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NON-INTERSECTING, SIMPLE,

SYMMETRIC RANDOM WALKS AND

THE EXTENDED HAHN KERNEL

by Kurt JOHANSSON (*)

1. Introduction.

We will consider a simple, symmetric random walks started at 2(j−1),
1 � j � a, conditioned not to intersect in the time interval [0, b+c], and end
at c−b+2(j−1) at time b+c. Here a, b, c, c � b, fixed positive integers. This
model has several interpretations. One is as a uniform random rhombus
tiling of an abc-hexagon, i.e. a hexagon with side lengths a, b, c, a, b, c, see
[3]. This translates directly to a dimer or perfect matching representation,
see e.g. [14], so it is a kind of two-dimensional statistical mechanics model.
Another interpretation is as a boxed planar partition in a rectangular box
with side lengths a, b and c, [18]. The number of possible configurations,
the partition function of the model, was computed by MacMahon, and is
given by

(1.1) Z(a, b, c) =
a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

,

see [18].

(*) Supported by the Swedish Science Research Council and the Göran Gustafsson
Foundation (KVA).
Keywords: Non-intersecting paths, Dyson’s Brownian motion, planar partitions, tilings,
Hahn polynomials, determinantal process.
Math. classification: 60K35, 15A32.



2130 Kurt JOHANSSON

If we think of the random walks as the motion of particles, then at
each time we have a certain particle configuration. By considering these
particles at all times we get a discrete, finite point process. The purpose of
this paper is to show that this is a determinantal point process and compute
the correlation kernel in terms of the associated Hahn polynomials, [10], [2].
The derivation is based on the general framework of [11] and a variant of the
orthogonal polynomial method. The main result is theorem 3.1 below. The
proof of that theorem also gives a proof of MacMahon’s formula. A certain
continuous scaling limit of this model, namely a fixed and b = c → ∞,
converges to a model of non-intersecting Brownian motions all started at
the origin and conditioned to end at the origin at time T . This Brownian
motion model is a transformation of Dyson’s Hermitian Brownian motion
model. We will discuss these models in the next section and indicate how
the correlation kernel can be computed in these models using Hermite
polynomials and the orthogonal polynomial method. The result in this case
is closely related to the work in [5], see also [7]. In the last section we will
consider the discrete model where the orthogonal polynomial method is less
obvious. At the end of that section we will give some remarks concerning
asymptotics.

2. General framework and Dyson’s Brownian motion.

2.1. General framework.

Let Xr, 0 � r � m be subsets of R, φr,r+1 : Xr → Xr+1,
0 � r < m, given functions and µr a measure on Xr, 1 � r � m,
e.g. Lebesgue or counting measure. An element x = (x1, . . . , xm−1) ∈
Xn

1 ×Xn
2 ×· · ·×Xn

m−1
.= X is called a configuration. We think of xr1, . . . , x

r
n,

xr = (xr1, . . . , x
r
n), as the positions of particles in Xr, which we will call line

r. Let x0 ∈ Xn
0 and xm ∈ Xn

m be fixed configurations, the initial and final
configurations respectively. Define φr,s : Xr ×Xs → R for r < s by

(2.1) φr,s(x, y) =
∫

φr,r+1(x, z1) · · ·φs−1,s(zr−s−1, y)dµr+1(z1)

· · · dµs−1(zr−s−1),

and φr,s ≡ 0 if r � s. We will consider probability measures on X of the
form

(2.2)
1

Zn,m

m−1∏
r=0

det(φr,r+1(xri , x
r+1
j ))ni,j=1dµ

n
1 (x1) · · · dµnm−1(x

m−1),

ANNALES DE L’INSTITUT FOURIER
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where Zn,m is a normalization constant. It is proved in [11] that the
measure (2.2) has determinantal correlation functions, i.e. the probability
density with respect to the reference measure dµr1(y1) · · · dµrk(yk) of
finding particles at z1 = (r1, y1), . . . , zk = (rk, yk) is given by

(2.3) det(Kn,m(zi; zj))ki,j=1

where K is the so called correlation kernel. This kernel is given by

(2.4) Kn,m(r, x; s, y) = −φr,s(x, y) +
n∑

i,j=1

φr,m(x, xmi )(A−1)i,jφ0,s(x0
j , y),

where A = (φ0,m(x0
i , x

m
j ))ni,j=1. Note that the kernel is not unique. We can

multiply it by ψ(r, x)/ψ(s, y) for an arbitrary function ψ 	= 0 and get the
same correlation functions.

