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ASYMPTOTICS OF THE PARTITION FUNCTION OF

A RANDOM MATRIX MODEL

by Pavel M. BLEHER (*) & Alexander R. ITS (**)

1. Introduction.

The central object of our analysis is the partition function of a random
matrix model,

ZN =
∫ ∞
−∞
· · ·

∫ ∞
−∞

∏
1≤j<k≤N

(zj − zk)2 e−NΣN

j=1V (zj)dz1 · · · dzN

= N !
N−1∏
n=0

hn,

where V (z) is a polynomial,

(1.1) V (z) =
2d∑
j=1

vjz
j , v2d > 0,

and hn are the normalization constants of the orthogonal polynomials on
the line with respect to the weight e−NV (z),

(1.2)
∫ ∞
−∞

Pn(z)Pm(z) e−NV (z) dz = hnδnm, Pn(z) = zn + · · · .

(*) The first author was supported in part by the National Science Foundation (NSF)
Grants DMS-9970625 and DMS-0354962.
(**) The second author was supported in part by the NSF Grant DMS-0099812 and
DMS-0401009.
Keywords: Matrix models, orthogonal polynomials, partition function.
Math. classification: 42C05.



1944 Pavel M. BLEHER & Alexander R. ITS

In this work we are interested in the asymptotic expansion of the free
energy,

(1.3) FN = − 1
N2

lnZN ,

as N →∞. Our approach is based on the deformation τt of V (z) to z2,

(1.4) τt : V (z)→ (1− t−1)z2 + V (t−
1
2 z), 1 ≤ t <∞,

so that

(1.5) τ1V (z) = V (z), τ∞V (z) = z2,

and our main reasults are the following:

1) under the assumption that V is one-cut regular (for definitions
see Section 4 below), we obtain a full asymptotic expansion of
the recurrence coefficients γn, βn of orthogonal polynomials in
powers of N−2, and we show the analyticity of the coefficients
of these asymptotic expansions with respect to the coefficients vk,
k = 1, . . . , 2d;

2) under the assumption that τtV is one-cut regular for t ≥ 1, we prove
the full asymptotic expansion of FN in powers of N−2, and we show
the analyticity of the coefficients of the asymptotic expansion with
respect to vk, k = 1, . . . , 2d;

3) under the assumptions that (i) V is singular, (ii) the equilibrium
measure of V is nondegenerate at the end-points, and (iii) τtV is one-
cut regular for t > 1, we prove that the coefficients of the asymptotic
expansion of the free energy of τtV for t > 1 can be analytically
continued to t = 1;

4) for the singular quartic polynomial, V (z) = ( 1
4 z

4) − z2, we obtain
the double scaling asymptotics of the free energy of τtV (z) where
t − 1 is of the order of N−

2
3 ; we prove that this asymptotics is a

sum of a regular term, coming as a limit of the asymptotic expansion
for t > 1, and a singular term, which has the form of the logarithm of
the Tracy-Widom distribution function.

In result 2), the existence of a full asymptotic expansion of the free
energy in powers of N−2 was first proved by Ercolani and McLaughlin [EM],
under the assumption that the coefficients of V are small. It was used in [EM]
to make rigorous the Bessis-Itzykson-Zuber topological expansion [BIZ]
related to counting Feynman graphs on Riemannian surfaces. Apparently,
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ASYMPTOTICS OF THE PARTITION FUNCTION 1945

the results of [EM] can be used to obtain the asymptotic expansion
of the recurrent coefficients, i.e. our result 1); however, the important
specific structure of the series corresponding to the coefficients βn, which
is obtained in our Theorem 5.2, seems to be a challenge fot the methos
of [EM]. The approach of Ercolani and McLaughlin is based on a direct
use of the asymptotic solution of the Riemann-Hilbert problem, and it is
very different from our approach, which is based on a combination of the
Riemann-Hilbert analysis and the deformation equations. Also in result 2),
our proof of the analyticity of the coefficients of the asymptotic expansion
with respect to vk uses an important result of Kuijlaars and McLaughlin
[KM], that the Jacobian of the map of the end-points of the equlibrium
measure to the basic set of integrals (see Section 4 below) is nonzero. In
result 3), the existence of an analytic continuation of the free energy to the
critical point (the one-sided analyticity) from the one-cut side was proved
by Bleher and Eynard for a nonsymmetric singular quartic polynomial, see
the paper [BE], where, in fact, the one-sided analyticity was proved from
the both sides, one-cut and two-cut, and a phase transition of the third
order was shown. Thus, result 3) gives an extension of the result of [BE] to a
general singular V from the one-cut side. Observe that the analytic behavior
of the free energy from the multi-cut side can be different for different
singular V and it requires a special investigation. In result 4), to derive
and to prove the double scaling asymptotics of the free energy we use and
slightly extend the double scaling asymptotics of the recurrent coefficients,
obtained in our paper [BI2]. In addition, we extend the Riemann-Hilbert
approach of [DKMVZ] to the case when t = 1 + cN−

2
3 +ε, where c, ε > 0.

In this case the lenses thickness vanishes as N−
1
3 but this is enough to

estimate the jump on the lenses by e−CNε

and to apply the methods of
[DKMVZ].

The set up of the rest of the paper is the following. In Section 2 we
derive formulas which describe the deformation of the recurrence coefficients
and the free energy for a finite N , under deformations of V. Here, we make
use of the integrability of the matrix model, and we refer the reader
to excellent recent surveys of van Moerbeke [vM1], [vM2] on different
modern aspects as well as the history of the matter. In Section 3 we use
the deformation τtV (z) to obtain an integral representation of the free
energy for a finite N . In Section 4 we obtain different results concerning
the analyticity of the equilibrium measure for the q-cut regular case. In
Section 5 we obtain one of our main results about the asymptotic expansion
of recurrence coefficients in the one-cut regular case. This is applied then in
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Section 6 to obtain the asymptotic expansion of the free energy, assuming
that τtV is one-cut regular for t ∈ [1,∞). In Section 7 we derive an
exact formula for the limiting free energy in the case when V is an even
one-cut regular polynomial. In Section 8 we obtain a number of results
concerning the one-sided analyticity for singular V. Finally, in Section 9 we
obtain the double scaling asymptotics of the free energy for the singular
quartic polynomial V.

2. Deformation equations for recurrence coefficients
and partition function.

Define the psi-functions as

(2.1) ψn(z) =
1√
hn

Pn(z) e−
1
2 V (z).

Then

(2.2)
∫ ∞
−∞

ψn(z)ψm(z) dz = δnm.

The psi-functions satisfy the three term recurrence relation,

(2.3) zψn(z) = γn+1ψn+1(z) + βnψn(z) + γnψn−1(z),

where

(2.4) γn =
√

hn/hn−1·
Set

(2.5)
−→
Ψ(z) =


ψ0(z)
ψ1(z)
ψ2(z)...

.

Then (2.3) can be written in the matrix form as

(2.6) z
−→
Ψ(z) = Q

−→
Ψ(z), Q =



β0 γ1 0 0 0 . . .

γ1 β1 γ2 0 0 . . .

0 γ2 β2 γ3 0 . . .

0 0 γ3 β3 γ4 . . .

0 0 0 γ4 β4 . . .
...

...
...

...
...

. . .


.

Observe that ZN , hn, γn, βn are functions of the coefficients v1, . . . , v2d

of the polynomial V (z). We will be interested in exact expressions for the
derivatives of ZN , hn, γn, βn with respect to vk. Set

(2.7) ṽk = Nvk, k = 1, . . . , 2d.

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 2.1. — We have the following relations:

∂ lnhn

∂ṽk
= −[Qk]n,n ,(2.8)

∂γn
∂ṽk

=
γn
2

(
[Qk]n−1,n−1 − [Qk]n,n

)
,(2.9)

∂βn
∂ṽk

= γn[Qk]n,n−1 − γn+1[Qk]n+1,n ,(2.10)

where [Qk]n,m denotes the nm-th element of the matrix Qk ; n,m =
0,1,2, . . ..

Proof. — Formula (2.8) is proven in [Ey]. By (2.4), it implies (2.9).
Let us prove (2.10). Introduce the vector function

(2.11)
−→
Ψn(z) =

(ψn−1(z)
ψn(z)

)
.

As shown in [Ey] (see also [BEH]), it satisfies the deformation equation

(2.12)
∂
−→
Ψn

∂ṽk
= Uk(z;n)

−→
Ψn(z),

where

(2.13) Uk(z;n) =
1
2

( zk − [Qk]n−1,n−1 0

0 [Qk]n,n − zk

)
+ γn

( [Q(z;k − 1)]n,n−1 −[Q(z;k − 1)]n−1,n−1

[Q(z;k − 1)]n,n −[Q(z;k − 1)]n,n−1

)
,

and

(2.14) Q(z;k − 1) =
k−1∑
j=0

zjQk−1−j .

From (2.3),

(2.15)
−→
Ψn+1 =

1
γn+1

U(z;n)
−→
Ψn(z), U(z;n) =

( 0 γn+1

−γn z − βn

)
.

The compatibility condition of (2.13) and (2.15) is

(2.16)
∂U(z;n)

∂ṽk
= Uk(z;n + 1)U(z;n)− U(z;n)Uk(z;n)

+
1

γn+1

∂γn+1

∂ṽk
U(z;n).

By restricting this equation to the element 22, we obtain (2.10).
Proposition 2.1 is proved.

TOME 55 (2005), FASCICULE 6
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We will be especially interested in the derivatives with respect to ṽ2.
For k = 2, Proposition 2.1 gives that

∂ lnhn

∂ṽ2
= −γ2

n − β2
n − γ2

n+1,(2.17)

∂γn
∂ṽ2

=
γn
2

(γ2
n−1 + β2

n−1 − γ2
n+1 − β2

n),(2.18)

∂βn
∂ṽ2

= γ2
nβn−1 + γ2

nβn − γ2
n+1βn − γ2

n+1βn+1.(2.19)

Observe that all these expressions are local in n, so that they depend only
on the recurrent coefficients with indices which differ from n by a fixed
number. Our next step will be to get a local expression for the second
derivative of Zn.

PROPOSITION 2.2. — We have the following relation:

(2.20)
∂2 lnZN

∂ṽ2
2

= γ2
N (γ2

N−1 + γ2
N+1 + β2

N + 2βNβN−1 + β2
N−1).

Proof. — For the sake of brevity we denote (′) = ∂/∂ṽ2. From
(2.17)–(2.19) we obtain that

(lnhn)′′ = −2γnγ′n − 2βnβ′n − 2γn+1γ
′
n+1(2.21)

= −γ2
n(γ2

n−1 + β2
n−1 − γ2

n+1 − β2
n)

− 2βn(γ2
nβn−1 + γ2

nβn − γ2
n+1βn − γ2

n+1βn+1)

− γ2
n+1(γ

2
n + β2

n − γ2
n+2 − β2

n+1)

= In+1 − In,

where

(2.22) In = γ2
n(γ2

n−1 + γ2
n+1 + β2

n + 2βnβn−1 + β2
n−1).

From (1.1) and (2.21) we obtain now the telescopic sum,

(2.23) (lnZN )′′ =
N−1∑
n=0

(lnhn)′′ =
N−1∑
n=0

(In+1 − In) = IN − I0.

Observe that I0 = 0, because γ0 = 0, hence (2.20) follows.
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Remark . — When k = 1, Proposition 2.1 gives that

(2.24)
∂ lnhn

∂ṽ1
= −βn,

∂γn
∂ṽ1

=
γn
2

(βn−1 − βn),
∂βn
∂ṽ1

= γ2
n − γ2

n+1,

hence

(2.25)
∂2 lnZN

∂ṽ2
1

= γ2
N .

Similar formulae can be derived also for k ≥ 3, but they become
complicated.

Remark . — For the case of even potentials, equations (2.11)–(2.16),
as well as the statement of Proposition 2.1 were obtained in [FIK]. It is also
worth noticing that in the even case, differential-difference equation (2.9) is
the well-known Volterra hierarchy whose integrability was first established
in 1974–1975 in the pioneering works of Flaschka [Fl], Kac and van
Moerbeke [KvM], and Manakov [Ma], and whose particular case (2.18) is
the classical Kac-van Moerbeke discrete version of the KdV equation [KvM].

Remark . — Proposition 2.2 was proven in [IKF] for the case of the
even quartic potential V (z) = v2z

2 + v4z
4.

3. Free energy for a finiteN .

In terms of v2 formula (2.20) reduces to the following:

(3.1)
∂2FN

∂v2
2

= −γ2
N (γ2

N−1 + γ2
N+1 + β2

N + 2βNβN−1 + β2
N−1),

where FN is the free energy, see (1.4).

The main problem we will be interested in is an asymptotics of the
free energy as N →∞. Our approach will be based on a deformation of the
polynomial V (z) to the quadratic polynomial z2. To that end we set

(3.2) W (z) = V (z)− z2,

and we define a one-parameter family of polynomials,

(3.3) V (z;t) = z2 + W
( z√

t

)
, t ≥ 1.

Then obviously,

V (z;1) = V (z), V (z;∞) = z2.

It is convenient to introduce the operator τt, see (1.5). Then V (z;t) =
τtV (z). The operators τt satisfy the group property.

TOME 55 (2005), FASCICULE 6
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PROPOSITION 3.1. — One has

(3.4) τtτs = τts.

Proof. — We have that

τt
(
τs

(
V (z)

))
= τt

(
(1− s−1)z2 + V (s−

1
2 z)

)
(3.5)

= (1− t−1z2) + (1− s−1)t−1z2 + V (t−
1
2 s−

1
2 z)

= (1− t−1s−1)z2 + V (t−
1
2 s−

1
2 z) = τts

(
V (z)

)
.

