
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Miroslav ENGLIS & Genkai ZHANG

On the Faraut-Koranyi hypergeometric functions in rank two
Tome 54, no 6 (2004), p. 1855-1875.

<http://aif.cedram.org/item?id=AIF_2004__54_6_1855_0>

© Association des Annales de l’institut Fourier, 2004, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2004__54_6_1855_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


1855

ON THE FARAUT-KORANYI HYPERGEOMETRIC
FUNCTIONS IN RANK TWO

by Miroslav ENGLI0160 &#x26; Genkai ZHANG

1. Introduction.

Let Q be an irreducible bounded symmetric domain in ~d in its

Harish-Chandra realization (a Cartan domain); i.e. Q is circular, centered
at the origin, and convex. We denote by r, a, b, d and p the rank, the
characteristic multiplicities, the dimension and the genus of Q, respectively;
thus

I -1 B

Let further G stand for the identity connected component of the group of
biholomorphic self-maps of Q, and K for the stabilizer of the origin in G.
The elements of K are precisely the unitary maps on Cd that preserve
Q, and G acts transitively on SZ (thus Q may be identified with the coset
space G/K) .
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Under the action f H f (k E K) of K, the space 7~ of holomorphic
polynomials on Cd admits the Peter-Weyl decomposition into multiplicity-
free direct sum of irreducible subspaces

where the summation extends over all signatures (or partitions) m, i.e. r-
tuples (ml,"’, mr) of nonnegative integers such that m2 &#x3E; ... &#x3E;

0. For each m, the elements of Pm are homogeneous polynomials of
degree := ml + ... + mr. Equipped with the Fischer (or Fock) scalar
product 

--- I__I

each space becomes a finite-dimensional Hilbert space of functions

on C~, and thus has a reproducing kernel K,,, (x, y), holomorphic in x and
conjugate-holomorphic in y.

The Faraut-Koranyi hypergeometric functions [FKI, [Y] on 0 are
defined by

Here (-)m is the generalized Pochhammer symbol

The right-hand side of ( 1.1 ) converges uniformly for x, y in compact subsets
of Q, for any a, (3, q E C such that (~y)m ~ 0 dm.

The series ( 1.1 ) arise in many problems in analysis on bounded

symmetric domains, and often their asymptotic behaviour at the boundary
of SZ is of importance. (The most notable examples are perhaps the
generalizations of the Forelli-Rudin inequalities [FK] and their applications
to Besov spaces and operator theory [Zh] [E] and boundedness of the
Bergman projections [CR]; or Fourier analysis of spherical functions on
symmetric domains [Sh] [H], which turn out to be of the form (1.1) for
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special values of the parameters a, {3, -y.) It has been shown already in [FK]
that for cx, 0, -y such that

one has

and

where h(x, ~/) is the Jordan triple determinant of Q (see Section 2 below
for details) and, for any pair of nonnegative functions f, g on some set,
the notation

means that there exist constants 0  CI  C2  oo (independent of x)
such that

The authors of [FK] actually considered only real a, {3, q, but their argu-
ment works even if one assumes only (1.3). Also, instead of (1.4) they only
proved that 201 is bounded; however, since (1.3) implies that all summands
in (1.1) are nonnegative, and the term corresponding to m = (0, 0,..., 0)
equals 1, the lower bound is trivial.

Much less is known, however, about the behaviour of 201 in the

critical strip

For x = te, where 0  t  1 and e E S2 is a maximal tripotent (i.e. an
element of the Shilov boundary of Q, or, equivalently, any element in n

having the maximal Euclidean distance from the origin), the asymptotics
of 201 were obtained by Yan [Y]. He showed that if cx, /3, r E R satisfy (1.3),
then
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where , j is the integer such  j,
and p~ (t) - 1 - log(1 - t) if ~ is an integer, while p~ (t) - 1 otherwise.

Thus the behaviour of 201 in the critical strip (1.6) seems to be fairly
complicated.

In the present paper, we extend Yan’s result by describing completely
the boundary behaviour of 2TI ( a, 0 x &#x3E; with a, (3, ’Y subject to thely 7
condition (1.3), on all of Q if Q has rank 2.

THEOREM 1. Lest 0 be a Cartan domain of rank 2, a, (3, r any
complex numbers such that (1.3) is fulfilled, and x a point of Q. Let t  T
be the singular values of x (i. e. x = + Te2) for some k E K and
minimal orthogonal tripotents el , e2 ) and denote v = Re (a + (3 - Then
/1 -1

This also gives the behaviour of 201 for Q of arbitrary rank and x E Q
having only two nonzero singular values. The proofs rely on an interesting
integral representation for Km(x, ~) on domains of rank 2: namely,

(See again Section 2 for the notation.) It would be nice to have an analogous
representation for general m and Q.

The proof of Theorem 1 is given in Section 4, after dealing with some
preliminaries in Section 2 and establishing the above-mentioned integral
representation in Section 3. The extension to points with at most two
nonzero singular values in domains of arbitrary rank appears in Section 5.
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Finally, our result remains in force also for noninteger a &#x3E; 0; this is briefly
explained in the last Section 6.