2.2. Dyson’s Hermitian Brownian motion.

Let H(t) be an n × n Hermitian matrix whose elements evolve ac-
cording to independent Ornstein-Uhlenbeck processes, see [4], [15]. We con-
sider the stationary case. The probability measure for seeing the matrices
H1, . . . , Hm−1 at times t1 < · · · < tm is

(2.5)
1

Zn,m
e− trH2

1

m−2∏
j=1

exp

(
− tr(Hj+1 − qjHj)2

1− q2
j

)
dH1 · · · dHm−1,

where dHj is the Lebesgue measure on the space of Hermitian matrices,
and qj = exp(−(tj+1 − tj)), 1 � j � m − 2. Integrating out the angular
variables using the HarishChandra/Itzykson-Zuber formula, [15], gives the
eigenvalue measure
(2.6)

1
Z ′n,m

∆n(λ1)
n∏
j=1

e−(λ1
j )

2
m−2∏
r=1

det

(
exp

(
−

(λr+1
j −qrλri )2

1−q2
r

))n

i,j=1

∆n(λm−1),

where ∆n(λ) =
∏

1�i<j�n(λi − λj) is the Vandermonde determinant, and
λrj , 1 � j � n, are the eigenvalues of Hr.

If we set φ0,1(i, x) = pi(x)e−x
2
, φm−1,m(x, i) = pi(x), where pi is a

polynomial of degree i, φr,r+1(x, y) = (π(1−q2
r))
−1/2 exp(−(y−qrx)2/(1−

q2
r)), X0 = Xm = {0, . . . , n − 1}, x0

1 = xmi = i − 1, Xr = R, 1 � r < m

and µr the Lebesgue measure, we see that (2.6) is of the form (2.2). This
is a basic example of a measure of the form (2.2). Here we have used

TOME 55 (2005), FASCICULE 6



2132 Kurt JOHANSSON

the classical trick in the orthogonal polynomial method in random matrix
theory to write the Vandermonde determinant as ∆n(λ) = det(pi(λj)). The
polynomials pi can be arbitrary but we choose them to be the normalized
Hermite polynomials. This will lead to a formula for the kernel (2.4) in
terms of the Hermite polynomials. The key is the expansion, see e.g. [1],

(2.7)
1√

π(1− q2)
e
− (qx−y)2

1−q2 =
∞∑
k=0

pk(x)pk(y)qke−y
2
,

0 < q < 1. Repeated use of this identity gives

(2.8) φ0,s(j, y) = e−j(ts−t1)pj(y)e−y
2
.

Similarly,

(2.9) φr,m(x, j) = e−j(tm−r−tr)pj(x).

Using the orthonormality we obtain φ0,m(i, j) = exp(−j(tm−1 − t1))δij
and hence (A−1)ij = exp(j(tm−1− t1))δij . It also follows from (2.7) that if
1 � r < s < m, then

φr,s(x, y) =
1√

π(1− e2(tr−ts))
exp

(
− (etr−tsx− y)2

1− e2(tr−ts)

)

=
∞∑
k=0

pk(x)pk(y)ek(tr−ts)e−y
2
.

(2.10)

Set χt,s = 1 if t < s and χt,s = 0 if t � s. From (2.4) we get the extended

Hermite kernel,

Kext.Herm.(t, x; s, y) = − 1√
π(1− e2(t−s))

exp
(
− (et−sx− y)2

1− e2(t−s)

)
χt,s

+
n−1∑
k=0

ek(t−s)pk(x)pk(y)e−y
2(2.11)

Using the second equality in (2.10) we obtain the alternative formula

(2.12) Kext.Herm.(t, x; s, y) =




n−1∑
k=0

ek(t−s)pk(x)pk(y)e−y
2
, t � s

−
∞∑
k=n

ek(t−s)pk(x)pk(y)e−y
2
, t < s.

