V c A B AT of a such that reV) C Ua. Then

C is n-probable and e,

we see that d(V n A~ )  2n - e. Hence a) ~ 2n - e (see Appendix)
and consequently d(Aa B AT )  2n - e. Therefore we have 2n - e

for any a. Hence we have Hexn ( X ) &#x3E; e. 0
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PROPOSITION 4. - Let X be a complex manifold and D = UADA a
finite union of non-singular hypersurfaces Da C X. Assume that X B D and
any component DA are n-probable and that Hexn (X B D) &#x3E; 2. Then X is

n-probable and Hexn (X ) &#x3E; minf mina Hexn(D.x), 21 holds.

Proof. Let a : H - X be any n-probe. To show that X is n-

probable, it is enough to consider the case where D~ for any
A. Put ,S’ = cr-~(D), ~ - H B S, and cri := X B D.
By Theorem 2, 61 extends to 61 : Ö B A -+ X B D, where f2 is an

envelope of holomorphy of H B ,S’ and where A is a closed subset of SZ
with d(A) ~ 2n - Hexn (X B D). By a theorem of Dloussky [D], there is an
analytic subset S’1 of pure codimension 1 in A such that SZ - A B 
Hence a extends at least to (7 : (0 B (A U U ~7 2013~ X. Since

max{2n - D), 2n - 2} == 2n - 2  2n - 1 (see
Proposition 9), we see that X is n-probable by Proposition 2 and that

Hexn (X) &#x3E; minfminx Hexn(D.x), 21. El

Let X, Y be complex manifolds of the same dimension and suppose
that there is a holomorphic surjective map f : X -~ Y with discrete fibers.
In the case of unramified even covering, we have the following proposition.
This shows that n-probability of X implies that of Y, but the converse
statement does not hold true, even if f is proper. See Example 3, where

Hexn ( Y ) = 2.

PROPOSITION 5. - Let X, Y be complex manifolds and f : X 2013~ Y a
holomorphic unramified even covering.

(a) If X is n-probable, then Y is n-probable and Hexn (X ) = Hexn (Y)
holds.

(b) If Y is n-probable with Hexn (Y) &#x3E; 2, then X is n-probable and

Hexn (X ) = Hexn (Y) holds.

Proof. (a) Let a : H -~ Y be any holomorphic map. Since H
is simply connected, a lifts to j : : H - X. Then by the assumption,
cr extends holomorphically to a map 6, A B A~ 2013~ X, where b is the

maximal extension of 3 over A. The map f A~ ~ Y gives an
extension of a. Since f is an unramified even covering over Y and since 6’ is
maximal, we see that f 0 â does not extend to any neighborhood of a point
in A6. Hence f 0 â is the maximal extension of a over A and A, = A jo, .
Therefore a is an n-probe and consequently Y is n-probable. Here we have



1840

Hence Hexn (Y) holds. To show the inequality Hexn (X ) &#x3E;
Hexn (Y), take any c &#x3E; 0. There is an n-probe To : H - X such that

&#x3E; deAr) - F. Since we now know that Y is n-probable,
f o To : H - Y extends to an n-probe into Y. Since = ATO as above,
we have

Therefore we have . Hence 

Hexn (X) .

(b) By (a), it is enough to show that X is n-probable. Let T : H - X
be any holomorphic map. Since Y is n-probable, f o T extends to T :

A B Y with 2n - Hexn (Y)  2n - 2. Hence A B AT is simply
connected. Therefore T lifts to A B X, which gives an extension T.
Thus T is an n-probe by Proposition 2. Hence X is n-probable. 0

For the case of branched coverings, we have the following. As the
branched covering of P 1 by an elliptic curve shows, the indices Hexn are
no longer preserved. See section 5 for further examples.

THEOREM 4. - Let X, Y be complex manifolds and f : X -~ Y a
proper surjective holomorphic map with discrete fibers. Suppose that X is

n-probable with Hexn (X ) &#x3E; 2, then Y is n-probable and the inequality

holds true.