Proposition 3.1 is proved.

Let ZN = ZN (t) be the partition function (1.1) for the polynomial
V (z;t) and FN = FN (t) the corresponding free energy.

PROPOSITION 3.2. — One has

(3.6)
∂2FN (t)

∂t2
= − 1

t2

{
γ2
N (t)

[
γ2
N−1(t) + γ2

N+1(t) + β2
N (t)

+ 2βN (t)βN−1(t) + β2
N−1(t)

]
− 1

2

}
,

where γn(t),βn(t) are the recurrence coefficients of orthogonal polynomials

with respect to the weight e−NV (z ;t).

Proof. — By the change of variables zj =
√
tuj , we obtain from (1.1)

that

(3.7) ZN (t) = tN
2/2ẐN (t),

where

(3.8) ẐN (t) =
∫ ∞
−∞
· · ·

∫ ∞
−∞

∏
1≤j<k≤N

(uj − uk)2 e−ΣN

j=1NV̂ (uj ;t) du1 · · · duN

is the partition function for

(3.9) V̂ (u;t) = V
(√

tu;t
)

= tu2 + W (u).

Hence

(3.10) F̂N (t) ≡ − 1
N2

ln ẐN (t) = − 1
N2

ln
[
−tN2/2ZN (t)

]
= FN (t) +

ln t

2
·

ANNALES DE L’INSTITUT FOURIER
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By (3.1),

(3.11)
∂2F̂N (t)

∂t2
= −γ̂2

N (t)
[
γ̂2
N−1(t) + γ̂2

N+1(t) + β̂2
N (t)

+ 2β̂N (t)β̂N−1(t) + β̂2
N−1(t)

]
,

where γ̂n(t), β̂n(t) are the recurrence coefficients of the orthogonal
polynomials

(3.12) P̂n(u;t) = t−
1
2 nPn

(√
t u;t

)
with respect to the weight e−NV̂ (u;t). Since

(3.13)
(√

t u
)
Pn

(√
t u;t

)
= Pn+1

(√
t u;t

)
+ βn(t)Pn

(√
t u;t

)
+ γ2

n(t)Pn−1(
√
tu;t),

we obtain that

(3.14) γ̂n(t) = t−
1
2 γn(t), β̂n(t) = t−

1
2 βn(t),

hence from (3.11), (3.10) we obtain that

(3.15)
∂2

∂t2

(
FN (t) +

ln t

2

)
= − γ2

N (t)
t2

[
γ2
N−1(t) + γ2

N+1(t) + β2
N (t)

+ 2βN (t)βN−1(t) + β2
N−1(t)

]
,

which implies (3.6). Proposition 3.2 is proven.

We would like to integrate formula (3.6). To that end we need an
asymptotic behavior of the recurrence coefficients γn, βn, n = N−1, N,N+1
as t→∞. For a finite N it is easy.

PROPOSITION 3.3. — Assume that n and N are fixed. Then, as t→∞,

(3.16) γn(t) =
√

n

2N
+ O(t−

1
2 ), βn = O(t−

1
2 ).

Proof. — When t = ∞, V (z;t) = z2, hence γn(∞), βn(∞) are
recurrence coefficients for the Hermite polynomials,

(3.17) γn(∞) =
√

n

2N
, βn(∞) = 0.

When t is finite, the orthogonal polynomials and recurrence coefficients
can be obtained through the Gramm-Schmidt orthogonalization algorithm.
Since for any moment we have the relation,

(3.18)
∫ ∞
−∞

zk e−N(z2+W (z/
√
t)) dz =

∫ ∞
−∞

zk e−Nz2
dz + O(t−

1
2 ),

estimation (3.16) follows.

TOME 55 (2005), FASCICULE 6
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From Propositions 3.2 and 3.3 we obtain the following formula for FN .

THEOREM 3.4. — One has

(3.19) FN (t) = FGauss
N +

∫ ∞
t

t− τ

τ2

{
γ2
N (τ)

[
γ2
N−1(τ) + γ2

N+1(τ)

+ β2
N (τ) + 2βN (τ)βN−1(τ) + β2

N−1(τ)
]
− 1

2

}
dτ ,

where γn(τ), βn(τ), n = N − 1,N ,N + 1, are the recurrence coefficients for

orthogonal polynomials with respect to the weight e−NV (z ;τ), and

(3.20) FGauss
N = − 1

N2
ln

(
(2π)

1
2 N

(2N)
1
2 N2

N∏
n=1

n!
)

is the free energy of the Gaussian ensemble.

Proof. — From Proposition 3.3 we obtain that

(3.21) γ2
N (τ)

[
γ2
N−1(τ) + γ2

N+1(τ) + β2
N (τ)

+ 2βN (τ)βN−1(τ) + β2
N−1(τ)

]
− 1

2
= O(τ−

1
2 ),

hence the integral in (3.19) converges. In addition, FN (∞) is the free energy
for the Gaussian ensemble. Since for the Gaussian ensemble,

(3.22) hn = h0γ
2
1 · · · γ2

n =
√
π√
N

1
(2N)

· · · n

(2N)
=
√
π√
N

n!
(2N)n

,

we obtain from (1.1) that

(3.23) ZN (∞) = N !
N−1∏
n=0

[ √π√
N

n!
(2N)n

]
=

(2π)
1
2 N

(2N)
1
2 N2

N∏
n=1

n!,

so that FN (∞) = FGauss
N . Denote the function on the right in (3.19)

by F̃N (t). Then by Proposition 3.2,

∂2FN (t)
∂t2

= − 1
t2

{
γ2
N (t)

[
γ2
N−1(t) + γ2

N+1(t) + β2
N (t)(3.24)

+ 2βN (t)βN−1(t) + β2
N−1(t)

]
− 1

2

}
=

∂2F̃N (t)
∂t2

,

hence FN (t)− F̃N (t) = at+ b. Since FN (∞) = F̃N (∞) = FGauss
N , we obtain

that a = b = 0, hence FN (t) = F̃N (t). Theorem 3.4 is proven.
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4. Analyticity of the equilibrium measure
for a regular V .

This section is auxiliary. We prove a general theorem on the analyticity
of the equilibrium measure with respect to perturbations of a regular V. The
proof will follow directly from a result of Kuijlaars and McLaughlin [KM],
that the Jacobian of the map of the end-points of the equilibrium measure
to the integrals {Tj , Nk} is nonzero. Let us introduce the main definitions.
We will assume that V (z) is a real analytic function satisfying the growth
condition,

(4.1) lim
|x|→∞

V (x)
log |x| =∞.

The weighted energy of a Borel probability measure µ on the line is

(4.2) IV (ν) = −
∫∫
R2

log |x− y|dν(x) dν(y) +
∫
R1
V (x) dν(x).

There exists a unique equilibrium probability measure νeq, which minimizes
the functional IV (ν),

(4.3) IV (νeq) = min
{
IV (ν) : ν ≥ 0,

∫
R1

dν = 1
}
.

As shown in [DKM], the equilibrium measure is absolutely continuous and
it is supported by a finite number of intervals,

(4.4) supp νeq =
q⋃

i=1

[ai, bi].

The density of νeq on the support is given by the formula

(4.5) ρ(x) =
1

2πi
h(x)

√
R+(x), x ∈

q⋃
i=1

[ai, bi],

where the function h is real analytic and

(4.6) R(z) =
q∏

i=1

[
(z − ai)(z − bi)

]
.

For
√

R(z) the principal sheet is taken, with cuts on
⋃q

i=1[ai, bi],
and

√
R+(x) means the value on the upper cut. The equilibrium measure,

TOME 55 (2005), FASCICULE 6
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ν = νeq, satisfies the following variational conditions: there exists a real
constant . = .V such that

Lν(x)− 1
2
V (x) = ., x ∈

q⋃
i=1

[ai, bi],(4.7)

Lν(x)− 1
2
V (x) ≤ ., x ∈ R1 \

q⋃
i=1

[ai, bi],(4.8)

where

(4.9) Lν(z) =
∫
∪qi=1[ai,bi]

log |z − x|dν(x), z ∈ C.

Set

(4.10) ω(z) =
∫
R1

dν(x)
z − x

, z ∈ C.

Then

(4.11) ω(z) =
1
2
V ′(z)− 1

2
h(z)

√
R(z),

see, e.g., [DKMVZ]. This implies that

(4.12) h(z) =
1

2πi

∮
Γ

V ′(s)√
R(s)(s− z)

ds,

where Γ is a positively oriented contour in Ω around {z}
⋃q

i=1[ai, bi]. Also,
for j = 0, . . . , q,

(4.13) Tj ≡
1

2πi

∮
Γ

V ′(z)zj√
R(z)

dz = 2δjq.

where Γ is a positively oriented contour in Ω around
⋃q

i=1[ai, bi].

A real analytic V is called regular if

1) inequality (4.8) is strict for all x ∈ R1 \
⋃q

i=1[ai, bi],

2) h(x) > 0 for all x ∈
⋃q

i=1[ai, bi].

Otherwise V is called singular.

We formulate now the main result of this section.
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THEOREM 4.1. — Suppose V (z ;t), t ∈ [−t0 ,t0], t0 > 0, is a one-

parameter family of real analytic functions such that

(a) there exists a domain Ω ⊂ C such that R ⊂ Ω and such that V (z ;t)
is analytic on Ω× [−t0 ,t0],

(b) V (x,t) satisfies the uniform growth condition,

(4.14) lim
|x|→∞

min{V (x;t): |t| ≤ t0}
log |x| =∞,

(c) V (z ;0) is regular.

Then there exists t1 > 0 such that if t ∈ [−t1 ,t1], then

1) V (z ;t) is regular,

2) the number q of the intervals of the support of the equilibrium

measure of V (z ;t) is independent of t, and

3) the end-points of the support intervals, ai(t),bi(t), i = 1, . . . ,q, are

real analytic functions on [−t1 ,t1].

Proof. — The regularity of V (z;t) and t-independence of q are
proved in [KM]. To prove the analyticity consider the system of equations
on {ai, bi, i = 1, . . . , q},

(4.15) Tj = 2δkq (j = 0, 1, . . . , q), Nk = 0 (k = 1, . . . , q − 1),

where Tj is defined in (4.13) and

(4.16) Nk =
1

2πi

∮
Γk

h(z)
√

R(z) dz,

where Γk is a positively oriented contour around [bk, ak+1], which lies in a
small neighborhood of [bk, ak+1], so that Γk ⊂ Ω and it does not contain
the other end-points. In (4.16) it is assumed that the function

√
R(z) is

defined in such a way that it has a cut on [bk, ak+1]. As shown in [KM], the
Jacobian of the map {[ai, bi]} �→ {Tj , Nk} is nonzero. The functions Tj , Nk

are analytic with respect to ai, bi and t. By the implicit function theorem,
this implies the analyticity of ai(t), bi(t). Theorem 4.1 is proved.

When applied to a polynomial V , Theorem 4.1 gives the following
result.
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COROLLARY 4.2. — Suppose V (z) = v1z + · · · + v2dz
2d, v2d > 0,

is q-cut regular. Then for any p ≤ 2d there exists t1 > 0 such that for

any t ∈ [−t1 ,t1],
1) V (z ;t) = V (z) + tzp is q-cut regular,

2) the end-points of the support intervals, ai(t),bi(t), i = 1, . . . ,q,
are real analytic functions on [−t1 ,t1].

Theorem 4.1 can be applied to prove the analyticity of the (N =∞)-
free energy,

(4.17) F = lim
N→∞

− 1
N2

lnZN .

If V is real analytic satisfying growth condition (4.1), then the limit on the
right exists, see [Joh], and

(4.18) F = IV (νeq).

THEOREM 4.3. — Under the conditions of Theorem 4.1, the free energy

F = F (t) is analytic on [−t1 ,t1].

Proof. — The density of the equilibrium measure has form (4.5),
where h(x) is a real analytic function, which is found by formula (4.12).
By Theorem 4.1 the end-points of the support of νeq depend analytically
on t, hence (4.12) implies that h depends analytically on t, and, therefore,
νeq depends analytically on t. Formula (4.17) implies the analyticity of F .
Theorem 4.3 is proved.

Theorem 4.3 implies that the critical points of the random matrix
model, the points of nonanalyticity of the free energy, are at singular V only.

5. Asymptotic expansion of the recurrence coefficients
for a one-cut regular polynomial V .

In this section we will assume that V (z) is a polynomial, which
possesses a one-cut regular equilibrium measure. The equilibrium measure
is one-cut means that its support consists of one interval [a, b], and if it is
one-cut regular then

(5.1) dνeq(x) =
1
2π

h(x)
√

(b− x)(x− a), x ∈ [a, b],
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where h(x) is a polynomial such that h(x) > 0 for all real x (see the work of
Deift, Kriecherbauer and McLaughlin [DKM]). For the sake of brevity, we
will say that V (x) is one-cut regular if its equilibrium measure is one-cut
regular.

As shown by Kuijlaars and McLaughlin [KM], if V (x) is one-cut
regular then there exists ε > 0 such that for any s in the interval
1 − ε ≤ s ≤ 1 + ε, the polynomial s−1V (x) is one-cut regular, and the
end-points, a(s), b(s), are analytic functions of s such that a(s) is decreasing
and b(s) is increasing. (In fact, the result of Kuijlaars and McLaughlin is
much more general and it includes multi-cut V as well.)

PROPOSITION 5.1. — Suppose V (x) is one-cut regular. Then there

exists ε > 0 such that for all n in the interval

(5.2) 1− ε ≤ n

N
≤ 1 + ε,

the recurrence coefficients admit the uniform asymptotic representation,

(5.3) γn = γ
( n

N

)
+ O(N−1), βn = β

( n

N

)
+ O(N−1).