Multiplying with exp(−x2/2 + y2/2) we get the ordinary Hermite kernel
when t = s.

ANNALES DE L’INSTITUT FOURIER
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Let γ be a positively oriented circle around the origin with radius
r > 0, and Γ the line R �→ L + �≈ with L > r. Using the integral
formulas, see [1],

Hn(x) =
2n

i
√
π
ex

2
∫

Γ

ew
2−2xwwndw,

Hn(x) =
n!
2πi

∫
γ

e−z
2+2xz dz

zn+1
,

and pn(x) = (
√
π2nn!)−1/2Hn(x), it is not difficult to show that

Kext.Herm.(t, x; s, y) = − 1√
π(1− e2(t−s))

exp
(
− (et−sx− y)2

1− e2(t−s)

)
χt,s

+
2

(2πi)2

∫
Γ

dw

∫
γ

dz
wn

zn
1

w − z
ew

2−2yw−e2(t−s)z2+2et−sxz.
(2.13)

This double contour integral can be useful for asymptotic computations, for
example to show convergence to the extended Airy kernel when we have the
edge scaling. To our knowledge the details for this has not been presented
in the literature, but using (2.13) and the integral formula for the extended
Airy kernel it should be possible to do this similarly to what was done for
the extended Airy kernel in [12].

2.3. Non-intersecting Brownian motions.

A second closely related example is the following which involves
non-intersecting Brownian motions. Consider n non-intersecting Brownian
motions started at x0

i = ε(i − 1), 1 � i � n, at time 0 and conditioned to
end at the same points at time T . Let xri , 1 � i � n, denote the positions
at time τr, 1 � r < m, where 0 = τ0 < τ1 < · · · < τm−1 < τm = T . By the
Karlin-McGregor theorem the probability density for x = (x1, . . . , xm−1) ∈
(R�)�−� is given by

(2.14)
1

Zεn,m

m−1∏
r=0

det(pτr+1−τr (x
r
i , x

r+1
j ))ni,j=1.

In the limit ε→ 0+, corresponding to all particles starting at the origin at
time 0 and ending at the origin at time T , we get the probability density

(2.15)
1

Zn,m
∆n(y1)

n−1∏
j=0

e−(y1
j )

2/2τ1

m−2∏
r=1

det(e−(yr+1
j
−yri )2/2(τr+1−τr))ni,j=1

×∆n(ym−1)
n−1∏
j=0

e−(ym−1
j

)2/2(T−τm−1).

TOME 55 (2005), FASCICULE 6



2134 Kurt JOHANSSON

This has again the general form (2.2) with

φ0,1(i, y) = qi(y) exp(−y2/2τ1),

φr,r+1(x, y) = exp(−(y − x)2/2(τr+1 − τr))
and

φm−1,m(x, i) = q̃i(x) exp(−x2/2(T − τm−1)),

where qi and q̃i are polynomials of degree i. The measure (2.14) is actually
a transformation of the measure (2.6). Define

(2.16) dr =

√
T

2τr(T − τr)
,

1 � r < m, and τr = T (1 + e−2tr )−1. If we set λrj = yrjdr, 1 � j � n,
1 � r < m, then a straightforward computation shows that (2.15)
transforms into (2.6). In this way we can also transform the extended
Hermite kernel (2.11) into a correlation kernel for (2.15). However, let us
indicate how we can obtain it directly.

Set

cr,j = π1/2

(
τr(T − τr+1)
τr+1(T − τr)

)j/2
.

Then

(2.17)
∫
R

e
− (y−x)2

2(τr+1−τr) e−
x2
2τr pj(xdr)dx = cr,jpj(ydr+1)e

− y2

2τr+1 ,

where pj is the j:th normalized Hermite polynomial. This can be deduced
from the identity

(2.18)
∫
R

e−(x−y)2pn(αx)dx = π1/2(1− α2)n/2pn(
αy

(1− α2)1/2
),

which in turn follows easily from the generating function for the Hermite
polynomials. Choose qj(x) = pj(xd1) and q̃j(x) = pj(xdm−1). It follows
from (2.17) that

(2.19) φ0,s(j, x) =

(
τ1
τs

s−1∏
i=1

(τi+1 − τi)

)1/2

2(s−1)/2
s−1∏
i=1

ci,jpj(xds)e−x
2/2τs

and

(2.20) φr,m(x, j) =

(
T − τm−1

T − τr

m−2∏
i=r

(τi+1 − τi)

)1/2

2(m−r−1)/2

×
m−2∏
i=r

ci,jpj(xdr)e−x
2/2(T−τr).