Proof. Put R = ~x E X : rankx f  dimX}, and Ro = f (R) . Let
a : H - Y be any non-constant holomorphic map. If a(H) C Ro, take an
irreducible component YI of Ro such that a(H) C Yi. Put X, - 
and fi = Then fi : proper surjective map with discrete
fibres. Then there is a proper analytic subset RI of YI such that Y, B R, is
non-singular and that

is proper and étale. If a(H) c Ri, take an irreducible component Y2 of Ri
such that a(H) C Y2. Put X2 = f-l(y2) and f 2 = Continue this
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process, until we obtain an irreducible analytic subsets Yk in Y, Xk in X,
and a proper analytic subset Rk in Yk, with the following properties:

, , --, - - - , --, -

(iii) The map Yk is proper and surjective with
discrete fibres.

is proper and

LEMMA 3. - Let S be a proper analytic subset of an n-probable
complex manifold X with Hexn(X) &#x3E; 2. Then X B S is an n-probable
manifold with

Proof. Since any subdomain of an n-probable manifold is n-

probable, X B S is n-probable. Let a : H -~ X B S be any holomorphic
map of a Hartogs domain H. Since X is n-probable, there is a closed set
A~. in the associated polydisk A with d(A~ )  2n - Hexn (X)  2n - 2 such
that extends to bi : A B ~4cr -~ X. Put V = â-11 (S), which is a proper
analytic subset in A B Aa. Suppose that V contains an (n - 1)-dimensional
component. Vi . Since d( Aa)  2n - 2, VI extends to an analytic subset of
A. This is absurd, since Further a extends to

, where d(A~ U V) x 2~-4}. Hence
we have the desired inequality. D

By Proposition 5(a), Yk B Rk is n-probable, and we have

where the equality follows from Proposition 5(a), the first inequality is an
easy consequence of the definition of Hexn and the last inequality follows
from Lemma 3. Put

Let Oak be the maximal domain of definition for over A and f2ak its

envelope of holomorphy. Then, we see by (3) and Theorem 2 that
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We decompose the analytic subset in H into three parts,

where D, E, F are analytic subsets in H defined by

(i) D = H n ,S’ for some pure (n - 1 )-dimensional analytic subset S
in A,

(ii) E = the union of (n -1 )-dimensional components other than D,

(iii) F = the union of components with dimensions less than n - 1.

By a theorem of Dloussky [D], the envelope of holomorphy for

H B over A is given by A B S. Therefore, since H B C

c A, we see that A B S’ C C A. It is clear that Oak n (E B D) = 0.
Hence we have E B D C f2lk B Oak’ On the other hand, the inequality of
(4) implies that Qlk B Oak cannot contain non-empty open subset of an
(n - 1 )-dimensional analytic subset. Hence we infer that E B D = 0, and
consequently we have E = 0. Therefore a extends at least to A B (S B H)
with d(9 B 2n - 2. Thus by Proposition 2, Y is n-probable with

Hexn (Y) &#x3E; 2. D

5. Examples.

Many of the examples listed below are flat twistor spaces over

conformally flat real 4-dimensional manifolds.

Example 1. - The compact complex 3-manifold U /r constructed in
[Kt2] has Hex2 (U/r) = 0. Namely, there is a 2-probe which cannot extend
across a closed ball with positive radius in 02.

Example 2. - Flat twistor spaces over conformally flat real 4-

dimensional manifolds of Schottky type often have fractal 2nd holomorphic
extension indices. Explicit calculations and estimations of the indices are
carried out in [0]. See also [12].

Example 3. - We shall give an example of a compact complex
manifolds X of dimension 3 for which not every holomorphic map



1843

is an n-probe into X for n = 2, 3. That is, X is neither 2-probable nor 3-
probable. The product manifold of X with any compact complex manifold
will give us an example of non n-probable higher dimensional complex
manifolds for n = 2, 3.

Consider a real 4-dimensional submanifold L defined by

in the 3-dimensional projective space JP&#x3E;3, and its complement

Let

be the group homomorphism defined by

where

Then SL2(C) acts on W through p. Let

be the upper-half space of the quaternions. We consider a diffeomorphism

~ - o _.1 __ ~ I _, 1

by

where

and
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Remark here that (Z2, z3) # (0, 0) and z E L if and only if v = 0. By an
easy calculation, we have

follows L.