The functions γ(s),β(s) are expressed as

(5.4) γ(s) =
b(s)− a(s)

4
, β(s) =

a(s) + b(s)
2

,

where [a(s),b(s)] is the support of the equilibrium measure for the

polynomial s−1V (x).

Proof. — For n = N the result follows from [DKMVZ]. For a general n,
we can write NV = ns−1V , s = nN−1, and the result follows from the
mentioned above result from [KM], that s−1V is one-cut regular, and
from [DKMVZ]. The uniformity of the estimate of the error term follows
from the result from [KM] on the analytic dependence of the equilibrium
measure of s−1V on s and from the proof in [DKMVZ].

We can now formulate the main result of this section.

THEOREM 5.2. — Suppose that V (x) is a one-cut regular polynomial.

Then there exists ε > 0 such that for all n in the interval (5.2), the

recurrence coefficients admit the following uniform asymptotic expansion
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as N →∞ in powers of N−2:

(5.5)


γn ∼ γ

( n

N

)
+

+∞∑
k=1

N−2kf2k

( n

N

)
,

βn ∼ β
( n + 1

2

N

)
+

+∞∑
k=1

N−2kg2k

( n + 1
2

N

)
,

where f2k(s), g2k(s), k ≥ 1, are analytic functions on [1− ε,1 + ε].

Proof. — Let us remind that the proof in [DKMVZ] of the asymptotic
formula for the recurrence coefficients is based on a reduction of the
Riemann-Hilbert (RH) problem for orthogonal polynomials to a RH
problem in which all the jumps are of the order of N−1. By iterating
the reduced RH problem, one obtains an asymptotic expansion of the
recurrence coefficients,

(5.6) γN ∼ γ +
∞∑
k=1

N−kfk, βN ∼ β +
∞∑
k=1

N−k ĝk.

For a general n, let us write NV = ns−1V , s = nN−1. Then, as shown in
[KM], the equilibrium meassure of s−1V is one-cut regular and it depends
analytically on s in the interval [1− ε, 1 + ε]. As follows from the iterations
of the reduced RH problem, the coefficients fk, ĝk are expressed analytically
in terms of the equilibrium measure and hence they analytically depend
on nN−1, so that

(5.7) γn ∼ γ
( n

N

)
+
∞∑
k=1

N−kfk
( n

N

)
, βn ∼ β

( n

N

)
+
∞∑
k=1

N−k ĝk
( n

N

)
,

where fk(s), ĝk(s) are analytic functions on [1 − ε, 1 + ε]. We can rewrite
the expansion of βn in the form

(5.8)


γn ∼ γ

( n

N

)
+
∞∑
k=1

N−kfk
( n

N

)
,

βn ∼ β
( n + 1

2

N

)
+
∞∑
k=1

N−kgk
( n + 1

2

N

)
,

where gk(s) are analytic on [1 − ε, 1 + ε]. What we have to prove is that
fk = gk = 0 for odd k. This will be done by using the string equations.

Recall the string equations for the recurrence coefficients,

(5.9) γn
[
V ′(Q)

]
n,n−1

=
n

N
,

[
V ′(Q)

]
n,n

= 0.
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where [V ′(Q)]n,m is the element (n,m) of the matrix V ′(Q). We have, in
particular, that

(5.10)



[Q]n,n−1 = γn, [Q]n,n = βn,

[Q2]n,n−1 = βn−1γn + βnγn, [Q2]n,n = γ2
n + β2

n + γ2
n+1,

[Q3]n,n−1 = γ2
n−1γn + γ3

n + γnγ
2
n+1

+ β2
n−1γn + βn−1βnγn + β2

nγn,

[Q3]n,n = βn−1γ
2
n + 2βnγ2

n + 2βnγ2
n+1 + βn+1γ

2
n+1 + β3

n,

and so on.

LEMMA 5.3. — For any k ≥ 1, the expression of [Qk]n,n−1 in terms

of γj ,βj is invariant with respect to the change of variables

(5.11) σ0 =
{
γj �→ γ2n−j , βj �→ β2n−j−1 , j = 0,1,2, . . .

}
,

provided n > j + k. Similarly, the expression of [Qk]n,n in terms of γj ,βj is

invariant with respect to the change of variables

(5.12) σ1 =
{
γn+j �→ γn−j+1 , βn+j �→ βn−j , j = 0,1,2, . . .

}
,

provided n > j + k.

Proof. — Observe that the matrix Qk is symmetric. By the rule of
multiplication of matrices,

(5.13) [Qk]n,n−1 =
∑

Qn,j1 · · ·Qjk−1,n−1 =
∑

Qn,σ(jk−1) · · ·Qσ(j1),n−1,

where σ(j) ≡ 2n− j − 1. Observe that σ(n) = n− 1, σ(σ(j)) = j and

Qj,j = βj , Qσ(j),σ(j) = β2n−j−1; Qj,j−1 = γj , Qσ(j),σ(j−1) = γ2n−j .

This proves the invariance of [Qk]n,n−1 with respect to σ0. The invariance
of [Qk]n,n with respect to σ1 is established similarly. Lemma 5.3 is proved.

Since V ′(Q) is a linear combination of powers of Q, we obtain the
following corrolary of Lemma 5.3.

COROLLARY 5.4. — The expression of γn[V ′(Q)]n,n−1 (respectively,
[V ′(Q)]n,n) in terms of γj ,βj is invariant with respect to the change of

variables σ0 (respectively, σ1).
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Let us

1) substitute asymptotic expansions (5.8) into equations (5.9) and
expand into powers series in N−1;

2) expand γ( n+j
N ), fk( n+j

N ), β( n+ 1
2 +j

N ), gk(
n+ 1

2 +j

N ) in the Taylor
series at s = n/N ;

3) equate coefficients at powers of N−1.

This gives a system of equations on γ, β, fk, gk. The zeroth order
equations read

(5.14) γ
[
V ′(Q0)

]
n,n−1

= s, [V ′(Q0)]n,n = 0,

where Q0 is a constant infinite Jacobi (tridiagonal) matrix, such that

(5.15) [Q0]n,n = β, [Q0]n,n−1 = [Q0]n−1,n = γ, n ∈ Z.

equations (5.14) are written as

(5.16) A(γ, β) = s, B(γ, β) = 0,

where

(5.17)


A(γ, β) = γ

2d∑
j=2

jvj

[ 1
2 (j−2)]∑
k=0

βj−2k−2γ2k+1
( j − 1

2k + 1

)(2k + 1
k

)
,

B(γ, β) =
2d∑
j=1

jvj

[ 1
2 (j−1)]∑
k=0

βj−2k−1γ2k
(j − 1

2k

)(2k
k

)
.

Observe that γ, β given in (5.4) solve equations (5.16). The k-th order
equations for k ≥ 1 have the form

(5.18)
∂A(γ, β)

∂γ
fk +

∂A(γ, β)
∂β

gk = p,
∂B(γ, β)

∂γ
fk +

∂B(γ, β)
∂β

gk = q,

where p, q are expressed in terms of the previous coefficients, γ, β, f1, g1, . . . ,

fk−1, gk−1, and their derivatives. Here the partial derivatives on the left are
evaluated at γ, β given in (5.4).

LEMMA 5.5. — The first order equations are

(5.19)
∂A(γ,β)

∂γ
f1 +

∂A(γ,β)
∂β

g1 = 0,
∂B(γ,β)

∂γ
f1 +

∂B(γ,β)
∂β

g1 = 0.
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Proof. — Observe that the terms with f1, g1 are the only first order
terms which appear at step 1) above. All the other terms appear at step 2),
in the expansion of γ( n+j

N ), fk( n+j
N ), β( n+ 1

2 +j

N ), gk(
n+ 1

2 +j

N ) in the Taylor
series at s = n/N . Consider any monomial on the left in the first equation
in (5.9),

Cγn+j1 · · · γn+jpβn+�1 · · ·βn+�q .

By Lemma 5.3, there is a partner to this term of the form

Cγn−j1 · · · γn−jpβn−�1−1 · · ·βn−�q−1.

When we substitute expansions (5.8), we obtain

C
(
γ
(
s +

j1
N

)
+ · · ·

)
· · ·

(
γ
(
s +

jp
N

)
+ · · ·

)(
β
(
s +

.1 + 1
2

N

)
+ · · ·

)
· · ·

(
β
(
s +

.q + 1
2

N

)
+ · · ·

)
and

C
(
γ
(
s− j1

N

)
+ · · ·

)
· · ·

(
γ
(
s− jp

N

)
+ · · ·

)(
β
(
s− .1 + 1

2

N

)
+ · · ·

)
· · ·

(
β
(
s− .q + 1

2

N

)
+ · · ·

)
for the partner. When we expand these expressions in powers of N−1, the
first order terms cancel each other in the sum of the partners (in fact, all
the odd terms cancel). This proves the first equation in (5.19). The second
one is proved similarly. Lemma 5.5 is proved.

Lemma 5.5 implies that f1(s) = g1(s) = 0 for all s such that

(5.20) det
(
∂A(γ, β)/∂γ ∂A(γ, β)/∂β

∂B(γ, β)/∂γ ∂B(γ, β)/∂β

)
�= 0,

where all the partial derivatives are evaluated at γ(s), β(s) given in (5.4).

LEMMA 5.6. — If for a given s ∈ [1− ε,1 + ε], condition (5.20) holds,
then all odd coefficients f2k+1(s), g2k+1(s) are zero.

Proof. — By Lemma 5.5 f1(s) = g1(s) = 0. If we consider terms of
the order of N−3 then we obtain the equations

(5.21)
∂A(γ, β)

∂γ
f3 +

∂A(γ, β)
∂β

g3 = 0,
∂B(γ, β)

∂γ
f3 +

∂B(γ, β)
∂β

g3 = 0.

Indeed, the same argument as in Lemma 5.5 proves that all other terms
of the third order cancel out. Since condition (5.20) holds, it implies
that f3(s) = g3(s) = 0. By continuing this argument we prove that all
odd f2k+1(s), g2k+1(s) vanish. Lemma 5.6 is proved.
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LEMMA 5.7. — Condition (5.20) holds for all s ∈ [1− ε,1 + ε].

Proof. — By differentiating equations (5.16) in s we obtain that

(5.22)


∂A(γ, β)

∂γ

∂γ

∂s
+

∂A(γ, β)
∂β

∂β

∂s
= 1,

∂B(γ, β)
∂γ

∂γ

∂s
+

∂B(γ, β)
∂β

∂β

∂s
= 0.

By differentiating equations (5.16) in t1 we obtain that

(5.23)


∂A(γ, β)

∂γ

∂γ

∂t1
+

∂A(γ, β)
∂β

∂β

∂t1
= 0,

∂B(γ, β)
∂γ

∂γ

∂t1
+

∂B(γ, β)
∂β

∂β

∂t1
= −1.

By rewriting equations (5.22), (5.23) in the matrix form, we obtain that

(5.24)
( ∂A(γ, β)/∂γ ∂A(γ, β)/∂β

∂B(γ, β)/∂γ ∂B(γ, β)/∂β

)( ∂γ/∂s ∂γ/∂t1

∂γ/∂s ∂γ/∂t1

)
=

( 1 0
0 −1

)
.

Since
det

( 1 0
0 −1

)
= −1 �= 0,

this implies (5.20). Lemma 5.7 is proved.

From Lemmas 5.6 and 5.7 we obtain that the odd coefficients f2k+1,
g2k+1 vanish. Theorem 5.2 is proved.

6. Asymptotic expansion of the free energy for a
one-cut regular V .

We have the following extension of Theorem 5.2.

THEOREM 6.1. — Suppose that V (z ;t), t ∈ [−t0 ,t0], t0 > 0, is a one-

parameter analytic family of polynomials of degree 2d, such that V (z ;0)
is one-cut regular. Then there exist t1 > 0 and ε > 0 such that for all

t ∈ [−t1 ,t1] and all n ∈ [(1 − ε)N ,(1 + ε)N ], the recurrence coefficients

corresponding to V (z ;t), admit the following uniform asymptotic expansion

as N →∞:

(6.1)


γn ∼ γ

( n

N
;t

)
+
∞∑
k=1

N−2kf2k

( n

N
;t

)
,

βn ∼ β
( n + 1

2

N
;t

)
+
∞∑
k=1

N−2kg2k

( n + 1
2

N
;t

)
,

where γ(s;t), β(s;t), f2k(s;t), g2k(s;t), k ≥ 1, are analytic functions of s,t

on [1− ε,1 + ε]× [−t1 ,t1].
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Proof. — Theorem 4.1 implies that the equilibrium measure of V (z;t)
is analytic in t ∈ [−t1, t1] (see the proof of Theorem 4.3). This implies
the analyticity of γ, β in s and t. From equations (5.18) we obtain the
analyticity of fk, gk, k ≥ 1. By Theorem 5.2 all odd f2k+1, g2k+1 vanish.
This proves Theorem 6.1.

Let us return to the polynomial V (z;t) = τtV (z). We will assume the
following hypothesis.

Hypothesis (R). — For all t ≥ 1 the polynomial τtV (z) is one-cut
regular.