ANNALES DE L’INSTITUT FOURIER
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Using the orthogonality of the pj :s and the general formula (2.4) we obtain
the following expression for the correlation kernel

KBM(τr, x; τs, y) = − 1√
2π(τr − τs)

e−
(x−y)2

2(τr−τs)χτ,τs +
n−1∑
j=0

(
τr(T − τs)
τs(T − τr)

)j/2

×
(

T

2τs(T − τr)

)1/2

pj(xdr)pj(yds)e−x
2/2(T−τr)−y2/2τs .

(2.21)

Here we have multiplied by the unimportant factor

(2π)
r−s
2

(
(τs − τs−1) · · · (τ2 − τ1)
(τr − τr−1) · · · (τ2 − τ1)

)1/2

.

If we go back to the transformation discussed above we see that

(2.22)
1√
drds

KBM(τr,
x

dr
; τs,

y

ds
)e

x2τr
T − y

2τs
T

(
T/τr − 1
T/τs − 1

)1/4

= Kext.Herm.(tr, x; ts, y),

with τr = T (1 + exp(−2tr))−1 and Kext.Herm. given by (2.11).

3. The extended Hahn kernel.

3.1. Derivation of the kernel.

Consider a symmetric, simple random walks with initial points (0, 2j)
and final points (b+c, c−b+2j), 0 � j � a−1, conditioned not to intersect
in the whole time interval [0, b + c]. The single step transition kernel for
one particle is

(3.1)
1
2
φ(x, y) =

1
2
δx−1,y +

1
2
δx+1,y.

The configuration at time t = r, which we also call the configuration on
the r:th line, is given by points zrj , 0 � j < a, zr0 < · · · < zra−1, where
z0
j = 2j, zb+cj = c − b + 2j. We think of these points as the positions of

particles. By the Lindström-Gessel-Viennot method, [19], our probability
measure on the set of configurations z = (zrj ) in (Z�)+−� is

(3.2) p(z) =
1

Z(a, b, c)

b+c−1∏
r=0

det(φ(zrj , z
r+1
k ))a−1

j,k=0.

Here Z(a, b, c) is the total number of configurations and is given by
MacMahon’s formula (1.1).

TOME 55 (2005), FASCICULE 6



2136 Kurt JOHANSSON

The measure (3.2) has exactly the general form (2.2) (with µ counting
measure on Z), and we want to compute the correlation kernel (2.4). To do
this we will use the orthogonal polynomial method in a similar way that was
used for the non-intersecting Brownian motions in the last section. How this
should be done is not obvious from (3.2). It is shown in [9], that the induced
probability ensemble on a single line is an orthogonal polynomial ensemble,
where the relevant polynomials are the associated Hahn polynomials. This
indicates that we should modify the first and the last factors in (3.2) by
doing row operations so that we get a situation where the matrix A in (2.4)
is diagonal.

The normalized associated Hahn polynomials, [16], [10], [2], can be
defined using a hypergeometric function by

q
(α,β)
n,N (x) =

(−N−β)n(−N)n
d
(α,β)
n,N n!

3F2

(−n, n−2N−α−β−1,−x
; 1

−N−β,−N

)

=
(−N−β)n(−N)n

d
(α,β)
n,N n!

n∑
j=0

(
n

j

)
(−1)j

(−x)j(n−2N−α−β−1)j
(−N−β)j(−N)j

,
(3.3)

where
(3.4)(
d
(α,β)
n,N

)2

=
(α + β + N + 1− n)N+1

(α + β + 2N + 1− 2n)n!(β + N − n)!(α + N − n)!(N − n)!
,

and we use the standard notation (a)n = a(a + 1) · · · (a + n − 1). These
polynomials are orthogonal with respect to the weight

(3.5)w(α,β)
N (x) = 1

x!(x+α)!(N+β−x)!(N−x)! ,

on {0, 1, . . . , N}, i.e.