Now take a Fuchsian subgroup r of SL2(C) such that the quotient
space IHI+/r is a compact real Coo 3-manifold. We define a compact complex
3-manifold X by 

-

which is a flat twistor space over x (H+/F). Let -cu : L - X be the

natural projection. Define a holomorphic map h : (C3 --~ p3 by

Let 1 be the Hartogs domain defined by

Proof. Note that

Since , we see that On the

other hand, for (Ul, U2, U3) C Gi , we have

Hence, by (5), I Similarly, for (~1,~2~3) ~ G2, we have

Hence, by
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We consider a holomorphic map

Obviously, the maximal domain of extension for f over A3 is equal to

A’B h-(L) and hence is a 3-probe for X. Corresponding to the natural m-
fold unramified covering of S’1, we construct an m-fold unramified covering
Xm of X. Since H3 is simply connected, a lifts to a holomorphic map

Note that a closed path in A3 B does not lift to a

closed path in and we see that the maximal domain of extension for

over A3 is an m-fold unramified covering of A3 B This implies
that am is not a 3-probe of and that Xn is not 3-probable for rn &#x3E; 2.

Restricting h to the 2-dimensional Hartogs domain

we can also show that Xm is not 2-probable for m &#x3E;_ 2.

Example 4. - Every compact complex surface ,5’ of Class V 10 is a

finite branched covering of a primary Hopf surface ,S’1. It is well-known

that the universal covering S’ is either C~2 of C x D, where D is the unit
disk in C. Hence +oo = &#x3E; Hex2 (S’1 ) = 4.

Example 5. - Let X be a Blanchard manifold of type (B)
(Kt l, p. 375]). By the construction, X is a non-singular quotient of

I~3 ~ {a projective line} by a free Abelian group of rank = 4, and is torus
fiber space over P . Let T be an elliptic curve and p : T - I~1 be the double
branched covering. Take the normalization Y of the fiber product X x , T.
Then Y is a finite branched covering of X, and the universal covering of
Y is biholomorphic to Hence we have +00 = Hex2 (Y) &#x3E; Hex2 (X ) = 4
and +oo = Hex3 (Y) &#x3E; Hex3 (X) = 4.

A. Appendix : Local Hausdorff dimensions.

We shall give here the definition of local Hausdorff dimensions of sets
and prove that they are left invariant by holomorphic maps with discrete
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fibers. Let X = (X, dx) be a metric space with the metric dx. For a non-
empty subset A c X, a ball covering of A is a countable family B = 
of closed balls Bi C X such that A C Ui Bi. By I(A, 6), we indicate the set
of all ball coverings B of A such that  6 for all Bi E ,13. We define

the following quantities,

Note that is a decreasing function of 6 &#x3E; 0.

DEFINITION 7. - h’(A) is called the s-dimensional Hausdorffmeasure
of A.

DEFINITION 8. - The Hausdorff dimension d(A) of a non-empty set
A is defined by

which is equivalent to

The Hausdorff dimension of an empty set is defined to be -00.

DEFINITION 9. - For a point x E X, we define the local Hausdorff
dimension d(A, x) by

where we take inf for all neighborhood U of x in X.

Note that the set

is a closed set for every c E R, and that, if x tf- A and A is a closed set,
then d(A, x) =: -oo.
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PROPOSITION 6. - Suppose that X is a-compact (i.e., a countable
union of compact sets). Then, for any closed subset A in X, the equality

holds.

Proof. The second equality is clear from the definition. The in-
equality

is clear, since d(A) &#x3E; d(A, x) holds for any x E X.

To prove the inequality of the other direction, first we consider

the case where A is compact. Take any 0 and fix r, s such that

SUPxEA d(A, x)  r  s  sUPxEA d(A, x) + Eo. By the choice of r, for
any point x E A, there is a a open neighborhood Ux C X of x such that

 r. Since A is compact, there are finitely many points x 1, - . - , xn
in A such that A C U~1 Take any E &#x3E; 0 and any 1~ with n.