THEOREM 6.2. — If a polynomial V (z) satisfies Hypothesis (R), then

its free energy admits the asymptotic expansion,

(6.2) FN − FGauss
N ∼ F + N−2F (2) + N−4F (4) + · · · ,

where FGauss
N is defined in (3.20). The leading term of the asymptotic

expansion is

(6.3) F =
∫ ∞

1

1− τ

τ2

[
2γ4(τ) + 4γ2(τ)β2(τ)− 1

2

]
dτ ,

where

(6.4) γ(τ) =
b(τ)− a(τ)

4
, β(τ) =

a(τ) + b(τ)
2

,

and [a(τ),b(τ)] is the support of the equilibrium measure for the poly-

nomial V (z ;τ). The quantities γ = γ(τ), β = β(τ) solve the equations,

(6.5) A(γ,β ;τ) = 1, B(γ,β ;τ) = 0,

where

(6.6)



A(γ,β ;τ) = 2
(
1− 1

τ

)
γ2

+ γ

2d∑
j=1

jvj

τ
1
2 j

[ 1
2 (j−2)]∑
k=0

βj−2k−2γ2k+1
( j − 1

2k + 1

)(2k + 1
k

)
,

B(γ,β ;τ) = 2
(
1− 1

τ

)
β

+
2d∑
j=1

jvj

τ
1
2 j

[ 1
2 (j−1)]∑
k=0

βj−2k−1γ2k
(j − 1

2k

)(2k
k

)
.
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Proof. — By applying Theorem 6.1 to τtV (z), we obtain the uniform
asymptotic expansions,

(6.7)


γn(t) ∼ γ

( n

N
;t

)
+
∞∑
k=1

N−2kfk

( n

N
;t

)
,

βn(t) ∼ β
( n + 1

2

N
;t

)
+
∞∑
k=1

N−2kgk

( n + 1
2

N
;t

)
.

From (6.6) with τ = t, as t→∞,

(6.8) A(γ, β;t) = 2γ2 + O(t−
1
2 ), B(γ, β;t) = 2β + O(t−

1
2 ),

hence the solutions to system (6.5) are

(6.9) γ(t) =
√

2
2

+ O(t−
1
2 ), β(t) = O(t−

1
2 ).

By differentiating equations (6.5) in τ = t we obtain the equations,

(6.10)


∂A(γ, β;t)

∂γ
γ′(t) +

∂A(γ, β;t)
∂β

β′(t) = p,

∂B(γ, β;t)
∂γ

γ′(t) +
∂B(γ, β;t)

∂β
β′(t) = q,

where p, q are expressed in terms of γ(t), β(t) and p, q = O(t−
1
2 ). From this

system of equations we obtain that γ′(t), β′(t) = O(t−
1
2 ). By differentiating

equations (6.5) many times we obtain the estimates for j ≥ 1,

(6.11) γ(j)(t) = O(t−
1
2 ), β(j)(t) = O(t−

1
2 ).

From equations (5.18) we obtain the estimates on fk, gk,

(6.12) f
(j)
k (t) = O(t−

1
2 ), g

(j)
k (t) = O(t−

1
2 ), j ≥ 0,

and from the reduced RH problem, that for any K ≥ 0,

(6.13)



∣∣∣γn(t)− γ
( n

N
;t

)
−

K∑
k=1

N−2kfk

( n

N
;t

)∣∣∣
≤ C(K)N−2K−2t−

1
2 ,∣∣∣βn(t)− β

( n + 1
2

N
;t

)
−

K∑
k=1

N−2kgk

( n + 1
2

N
;t

)∣∣∣
≤ C(K)N−2K−2t−

1
2 .
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(cf. the derivation of the estimates (A.77) and (A.78) in Appendix A.)
Let us substitute expansions (6.7) into (3.19) and expand the terms on the
right in the Taylor series at n/N = 1. In this way we obtain the asymptotic
expansion,

ΘN (τ)

≡ γ2
N (τ)

[
γ2
N−1(τ) + γ2

N+1(τ) + β2
N (τ)(6.14)

+ 2βN (τ)βN−1(τ) + β2
N−1(τ)

]
− 1

2

∼ Θ(τ) +
∞∑
k=1

N−kΘ(k)(τ)(6.15)

where

Θ(τ) = 2γ4(τ) + 4γ2(τ)β2(τ)− 1
2

,(6.16)

Θ(k)(τ) ≤ C(k)τ−
1
2 , k ≥ 1.(6.17)

Observe that the expression (6.14) is invariant with respect to the
transformation

(6.18) σ0 =
{
γj �→ γ2N−j , βj �→ β2N−j−1

}
.

Therefore, as in the proof of Lemmas 5.5, 5.6, we obtain that all odd
Θ(2k+1) = 0. Theorem 6.2 is proved.

The following parametric extension of Theorem 6.2 is useful for
applications.

THEOREM 6.3. — Suppose {V (z ;u), u ∈ [−u0 ,u0]} is a one-parameter

analytic family of one-cut regular polynomials of degree 2d such that the

polynomial V (z ;0) satisfies Hypothesis (R). Then there exists u1 > 0 such

that the coefficients F (u),F (2)(u),F (4)(u), . . . of the asymptotic expansion

of the free energy for V (z ;u) are analytic on [−u1 ,u1].

Proof. — The functions are expressed in terms of integrals of finite
combinations of the functions γ(j)(1;u), β(j)(1;u), f (j)

2k (1;u), g(j)
2k (1;u).

By Theorem 6.1 these functions are analytic in u. By the same argument
as in the proof of Theorem 6.2, we obtain that they behave like O(t−

1
2 )

as t→∞. Therefore, the integrals expressing F (2n)(u) converge and define
an analytic function in u. Theorem 6.3 is proved.
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The following proposition is auxiliary: it gives first several terms of
the asymptotic expansion of the free energy for the Gaussian ensemble.

PROPOSITION 6.4. — The constant FGauss
N has the following expansion:

(6.19) FGauss
N ∼ ln 2

2
− 3

4
− lnN

N
+

(
1− ln(2π)

) 1
N

− 5 lnN

12N2
−

(
ζ ′(−1) +

ln(2π)
2

) 1
N2

− 1
12N3

+
1

240N4
+

1
360N5

+ O
( 1
N6

)
.

Proof. — This is obtained from (3.20) with the help of Maple.

7. Exact formula for the free energy for an even V .

For an even V , β(τ) = 0, and formula (6.3) simplifies,

(7.1) F =
∫ ∞

1

1− τ

τ2

[
2R2(τ)− 1

2

]
dτ,

where

(7.2) R(τ) = γ2(τ).

From (6.5), (6.6) we obtain that R = R(τ) solves the equation

(7.3) 2
(
1− 1

τ

)
R +

d∑
j=1

jv2j

(2j
j

)( R

τ

)j

= 1.

Set

(7.4) ξ(τ) =
R(τ)
τ
·

Then equation (7.3) is rewritten as

(7.5) τ =
1
2ξ

+ 1− 1
2

d∑
j=1

v2jj
(2j
j

)
ξj−1 ≡ τ(ξ).
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From (7.1),

(7.6) F =
∫ ∞

1

(1− τ)
[
2ξ2(τ)− 1

2τ2

]
dτ

= lim
T→∞

[ ∫ T

1

2(1− τ)ξ(τ)2 dτ +
1
2

lnT − 1
2

]
.

The change of variable τ = τ(ξ) reduces the latter formula to

(7.7) F = lim
T→∞

[ ∫ ξ(T )

ξ(1)

2(1− τ(ξ))ξ2τ ′(ξ) dξ +
1
2

lnT − 1
2

]
,

or, by (7.5), to

(7.8) F = lim
T→∞

1
2

[ ∫ ξ(T )

ξ(1)

( 1
ξ
−

d∑
j=1

v2jj
(2j

j

)
ξj−1

)
×

(
1 +

d∑
j=1

v2jj(j − 1)
(2j

j

)
ξj

)
dξ + lnT

]
.

By (7.4), ξ(1) = R(1). By (3.16), R(T ) = 1
2 + O(T−

1
2 ), (since n = N),

hence

(7.9) ξ(T ) =
R(T )
T

=
1

2T
+ O(T−

3
2 ).

When we distribute on the right in (7.8), we have the following terms:

(1) lim
T→∞

[ ∫ ξ(T )

ξ(1)

1
ξ

dξ + lnT
]

= − ln 2− lnR(1),

(2) −
∫ 0

ξ(1)

d∑
j=1

v2jj
(2j

j

)
ξj−1 dξ =

d∑
j=1

v2j

(2j
j

)
R(1)j ,

(3)
∫ 0

ξ(1)

d∑
j=1

v2jj(j − 1)
(2j

j

)
ξj−1 = −

d∑
j=1

v2j(j − 1)
(2j

j

)
R(1)j ,

(4) −
∫ 0

ξ(1)

( d∑
j=1

v2jj
(2j

j

)
ξj−1

)( d∑
k=1

v2kk(k − 1)
(2k

k

)
ξk

)
dξ

=
2d∑
n=2

[ ∑
1≤j, k≤m
j+k=n

v2jv2kjk(k − 1)
(2j

j

)(2k
k

)] 1
n
R(1)n,(7.10)
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hence (7.8) can be transformed into the following expression:

(7.11) F = − ln 2
2
− lnR

2
+

d∑
j=1

ujR
j +

2d∑
n=2

wnR
n,

where R = R(1),

uj = − j − 2
2

(2j
j

)
v2j ,(7.12)

wn =
1
2n

∑
1≤j, k≤m
j+k=n

v2jv2k jk(k − 1)
(2j

j

)(2k
k

)
.(7.13)

Example. — The quartic polynomial,

(7.14) V (z) =
z4

4
+ tz2, t > −1.

The condition t > −1 is necessary and sufficient for one cut. By (7.3),
R = R(1) > 0 solves the equation,

(7.15) 3R2 + 2tR = 1,

hence

(7.16) R =
−t +

√
t2 + 3

3
·

By (7.12), (7.13),

(7.17) u1 = t, u2 = 0, w2 = 0, w3 = t, w4 =
9
8
·

Thus, by (7.11),

(7.18) F = − ln 2
2
− lnR

2
+ tR + tR3 +

9
8
R4.

8. One-sided analyticity for a singular V .

In this section we will prove general results on the one-sided analyticity
for a singular V. We will assume the following hypothesis.
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Hypothesis (S). — V (z;t), t ∈ [0, t0], is a one-parameter family of real
analytic functions such that

(a) there exists a domain Ω ⊂ C such that R ⊂ Ω and such that V (z;t)
is analytic on Ω× [0, t0],

(b) V (x, t) satisfies the uniform growth condition,

(8.1) lim
|x|→∞

min{V (x;t) : 0 ≤ t ≤ t0}
log |x| =∞,

(c) V (z;t) is one-cut regular for 0 < t ≤ t0,
(d) V (z;0) is one-cut singular and h(a) �= 0, h(b) �= 0, where [a, b] is the

support of the equilibrium measure for V (z;0).

THEOREM 8.1. — Suppose V (z ;t) satisfies Hypothesis (S). Then the

end-points a(t),b(t) of the equilibrium measure for V (z ;t) are analytic

on [0,t0].

Proof. — Set

(8.2) Tj(a, b;t) =
1

2πi

∮
Γ

V ′(z;t)zj√
(z − a)(z − b)

dz,

where Γ is a positively oriented closed contour around [a, b] inside Ω.
For t ∈ [0, t0], we have the following equations on a = a(t), b = b(t):

(8.3) T0(a, b;t) = 0, T1(a, b;t) = 2.

By differentiating (8.2) we obtain that at a = a(t), b = b(t),

∂T0(a, b;t)
∂a

=
1

4πi

∮
Γ

V ′(z)
(z − a)

√
R(z)

dz(8.4)

=
1

4πi

∮
Γ

(
2ω(z)√
R(z)

+ h(z))
1

z − a
dz =

h(a)
2
·

Similarly,

(8.5)


∂T0(a, b;t)

∂b
=

h(b)
2

,

∂T1(a, b;t)
∂a

=
ah(a)

2
, ∂T1(a, b;t)

∂b
=

bh(b)
2
·

Thus, the Jacobian,

(8.6) J = det
( ∂T0/∂a ∂T0/∂b

∂T1/∂a ∂T1/∂b

)
=

h(a)h(b)(b− a)
4

�= 0.

The function T0(a, b;t) is analytic in a, b, t, hence by the implicit function
theorem, a(t), b(t) are analytic on [0, t0]. Theorem 8.1 is proved.

TOME 55 (2005), FASCICULE 6



1970 Pavel M. BLEHER & Alexander R. ITS

COROLLARY 8.2. — Suppose V (z ;t) satisfies Hypothesis (S). Then

1) the function h(x;t) is analytic on R1 × [0,t0],

2) the free energy F (t) is analytic on [0,t0],

3) the functions γ(t),β(t) are analytic on [0,t0].

Proof. — The analyticity of h follows from formula (4.12) and the one
of F , from (4.18). Finally, the analyticity of γ(t), β(t) follows from (5.4).

Theorem 8.1 and Corollary 8.2 can be extended to multi-cut V. We
will say that V is q-cut if the support of its equilibrium measure consists
of q intervals, [ai, bi], i = 1, . . . , q. We will assume the following hypothesis.

Hypothesis (Sq). — V (z;t), t ∈ [0, t0], is a one-parameter family of
real analytic functions such that

(a) there exists a domain Ω ⊂ C such that R ⊂ Ω and such that V (z;t)
is analytic on Ω× [0, t0],

(b) V (x, t) satisfies the uniform growth condition,

(8.7) lim
|x|→∞

min{V (x;t) : 0 ≤ t ≤ t0}
log |x| =∞,

(c) V (z;t) is q-cut regular for 0 < t ≤ t0,

(d) V (z;0) is q-cut singular (with the same q as in (c)) and h(ai) �= 0,
h(bi) �= 0, i = 1, . . . , q.

THEOREM 8.3. — Suppose V (z ;t) satisfies Hypothesis (Sq). Then the

end-points ai(t),bi(t) of the equilibrium measure for V (z ;t) are analytic

on [0,t0].