(3.6)
N∑
x=0

q
(α,β)
n,N (x)q(α,β)

m,N (x)w(α,β)
N (x) = δn,m,

for 0 � n,m � N . Below we will sometimes use the convention that
1/n! = 0 if n < 0, so that the summation in (3.6) for example could
be extended to x ∈ Z.

Our goal is to give a formula for the correlation kernel in terms
of the associated Hahn polynomials. First, we need some notation. Let
a, b, c ∈ Z+, b � c. Set ar = |c− r|, br = |b− r|,

(3.7) αr =
{−r, 0 � r � b

r − 2b, b � r � b + c

and

ANNALES DE L’INSTITUT FOURIER
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(3.8) γr =




r + a− 1, 0 � r � b

b + a− 1, b � r � c

a + b + c− 1− r, c � r � b + c.
Define

(3.9) ωr(x) =




((br + x)!(γr + ar − x)!)−1, 0 � r � b

(x!(γr + ar − x)!)−1, b � r � c

(x!(γr − x)!)−1, c � r � b + c

and

(3.10) ω̃s(x) =




(y!(γs − y)!)−1, 0 � s � b

((bs + y)!(γs − y)!)−1, b � s � c

((bs + y)!(γs + as − y)!)−1, c � s � b + c.

Theorem 3.1. — The point process on (Za)b+c−1 defined by (3.2)

has determinantal correlation functions with kernel given by

KH(r, αr+2x; s, αs+2y) = −φr,s(αr+2x, αs+2y)

+
a−1∑
n=0

√
(a + s−1−n)!(a + b + c−r−1−n)!
(a + r−1−n)!(a + b + c−1−n)!

,(3.11)

× q(br,ar)
n,γr (x)q(bs,as)

n,γs (y)ωr(x)ω̃s(y)

for 0 < r, s < b + c, x, y ∈ Z. Here φr,s ≡ 0 if r � s and

(3.12) φr,s(x, y) =
(

s− r
y−x+s−r

2

)

if r < s.

Proof. — Set

cj,k =
1

(a− k)(j − k)!(a− 1− j)!
,

for 0 � j, j < a,

fn,k =
(
n

k

)
(n− 2a− b− c + 1)k
(−a− c + 1)k(−a)k

and

f∗n,k =
(
n

k

)
(n− 2a− b− c + 1)k
(−a− b + 1)k(−a)k

TOME 55 (2005), FASCICULE 6



2138 Kurt JOHANSSON

for 0 � k � n. Define

ψ(n, z) =
n∑

m=0

fn,m

a−1∑
j=m

cj,mφ(2j, z),
(3.13)

ψ∗(n, z) =
n∑

m=0

f∗n,m

a−1∑
j=m

cj,m, φ(c− b + +2j, z)

0 � n < a, z ∈ Z.

We will now do row operations to modify the first and the last factor
in (3.2).

det(φ(x0
j , x

1
k))

a−1
j,k=0 = det(φ(2m,x1

k))
a−1
m,k=0

= det(
1

cm,m

a−1∑
j=m

cj,mφ(2j, x1
k))

a−1
m,k=0

=
a−1∏
m=0

1
cm,m

det(
a−1∑
j=n

cj,nφ(2j, x1
k))

a−1
n,k=0(3.14)

=
a−1∏
m=0

1
cm,m

det(
1

fn,n

n∑
m=0

fn,m

a−1∑
j=m

cj,mφ(2j, x1
k))

a−1
n,k=0

=
a−1∏
m=0

1
cm,mfm,m

det(ψ(n, x1
k))

a−1
n,k=0.

In the same way we obtain

(3.15) det(φ(xb+c−1
j , xb+ck ))a−1

j,k=0 =
a−1∏
m=0

1
cm,mf∗m,m

det(ψ(n, xb+c−1
k ))a−1

n,k=0.