By the choice of s, there is 6k &#x3E; 0 such that, for any 6 with 0  6  6k, the
inequality

holds for some E I(A n Uk, 8). Put 60 = Then for any 6 with
0  8  60, there is B E I(A, 6) such that

and we see that E. Hence we have h’(A) - 0. This implies
is arbitrary, we have

d(A)  SUPxEA d(A, x). Hence we have d(A) = sUPxEA d(A, x) under the
assumption that A is compact.

Next we consider the case where A is non-compact. Since X is a-

compact and since A is closed, there is a increasing sequence {An}n of com-
pact subsets in A such that A. Since d(An) = supxEAn d(An, x)
by the argument above, we have
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We shall show the equality

That d(A) &#x3E; limn d(An) is clear. Suppose that there is an r such that

d(A) &#x3E; r &#x3E; limn d(An) . Fix E &#x3E; 0. For any 6 &#x3E; 0, there is ,~n E I (An, 6)
such that v(r,  2n . Since B = I(A, 6), we have

This implies that h~’ (A) - 0. Hence we get r, which is a

contradiction. Hence we have (9) and, consequently,

in the general case. D

LEMMA 5. - Let X = (X, px) and Y = (Y, py) be o--compact metric
spaces and A a closed subset of Y. Suppose that f is a continuous map of
X into Y such that for a positive constant K, the Lipschitz condition

holds for any points Xl, X2 E X . Then, the inequality

holds true for any point p 

Proof. Take any E &#x3E; 0. Then there is an open neighborhood U of p

Take any s &#x3E; a. By definition, for any Eo &#x3E; 0, we can find 60 &#x3E; 0 such that,
for any 0  6 x 60, there is a ball covering n U, 6) satisfying

By the Lipschitz condition, the inequality
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holds for all i. Replacing each f (Bi) with a ball Ci with f (Bi) C Ci such

Thus we see that 0, and consequently, we have 

Proposition 6. Hence d(A, f (p)) , a + E follows, and consequently we have
d(.4,/(p))~(/-~),p). ° a

The following lemma due to [Si, (2. A. 13)] is useful.

LEMMA 6. - Let X = (X, px) and Y = (Y, py) be metric spaces.
Assume that X is compact and that f : X - Y is a continuous map such
that the fibers are finite. Then for every E &#x3E; 0 there exists 6 &#x3E; 0 such that,
if A is a set with f (A)  6 in Y, then every connected component B of

satisfies f (B)  é.

Proof. Here we give a copy of Siu’s proof for reader’s convenience.
Suppose the lemma is false. Then there is E &#x3E; 0 with the following property:
for every n C N, there exists some An C Y with the diameter f(An)  ~
such that some connected component Bn of has the diameter

E-

Now take an, bn E Bn such that py (an, bn) &#x3E; 2 . Since X is compact,
there exists a subsequence C fanl converging to some point a E X .
Let

- .. -, , , , ,

Choose 0  q  4 such that

are all mutually disjoint, where U (cj, q) are open balls of radius q centered
at cj . Since X is compact,

is closed in Y. Since
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there exists r &#x3E; 0 such that

There exists 1~o such that, ko, we have - and

For any x EE A"lk Iwe have

Hence A,,, c U( f (a), r). Hence Bnk C U(Cik’ 77) for some ik. Since

which is a contradiction. D

For a ball covering ,t3 E I (A, ~), we define a ball covering B of as

follows. For any Bi E B, consider connected components Ci,~ (A E 11i)
of Take a closed ball Bi~ C X such that Ci,~ C B-, with
.~(CZ~ ) _ .~(BZ,~ ) . Define ,t3 by

As a consequence of Lemma 6, we have

LEMMA 7. - Let f : X --~ Y be a continuous map between metric
spaces. Suppose that the fibers of f are finite. If A is a subset of Y such
that is contained in a compact subset of X. Then, for any c &#x3E; 0,
there is 60 &#x3E; 0 such that, for any 0  6 x 60 and any I(A, 6), we have
BE 

LEMMA 8. - Let f : ~C 2013~ Y be a locally proper continuous map be-
tween locally compact metric spaces X and Y. Suppose that f satisfies the

Lipschitz condition and that, for any point q E Y, there is a neighborhood
U of q and a positive integer r such that the number of points in is
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not more than r. Then, for a closed subset A of Y and for any point p E X,
we have