Proof. — Consider system of equations (4.15) for V = V (z;t). As
shown in [KM], the Jacobian of the map

(8.8) f :
{
ai, bi, i = 1, . . . , q

}
�−→

{
Tj , Nk, j = 0, . . . , q; k = 1, . . . , q − 1

}
at {ai(t), bi(t)} is equal to

det
( ∂{Tj , Nk}

∂{ai, bi}
)

=
( q∏

i=1

∂T0

∂ai

∂T0

∂bi

)
π−q+1(8.9)

×
∫ a2

b1

√
R+(x1) dx1 · · ·

∫ aq

bq−1

√
R+(xq−1) dxq−1
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× det



1 1 . . . 1
a1 b1 . . . bq
...

...
...

...
aq1 bq1 . . . bq

(x1 − a1)−1 (x1 − b1)−1 . . . (x1 − bq)−1

...
...

...
...

(xq−1 − a1)−1 (xq−1 − b1)−1 . . . (xq−1 − bq)−1


.

The determinant on the right is a mixture of a Vandermonde determinant
and a Cauchy determinant. As shown in [KM], it is equal to

(8.10)

q∏
j=1

q∏
k=1

(bk − aj)
∏

1≤j<k≤q
(ak − aj)(bk − bj)

∏
1≤j<k≤q−1

(xk − xj)

(−1)q−1
q−1∏
j=1

q∏
k=1

(xj − ak)(xj − bk)

,

which is nonzero for

(8.11) a1 < b1 < x1 < a2 < · · · < bq−1 < xq−1 < aq < bq,

and therefore has a fixed sign. Hence the multiple integral in (8.9) is
nonzero. Now,

∂T0

∂ai
=

1
4πi

∮
Γ

V ′(z)
(z − ai)

√
R(z)

dz(8.12)

=
1

4πi

∮
Γ

( 2ω(z)√
R(z)

+ h(z)
) dz
z − ai

=
h(ai)

2
,

and a similar formula holds for ∂T0/∂bi. Thus, the Jacobian (8.9) is
nonzero. The functions {Tj , Nk} are analytic in {ai, bi}, t, hence, by the
implicit function theorem, {ai(t), bi(t)} are analytic on [0, t0]. Theorem 8.3
is proved.

As a corollary of Theorem 8.3, we obtain the following results.

COROLLARY 8.4. — Suppose V (z ;t) satisfies Hypothesis (Sq). Then

1) the function h(x;t) is analytic on R1 × [0,t0],

2) the free energy F (t) is analytic on [0,t0].

Proof. — The analyticity of h follows from formula (4.12) and the one
of F , from (4.18).
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The following extension of Theorem 8.3 will be useful for us. Suppose
V (z;t) satisfies Hypothesis (Sq). Then, as shown in [KM], for every
t ∈ (0, t0], there exists ε = ε(t) > 0 such that for any s ∈ [1 − ε, ε]
the function s−1V (z;t) is q-cut regular and the end-points, ai(s;t), bi(s;t)
are analytic in s ∈ [1− ε, ε].

PROPOSITION 8.5. — Suppose V (z ;t) satisfies Hypothesis (Sq). Then

for any j ≥ 0 the functions

(8.13)
∂ jai(s;t)

∂sj s=1
,

∂ jbi(s;t)
∂sj s=1

, i = 1, . . . ,q,

are analytic on [0,t0].

Proof. — By differentiating system (4.15) in s and setting s = 1, we
obtain a linear 2q × 2q system of equations on

(8.14)
∂ai(s;t)

∂s s=1
,

∂bi(s;t)
∂s s=1

, i = 1, . . . , q.

The determinant of the system is calculated in (8.9), (8.10) and it is nonzero.
The coefficients of the system are analytic function in t ∈ [0, t0], hence
functions (8.14) are analytic in t ∈ [0, t0]. By differentiating system (4.15)
twice in s and setting s = 1, we obtain a linear 2q×2q system of equations on

(8.15)
∂2ai(s;t)

∂s2 s=1
,

∂2bi(s;t)
∂s2 s=1

, i = 1, . . . , q.

The coefficients of the system are the same as for the first derivatives, but
the right hand side changes, and it is expressed in terms of ai, bi and its first
derivatives in s at s = 1, which are analytic in t ∈ [0, t0]. This proves the
analyticity of the second derivatives, and so on. Proposition 8.5 is proved.

Let us consider next the coefficients, γ(s;t), β(s;t), f2k(s;t), g2k(s;t),
k ≥ 1, of asymptotic expansions (5.5) of the recurrence coefficients for the
polynomial s−1V (z;t).

PROPOSITION 8.6. — Suppose V (z ;t) is a one-parameter family of

polynomials of degree 2d, which satisfies Hypothesis (S). Then for any

j ≥ 0 the functions

(8.16)

{
∂ jγ(s;t)/∂sj s=1, ∂ jβ(s;t)/∂sj s=1,

∂ jf2k(s;t)/∂sj s=1, ∂ jg2k(s;t)/∂sj s=1,

(k = 1,2, . . .) are analytic on [0,t0].

To prove Proposition 8.6 we will need the following lemma.
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LEMMA 8.7. — Suppose V (z ;t) is a one-parameter family of

polynomials of degree 2d, which satisfies Hypothesis (S). Consider the

functions A(γ,β ;t), B(γ,β ;t) corresponding to V (z ;t). Then the Jacobian,

(8.17) det
( ∂A(γ,β ;t)/∂γ ∂A(γ,β ;t)/∂β

∂B(γ,β ;t)/∂γ ∂B(γ,β ;t)/∂β

)
,

evaluated at γ = γ(t),β = β(t), is analytic and nonzero on [0,t0].

Proof. — The analyticity follows from Theorem 8.3. Let us prove that
the Jacobian is nonzero. Consider the two-parameter family of polynomials,

V (z;t, t1) = V (z;t) + t1z.

Then for every t ∈ (0, t0] there exists ε = ε(t) > 0 such that V (z;t, t1) is
q-cut regular for any t1 ∈ [−ε, ε]. As in Proposition 8.5, we obtain that the
functions

(8.18)
∂ai(t1;t)

∂t1 t1=0
,

∂bi(t1;t)
∂t1 t1=0

, i = 1, . . . , q,

are analytic on [0, t0]. By using identity (5.24), we obtain that the
Jacobian (8.17) is nonzero. Lemma 8.7 is proved.

Proof of Proposition 8.6. — Analyticity of γ and β follows from (5.4).
To prove the analyticity of

(8.19)
∂γ(s;t)

∂s s=1
,

∂β(s;t)
∂s s=1

,

let us differentiate string equations (5.17) in s and set s = 1. This gives
a linear analytic in t ∈ [0, t0] system of equations, whose determinant is
nonzero by Lemma 8.7, hence functions (8.19) are indeed analytic on [0, t0].
By differentiating string equations (5.17) in s twice we obtain the analyticity
of the second derivatives, and so on.

Let prove the analyticity of f2, g2. By following the proof of
Lemmas 5.5, 5.6 we obtain that the functions f2, g2 also satisfy a system of
linear equations with the same coefficients of partial derivatives of A and B

and an analytic right hand side. Hence f2, g2 are analytic. By differentiating
with respect to s the system of linear equations on f2, g2 and setting s = 1
we obtain a similar linear system for the derivatives of f2, g2, and so on. The
same argument applies to f4, g4 and their derivatives, etc. Proposition 8.6
is proved.
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Now we can prove the one-side analyticity of the coefficients of the
asymptotic expansion of the free energy. We will assume the following
hypothesis.

Hypothesis (T ). — V (z) is a polynomial of degree 2d such that
(a) τtV (z) is one-cut regular for t > 1,
(b) V (z) is one-cut singular and h(a) �= 0, h(b) �= 0, where [a, b] is the

support of the equilibrium measure for V (z).

By Proposition 3.1, if V satisfies Hypothesis (T ), then τtV , t > 1,
satisfies Hypothesis (R), hence by Theorem 6.2, the free energy FN (t)
of τtV admits the asymptotic expansion,

(8.20) FN (t)− FGauss
N ∼ F (t) + N−2F (2)(t) + N−4F (4)(t) + · · · .

THEOREM 8.8. — Suppose V (z) satisfies Hypothesis (T ). Then the

functions F (t) and F (2k)(t), k ≥ 1, are analytic on [1,∞).

Proof. — The analyticity of F (t) is proved in Corollary 8.2. Let us
prove the analyticity of F (2j)(t), j ≥ 1. To that end substitute expan-
sions (5.5) into (3.19), and expand the appearing functions γ, β, f2k, g2k

in the Taylor series at n/N = 1. As a result, we obtain asymptotic ex-
pansion (8.20), so that the coefficients F (2j)(t) are expressed in terms of
functions (8.16). By Proposition 8.6 functions (8.16) are analytic on [0, t0],
hence the ones F (2j)(t) are analytic as well. Theorem 8.8 is proved.

The asymptotics of the partition function for a singular V is a difficult
question. The leading term is defined by the (N = ∞)-free energy F ,
see (4.17), but the subleading terms have a nontrivial scaling. The behavior
of the subleading terms depends on the type of the singular V. The entire
problem includes the investigation of the scaling behavior of the partition
function for a parametric family V (t) passing through V. This is the problem
of the double scaling limit. In the next section we discuss the double scaling
limit for a singular V of the type I in the terminology of [DKMVZ],
when h(z) = 0 inside of a cut. We consider a family V (t) of even quartic
polynomials passing through the singular polynomial V.

9. Double scaling limit of the free energy.

We will consider the asymptotics of the free energy near the critical
point of the family τtV (z) generated by the singular quartic polynomial
V (z) = 1

4 z
4 − z2,
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(9.1) τtV (z) ≡ V (z;t) =
1

4t2
z4 + (1− 2

t
)z2.

We have that V (z;1) = V (z) = 1
4 z

4 − z2, and for t > 1 the support of the
equilibrium measure consists of one interval, while for t < 1 it consists of
two intervals. We want to analyse the asymptotics of the free energy FN (t)
as N →∞ and the parameter t is confined near its critical value, i.e. t = 1.
Specifically, we shall assume the following scaling condition,∣∣(t− 1)N

2
3
∣∣ < C,

and will introduce a scaling variable x according to the equation

(9.2) t = 1 + N−
2
3 2−

2
3 x.

Our aim will be to prove the following theorem.

THEOREM 9.1. — Let FN (t) be the partition function corresponding

to the family V (z ;t) of quartic potentials (9.1). Then, for every ε > 0,

(9.3) FN (t)− FGauss
N = F reg

N (t) + N−2F sing
N (t) + O(N−

7
3 +ε),

as N →∞ and |(t− 1)N
2
3 | < C. Here,

F reg
N (t) ≡ F (t) + N−2F (2)(t)

is the order N−2 (regular at t = 1) piece of the one-cut expansion (8.20),
and

F sing
N (t) = − logFTW

(
(t− 1)2

2
3 N

2
3
)
.

The function FTW (x) is the Tracy-Widom distribution function defined by

the formulae [TW]

(9.4) FTW (x) = exp
{∫ ∞

x

(x− y)u2(y) dy
}
,

where u(y) is the Hastings-McLeod solution to the Painlevé II equation

(9.5) u′′(y) = yu(y) + 2u3(y),

which is characterized by the conditions at infinity [HM],

(9.6) lim
y→−∞

u(y)√
− 1

2 y
= 1, lim

y→∞
u(y)
Ai(y)

= 1.
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Proof. — The proof of this theorem is based on the integral
representation (3.19) of the free energy wich in the case of even potentials
V (z) can be rewriten as follows

(9.7) FN (t) = FGauss
N +

∫ ∞
t

t− τ

τ2
ΘN (τ) dτ,

where

(9.8) ΘN (t) := RN (t)(RN+1 + RN−1)−
1
2

,

and we have used a standard notation

(9.9) γ2
n ≡ Rn.

Note also that for even potentials all the beta recurrence coefficients
are zero. Assuming the double scaling substitution (9.2), and making
simultaniously the change of the variable of integration,

τ = 1 + N−
2
3 2−

2
3 y,

we can, in turn, rewrite (9.7) as

(9.10) FN (x) = FGauss
N + 2−

4
3 N−

4
3

∫ ∞
x

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy,

where, we use the notations,

FN (x) := FN (t)
t=1+N−

2
3 2−

2
3 x

,(9.11)

ΘN (y) := ΘN (τ)
τ=1+N−

2
3 2−

2
3 y

.(9.12)

Our next move toward the proof of Theorem 9.1 is to split the
integration in (9.10) into the following two pieces.

2−
4
3 N−

4
3

∫ ∞
x

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy(9.13)

= 2−
4
3 N−

4
3

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy

+ 2−
4
3 N−

4
3

∫ ∞
Nε

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy.

Going back in the second integral to the original variable τ , we have the
formula, where δ = 2

3 − ε:
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FN (x) = FGauss
N + 2−

4
3 N−

4
3

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy(9.14)

+
∫ ∞

1+2−
2
3 N−δ

1 + N−
2
3 2−

2
3 x− τ

τ2
ΘN (τ) dτ.

The main point now is that we can produce the uniform estimates
for the recurrence coefficients Rn, and hence for the function ΘN , on
each of the two domains of integration. Indeed, the needed estimates
are the extensions to the larger parameter domains of the double-
scaling asymptotics obtained in [BI2] (the first integral) and the one-cut
asymptotics obtained (in particular) in [DKMVZ] (the second integral).
Let us first discuss the double-scaling estimates.

Set

(9.15) g0 =
1
t2

, κ = 2− 4
t
,

so that the potential (9.1) is written as

(9.16) V (z;t) =
g0

4
z4 +

κ

2
z2.

Following [BI2], define ŷ as

(9.17) ŷ = c−1
0 N

2
3

( n

N
− κ2

4g0

)
, c0 =

( κ2

2g0

) 1
3
.

