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PERIODIC BILLIARD ORBITS IN RIGHT TRIANGLES

by Serge TROUBETZKOY

1. Introduction.

A billiard ball, i.e. a point mass, moves inside a polygon Q ⊂ R2 with
unit speed along a straight line until it reaches the boundary ∂Q, then
instantaneously changes direction according to the mirror law: “the angle
of incidence is equal to the angle of reflection,” and continues along the
new line. If the trajectory hits a corner of the polygon, in general it does
not have a unique continuation and thus by definition it stops there.

Billiards in polygons are easy to describe, but it is difficult to prove
deep theorems about them because of a lack of machinery. For example, it
is unknown if every polygon contains a periodic billiard orbit. On the other
hand, for so called rational polygons, one can apply Teichmüller theory
to obtain many deep theorems. It is known that all rational polygons
possess many periodic orbits [Ma], and in fact they are dense in the
phase space [BGKT]. Galperin, Stepin and Vorobets proved many other
interesting results about periodic orbits [GSV]. Many of these results can
be found in the introductory book by Tabachnikov [Ta], and in several
survey articles [Gu1], [Gu2], [MT].

The main result of this article produces the first non rational polygons
for which the above mentioned result is true: periodic billiard trajectories are
dense in the phase space for an open set of right triangles (Theorem 4). This
result is proved by a careful analysis of the symmetries of perpendicular
periodic orbits (Theorem 1). Using these symmetries we prove that there
is a unique perpendicular escape orbit (Theorem 2) and that the invariant
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30 Serge TROUBETZKOY

surface which contains the perpendicular direction is completely foliated by
perpendicular periodic orbits (Theorem 3). The billiard in a right triangle is
well known to be equivalent to the mechanical system of two elastic point
particles in an interval (see for example [Ta]), thus our results hold for this
system as well.

2. Statement of results.

Cipra, Hanson and Kolan have shown that almost every orbit which
is perpendicular to the base of a right triangle is periodic [CHK], [Ta]. Here
the almost every is with respect to the length measure on the side of the
triangle in question. Periodic billiard orbits always come in strips, i.e. for
any x = (q, v) whose billiard orbit is periodic where q ∈ ∂Q and v is any
inward pointing direction there is an open interval I ⊂ ∂Q such that q ∈ I
and for any q′ ∈ I the orbit of x′ = (q′, v) visits the same sequence of sides
as (q, v) and thus in particular is periodic (see Figure 1).

Figure 1. A periodic strip.

A maximal width strip will be called a beam. All orbits in a periodic
beam have the same period except perhaps the middle orbit which has
half the period in the case its period is odd. The results of [CHK] imply
that a set of full measure of the base of the triangle is covered by an at
most countable union of intervals such that each of these intervals forms a
periodic beam.

They mention “our computational evidence also suggest that the
trajectory at the middle of each (perpendicular periodic) beam hits the
right-angle vertex of the triangle.” This had also been noticed in an earlier
article by Ruijgrok [Ru]. They also speculate that there is at most one
nonsingular, non periodic trajectory. These speculations were the starting
point of this research, for this article. I present an elementary proof of
these facts for irrational right triangles with smaller angle α satisfying
1
6 π < α <

1
4 π.
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PERIODIC BILLIARD ORBITS 31

Make the convention that one leg of the right triangle is horizontal
with the smaller angle α of the right triangle being the angle between this
leg and the hypotenuse, and that the word perpendicular (orbit, beam,
etc.) refers to perpendicularity to the horizontal leg.

Any billiard trajectory which hits a right-angled vertex (or more
generally a vertex with angle π/n for some positive integer n) has a unique
continuation. Reflect the triangle in the sides of right angle to obtain a
rhombus. The study of the billiard in the triangle reduces to that in the
rhombus (see next section for details). Throughout the article all beams
considered will be with respect to the angle coding in the rhombus defined
in the next section.

THEOREM 1. — For any irrational right triangle whose smaller angle

satisfies 1
6 π < α < 1

4 π consider any perpendicular periodic beam of

period 2p. Then

1) the midpoint of the beam hits the right-angle vertex of the triangle

(i.e. the mid point of the rhombus),

2) the beam returns to itself after half its period with the opposite

orientation, and

3) p is even and the first p+ 1 letters of the code of the beam form a

palindrome.

