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NON-COMMUTATIVE MATRIX INTEGRALS AND

REPRESENTATION VARIETIES OF

SURFACE GROUPS IN A FINITE GROUP

by Motohico MULASE (*) & Josephine T. YU (**)

0. Introduction.

The purpose of this paper is to establish Feynman diagram expansion
formulas for non-commutative matrix integrals over a finite-dimensional
real or complex von Neumann algebra. An interesting case is the real or
complex group algebra of a finite group. Using the graphical expansion
formulas, we give a new proof of the classical formulas for the number
of homomorphisms from the fundamental group of a closed surface into a
finite group, expressing the number in terms of irreducible representations
of the finite group. Indeed, our integrals are generating functions for the
cardinality of the representation variety of a surface group in a finite group.

The non-commutative matrix integrals of this article have their
origin in random matrix theory (cf. [1], [7], [32], [51], [52]), and include
real symmetric, complex hermitian, and quaternionic self-adjoint matrix
integrals as a special case for a simple von Neumann algebra. Recently
a surprising relation between random matrices and random permutations
was discovered in [2], and was further studied from various points of view
including representation theory of symmetric groups (cf. [3], [4], [8], [11],
[25], [40], [41], [42]). Our theory exhibits yet another connection between
matrix-type integrals and representation theory of finite groups.

(*) Research supported by NSF grants DMS-9971371 and DMS-0406077, and UC Davis.
(**) Research supported in part by NSF grant VIGRE DMS-0135345 and UC Davis.
Keywords: Random matrices, non-commutative matrix integral, Feynman diagram ex-
pansion, ribbon graph, Moebius graph, von Neuman algebra, representation variety.
Math. classification: 15A52, 20C05, 32G13, 81Q30.
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Let A be a finite-dimensional complex von Neumann algebra with the
adjoint operation ∗ : A→ A and a linear map 〈 〉 : A→ C called the trace.
The algebra A has a positive definite hermitian inner product defined by

〈a, b〉 = 〈ab∗〉

for a, b ∈ A. Let us choose an orthonormal basis {e1, . . . , eN} for A with
respect to the hermitian form, where N = dimA. A ribbon graph is a graph
with a cyclic order given at every vertex to incident half-edges. Recall
that every ribbon graph Γ defines a unique closed oriented surface SΓ on
which Γ is drawn and gives a cell-decomposition. Let g(Γ) and f(Γ) denote
the genus of SΓ and the number of 2-cells, or faces, of the cell-decomposition,
respectively. The Feynman diagram expansion formula we establish is the
following:

(0.1) log
∫
{x∈A ; x=x∗}

exp
(
− 1

2
〈x2〉

)
exp

( ∞∑
j=1

tj
j
〈xj〉

)
dµ(x)

=
∑

Γ connected
ribbon graph

1
|AutR(Γ)| A

or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j ,

where dµ(x) is a normalized Lebesgue measure on the real vector subspace
of A consisting of self-adjoint elements, AutR(Γ) is the ribbon graph
automorphism group, and vj(Γ) is the number of j-valent vertices of the
connected ribbon graph Γ. The integral of (0.1) is considered as a generating
function of integrals

∫
{x∈A ; x=x∗}

exp
(
− 1

2
〈x2〉

) finite∏
j

〈xj〉vj dµ(x)

for all finite sequences (v1, v2, v3, . . .) of positive integers. The contribution
of the graph Γ in (0.1) is defined by

Aor
g,f =

N∑
i1,...,ig, j1,...,jg
h1,...,hf−1=1

〈ei1ej1e∗i1e
∗
j1· · · eigejge

∗
ige
∗
jg · eh1e

∗
h1
· · · ehf−1e

∗
hf−1
〉.

We notice that the graph contribution Aor
g(Γ),f(Γ) depends only on the

topological type of the surface SΓ, which is the genus of the surface and
the number of 2-cells in its cell-decomposition. If we apply (0.1) to a
simple von Neumann algebra A = M(n,C), then the formula recovers
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the well-known graphical expansion formula for n × n hermitian matrix
integrals found in many articles, including [6], [22], [27], [35], [40], [41],
[43], [54]. The word non-commutative matrix integral in the title is justified
because our von Neumann algebra can take the form A = B ⊗M(n,C)
with another von Neumann algebra B.