Then, as shown in [BI2],

Rn(t) = − κ

2g0
+ N−

1
3 c1(−1)n+1u(ŷ) + N−

2
3 c2v(ŷ) + O(N−1),

c1 =
( 2(−κ)

g2
0

) 1
3
, c2 =

1
2

( 1
2(−κ)g0

) 1
3
,(9.18)

as N → ∞ and as long as the values of t and n are such that ŷ stays
bounded,

(9.19) |ŷ| < C.

In (9.18), u(y) is the Hastings-McLeod solution to the Painlevé II equation
defined in (9.5)–(9.6), and

(9.20) v(y) = y + 2u2(y).
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Assume that t = 1 + N−
2
3 2−

2
3 y. Then, by simple calculations, we have

(9.21)
κ2

4g0
= 1− 2

1
3 N−

2
3 y + O(N−

4
3 y2), c−1

0 = 2−
1
3 + O(N−

2
3 y).

Therefore,

(9.22) ŷ = y + O(N−
2
3 y2), and ŷ = y ± 2−

1
3 N−

1
3 + O(N−

2
3 y2),

if n = N and n = N ± 1, respectively. Simultaneously,

κ

2g0
= −1 + O(N−

4
3 y2),(9.23)

c1 = 2
2
3 + O(N−

2
3 y), and c2 = 2−

5
3 + O(N−

2
3 y).(9.24)

Let (cf. (9.11), (9.12))

(9.25) Rn(y) := Rn(t) t=1+N−
2
3 2−

2
3 y,

and assume that

(9.26) |y| < C.

Then, we conclude from (9.18)–(9.24) that, as N → ∞, the recurrence
coefficients Rn(y), n = N − 1, N,N + 1, have the following asymptotics:

RN (y) = 1−N−
1
3 2

2
3 (−1)Nu(y) + N−

2
3 2−

5
3 v(y) + O(N−1),(9.27)

RN±1(y) = RN (y)∓N−
2
3 2

1
3 (−1)Nu′(y) + O(N−1).(9.28)

To be able to use the estimates (9.27)–(9.28) in the first integral
in (9.14) we need them on the expanding domain, i.e. we want to be able
to replace the inequality (9.26) by the inequality |y| < N ε.

PROPOSITION 9.2. — For every 0 < ε < 1
6 there exists a positive

constant C ≡ C(ε) such that the error terms in (9.27)–(9.28), which we will

denote rn(y), n = N ,N + 1,N − 1, satisfy the uniform estimates,∣∣rn(y)
∣∣ ≤ CN−1+2ε , n = N ,N + 1,N − 1,(9.29)

for all N ≥ 1 and |y| < N ε(9.30)
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Proof. — A simple examination of the proofs of [BI2] shows that the
error term in (9.18) can be specified as O(N−1ŷ

3
2 ). This means that, under

condition

|ŷ| ≤ N ε, 0 < ε < 1
6
,

we have from (9.18) the estimate

(9.31) Rn(t) = − κ

2g0
+N−

1
3 c1(−1)n+1u(ŷ)+N−

2
3 c2v(ŷ)+O(N−1+ 3

2 ε).

Estimate (9.31) together with (9.21)–(9.24) yield the following modification
of (9.27) and (9.28).

RN (y) = 1−N−
1
3 2

2
3 (−1)Nu(y) + N−

2
3 2−

5
3 v(y) + O(N−1+2ε),(9.32)

RN±1(y) = RN (y)∓N−
2
3 2

1
3 (−1)Nu′(y) + O(N−1+2ε).(9.33)

The error O(N−1+2ε) is produced by the second term of (9.31). For instance,
if n = N , we have

N−
1
3 c1u(ŷ) = N−

1
3 (2

2
3 + O

(
N−

2
3 y)

)(
u(y) + O(N−

2
3 y2)

)
= N−

1
3 u(y) + O(N−1y2) = N−

1
3 u(y) + O(N−1+2ε).

Similar arguments lead to (9.33). Asymptotics (9.32) and (9.33) complete
the proof of the proposition. Note that the restriction ε < 1

6 is needed to
ensure that the droped terms are of higher order that N−

2
3 .

Let us now turn to the analysis of the one-cut estimates of Rn(t)
which are needed in the second integral in (9.14). These estimates can be
extracted from the general one-cut expansion (6.13). In the case of the
quartic potential (9.1), the first two terms of (6.13) can be specified as

Rn(t) = R(
n

N
;t) + N−2R(2)(

n

N
;t) + O(t−1N−4),(9.34)

n = N − 1, N,N + 1, N →∞, t ≡ t0 > 1,

where the coefficient functions R(λ;t) and R(2)(λ;t) can be found with the
help of the string equation (5.9) which in the case under consideration takes
the form of the single recurrence relation,

(9.35)
n

N
=

(
2− 4

t

)
Rn +

1
t2

Rn(Rn+1 + Rn + Rn−1).
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We also note that the change t−
1
2 → t−1 in the error estimate is due to

the evenness of potential (9.1). Substituting (9.34) into equation (9.35) we
arrive to the following explicit formulae for R(λ;t) and R(2)(λ;t).

R(λ;t) =
t

3
(
2− t +

√
(2− t)2 + 3λ

)
,(9.36)

R(2)(λ;t) = − t

8
2− t +

√
(2− t)2 + 3λ

((2− t)2 + 3λ)2
·(9.37)

We of course need an extension of the validity of the asymptotics (9.34) to
the large domain of the parameter t.

PROPOSITION 9.3. — For every 0 < δ < 2
3 there exists a positive

constant C ≡ C(δ) such that the error terms in (9.34), which we will denote

rn(t), n = N ,N + 1,N − 1, satisfy the uniform estimates,∣∣rn(t)
∣∣ ≤ Ct−1N−4 , n = N ,N + 1,N − 1,(9.38)

for all N ≥ 1 and t ≥ 1 + 2−
2
3 N−δ.(9.39)

The proof of the proposition is given in Appendix A.

We are now ready to proceed with the asymptotic evaluation of the
integrals in the right hand side of (9.14). We shall start with the first
integral,

2−
4
3 N−

4
3

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

ΘN (y) dy ≡ I1.

Fisrt we notice that, in virtue of Proposition 9.2,

(9.40) ΘN (y) = 3
2
− 2

4
3 N−

2
3 u2(y) + 2

1
3 N−

2
3 y + O(N−1+2ε).

Therefore, the I1 can be represented as

(9.41) I1 = 2−
4
3 N−

4
3

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

Θ0
N (y) dy + O(N−

7
3 +4ε).

where

(9.42) Θ0
N (y) := 3

2
− 2

4
3 N−

2
3 u2(y) + 2

1
3 N−

2
3 y.

Assuming that

(9.43) 0 < ε < 1
12

,

we make the error term in (9.41) of order o(N−2).
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The integral in the right hand side of (9.41) can be, in accordance
with (9.42), splited into the three integrals,

(9.44) 2−
4
3 N−

4
3

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

Θ0
N (y) dy ≡ I11 + I12 + I13,

where

I11 = 2−
4
3 N−

4
3

3
2

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

dy,

I12 = −N−2

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

u2(y) dy,

I13 =
1
2
N−2

∫ Nε

x

x− y

(1 + N−
2
3 2−

2
3 y)2

y dy.

The integral I11 can be estimated, up to the terms of order N−2, as follows,

I11 = 2−
4
3 N−

4
3

3
2

∫ Nε

x

(x− y)
(
1− 2N−

2
3 2−

2
3 y + O(N−

4
3 y2)

)
dy(9.45)

= 2−
4
3 N−

4
3

3
2

∫ Nε

x

(x− y)(1− 2N−
2
3 2−

2
3 y) dy + O(N−

8
3 +4ε)

= − 3x2

2
10
3

N−
4
3 +

x3

8
N−2 +

3x
2

7
3
N−

4
3 +ε − 3

2
10
3

N−
4
3 +2ε

+
1
4
N−2+3ε − 3x

8
N−2+2ε + O(N−

8
3 +4ε).

For the second integral in (9.44), i.e. for the integral I12, we have

I12 = −N−2

∫ Nε

x

(x− y)
(
1 + O(N−

2
3 y)

)
u2(y) dy(9.46)

= N−2

∫ Nε

x

(y − x)u2(y) dy + O(N−
8
3 +3ε)

= N−2

∫ ∞
x

(y − x)u2(y) dy + O(N−
8
3 +3ε)

and similarly, for the third integral,

I13 =
1
2
N−2

∫ Nε

x

(x− y)
(
1 + O(N−

2
3 y)

)
y dy(9.47)

=
1
2
N−2

∫ Nε

x

(x− y)y dy + O(N−
8
3 +4ε)

= − x3

12
N−2 − 1

6
N−2+3ε +

x

4
N−2+2ε + O(N−

8
3 +4ε).
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Adding the estimates (9.45)–(9.47), we arrive to the following, up to
the order N−2, asymptotic formula for the first integral in our basic
equation (9.14),

(9.48) I1 = − 3x2

2
10
3

N−
4
3 +

( ∫ ∞
x

(y − x)u2(y) dy +
x3

24

)
N−2

+ I1(N, ε) + O(N−
7
3 +4ε),

where

(9.49) I1(N, ε) : = − 3
2

10
3

N−
4
3 +2ε+

3x
2

7
3
N−

4
3 +ε+

1
12

N−2+3ε− x

8
N−2+2ε.

Consider now the second integral in the right hand side of (9.14),∫ ∞
1+2−

2
3 N−δ

1 + N−
2
3 2−

2
3 x− τ

τ2
ΘN (τ) dτ ≡ I2.

With the help of Proposition 9.3, we can specify the general expansion (6.15)
for our case as follows

(9.50) ΘN (τ) = Θ(τ) + N−2Θ(2)(τ) + O(t−1N−4),

where

Θ(τ) = 2R2(1;τ)− 1
2

,(9.51)

Θ(2)(τ) = 4R(1;τ)R(2)(1;τ) + R(1;τ)Rλλ(1;τ).(9.52)

Therefore, similar to the integral I1, we can represent the integral I2, up to
the terms of order N−2, as the sum of the following three integrals,

(9.53) I2 = I21 + I22 + I23 + O(N−
8
3 ),

where

I21 =
∫ ∞

1+2−
2
3 N−δ

1− τ

τ2
Θ(τ) dτ,(9.54)

I22 = N−
2
3 2−

2
3 x

∫ ∞
1+2−

2
3 N−δ

1
τ2

Θ(τ) dτ,(9.55)

I23 = N−2

∫ ∞
1+2−

2
3 N−δ

1− τ

τ2
Θ(2)(τ) dτ.(9.56)
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In analysing each of the integrals I2k we shall recall that δ = 2
3 − ε,

and make use of the following elementary estimate,

(9.57)
∫ ∞

1+s

f(τ) dτ =
∫ ∞

1

f(τ) dτ − f(1)s− s2

2
f ′(1)− s3

6
f ′′(1) + O(s4)

which is true under the natural conditions fulfiled in the case of each of the
integrals I2k. Applying (9.57) to the integral I21 we obtain the asymptotic
relation,

(9.58) I21 =
∫ ∞

1

1− τ

τ2
Θ(τ) dτ − 1

2

( 1− τ

τ2
Θ(τ)

)′
τ=1

2−
4
3 N−

4
3 +2ε

− 1
6

( 1− τ

τ2
Θ(τ)

)′′
τ=1

2−2N−2+3ε + O(N−
8
3 +4ε).

Observe that( 1− τ

τ2
Θ(τ)

)′
τ=1

= −Θ(1) and
( 1− τ

τ2
Θ(τ)

)′′
τ=1

= 4Θ(1)− 2Θ′(1).

This, together with equations (9.51) and (9.36) allows us to evaluate the
coefficients of expansion (9.58). Indeed we have

(9.59) Θ(1) = 3
2
, Θ′(1) = 2,

and hence

(9.60) I21 =
∫ ∞

1

1− τ

τ2
Θ(τ) dτ +

3
2

10
3

N−
4
3 +2ε− 1

12
N−2+3ε +O(N−

8
3 +4ε).

Similarly, for the integral I22 we have

I22 = N−
2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ − xΘ(1)2−
4
3 N−

4
3 +ε

− x

2

( 1
τ2

Θ(τ)
)′

τ=1
2−2N−2+2ε + O(N−

8
3 +3ε)

= N−
2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ − xΘ(1)2−
4
3 N−

4
3 +ε

+
x

8
(2Θ(1)−Θ′(1))N−2+2ε + O(N−

8
3 +3ε),

and, taking into account (9.59),

(9.61) I22 = N−
2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ

− 3x
2

7
3
N−

4
3 +ε +

x

8
N−2+2ε + O(N−

8
3 +3ε).
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The estimation of the integral I23 up to the order N−2 is very simple–
we only need to use the first term of (9.57):

(9.62) I23 = N−2

∫ ∞
1

1− τ

τ2
Θ(2)(τ) dτ + O(N−

8
3 +ε).

Adding the estimates (9.60), (9.61) and (9.62) we conclude that

I2 =
∫ ∞

1

1− τ

τ2
Θ(τ) dτ + N−

2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ(9.63)

+ N−2

∫ ∞
1

1− τ

τ2
Θ(2)(τ) dτ − I1(N, ε) + O(N−

8
3 +4ε),

where I1(N, ε) is exactly the same collection of the epsilon-depending terms
as the one which has appeared in formula (9.48) evaluating the integral I1,
and which is defined in (9.49).