If we now set φ0,1(n, y) = ψ(n, y), φb+c−1,b+c(y, n) = ψ∗(n, y) and
φr,r+1(x, y) = φ(x, y), 1 � r < b + c − 1, the probability measure (3.2)
can be written

(3.16) p(y) =
1

Z(a, b, c)

a−1∏
m=0

1
c2m,mfm,mf

∗
m,m

b+c−1∏
r=0

det(φr,r+1(yrj , y
r+1
k ))a−1

j,k=0,

where y0
j = yb+cj = j, 0 � j < a.

Write φ∗n(x, y) = φ ∗ · · · ∗ φ(x, y) (n factors) if n � 2, φ∗1(x, y) =
φ(x, y) and φ∗0(x, y) = δx,y. We want to compute φ0,s, φr,b+c and φ0,b+c

for 1 � r, s < b + c. By definition

(3.17) φ0,r(n, y) =
∑
z∈Z

ψ(n, z)φ∗(r−1)(z, y),
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and

(3.18) φr,b+c(y, n) =
∑
z∈Z

ψ∗(n, z)φ∗(b+c−r−1)(z, y),

since φ(x, y) = φ(y, x).

Claim 3.2. — If z ∈ 2Z+ 1, then

(3.19) ψ(n, z) =
n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− c + 1)j(−a)j( z+1
2 − j)!(a− z+1

2 )!
,

and if z ∈ 2Z, then ψ(n, z) = 0.

Proof. — By definition

ψ(n, z) =
n∑

m=0

(
n

m

)
(n−2a−b−c + 1)j
(−a−c−1)m(−a)m

a−1∑
j=m

φ(2j, z)
(a−m)(j−m)!(a−1−j)! .

Now, with z = 2ζ − 1,
a−1∑
j=m

δ2j−1,z + δ2j+1,z

(a−m)(j −m)!(a− 1− j)!

=
1

(a−m)(ζ −m)!(a− 1− ζ)!
+

1
(a−m)(ζ − 1−m)!(a− ζ)!

=
1

( z+1
2 −m)!(a− z+1

2 )!
,

and (3.19) follows. ��

If z ∈ 2Z− 1, then similarly

(3.20) ψ∗(n, c−b+z) =
n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− b + 1)j(−a)j( z+1
2 − j)!(a− z+1

2 )!
.

Claim 3.3.

(3.21) φ0,r(n, y) = (a + 1)r−1

n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− c + 1)j(−a− r + 1)j

× 1
(y+r2 − j)!(a− 1− y−r

2 )!
.

Proof. — By induction on r. The statement is true for r = 1 by
(3.19). We have
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φ0,r+1(n, y) =
∑
x∈Z

φ0,r(n, x)φ(x, y)
∑
x∈Z

φ0,r(n, x)(δx,y+1 + δx,y−1)

= φ0,r(n, y + 1) + φ0,r(n, y−1)

= (a + 1)r−1

n∑
j=0

(
n

j

)
(n−2a−b−c + 1)j

(−a−c + 1)j(−a−r + 1)j

× 1
(y+r+1

2 −j)!(a−1−y−r−1
2 )!

[a−y−r + 1
2

+
y + r + 1

2
−j].

Now,
(a + 1)r−1

(−a− r + 1)j
(a− r − j) =

(a + 1)r
(−a− r)j

,

and the claim is proved. ��

Also,

φr,b+c(c− b + x, n) =
∑
z∈Z

ψ∗(n, z)φ∗(b+c−r−1)(z, c− b + x)

=
∑
z∈Z

ψ∗(n, c− b + z))φ∗(b+c−r−1)(c− b + z, c− b + x)

=
∑
z∈Z

ψ∗(n, c− b + z))φ∗(b+c−r−1)(z, x).

We can now proceed exactly as in the proof of claim 3.3 and show that

φr,b+c(y, n) = (a + 1)b+c−r−1

n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− b + 1)j(−a− b− c + r + 1)j

× 1
(y−r2 + b− j)!(a + c− 1− y+r

2 )!
.

(3.22)

Introduce new coordinates, which we will call the Hahn coordinates

on line r by

xrk =
yrk − αr

2
.