The theorem implies that when viewed as an object in the phase space
of the billiard flow in the triangle the beam is a Möebius band. This is
not in contradiction with the well known construction, of invariant surfaces
(see for example [Gu1], [Ta] in the rational case and [GT] in the irrational
case) since the directional billiard flow is isomorphic to the geodesic flow
on the invariant surface for any direction except for directions which are
parallel to a side of the polygon. The direction we are considering is such a
direction.

The symmetry of the beam is reminiscent of the symmetry of the
beam of periodic orbits around a periodic orbit of odd period mentioned
above. Galperin, Stepin and Vorobets showed that any perpendicular orbit
whose period is not a multiple of 4 is unstable under perturbation [GSV].
Viewed as an orbit in the rhombus the period is a multiple of 4, however
a simple argument shows that the period is not a multiple of 4 when the
orbit is viewed as an orbit in a right triangle [GZ].

Call an orbit recurrent if its code {ai} satisfies aj = a0 for some j > 0.

TOME 55 (2005), FASCICULE 1



32 Serge TROUBETZKOY

Call a nonrecurrent orbit an positive escape orbit if lim supi→∞ ai = ∞
and negative escape orbit if lim infi→∞ ai = −∞. Call a direction simple if
there are no generalized diagonals in the invariant surface containing the
direction. Here the invariant surface is thought of as arising from the right
triangle, so that the vertex at the right angle is considered as a singularity.

THEOREM 2. — 1) Consider an irrational right triangle. In any simple

direction then there is at most one non-singular positive escape orbit and

at most one non-singular negative escape orbit.

2) For any irrational right triangle whose smaller angle satisfies
1
6 π < α <

1
4 π, there is at most one non-singular escape orbit in the

perpendicular direction. If it exists it is both a positive and negative escape

orbit.

If we do not care if the orbit is singular or not, then we can remove
the words at most from the statement of the theorem. Theorem 2 is a
substantial strengthening of a particular case of a result of [GT] who show
that the set of nonrecurrent orbits has measure zero and of a particular case
of a result of [ST] who show that this set has lower box counting dimension
at most one half.

Boshernitzan has conjectured that given a rational triangle, every
nonsingular orbit is periodic in the invariant surface containing a
perpendicular direction [Bo]. I prove the following analog for irrational
right triangles.

THEOREM 3. — Fix an irrational right triangle whose smaller angle

satisfies 1
6 π < α < 1

4 π. Consider the invariant surface of M in the

perpendicular direction. Then all the nonsingular orbits on M except the

unique escape orbit are periodic.

Combining Theorem 3 with the main theorem of [BGKT] yields

THEOREM 4. — Periodic orbits are dense in the phase space of

irrational right triangles whose smaller angle satisfies 1
6 π < α <

1
4 π.

3. Definitions and proofs.

There is a nice introductory book on billiards by Tabachnikov [Ta] and
several survey articles [Gu1], [Gu2], [MT] which can be consulted for details
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PERIODIC BILLIARD ORBITS 33

on polygonal billiards in general. For a rational polygon there is a well
known construction of invariant surfaces, they are always compact. They
same construction leads to noncompact invariant surfaces for irrational
polygons. The invariant surfaces for an irrational right triangle can be
thought of as having a Z-quasiperiodicity [CHK], [GT], [Tr], [ST], [Ta].

Figure 2. Unfolding a billiard trajectory and the associated strip.

The proof is based on the procedure of unfolding of a billiard trajectory.
Instead of reflecting the trajectory with respect to a side of a polygon reflect
the polygon in this side. Thus the trajectory is straightened to a line with
a number of isometric copies of the polygon skewered on it (Figure 2, left).