Substituting estimates (9.48) and (9.63) into the basic equation (9.14)
we obtain the following asymptotic representation of the free energy FN (x),

FN (x) = FGauss
N +

∫ ∞
1

1− τ

τ2
Θ(τ) dτ + N−

2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ(9.64)

− 3x2

2
10
3

N−
4
3 + N−2

{∫ ∞
x

(y − x)u2(y) dy

+
x3

24
+

∫ ∞
1

1− τ

τ2
Θ(2)(τ) dτ

}
+ O(N−

7
3 +4ε)

Put (cf. (8.20))

F reg
N (t) ≡ F (t) + N−2F (2)(t)(9.65)

=
∫ ∞
t

t− τ

τ2
Θ(τ) dτ + N−2

∫ ∞
t

t− τ

τ2
Θ(2)(τ) dτ,

and consider F reg
N (1+2−

2
3 N−

2
3 x). It is easy to see that this object coinside

with the sum I21 + I22 + I23 (see (9.53)) up to the following formal
replacement:

N ε �−→ x.

Therefore, we can apply (9.63) and see that

F reg
N (1 + 2−

2
3 N−

2
3 x) =

∫ ∞
1

1− τ

τ2
Θ(τ) dτ(9.66)

+ N−
2
3 2−

2
3 x

∫ ∞
1

1
τ2

Θ(τ) dτ + N−2

∫ ∞
1

1− τ

τ2
Θ(2)(τ) dτ

− 3x2

2
10
3

N−
4
3 +

x3

24
+ O(N−

8
3 ).
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This allows us to rewrite the final equation (9.64) as

(9.67) FN (x) = FGauss
N + F reg

N (1 + 2−
2
3 N−

2
3 x)

−N−2 logFTW (x) + O(N−
7
3 +4ε),

which concludes the proof of Theorem 9.1.

Remark . — In terms of the partition function equation (9.67) reads

(9.68)
ZN (t)
ZGauss
N

= FTW

(
(t− 1)2

2
3 N

2
3
)
Zreg
N (t)

(
1 + O(N−

1
3 +ε)

)
,

where ε is an arbitrary positive number.

Appendix A.
The proof of Proposition 9.3.

Let us remind the basic steps of the Riemann-Hilbert approach
to the asymptotic analysis of orthogonal polynomial following the scheme
of [DKMVZ].

The principal observation ([FIK]; see also [BI1] and [DKMVZ]) is that
the orthogonal polynomials Pn(z) admit the representation,

(A.1) Pn(z) = Yn11(z),

where the 2 × 2 matrix function Yn(z) is the (unique) solution of the
following Riemann-Hilbert (RH) problem.

1) Y (z) is analytic for z ∈ C \R, and it has continuous limits, Yn+(z)
and Yn−(z) from above and below the real line,

Yn±(z) = lim
z′→z
±Im z′>0

Yn(z′).

2) Yn(z) satisfies the jump condition on the real line,

(A.2) Yn+(z) = Yn−(z)G(z),

where

(A.3) G(z) =
( 1 e−NV (z)

0 1

)
.
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3) As z → ∞, the function Yn(z) has the following uniform
asymptotics expansion

(A.4) Yn(z) ∼
(
I +

∞∑
k=1

m
(n)
k

zk

)
znσ3 , z →∞,

where σ3 =
(

1 0
0 −1

)
.

In addition to equation (A.1), the recurrence coefficients Rn can be
also evaluated directly via Yn(z). In fact, we have that

(A.5) Rn =
(
m

(n)
1

)
12

(
m

(n)
1

)
21
,

where the matrix m
(n)
1 is the first coefficient of the asymptotic series (A.4).

Equation (A.5) reduces the question of the asymptotic investigation of the
recurrence coefficients Rn(t) to the question of the asymptotic solution of
the RH problem (1-3). In the case of a fixed t > 1, this analysis is performed
in [DKMVZ]. In fact, in [DKMVZ] the asymptotics is evaluate for a generic
fixed real analytic potential V (z). The approach of [DKMVZ] consists of
a succession of steps which, in the end, yields a reduced RH problem in
which all the jumps are of the order N−1 (cf. the proof of Theorem 5.2).
In the relevant for our analysis one-cut situation, these steps are described
in detail in [EM]. In what follows we will repeat the construction of [EM]
specifying its principal ingredients for the case of the potential (9.1) and
showing how it can be modified in order to cover the extanded range of
parameter t, i.e. assuming t ≥ 1 + 2−

2
3 N−δ.

Step 1 (g-function deformation). — Define

(A.6) g(z) :=
∫ z0

−z0
ln(z − s)ρ(s) ds,

where [−z0, z0] and ρ(s) are the support and the density of the equilibrium
measure (5.1), respectively. More precisely, [−z0, z0] and ρ(s) minimise
the functional (4.2) where V (x) is replaced by V (x)/λ, and λ = n/N ,
n = N − 1, N,N + 1. In the case of the potential (9.1), the point z0 and the
function ρ(s) are given by the equations (see, e.g. [BPS]),

z0 = 2
( t

3
(
2− t +

√
(t− 2)2 + 3λ

)) 1
2 ≡ 2R

1
2 (λ;t),(A.7)

ρ(s) =
1
πλ

(b0 + b2s
2)

√
z2
0 − s2 ≡ 1

πiλ
(b0 + b2s

2)
(√

s2 − z2
0

)
+
,(A.8)
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where

b0 =
1
3t

(
2t− 4 +

√
(t− 2)2 + 3λ

)
,(A.9)

b2 =
1

2t2
·(A.10)

The branch of
√

z2 − z2
0 is defined on C \ [−z0, z0] and is fixed by the

condition
√

z2 − z2
0 > 0 if z > z0. The branch of ln(z − s) is defined

on C \ (−∞, s] and is fixed by the condition arg(z − s) = 0 if z > s.

Assume that t ≥ t0 > 1 and denote,

Vλ(x) ≡ 1
λ
V (x).

Then the function g(z) satisfies the following characteristic properties
(cf. (4.7)–(4.8)) which underline the importance of g(z) for the asymptotic
analysis of the RH problem 1)–3).

• The function g(z) is analytic for z ∈ C \ (−∞, z0] with continuous
boundary values g±(z) on (−∞, z0].

• There is a constant . such that for z ∈ [−z0, z0],

(A.11) g+(z) + g−(z)− Vλ(z) = .,

and for z ∈ R \ [−z0, z0],

(A.12) g+(z) + g−(z)− Vλ(z) < ..

• Denote

(A.13) p(z) := g+(z)− g−(z).

Then, for z ∈ [−z0, z0],

(A.14) p(z) = 2πi
∫ z0

z

ρ(s) ds,

and this function possesses an analytic continuation to a neighborhood of
(−z0, z0). Moreover, for every 0 < d < 1

2 z0 there is a positive number p0

such that

(A.15)
d
dσ

Re p(s + iσ)
σ=0

=
2
λ

(b0 + b2s
2)

√
z2
0 − s2 ≥ p0 > 0,

for all s ∈ [−z0 + d, z0 − d] and t ≥ t0 > 1.
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• For z > z0,

(A.16) p(z) = 0,

and for z < −z0,

(A.17) p(z) = 2πi.

• As z →∞,

(A.18) g(z) = ln z + O
( 1
z2

)
.

We also notice that there is the following alternative representation
of the function g(z),

(A.19) g(z) = − 1
λ

∫ z

z0

(b0 + b2s
2)

√
s2 − z2

0 ds +
1
2
Vλ(z) +

.

2
·

Having introduced the function g(z) and the constant ., we define
the first transformation, Y (z) �→ Φ(z) of the original RH problem, by the
equation,

(A.20) Y (z) = e
1
2 n�σ3Φ(z) en(g(z)− 1

2 �)σ3 .

In terms of the function Φ(z) the RH problem (1-3) reads as follows.

1′) Φ(z) is analytic for z ∈ C \ R.

2′) Φ(z) satisfies the jump condition on the real line,

(A.21) Φ+(z) = Φ−(z)GΦ(z),

where

(A.22) GΦ(z) =
( e−np(z) en(g+(z)+g−(z)−Vλ−�)

0 enp(z)
)

3′) as z → ∞, the function Φ(z) has the following uniform
asymptotics:

(A.23) Φ(z) = I + O
( 1
z

)
, z →∞

(which can be extended to the whole asymptotic series).
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Observe that, in virtue of (A.16) and (A.17), we have

(A.24) GΦ(z) =
( 1 en(g+(z)+g−(z)−Vλ−�)

0 1

)
, for z ∈ R \ [−z0, z0],

and in virtue of (A.11),

(A.25) GΦ(z) =
( e−np(z) 1

0 enp(z)
)
, for z ∈ [−z0, z0].

Step 2 (second transformation Φ �→ Φ(1)). — Next we introduce the
lens-shaped region Ω = Ω(u)∪Ω(�) around (−z0, z0) as indicated in Figure 1
and define Φ(1)(z) as follows

C(u)

Ω(u)

Ω(1)

C(1)

−z0 z0

Figure 1. The contour Γ

(i) for z outside the domain Ω,

(A.26) Φ(1)(z) = Φ(z);

(ii) for z within the domain Ω(u) (the upper lens),

(A.27) Φ(1)(z) = Φ(z)
( 1 0
− e−np(z) 1

)
;

(iii) for z within the domain Ω(�) (the lower lens),

(A.28) Φ(1)(z) = Φ(z)
( 1 0

enp(z) 1

)
.

(We note that the function p(z) admits the analytic continuation to the
domain Ω.)

With the passing to Φ(1)(z), the RH problem 1′)–3′) transforms to
the RH problem posed on the contour Γ consisting of the real axes and the
curves C(u) and C(�) which form the boundary of the domain Ω,

Ω = C(�) − C(u)

(see Figure 1).
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We have:

1′′) Φ(1)(z) is analytic for z ∈ C \ Γ.

2′′) Φ(1)(z) satisfies the jump condition on the real line,

(A.29) Φ(1)
+ (z) = Φ(1)

− (z)GΦ(1)(z),

where

(A.30) GΦ(1)(z) =



( 1 en(g+(z)+g−(z)−Vλ−�)

0 1

)
for z ∈ R \ [−z0, z0],( 1 0

e−np(z) 1

)
for z ∈ C(u),( 1 0

enp(z) 1

)
for z ∈ C(�),( 0 1

−1 0

)
for z ∈ [−z0, z0].

3′′) As z → ∞, the function Φ(1)(z) has the following uniform
asymptotics:

(A.31) Φ(1)(z) = I + O
( 1
z

)
, z →∞

(which can be extended to the whole asymptotic series). Indeed, in view of
the equations (A.26)–(A.28) defining the function Φ(1)(z), the properties
1′)–3′) of the function Φ(z) and equation (A.24), we only need to explane
the last line of equation (A.30). The latter is a direct consequance of
equation (A.25) and the elementary algebraic identity,( 0 1

−1 0

)
=

( 1 0
− enp 1

)( e−np 1
0 enp

)( 1 0
− e−np 1

)
.

Step 3 (The construction of a global aproximation to Φ(1)(z)). — The
point of the transformation of the original Y -RH problem 1)–3) to the Φ-RH
problem 1′′)–3′′) is that in virtue of the inequalities (A.12) and (A.15), the
jump matrix GΦ(1)(z), for z �= ±z0, is exponentially close to the identity
matrix on the part Γ \ [−z0, z0] of the jump contour Γ, so that one can
expect that, as N →∞, n = N − 1, N,N + 1, and |z ± z0| > δ,

(A.32) Φ(1)(z) ∼ Φ(∞)(z),

where Φ(∞)(z) is the solution of the following model RH problem.
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1′′′) Φ(∞)(z) is analytic for z ∈ C \ [−z0, z0].

2′′′) Φ(∞)(z) satisfies the jump condition on (−z0, z0)

(A.33) Φ(∞)
+ (z) = Φ(∞)

− (z)
( 0 1
−1 0

)
.

3′′′) as z → ∞, the function Φ(∞)(z) has the following uniform
asymptotics:

(A.34) Φ(∞)(z) = I + O
( 1
z

)
, z →∞

(which can be extended to the convergent Laurent series at z = ∞). The
important fact is that this Riemann-Hilbert problem admits an explicit
solution:

Φ(∞)(z) =
( 1

2 (α + α−1) 1
2i (α− α−1)

− 1
2i (α− α−1) 1

2 (α + α−1)

)
,(A.35)

α(z) =
( z − z0

z + z0

)1/4

, α(∞) = 1.(A.36)

In order to prove and specify the error term in estimation (A.32)
we need to construct the parametrix of the solution Ψ(1)(z) near the end
points ±z0. Let Bd denote a disc of radius d centered at z0, and let us
introduce the change-of-the-variable function w(z) on Bd by the formula,

(A.37) w(z) =
( 3

4

) 2
3 (
−2g(z) + Vλ(z) + .

) 2
3 .

In view of equation (A.19), the function w(z) can be also written as,

(A.38) w(z) =
( 3

4

) 2
3
( 2
λ

∫ z

z0

(b0 + b2s
2)

√
s2 − z2

0 ds
) 2

3
,

which, taking into account that |b0 + b2z
2
0 | > c0 > 0 for all t ≥ 1, implies

that, for sufficiently small d, the function w(z) is holomorphic and in fact
conformal in the disc Bd,

(A.39) w(z) =
∞∑
k=1

wk(z − z0)k, z ∈ Bd.
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We shall assume that the branch of the root ( )
2
3 is choosen in such a way

that

(A.40) w1 ≥ c0 > 0 for all t ≥ 1 and N ≥ 1.

We also note that, for sufficiently small d, the following inequality takes
place,

(A.41)
∣∣w(z)

∣∣ ≥ c0, for all z ∈ Sd, t ≥ 1 and N ≥ 1,

where Sd denote the boundary of Bd, i.e the circle of radius d centered
at z0.