Then, 0 � xrk � γr. One motivation to use these coordinates is that it is
easier to recognize the Hahn polynomials when using them. Since φ0,r(i, z)
is zero unless z + r is even, i.e. unless z − αr is even, we obtain

(3.23) Anm =
∑
z∈Z

φ0,r(n, αr + 2z)φr,b+c(αr + 2z,m).
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The correlation kernel is given by

(3.24) K(r, 2x + αr; s, 2y + αs) = −φr,s(2x + αr, 2y + αs)

+
a−1∑
i,j=0

φr,b+c(2x + αr, i)(A−1)ijφ0,s(j, 2y + αs)

according to (2.4). We want to express φ0,r(j, 2y+αr) and φr,b+c(2x+αr, i)
in terms of the associated Hahn polynomials. In order to do so we have to
distinguish three cases, 1 � r � b, b � r � c and c � r � b + c.

Set ar = |c− r| and br = |b− r|.

(i) Consider first the case 1 � r � b. By (3.3) and (3.21)

φ0,r(n, αr + 2z) = (a + 1)r−1

n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− c + 1)j(−a− r + 1)j

ker 4cm× 1
(z − j)!(a + r − 1− z)!

(3.25)

=
(a + 1)r−1d

(br,ar)
n,γr n!

(−a− c + 1)n(−a− r + 1)n
q(br,ar)
n,γr (z)

1
z!(γr − z)!

.

Also, by (3.22),

φr,b+c(αr + 2z, n)

= (a + 1)b+c−r−1

n∑
j=0

(
n

j

)
(n− 2a− b− c + 1)j

(−a− b + 1)j(−a− b− c + r + 1)j

× 1
(b− r + z − j)!(a + c− 1− z)!

=
(a + 1)b+c−r−1

(b− r + z)!(a + c− 1− z)!

n∑
j=0

(−n)j(n− 2a− b− c)j(−b + r − z)j
j!(−a− b + 1)j(−a− b− c + r + 1)j

=
(a + 1)b+c−r−1

(br + z)!(γr + αr − z)! 3
F2

(
−n.n− 2a− b− c + 1,−b + r − z

−a− b + 1,−a− b− c + r + 1
; 1

)
.

We can rewrite this using the following hypergeometric identity, [1] p. 141,
(3.26)

3F2

(
−n, a, b
d, e

; 1
)

=
(d−a)n(e−a)n

(d)n(e)n
3F2

(
−n, a, a + b−n−d−e + 1
a−n−d + 1, a−n−e + 1

; 1
)
.

This gives

φr,b+c(αr + 2z) =
(a + 1)b+c−r−1(a + c−n)n(a + r−n)n

(−a + b + 1)n(−a−b−c + r + 1)n(br + z)!(γr + ar−z)!

× 3F2

(
−n, n−2γr−ar−br−1,−z

−γr−ar,−γr
; 1

)
.(3.27)
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=
(a + 1)b+c−r−1(a + c−n)n(a + r−n)nd

(br,ar)
n,γr n!

(−a + b + 1)n(−a−b−c + r + 1)n(−a−c + 1)n(−a−r + 1)n

× q(br,ar)
n,γr (z)

1
(br + z)!(γr + ar−z)!

.

We can now compute Anm given by (3.23) by picking r between 1 and b,
the choice does not matter. Using (3.6), (3.25) and (3.27) we obtain, after
some simplification

(3.28) Anm = Cn(a, b, c)−1δn,m,

where

(3.29) Cn(a, b, c) =
(a + b− 1)!(a + c− 1)!(2a + b + c− 2n− 1)a!2

n!(2a + b + c− n− 1)!
.

(ii) Next we consider the case b � r � c. The computations are similar
to those in the previous case. We find

φ0,r(n, αr + 2z)

=
(a + 1)r−1(a + b− n)n(a + b + c− r − n)nd

(br,ar)
n,γr n!

(−a− c + 1)n(−a− r + 1)n(−a− b + 1)n(−a− b− c + 1 + r)n
(3.30)

× q(br,ar)
n,γr (z)

1
(br + z)!(γr − z)!

.

Here we have used the hypergeometric identity (3.26). Also, we find

φr,b+c(αr + 2z, n) =
(a + 1)b+c−r−1d

(br,ar)
n,γr n!

(−a− b + 1)n(−a− b− c + 1 + r)n
(3.31)

× q(br,ar)
n,γr (z)

1
z!(γr + ar − z)!