Fix an orbit segment. There is a strip around this trajectory segment
such that the same sequence of reflections is made by all trajectories in
the strip (Figure 2, right). The number of reflections is called the length of
the strip. Call a maximal width strip a beam. The boundary of a periodic
beam consists of one or more trajectory segments which hit a vertex of
the polygon. If this vertex is the right-angle one, then the sequence of
reflections on both sides of it is essentially the same since the singularity
due to such a vertex is removable. This enables us to consider the billiard
inside a rhombus which consists of four copies of the right triangle and
unfold the rhombus (Figure 3). The central and reflectional symmetries of
the rhombus play an essential part in the proofs of the theorems.

0

0

1

1

1

2

2

I

J

JA+

B+

Figure 3. A periodic beam in a rhombus with code word 0121210.
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34 Serge TROUBETZKOY

Throughout the article unfoldings will be of the billiard in the rhombus
and thus billiard orbits through its center will be considered as defined.
As we follow the reflections along a straight line trajectory we see that
each flip rotates the rhombus by 2α where α is one of the interior angles
of the rhombus. Thus we can label the rhombi with integers according to
the total number of (clockwise) rotations by 2α. Each orbit is coded by the
sequence of labelled rhombi it visits, for example any orbit in the beam A+

in Figure 3 has code 0121210. It is often convenient to consider labelled
rhombus in a projective sense as an interval, namely for rhombus k consider
the beam of length 1 with code k and then the associated interval Ik is
just the perpendicular width of of the beam (see Figure 4).

Ik

Figure 4. Rhombus k projectivized to the interval Ik.

The kth-rhombus or the associated interval Ik will often be referred to
as level k. All reference to the length of a beam will pertain to the number
of rhombi it crosses which differs from its length in the right triangle.

Let us begin with the following fact.

LEMMA 5. — Suppose the A+ and B+ are parallel beams (not

necessarily perpendicular or periodic) with the same codes, then A+ = B+.

Proof. — The proof is by induction. Fix an initial direction. The base
case is clear, there is a single beam with code 0. Furthermore, there is a
single beam with code 01, a single beam with code 0(−1) and these two
beams of length two are separated by an orbit which hits a vertex of the
rhombus. Assume that every beam with length n is the unique beam with
its code. Fix a beam of length n and denote by j the last rhombus it visits.
The jth rhombus is attached to the (j + 1)st by two parallel sides and to
the (j − 1)st along the other two parallel sides. There are two points which
are common to the (j − 1)st, jth and (j + 1)st rhombi. During a given pass
through the jth rhombus, the beam can hit only one of the two in exiting
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PERIODIC BILLIARD ORBITS 35

the jth rhombus (it can hit the other in entering the j rhombus). The
orbit which splits a beam is emphasized in Figure 4. If the beam does not
arrive at this point then it does not split and the beam can be continued
to a unique beam of length n + 1. If the beam reaches this point then its
continuation is split into two sub-beams of length n+ 1 with the resulting
sub-beams code differing in the (n+ 1)st place.

Next we need the following fact.

LEMMA 6. — The three statements in Theorem 1 are equivalent.

Proof. — Perpendicular periodic beams must have even period since
they must retrace their orbits between the two perpendicular hits. Fix a
perpendicular periodic beam of period 2p. Consider the beam of length p
between the two perpendicular collisions (see Figure 3).

1) ⇒ 2) and 3). Suppose that the midpoint of this beam hits the
right-angle vertex. The central symmetry of the rhombus at this collision
point implies that the beam itself is centrally symmetric in this point and
thus has palindromic code. Furthermore p is even since the symmetry is
about an interior point of the rhombus. Label by I the interval of the
departure and by J the interval of the arrival. Both intervals are contained
in the rhombus labelled 0, the central symmetry of the beam implies that I
and J are centrally symmetric.

2) ⇒ 1). By assumption the initial interval I of the beam and the
final interval J fold to the same interval in the triangle Thus the midpoint
of I must have period p or have a singular orbit as an orbit in the triangle.
It is easy to see that the orbit can not be periodic, since any perpendicular
periodic orbit must be twice perpendicular and the collision at time 1

2 p

is not perpendicular. Thus the orbit is singular in the triangle. Since it was
nonsingular in the rhombus it hit the right-angled vertex of the triangle.