We remark that all our results extend, without change, also to the
more general hypergeometric functions

with 0152I,..’, 0~+1~1,...,/~ such that 

(,~~ ) m &#x3E; 0 B1m. On the other hand, we are unable to say anything about
the behaviour of the "polarized" functions

for y (more precisely - for x, y which cannot be diagonalized by the
same Jordan frame).

2. Preliminaries.

The main purpose of this section is to set up all kinds of notations and

collect various useful facts on Cartan domains; see e.g. [Ar], [FK], or [Lo].
In particular, we fix a Jordan frame el, ... , er E (Cd, so that each x E Cd
has the polar decomposition

(the numbers - the singular values of x - are determined
uniquely, but 1~ need not be). Further, x belongs to n, an, or if

and only if tl  1, ti = 1, or 1, respectively. For x as in (2.1), it is

known that ([FK], Lemma 3.2)



1860

The Jordan triple determinant hex, y) is the (unique) K-invariant
polynomial on Q x SZ (i.e. h(kx, ky) = h(x, y) Vk E K), holomorphic in x
and conjugate-holomorphic in y, such that for x as in (2.1)

The kernels Km are related to h by the Faraut-Koranyi formula [FKI

in which the right-hand side converges, uniformly for x, y in compact
subsets of S2, for any v E C.

The point e = el + ... + er belongs to the Shilov boundary a0Q
of Q. The group K acts transitively on so that a0Q = E

K/L, where L is the stabilizer of e in K. Each Peter-Weyl space Pm
contains a unique L-invariant polynomial on satisfying the normalization
condition ~m (e) = 1. We will usually write instead of

+ ... + The polynomials on satisfy

and are related to the reproducing kernels Km by the formula

where dim :- dim It is known that the last dimension is given by the
formula ([Up], Lemmas 2.5 and 2.6)

where

and
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Thus we may rewrite (2.6) as

Combining the last formula with (2.2), we thus get

for x as in (2.1 ) .
It is immediate from Stirling’s formula that for any a, {3 such that

(,Q ) m ~ 0 Vm,

Similarly, from (2.7) it follows that

Consequently, if a, (3" satisfy (1.3), then

for x as in (2.1), where

Finally, we recall that the polynomials 1Jm have also a combinatorial

interpretation in terms of Jack symmetric polynomials with parame-

ter A (cf. [MD], Section 10 of Chapter VI): namely,
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We will usually suppress the superscripts (2/a) in the sequel. For future use,
we also note here explicitly that the Jack polynomials Jm are independent
of r, in the sense that

3. An integral representation.

Let A, be the (r - l)-dimensional simplex

in R’, and let stand for the (r - 1 )-dimensional Lebesgue measure
on 0~..

PROPOSITION 2. - Let Q be a Cartan domain of rank r. Then

Proof. Observe, first of all, that
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An easy induction argument thus gives

It follows that

Consequently,
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On the other hand, by the Faraut-Koranyi formula,

since ( 2 )m = 0 if m2 &#x3E; 0. Since both 0(,,o,...,O) and pn are homogeneous
polynomials in tl , ... , tr of degree n, comparing the two expressions shows
that

Since by (2.7), the result follows.

Taking in particular r = 2 in Proposition 2 we obtain the following
corollaries.

COROLLARY 3. - Let Q be a Cartan domain of rank 2. Then

COROLLARY 4. - Let Q be a Cartan domain of rank 2. Then

Proof. Immediate from the preceding corollary and (2.5). 0

Remark 5. - A direct way of arrriving at Corollary 3 is as follows.
Recall that the ordinary (Gauss) hypergeometric function, defined for

Izl  1 by the series
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satisfies, for any z E C B [1, oo),

whenever Re 1 &#x3E; Re cx &#x3E; 0. Thus we have, for any [0,1 )),

The n-th term in the last infinite sum is plainly a homogeneous polynomial
in tl, t2 of degree n. On the other hand, (2.3), the Faraut-Koranyi formula,
(2.8), and the fact that ( g )m = 0 if m2 &#x3E; 0 imply that

and ø(n,O) is again a homogeneous polynomial of degree n. The uniqueness
of the homogeneous expansion of a function therefore implies that

since This completes the proof.
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Remark 6. - In a similar way one can obtain the more general
formula for domains of arbitrary rank

Remark 7. 2013 Another way of arriving at Corollary 3 is as follows.
Since is a symmetric polynomial in tl, t2 and is homogeneous of

degree j, it must be a linear combination of k = 0, ... , j .
It follows that ~(~o)(~i~2) = ( 21 ti 2 ), for some polynomial Gj
of degree at most j. Substituting this into (2.4) we thus get

Recalling the generating function for Gegenbauer polynomials
([BE], §3.15)

setting and comparing with the preceding formula,
we obtain

Taking v = ~, so that (v)m = 0 if m2 &#x3E; 0, and looking at the coefficients
at like powers of t on both sides, we thus see that

whence
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Using the integral formula for Gegenbauer polynomials ([BE], §3.15, for-
mula (22))

and the formula for r(2A) ([BE], §1.2, formula (15)), we get

and a change of variable to y = eventually leads to (3.2). 0

Corollaries 3 and 4 are also a special case r = 2 of a result of P. Sawyer,
see [Sa], Theorem 5.3 (but Proposition 2 is not). Further, our proof of
Proposition 2 is completely elementary (or, in any case, much simpler than
that of Theorem 5.3 in [Sa]). Plainly, it would be of interest to have a

representation analogous to Proposition 2 for general signatures m.