.

(iii) Finally we come to the case c � r � b + c, and again the
computations are similar. We obtain

φ0,r(n, αr + 2z)

=
(a + 1)r−1(a + b− n)n(a + b + c− r − n)nd

(br,ar)
n,γr n!

(−a− c + 1)n(−a− r + 1)n(−a− b + 1)n(−a− b− c + 1 + r)n
(3.32)

× q(br,ar)
n,γr (z)

1
(br + z)!(γr + ar − z)!

,

where we have used the identity (3.26). Also,

φr,b+c(αr + 2z, n) =
(a + 1)b+c−r−1d

(br,ar)
n,γr n!

(−a− b + 1)n(−a− b− c + 1 + r)n
(3.33)

× q(br,ar)
n,γr (z)

1
z!(γr − z)!

.
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We now have all the ingredients in (2.4). It follows from (3.28) that

(A−1)ij = Ci(a, b, c)δij ,

and some computation now gives (3.11). Note that φr,s(x, y) is the number
of random walk paths from x to y in s − r steps and hence is given by
(3.12).

The computations in the proof of the theorem also gives a proof of
MacMahons formula. We have

(3.34) Z(a, b, c) =
a−1∏
n=0

1
c2n,ndn,nd

∗
n,n

detA.

A computation gives
a−1∏
n=0

1
c2n,ndn,nd

∗
n,n

=
a−1∏
n=0

(2a + b + c− 2n− 1)!2(a + b− 1)!(a + c− 1)!
(a + b− 1− n)!(a + c− 1− n)!(2a + b + c− n− 1)!2

.

It follows from (3.28) and (3.29) that

detA =
a−1∏
n=0

n!(2a + b + c− n− 1)!
(a + b− 1)!(a + c− 1)!(2a + b + c− 2n− 1)a!2

.

Hence, by (3.34) and after some simplification

Z(a, b, c) =
a−1∏
n=0

n!(b + c + n)!
(b + n)!(c + n)!

,

which is the same as (1.1). ��

3.2. Some remarks about asymptotics.

As discussed above the non-intersecting Brownian motion model
(2.14) is a kind of continuum version of the random walk model. In fact
it can be obtained as a scaling limit of the random walk model. For the
associated Hahn polynomials we have the asymptotics

(3.35) lim
N→∞

d
(α,α)
n,N n!

(
− 2
N3/2

√
(2t + 1)(t + 1)

)n

p
(α,α)
n,N

×
(
N

2
+ 2z

√
2t + 1
t + 1

N

)
= Hn(z),
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where α/N → t � 0, uniformly for z in a compact subset of C. Here Hn(z)
is the ordinary Hermite polynomial of degree n. This can be proved by a
slight modification of the argument in [8] based on the recurrence relation.
Using (3.35) and standard asymptotics for the binomial coefficient it follows
that

(3.36) 2r−s
√

k

2T
KH(r, x; s, y)→ KBM(τ, ξ;σ, y)

as k →∞ if r/k → 2τ/T , s/k → 2σ/T , x/
√
k → ξ

√
2/T , y/

√
k → η

√
2/T ,

where KBM is given by (2.20). So in this sense we have convergence to the
Brownian motion model. It should also be possible to prove this directly, i.e.
that the measure (3.2) converges, when rescaled as above, to the measure
(2.14), compare the arguments in [13].

A more interesting, and also much more difficult limit is to consider
the case when, a, b and c go to infinity with the same rate, say a = b = c→
∞. In particular it is interesting to consider the fluctuations of the top (and
bottom) curves which bound the so called frozen regions, [3], in the tiling.
If we restrict to a single line, this has been done recently by [2] using very
precise asymptotics for Hahn polynomials derived using Riemann-Hilbert
techniques. This shows for example that if n = a = b = c then the last
(first) particle fluctuates like n1/3 in the appropriate region and that the
fluctuations are given by the Tracy-Widom distribution, see [2] for details.
If these asymptotic results could be extended to the extended (associated)
Hahn kernel, (3.11), it should be possible to prove the convergence of the
boundary curve of the frozen region to the Airy process, [17], [11], as has
been done for some other tiling problems in [6] and [12].
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