3) ⇒ 1). Consider the central symmetry of the palindromic beam
around its center c. This takes the beam to a priori another beam with the
same code. Lemma 5 implies that the beams must coincide. Thus the beam
is centrally symmetric about its center. Since p is even the point cmust lie in
the interior of the rhombus visited by the strip at step 1

2 p. However, viewed
in the rhombus one sees that the beam can only be centrally symmetric
around the center of the rhombus and no other point, thus c must be the
center of the rhombus.

TOME 55 (2005), FASCICULE 1



36 Serge TROUBETZKOY

We now turn to a detailed analysis of beams which start in a given
direction, and either return to that direction or another fixed direction.

LEMMA 7. — Fix an angle θ0 and consider the angle coding of the

billiard with θ0 taken as level 0. Suppose N > 0. Consider the set S0 of

points whose beam of length 2 has code 01. This set is an interval, partition

it into intervals such that for each partition interval there exists p ≥ 1
such that the initial orbit code {ai}pi=0 of all points in the interval does not

depend on the points and is such that a0 = 0, 0 < ai < N for i = 1, . . . , p−1
and ap is equal to either 0 or N . Then there are at most |N | such codes

and corresponding subintervals of S0. The interiors of these subintervals

are pairwise disjoint and their union covers S0.

Proof. — This lemma has been essentially proven in [GT] and
somewhat more explicitly in [ST]. I repeat the proof here for completeness.
Consider the beam of length two whose initial code is 01. Follow all the
orbits in this beam until they reach level N or return to level 0 at some
time p. For the beam to split, an orbit in the beam must reach a vertex.

This can be seen for example in Figure 3, the beam (not drawn in the
picture) just to the left of the beam A+ has code 01210 (the copy of the
rhombus corresponding to last 0 is not drawn in the picture). These two
beams are split by a vertex in (the 2nd occurence) of the 1st rhombus.

For each i there is a single vertex vi which can split the beam in
rhombus i. Since the billiard is invertible this vertex can only be reached
from at most one point in the 0th rhombus (without returning to the
rhombus). The set V : = V(N) : = {vi : 1 ≤ i ≤ N − 1} of vertices has
cardinality N − 1, therefore there are at most N distinct beams and
thus codes.

LEMMA 8. — Fix an angle θ0 and consider the angle coding of the

billiard with θ0 taken as level 0. For any M < 0 < N we can partition

level 0 into a finite number of intervals with each interval in one of three

classes, P := P(θ0,M,N),M :=M(θ0,M,N), U := U(θ0,M, n) such that

the orbits of any point in an interval in class P and M does not reach

level M or N . Furthermore

1) the forward orbit of each boundary point of each interval is singular,

2) the interior of each of the intervals in P consists periodic points and

the boundaries of each periodic family consists of generalized diagonals,
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PERIODIC BILLIARD ORBITS 37

3) the intervals in M consists of one (or several) minimal interval

exchange transformations (i.e. on a finite number of intervals!) and the

boundary of each minimal component consist of generalized diagonals and

4) the orbit of each point in the interior of an interval in U reaches

level M or N .

We have the following immediate corollary.

COROLLARY 9. — The orbit of every point in level 0 which does not

reach level M or N is either singular or returns to level 0.

The classes may well be empty, for example if we choose a direction
θ0 for which the surface has no generalized diagonals then both P and M
must be empty. Galperin has shown that for almost all right triangles there
exists a θ0 such that the setM is nonempty [Ga].

Proof. — Consider the cover of S0 defined in the previous lemma
and use the subintervals which return to define a partially defined IET
on level 0. Do the same for points whose code starts with 0(−1). Call
the domain of definition D. Do the same for the backwards dynamics and
remark that these two partially defined maps are inverses of each other
where ever they are defined. The total length of the intervals where the
forward map is not defined is equal to the total length of the intervals where
the backwards map is not define. Thus we can (in an arbitrary manner)
complete the definition of the partially defined map to an IET, which we
call the ghost map. The ghost IET agrees with the partially defined first
return billiard map whenever it was defined.

Since the ghost map is an IET with interval of definition being level 0.
The well known topological decomposition holds, the interval of definition
is decomposed into periodic and minimal components, with the boundary of
the components consisting of generalized diagonals (see for example [KH]).