Let us decompose Bd into four regions (see Figure 2),

w = w(z)

1

0

2

3
4

z0

2
3 π

− 2
3 π

Figure 2. Decomposition of Bd

(A.42) Bd = B
(1)
d ∪B

(2)
d ∪B

(3)
d ∪B

(4)
d ,

where
B

(1)
d =

{
z ∈ Bd : 0 ≤ argw(z) ≤ 2

3
π
}
,

B
(2)
d =

{
z ∈ Bd : 2

3
π ≤ argw(z) ≤ π

}
,

B
(3)
d =

{
z ∈ Bd : − π ≤ argw(z) ≤ − 2

3
π
}
,

B
(4)
d =

{
z ∈ Bd : − 2

3
π ≤ argw(z) ≤ 0

}
.

We shall assume that the parts of the curves C(u,�) which are inside Bd

coincide with the relevant partys of the boundaries of the domains B
(k)
d .

Let us also introduce the standard collection of the Airy functions,

(A.43)


y0(z) := Ai(z),

y1(z) := e−
1
6 πi Ai( e−

2
3 πiz),

y2(z) := e
1
6 πi Ai( e

2
3 πiz).
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We will now define the approximation (parametrix) Φ(z0)(z) within Bδ by
the following equation,
(A.44)

Φ(z0)(z) = E(z)n
1
6 σ3



Ψ(u)
Ai

(
n

2
3 w(z)

)
e

2n
3 w

3
2 (z)σ3 for z ∈ B

(1)
d ,

Ψ(u)
Ai

(
n

2
3 w(z)

)(
1 0
−1 1

)
e

2n
3 w

3
2 (z)σ3 for z ∈ B

(2)
d ,

Ψ(�)
Ai

(
n

2
3 w(z)

)(
1 0
1 1

)
e

2n
3 w

3
2 (z)σ3 for z ∈ B

(3)
d ,

Ψ(�)
Ai

(
n

2
3 w(z)

)
e

2n
3 w

3
2 (z)σ3 for z ∈ B

(4)
d .

where the model functions Ψ(u,d)
Ai (z) are the matrices,

Ψ(u)
Ai (z) =

( y0(z) iy1(z)
y′0(z) iy′1(z)

)
,(A.45)

Ψ(�)
Ai (z) =

( y0(z) iy2(z)
y′0(z) iy′2(z)

)
,(A.46)

and the gauge matrix multiplier E(z) is

(A.47) E(z) =
√
π
( α−1 −α
−iα−1 −iα

)
w

1
4 σ3(z).

We note that, as it follows from (A.36) and (A.39), the matrix-valued
function E(z) is analytic in the disc Bd.

We are now ready to define an explicit global approximation, Φ(A)(z),
to the solution Φ(1)(z) of the RH problem 1′′′)–3′′′). We take

(A.48) Φ(A)(z) =


Φ(∞)(z) for z /∈ Bd ∪ (−Bd),

Φ(z0)(z) for z ∈ Bd,

σ3Φ(z0)(−z)σ3 for z ∈ (−Bd).

To see that these formulae indeed provide an approximation to the
solution Φ(1)(z) we consider the matrix ratio,

(A.49) X(z) := Φ(1)(z)
(
Φ(A)(z)

)−1
.

Due to equation (A.33) and the definitions (A.44) of the parametrix
Φ(z0)(z), the function X(z) has no jumps across the interval (−z0+d, z0−d)
and inside the discs Bd and (−Bd). It is still have jumps across the contour

(A.50) Γ0 = (−∞,−z0 − d] ∪ (−Sd) ∪ C
(u)
0 ∪ C

(�)
0 ∪ Sd ∪ [z0 + d,+∞),
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where C
(u,�)
0 are the parts of the curves C(u,�) which lie outside of the

discs Bd and (−Bd). The curves C
(u,�)
0 can be taken as straight lines. The

contour Γ0 is shown in Figure 3. The matrix-valued function X(z) solves
the following RH problem posed on the contour Γ0.

−z0 z0

C
(u)
0

C
(1)
0

Sd

Figure 3. The contour Γ0

10) X(z) is analytic for z ∈ C\Γ0, and it has continuous limits, X+(z)
and X−(z) from the left and the right of Γ0.

20) X(z) satisfies the jump condition on Γ0

(A.51) X+(z) = X−(z)GX(z),

where

(A.52) GX(z) =



Φ(∞)(z)
( 1 en(g+(z)+g−(z)−Vλ−�)

0 1

)(
Φ(∞)(z)

)−1

for z ∈ R \ (−z0 − d, z0 + d),

Φ(∞)(z)
( 1 0

e−np(z) 1

)(
Φ(∞)(z)

)−1 for z ∈ C
(u)
0 ,

Φ(∞)(z)
( 1 0

enp(z) 1

)(
Φ(∞)(z)

)−1 for z ∈ C
(�)
0 ,

Φ(z0)(z)
(
Φ(∞)(z)

)−1 for z ∈ Sd,

σ3Φ(z0)(−z)
(
Φ(∞)(−z)

)−1
σ3, for z ∈ (−Sd).

30) As z → ∞, the function X(z) has the following uniform
asymptotics:

(A.53) X(z) = I + O
( 1
z

)
, z →∞

The important feature of this RH problem is that the jump matrix GX(z) is
uniformly close to the identity matrix as N →∞. Indeed, using the known
asymptotics of the Airy functions and inequality (A.41) one can check
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directly that the functions Φ(z0)(z) and Φ(∞)(z) match on the circle Sd,
and the uniform estimate,

(A.54)
∣∣GX(z)− I

∣∣ ≤ C

N
, for all z ∈ Sd ∪ (−Sd), t ≥ 1 and N ≥ 1,

takes place. Simultaneously, as z runs over R \ (−z0 − d, z0 +d), we observe
that we have

0 < en(g+(z)+g−(z)−Vλ−�) ≡ e
−N

(∫ z

z0
(b0+b2s

2)
√

s2−z2
0 ds

)
(A.55)

< e−Nc0z
2
,

where the positive constant c0 can be choosen the same for all t ≥ 1
and N ≥ 1. Therefore, we conclude that

(A.56)
∣∣GX(z)− I

∣∣ ≤ C e−Nc0z
2
,

for all z ∈ R \ (−z0 − d, z0 + d), t ≥ 1 and N ≥ 1.

Finally, inequality (A.15) indicates that on the segments C
(u)
0 and C

(�)
0 , if

they are choosen close enough to the real line, the following estimate holds:

(A.57) |GX(z)− I| ≤ C e−Nc0 ,

for all z ∈ C
(u)
0 ∪ C

(�)
0 , t ≥ t0 > 1 and N ≥ 1.

Unlike the estimates (A.54) and (A.56), estimate (A.57) can not be
extended to t ≥ 1. However, a slightly weaker version of it is valied for
t ≥ 1 + 2−

2
3 N−δ with δ < 2

3 . To see this, let us analyse more carefully the
behavior of the function Re p(z) near the real line. To this end let us notice
that, in addition to (A.15) we have

d2

dσ2
Re p(s + iσ)

σ=0
= 0, ∀z ∈ (−z0, z0),

and hence

(A.58) Re p(z) = σ
( d

dσ
Re p(s + iσ)

σ=0

)
+ O(σ3)

= σ(
2
λ

(b0 + b2s
2)

√
z2
0 − s2) + O(σ3), z ≡ s + iσ ∈ C

(u)
0 ∪ C

(�)
0 .

By a straightforward calculation one can check that

7
24

N−δ ≤ b0 ≤ 1, ∀ t ≥ 1 + 2−
2
3 N−δ.
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Therefore, equation (A.58) yields the estimates

nRe p(z) ≥ c0σN
1−δ(1 + O(σ2N δ)

)
, z ≡ s + iσ ∈ C

(u)
0 ,(A.59)

nRe p(z) ≤ c0σN
1−δ(1 + O(σ2N δ)

)
, z ≡ s + iσ ∈ C

(�)
0 ,(A.60)

with some positive constant c0.

If we now choose C(u,�) so that

(A.61) | Im z| ≡ |σ| = N−
1
3 , z ∈ C

(u)
0 ∪ C

(�)
0 ,

and assume 0 < δ < 2
3 , then (A.59) and (A.60) would imply

nRe p(z) ≥ c0N
2
3 −δ, z ≡ s + iσ ∈ C

(u)
0 ,(A.62)

nRe p(z) ≤ −c0N
2
3 −δ, z ≡ s + iσ ∈ C

(�)
0 .(A.63)

(We follow the usual convention to use the same symbol for perhaps
different positive constants whose exact value is not important to us.) These
inequalities in turn yield the following modification of estimate (A.57):

(A.64)
∣∣GX(z)− I

∣∣ ≤ C e−c0N
2
3 −δ , for all z ∈ C

(u)
0 ∪ C

(�)
0 ,

t ≥ 1 + 2−
2
3 N−δ and N ≥ 1,

which together with (A.54) and (A.56) lead to the conclusion that

(A.65) ‖GX − I‖L∞(Γ0), ‖GX − I‖L2(Γ0) ≤
C

N
,

for all t ≥ 1 + 2−
2
3 N−δ and N ≥ 1.

This means that the needed extention of the basic uniform estimate of the
jump matrix has been almost obtained. What is left is the control of the t -
dependence of the estimate. This can be achieved as follows.

Let us attach the subscript “Gauss” to all the relevant objects, i.e.
the equilibrium measure, the model solutions, etc., which correspond to the
gaussian potential, VGauss(z) = z2. By the very nature of our approach,
as t→∞, all the main ingredients of the above scheme, i.e.

g(z), Φ(∞)(z), Φ(z0)(z),

converge to the respective Gauss-quantities, i.e. to

gGauss(z), Φ(∞)
Gauss(z), Φ(z0)

Gauss(z).
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Moreover, the following inequalities for the jump matrix of the X-RH
problem can be established by a straightforward calculations.

∣∣GX(z)G−1
XGauss

(z)− I
∣∣ ≤ CN e−c0Nz2

z4

t
,(A.66)

for all z ∈ R \ (−z0 − d, x0 + d),

t ≥ 1 + 2−
2
3 N−δ and N ≥ 1,

∣∣GX(z)G−1
XGauss

(z)− I
∣∣ ≤ CN e−c0N

2
3 −δ

t
,(A.67)

for all z ∈ C
(u)
0 ∪ C

(�)
0

t ≥ 1 + 2−
2
3 N−δ and N ≥ 1,

|GX(z)G−1
XGauss

(z)− I| ≤ C

tN
,(A.68)

for all z ∈ Sd ∪ (−Sd),

t ≥ 1 + 2−
2
3 N−δ and N ≥ 1.

Put

(A.69) X̃(z) = X(z)X−1
Gauss(z).

The function X̃(z) solves the RH problem on the same contour Γ0 as the
function X(z) and with the jump matrix,

G
X̃

(z) ≡ GX(z)G−1
XGauss

(z).

The inequalities (A.66)–(A.68) yield then the following modification of
estimate (A.65),

(A.70) ‖G
X̃
− I‖L∞(Γ0), ‖G

X̃
− I‖L2(Γ0) ≤

C

tN
,

for all t ≥ 1 + 2−
2
3 N−δ and N ≥ 1.

The proof of Proposition 9.3 can be now completed in the usual
way, by iterating the X̃-RH problem (cf. [DKMVZ] and [EM]). Indeed, by
iterative arguments, we can see that for any K ≥ 0,

(A.71)
∣∣∣X̃(z)− I −

K∑
k=1

N−kfk
( n

N
;t, z

)∣∣∣ ≤ C(K)
tNK+1(1 + |z|)

,
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and also

(A.72)
∣∣∣fk( n

N
;t, z

)∣∣∣ ≤ C(k)
t(1 + |z|) ·

Denote m∞1 , m1,Gauss and m̃1 the matrix coefficients of the terms 1/z in
the asymptotic series at z = ∞ of the functions Φ(∞)(z), XGauss(z) and
X̃(z), respectively. Then, for the coefficient m

(n)
1 of series (A.4) we will

have from (A.20), (A.49), and (A.69) that

(A.73) e−
1
2 n�σ3m

(n)
1 e

1
2 n�σ3 = m∞1 + m1,Gauss + m̃1.

In virtue of estimates (A.71) and (A.72) we have that

∣∣∣m̃1 − I −
K∑

k=1

N−krk
( n

N
;t

)∣∣∣ ≤ C(K)N−K−1t−1,(A.74)

∣∣∣rk( n

N
;t

)∣∣∣ ≤ C(k)t−1,(A.75)

while

(A.76) m1,Gauss = e−
1
2 n�Gaussσ3m

(n)
1,Gauss e

1
2 n�Gaussσ3 −m∞1,Gauss.

Observe now that the matrices m∞1 , m∞1,Gauss, and m
(n)
1,Gauss can be evaluated

explicitly. Indeed, the first two can be obtained from (A.35), taking into
account that z0,Gauss =

√
2λ, and the third one follows from the fact

that the normalizing constants hn,Gauss are known–see (3.22). Therefore,
performing the calculations indicated, we derive from equations (A.74),
(A.73), and (A.5) the following estimates for the recurrence coefficients Rn,

∣∣∣Rn(t)− z2
0

4
−

K∑
k=1

N−kfk
( n

N
;t

)∣∣∣ ≤ C(K)N−K−1t−1,(A.77)

∣∣∣fk( n

N
;t

)∣∣∣ ≤ C(k)t−1, for all t ≥ 1 + 2−
2
3 N−δ,(A.78)

n = N − 1, N,N + 1 and N ≥ 1.

Finally, repeating the arguments we used in the proof of Theorem 5.2, we
conclude that the odd coefficients fk in the series from (A.77) are actually
absent. The Proposition 9.3 follows.
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