4. Domains of rank 2.

LEMMA 8. - For each v &#x3E; 1, there exists a constant C.  o0

(depending on v) such that

for all z E [0, 1] and all k = 0, 1, 2,....

Proof. Since the term m = 0 in the sum is precisely (1 ~-1~)-v, the
lower bound is trivial. For the upper bound, observe that
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0, the last integral equals 2v1 1 . For k &#x3E; 1, making the change of
variable x = ks transforms the integral into

for some finite constant cv, and the desired assertion follows. D

Proof of Theorem l. - The cases v  - 2 and v &#x3E; 1 are covered by
(1.4) and (1.5), thus we may assume 2 . In view of (2.10),
it is enough to prove the assertion for

in the place of 2:FI. Setting m2 = m and ml = m + 1~, the sum becomes

Consider first the case of

Then v - 2 - 1  -1, so we may apply Lemma 8 to conclude that
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by (2.9). By Corollary 3, the last sum equals (note that

). Since for any A, B, C &#x3E; 0,

on the interval z E [0, 1), it follows that

which settles the three middle lines in (1.8).
It remains to deal with the cases v = + ~. we get instead

of (4.3)

Since

for z E [0, 1), the same argument as above shows that
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Now

and, for 0  z  1,

Since again T-t E ~0, 1), combining everything together we see that

as asserted.
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To deal with the last case v = 2 , we use the following transforma-
tion property of the Faraut-Koranyi hypergeometric functions (Kummer’s
relations; see [Y], Proposition 3.2)

Applying it with , we obtain

by (4.5). This completes the proof.

Remark 9. - More generally, it follows from (4.6) that

Thus, in principle, we could get the upper half of (1.8) from the lower half,
or vice versa.

Remark 10. - For t = T, (1.8) reduces to

in complete agreement with Yan’s result (1.7).

5. Partial extension to higher rank.

In this section, we deal with the case of a Cartan domain SZ of

arbitrary rank and elements x with polar decomposition x = k(t1e1 +
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t2e2), i.e. having at most only two nonzero eigenvalues. Our idea is to reduce
this to the case of rank 2. To avoid confusion, we temporarily include the
rank into the notation, writing Om ,im , etc.

Using the fact (2.14) that the Jack polynomials do not depend on r,
we get from (2.12)

(In particular, both sides vanish if m3 &#x3E; 0.) Since, by (2.13) and (2.9),

we conclude that

We have thus arrived at the following theorem.

THEOREM 11. - Let SZ be a Cartan domain of rank r &#x3E; 2, el, e2 a pair
of orthogonal minimal tripotents, and c~, ,~, 1 complex numbers such that

(1.3) is fulfilled. Denote v = Re (a+/3-1), t = min(ti , t2), T = max(tl, t2).
Then ( 1.8) holds true as x ranges in the set
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Remark 12. - Another way of seeing that even

for 0, is the following. From (2.7) it can be checked that the

quantity

is independent of r as soon as r is greater than or equal to the length of m;
i.e. 7fm’ Thus for x as in (2.1),

and the right-hand side is independent of r. (This is essentially the cal-
culation in [Y], Proposition 4.1. ) Consequently, if a, {3, q satisfy ( 1.3) and
v = Re (Q + {3 - ~), then

with the right-hand side independent of r. Hence (5.1) follows.

It would be interesting to know whether the definition (2.11) of Asr)
can be modified in such a way that the estimate (5.1 ) become actually an
equality.

6. The case of arbitrary a.

Note that the formulas (1.2) and (2.7) for the generalized Pochham-
mer symbol and 7r m make sense even for any positive value of the number a

(i.e. even if a is not the characteristic multiplicity of any Cartan domain).
Similarly, the Jack polynomials are defined for any a &#x3E; 0. Using
the relations (2.8) and (2.12), we can therefore define the hypergeometric
functions 201 for any a &#x3E; 0 by

for x as in (2.1 ) . (Actually, this is the definition used in [Y].)
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It turns out that all our results remain in force also for these positive
noninteger values of a. Indeed, looking at the proof of Proposition 2 we see
that all arguments prior to (3.1) make sense even for any a E C with
positive real part (so that the integrals there exist), while the Faraut-
Koranyi formula (2.4) (used in (3.1) with v = 2 ) remains in force for all
a &#x3E; 0 ([Y], formula (34) on p. 1328). Thus Proposition 2 remains in force
for any positive a too. Similarly, the only place in the proof of Theorem 1
in Section 4 where the fact that a be the characteristic multiplicity was
needed were the Kummer relations (4.6), which likewise remain in force for
any a &#x3E; 0 by Proposition 3.2 in [Y].
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