Any point whose orbit enters an interval on which the ghost dynamics
differs from the true dynamics will reach level M or N following the true
dynamics. On the other hand the topological decomposition mentioned
above can be applied to the point for which the ghost and true dynamics
always agree. We remark that a ghost minimal component will, by
minimality be either completely contained in D or every orbit will enter an
interval on which the ghost dynamics differs from the true dynamics and
thus will reach level M or N following the true dynamics.
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38 Serge TROUBETZKOY

We next begin the analysis of simple directions. The main reason to
analyze such directions is to “warm-up” for perpendicular directions.

LEMMA 10. — Suppose θ0 is simple. Then for all integers M < N

1) there exists a nonsingular orbit segment starting in level M and

ending in level N and

2) a nonsingular orbit segment starting in level N and ending in

level M .

Proof. — We first remark that if there is a nonsingular orbit from M
to N then since the map is locally an isometry there is a whole interval
which maps from M to N . Since a.e. point in level M is recurrent this
implies that there must be orbits from N to M as well. Thus it suffices to
show that either 1) or 2) holds.

Suppose that neither 1) nor 2) holds. Consider the set SM of all
points whose code starts with M(M + 1) and SN whose code starts with
N(N − 1). Let BNM be the union of the levels M + 1 to N − 1. Since θ0
is simple the previous lemma implies that the backwards orbit of every
point in BNM must reach SN , SM or be singular. Thus we can partition BNM
into intervals whose backwards orbit hit SM , intervals whose backwards
orbit hits level SN , and the backwards singular orbits which divide these
intervals.

Since we have assumed there are no orbits connecting levelsM and N ,
Corollary 9 implies that if the backwards orbit hits SM (resp. SN ) then
the forward orbit hits level M (resp. level N). This implies that the points
which divide the partition of BNM are also forward singular. Since they
are both backwards and forward singular they are part of a generalized
diagonal, which contradicts that fact that θ0 is simple. Therefore at least
one of 1) or 2) holds, and thus both hold.

Next we prove the following strengthening of Lemma 7 for simple
directions. This is the first place that the role of the center of the rhombus
becomes apparent.

PROPOSITION 11. — Suppose θ0 is simple. Then

1) there is exactly one code for which a0 = 0 and ap = N and

2) for all codes for which a0 = ap = 0 the code is a palindrome and

p is even.
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PERIODIC BILLIARD ORBITS 39

Proof. — Consider the set S0 of all points whose code starts
with 01 and the set SN of all points whose code starts with N(N − 1).
Set S : = S0 ∪ SN . Consider the points in S whose orbits arrive at a vertex
in V before returning to level 0 or N . The cardinality of V is N − 1, thus
since θ0 is simple we can apply Lemma 8 to conclude that there are exactly
N−1 such points. They partition S into N+1 intervals. Call the associated
beams A(i) where 1 ≤ i ≤ N + 1. Suppose the ith beam is of length p(i),
we denote its code by {a(i)j }

p(i)
j=0.

Consider the set C : = C(N) : = {ci : 1 ≤ i ≤ N − 1} where ci is the
center of the ith rhombus. Consider the orbits which start in S and arrive
at one of these centers before returning to level 0 or N . By simplicity there
are N − 1 such orbits and they are disjoint from the orbits which start in S
and arrive at a vertex in V. The orbit of ci ∈ C is symmetric, thus the code
of a beam A(i) containing such a point is a palindrome and p is even. The
code begins and ends with the same symbol, 0 or N , and is strictly positive
in between, therefore it can not be a palindrome twice. Thus each of the
orbits which arrive at a center are in distinct beams. This implies that each
interval contains at most one ci and all but two of the beams contain a
center.

We have shown that there are two intervals whose beam does not
contain a center. All the other beams start and end on one of the two
levels 0, N without visiting the other. Thus by Lemma 10, the two beams
must be as follows: one connects levels 0 to N and the other levels N to 0
and all other codes are palindromes.