Proof. The inequality

follows from Lemma 5. Thus it is sufficient to show the inequality

By the definition of local Hausdorff dimension, for any E &#x3E; 0, there is a

neighborhood W of f (p) such that d(A f1 W)  d(A, f (p)) -f- c. Since f is
locally proper, there are a neighborhood U of p in X, a neighborhood V
of f (p) with [V] C W such that [U] -~ [V] is proper. Further, by
the assumption on the fibers of f, we can assume that there is a positive
integer r such that consists of not more than r points for any

Now put g = and a - d(A n V) x d(A n W). Then,
(A n Y) - 0 for any El &#x3E; 0. Suppose that E2 &#x3E; 0 is given. We

can find 61 &#x3E; 0 such that for any 0  6 x 61, there is a ball covering
B E I(A n V, 6) with v(a +  ~2 . Then by Lemma 7, there is

0  62  61 such that, for any 0  6 x 62 and for any B E I(A n V, 6), we

1 (g-1 (A n ~))  r~2 for any 0  6 x b2 . Since E2 &#x3E; 0 is arbitrary, this
implies 0. Hence This shows

n Tl))  a = d(A n V) and consequently we have 
_.... _ _. _. _ , "1, ........ , - " "1"....... , - -,... -

We say that a continuous map f : X - Y is locally proper, if for any
point p E X and any neighborhood W of f (p), there are open neighborhood
U of p in X and a neighborhood V of f (p) in Y with V C W such that

is proper. Now we can show the following proposition.

PROPOSITION 7. - Let f : X - Y be a holomorphic map between

(reduced) complex spaces X and Y with dim X - dim Y. Let A be a closed
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subset in Y. If every hber of f consists of discrete points, then uTe have

for any point p 

Proof - Put n = dim X. Since any holomorphic map satisfies the
Lipschitz condition, the inequality d(A, f (p)) follows from
Lemma 5. It is well-known that f is locally proper if every fiber of f consists
of discrete points. We take open neighborhoods U E) p and V 3 f (p) such
that flU: ~7 2013~ V is proper. Here V can be chosen arbitrary small and
Z = f (U) is an analytic subset of V by the proper mapping theorem of
Remmert. Hence Z can be represented as an analytic cover Z - Q over

a domain Q in Put flU. Then, since 7r o fu : is also an

analytic cover, the conditions of Lemma 8 are satisfied. Hence we have

by Lemma 8. Since, we have

On the other hand, by Lemma 5, we have

Combining (10), (11) and (12), we have

PROPOSITION 8. - Let f : X --+ Y be a holomorphic map between
(reduced) complex spaces X and Y with dim X  dim Y. Let A be a closed
subset in Y. If every -fiber of f consists of discrete points, then ule have

Proof. Clear by Propositions 6 and 7.
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The following fact is used in proving Proposition 4.

PROPOSITION 9. - Let X be as in Proposition 6. Let A be a closed
subset of X, and B a closed subset of X B A. Then the inequality

holds true.

Proof - Suppose that d(A). Since A U B is a closed subset
of X, it is enough to check

for any x E A by the assumption d(A) and Proposition 6. Take
any point x E A and a compact neighborhood K of x in X. Take any
d &#x3E; d(A) - d(B)). It is enough to show that, for any E &#x3E; 0,

rl (A U B))  E holds for any sufficiently small 6 &#x3E; 0. Let U(x, r)
denote open ball with center x and radius r. Denote by B (x, r) the closure
of U(x, r). By the choice of d, there is 61 &#x3E; 0 such that, for any 0  6  61,
there is a closed ball covering ,l3 = ~ Ba ~ a , Ba = B(xa, of K n A with

2ra = .~(Ba)  b such that

Since K n A is compact, there are finite open balls 2r,,_) ... ,
such that

I. Since (KnB) BW is closed and since d &#x3E; d(B),
J 

- 

oJ oJ

there is an closed ball covering ,L3’
with 2r) = .~(B~)  6 such that

Therefore, for any 0  6  61, there is an open ball covering B U ,l3’ _

This proves the proposition. The case d(B) &#x3E; d(A) can be proved simi-
larly. D
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