We would like to extend Proposition 11 to non simple directions,
especially to perpendicular directions. There are three places where
simplicity was used in the proof, the first is that the pull back of all vi ∈ V
and all ci ∈ C reaches the set S. A finer counting argument overcomes this
difference. The second is that the pull backs of the vi and ci are disjoint.
Finally we applied Lemma 10. We are able to avoid the last two difficulties
by assuming that the angle α satisfies α ∈ ( 1

6 π,
1
4 π).

LEMMA 12. — Fix an irrational right triangle Q whose smaller

angle α ∈ ( 1
6 π,

1
4 π). Consider the angular coding with respect to the

perpendicular direction. Then the first return map to level 0 can not be

an IET.

Proof. — LetM be the invariant surface containing the perpendicular
direction. Consider the set G of generalized diagonals which are contained
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40 Serge TROUBETZKOY

in the invariant surface M . Note that since Q is irrational the set G can
be infinite. Each generalized diagonal is a segment inM . Several generalized
diagonals can intersect at a singular point, thus the set G has the structure
of a graph, not necessarily connected.

Suppose the conclusion is not true. Then, the set of perpendicular
periodic orbits form a finite union of annuli A ⊂M . We have A �=M since
the area of M is infinite and the area of A is finite. Thus A must have a
boundary which must consist of a finite union of generalized diagonals. We
will analyze G to show that this boundary must be empty.

The boundary of A consists of periodic loops. A periodic loop is a finite
union of generalized diagonals which is periodic. We can think of a periodic
loop as a (one-sided) boundary of a family of periodic orbits. The idea of
the proof is to analyze all possible periodic loops which could possibly form
the boundary of A, i.e. those that have perpendicular periodic orbits on
at least one side. Our analysis will show that in each case they must have
perpendicular periodic orbits on both sides and thus they can not form
part of the boundary of A.

A periodic loop g is called simple if it consists of a single generalized
diagonal, or equivalently the connected component of G containing g is {g}.
Let L be the horizontal diagonal of the rhombus.

0

0
1L

L
gL

α
α α

Figure 5. gL is a simple periodic loop.

Consider the orbit gL starting from the left endpoint of L. Since
1
2 π < 3α < 3

4 π and 2α < 1
2
π the symbolic coding of gL is 010, and gL

hits L again in an interior point without hitting any other vertex before
(see Figure 5). Thus gL is a simple periodic loop. Since gL hits L at an
interior point it has perpendicular periodic orbits on both sides of it and can
not form part of the boundary of A. Similarly the perpendicular diagonal
starting at the right end point of L can not be part of the boundary of A.

Consider any connected component G′ of G such that G′ ∩ A �= ∅.
This implies that there is at least one generalized diagonal g1 ∈ G′ whose
orbit hits L perpendicularly, and thus we have a perpendicular periodic
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PERIODIC BILLIARD ORBITS 41

loop g′ = g1, . . . , gn in G′. Since we have finished treating it, we can
assume gL �∈ G′ and thus g1 hits L in an interior point.

I claim that the periodic loop hits L again perpendicularly at another
interior point of L. First of all g′ can not hit L again at an endpoint
by assumption. Start flowing g′(g1) forwards and backwards from L, this
is a symmetric orbit in M . At exactly half of g′’s (minimal) period, the
forward and backwards orbits meet. The meeting point must also be a
symmetry point of the orbit. The only points of symmetry available are
perpendicular reflections (in our case since Q is irrational the only axis of
reflection in M is L) and central symmetries through copies of the center
of Q. I claim that the only possibility for the second symmetry of g is that
it must hit L a second time at an different interior point of L. First it
can not hit a central symmetry point since such points are isolated, while
the second symmetry holds for the whole periodic family which g′ bounds.
Furthermore g′ can not hit L a second time at the same end point, in fact
assuming this holds halves the period of g′, a contradiction of the definition
of minimal period.

L L

L

g1

g2 g3

Figure 6. G′ consisting of three periodic loops,

{g1, g2}, {g2, g3} and {g3, g1}.

Thus both sides of g1 must consist of periodic perpendicular orbits
(see Figure 6). If g′ is simple then both sides of g′ consist of periodic
perpendicular orbits and g′ can not be part of the boundary of A. If g′ is
not simple then the “other” side of g′ is also a periodic loop, for which, by
the same reasoning, bounds perpendicular period orbits. Since A is a finite
union of annuli, there can only be a finite number of perpendicular periodic
loops. Thus, by exhaustion, all of G′ consists of perpendicular periodic
loops, and can not form part of the boundary of A. This contradiction
completes the proof.
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42 Serge TROUBETZKOY

Next we prove the analog of Proposition 11 for perpendicular
directions.

PROPOSITION 13. — Fix an irrational right triangle Q whose smaller

angle α ∈ ( 1
6 π,

1
4 π). Consider the angular coding with respect to the

perpendicular direction, then

1) there is exactly one code for which a0 = 0 and ap = N , and

2) for all codes for which a0 = ap = 0 the code is a palindrome and p

is even.

Proof. — We consider the same notation as in the proof of
Proposition 11, the difference being that generalized diagonals exist.
Suppose for the moment that no generalized diagonal passes through
both C and V. Note that by symmetry a perpendicular orbit can reach
only a single c ∈ C. Let J ≤ N − 1 be the cardinality of the points in S
whose orbits arrive at a vertex in V before returning to level 0 or N . They
partition the S into J+2 intervals and corresponding beams A(i). Let K be
the cardinality of the set of orbits which start in S and arrive C. Consider
the beam A(i) containing such an orbit, arguing as in the simple case that
each center is in a different beam yields K ≤ J + 2.

If no orbit from S reaches ci before returning level 0 or N , then the
orbit of ci never reaches rhombus 0 or N . Thus by Lemma 8 it’s orbit is
periodic or its orbit closure is a minimal IET. In either case since the map
is a local isometry we can associate ci with a vertex vj(i) ∈ V such that no
orbit from S reaches this vertex. Furthermore one generalized diagonal can
not be the complete boundary to two minimal or periodic components of
an IET. Thus for a set of cardinality L of such ci we must have at least L
distinct such vertices vj(i). This implies N − 1− J ≥ N − 1−K, or J ≤ K.
We have shown that J ≤ K ≤ J + 2, i.e. the number of beams which do
not contain a center is at most 2. These two beams are the only candidates
for beams connecting level 0 to N and N to 0.

Now we deal with the case when there is an orbit passing through
both C and V. Note that any orbit which starts perpendicularly and arrives
at C before V, returns, by the central symmetry to a perpendicular collision
and is thus simple. Thus we have reduced to the case when an orbit visits V
before C. By the central symmetry it is a generalized diagonal. The counting
argument above works with the following differences. First of all we consider
this generalized diagonal as a degenerate beam A(i). For this degenerate
beam we interpret J and K as follows. Since A(i) visits a single c ∈ C it
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contributes one toK and since J+2 is the number of beams it contributes 1
to J . With these modifications the inequality J ≤ K ≤ J + 2 remains true
and as above we conclude that all but at most two of the beams contain a
center. By the central symmetry around the center the code of each such
beam must satisfy a0 = ap ∈ {0, N}.

Next we need to show that exactly two exceptional beams exist. If no
exceptional beam exists then Lemma 12 yields an immediate contradiction.
If one exceptional beam exists, if a0 = ap then again Lemma 12 yields
an immediate contradiction. In the other cases (a0 = 0, ap = N or
a0 = N, ap = 0) the points of the exceptional beam can not be recurrent,
which is a contradiction of the fact that almost every point is recurrent.
Thus exactly two exceptional beams exist. All the other beams contain a
center and thus are palindromes with p even.

Finally we need to show that in fact one of the two beams satisfies
a10 = 0, a1p = N and the other satisfies a20 = N, a2p = 0. If we think of
the beams as marked (1st and 2nd) then there are sixteen possible cases
depending on of aji = 0 or N for j = 1, 2 and i = 0, p. Two of these cases
are good, we must eliminate all the fourteen other cases.

Since almost every point is recurrent we can not have a beam starting
with 0 and ending with N without the other beam connecting level N
to level 0, this eliminates six cases.

To be able to apply Lemma 12 repeat the construction for points
which are perpendicular to the leg of the triangle but whose code is
strictly negative before returning to level 0 or −N to produce two addition
exceptional beams with codes bji , which are centrally symmetric to the two
original ones in the sense that aji = −bji for j = 1, 2. A direct application
of Lemma 12 eliminates the the remaining eight bad cases when there is no
beam starting in 0 ending in N .

Proof of Theorem 1. — The theorem follows immediately for by
combining Lemma 6 and Propostion 13.

Proof of Theorem 2. — We start with the simple case. First consider
orbits whose code starts with 01. Any such nonsingular nonrecurrent orbit
must be contained in the intersection

⋂
N≥1B

i0(N) where Bi0(N) is the
unique interval which satisfy alternative 1) for fixed N ≥ 1 of Propo-
sition 11. Consider the initial segment of these beams, these intervals are
clearly nested, thus there is at most one interval or a single point in
the intersection of their closures. Since the set of nonrecurrent orbits has
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measure zero it consists of at most a single point. The orbits of this point is
either a positive escape orbits or singular. Similarly we find a single positive
escape orbit starting on any level N . This escape orbit must, by uniqueness,
coincide with the one starting on level 0.

A symmetric argument holds for the backwards escape orbit, by
starting with points whose code commences with 0− 1.

We turn to the perpendicular case. The fist difference to the simple
case is that we replace Proposition 11 by Proposition 13. We immediately
obtain that there is at most one positive escape orbit starting on level 0.
To show that this is the unique positive escape orbit on the whole surface
we argue like in the proof of Propostion 13. Fix M > N > 0. The first
part proof goes through for levels M and N , i.e. we know that there are at
most two exceptional beams. We need to conclude that they exist and that
they connect levels M and N to each other without applying Lemma 12.
This follows immediately from the fact that there is a beam connecting
level 0 to N and a beam connecting level N to level 0.

By symmetry, the positive and negative escape orbits must be the
forward and backwards part of the same orbit.

Proof of Theorem 3. — The proof is similar to the proof of Lemma 12.
The set of perpendicular periodic orbits form a countable union of annuli
A ⊂ M . If A �= M then A must have a boundary which must consist of
generalized diagonals and escape orbits. Besides the escape orbit, there is
an additional difficulty that the relevant part of the graph of generalized
diagonals on M need not be finite.

The argument that a finite connected component G′ satisfying
G′ ∩ A �= ∅ can not form part of the boundary of A is the same as in
the proof of Lemma 12. This completes the proof in the rational case.

Next suppose that the escape orbit exists, i.e. is nonsingular. Denote
this orbit by e. By construction, the orbit e starts on level 0 at a point e0
which is an interior point of L. Thus we can find a sequence of perpendicular
periodic orbits which approaches e from the left and a sequence which
approaches e from the right, and e can not form part of the boundary of A.

The remaining case is G′ infinite. There are two subcases, either every
edge in the graph has periodic perpendicular orbits on both sides or not. In
the first case we argue as in the proof of Lemma 12, using induction instead
of exhaustion to complete the proof. In the second case the (unique) escape
orbit e is infact singular and contained in G′, see Figure 7. Thus the one
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Figure 7. An infinite connected component G′ which

includes the escape orbit.

side of e bounds perpendicular periodic families, while the other side is a
limit or perpendicular periodic families.

The method of proof also allows to verify the Boshernitzan conjecture
for an infinite collection of rational right triangles, those where the
perpendicular orbits starting at the (non-right angle) vertices are simple
periodic loops.

Proof of Theorem 4. — For irrational triangles this follows
immediately from Theorem 3 since the surface M is dense in the full phase
space. For rational triangles the result was established in [BoGaKrTr].

4. Extensions.

I would like to remark on the assumption 1
6 π < α < 1

4 π. This
technical assumption guarantees that the orbits starting at the endpoints
of L are simple periodic loops. It is easy to see that this is an open condition
and to verify that it holds for many other open intervals, for example for
π/(4n + 2) < α < π/4n where n ≥ 1. It seems likely this condition holds
for an open set of full measure of parameters α.

Acknowledgements. — I profitted greatly from discussions with
Pascal Hubert.
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