For a real von Neumann algebra A with a real valued trace, our
expansion formula is more complicated. Let us recall the notion of Möbius
graph introduced in [38]. It is the non-orientable counterpart of ribbon
graphs. A Möbius graph Γ defines a unique unoriented surface SΓ and gives
a cell-decomposition. Every closed non-orientable surface S is obtained by
removing k disjoint disks from a sphere S2 and gluing a cross-cap to each
hole. The number of cross-caps is the cross-cap genus of the surface, and
its Euler characteristic is given by χ(S) = 2 − k. Every ribbon graph is
an orientable Möbius graph, but it has a different automorphism group
reflecting the fact that orientation-reversing map is allowed. Now the
formula for a real von Neumann algebra is the following:

log
∫
{x∈A; x=x∗}

exp
(
− 1

4
〈x2〉

)
exp

( ∞∑
j=1

tj
2j
〈xj〉

)
dµ(x)(0.2)

=
∑

Γ connected orientable
Möbius graph

1
|AutM (Γ)|A

or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j

+
∑

Γ connected non-
orientable Möbius graph

1
|AutM (Γ)|A

nor
k(Γ),f(Γ)

∏
j

t
vj(Γ)
j ,

where

Anor
k,f =

N∑
i1,...,ik

h1,...,hf−1=1

〈e2i1 · · · e
2
ik
· e∗h1

eh1· · · e∗hf−1
ehf−1〉,

AutM (Γ) is the automorphism group of a graph Γ as a Möbius graph,
and k(Γ) is the cross-cap genus of a non-orientable surface SΓ. We notice
the sharp contrast between Aor

g,f and Anor
k,f , which reflects a particular choice

of a presentation of the fundamental group π1(SΓ) of a closed surface SΓ.
Every simple finite-dimensional real von Neumann algebra is a full matrix
algebra over either the reals R or quaternions H. We recover the graphical
expansion formulas for real symmetric and quaternionic self-adjoint matrix
integrals of [9], [17], [38] from (0.2). An explicit computation is also carried
out for real Clifford algebras [55].
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Here we emphasize again that even though their expressions look
dependent on a presentation of π1(SΓ), the quantity Aor

g,f is an invariant of
an orientable surface of topological type (g, f), and Anor

k,f is an invariant of a
non-orientable surface of topological type (k, f). When the von Neumann
algebra A in our theory is simple, the invariants Aor

g,f and Anor
k,f do not show

any significance. The invariants become more interesting when the algebra
is complicated. Now we notice that every finite-dimensional von Neumann
algebra is semi-simple, and hence is decomposable into simple factors.
When we apply the decomposition of A into simple factors in the integral
of (0.1) or (0.2), due to the logarithm in front of the integral, it becomes
the sum of the integral for each simple factor. Therefore, any topological
invariant given as Aor

g,f or Anor
k,f is computable in terms of simple ones.

This idea can be concretely carried out for the real or complex
group algebra of a finite group G. Using the complex group algebra C[G],
we obtain

log
∫
{x∈C[G]; x=x∗}

exp
(
− 1

2
χreg(x2)

)
exp

( ∑
j

tj
j
χreg(xj)

)
dµ(x)(0.3)

=
∑

Γ connected
ribbon graph

1
|AutR Γ| |G|

χ(SΓ)−1 ·
∣∣Hom(π1(SΓ), G)

∣∣ ·∏
j

t
vj(Γ)
j ,

where χ(SΓ) is the Euler characteristic of SΓ, and χreg denotes the
character of the regular representation of G on C[G] linearly extended
to the whole algebra. Notice that the formula gives a generating function
for the cardinality of the representation variety Hom(π1(S), G) of a closed
oriented surface S in the group G. With the real group algebra R[G] of G,
we have

log
∫
{x∈R[G]; x=x∗}

exp
(
− 1

4
χreg(x2)

)
exp

( ∑
j

tj
2j
χreg(xj)

)
dµ(x)(0.4)

=
∑

Γ connected
Möbius graph

1
|AutM Γ| |G|

χ(SΓ)−1 ·
∣∣Hom(π1(SΓ), G)

∣∣ ·∏
j

t
vj(Γ)
j .

Surprisingly, the RHS of (0.4) has the same expression as in (0.3), with the
only difference being replacing ribbon graphs with Möbius graphs. These
generating functions were reported in an earlier paper [39].

Let G be a finite group and Ĝ the set of equivalence classes of
complex irreducible representations of G. The most fundamental formula
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in representation theory of finite groups is the one that expresses the order
of the group in terms of a square sum of the dimensions of irreducible
representations of G:

(0.5) |G| =
∑
λ∈Ĝ

(dimλ)2.

The formula follows from the decomposition of the group algebra into
irreducible fctors:

(0.6) C[G] =
⊕
λ∈Ĝ

End(λ).

In 1978, Mednikh [31] discovered a remarkable generalization of the classical
formula (0.5):

(0.7)
∑
λ∈Ĝ

(dimλ)χ(S) = |G|χ(S)−1 ·
∣∣Hom

(
π1(S), G

)∣∣,
where S is a compact Riemann surface. When S = S2, (0.7) reduces
to (0.5). Note that (0.6) is a von Neumann algebra isomorphism. Thus the
integral of (0.3) over the self-adjoint elements of C[G] becomes the sum
of hermitian matrix integrals. It is now easy to see that evaluation of the
integral of (0.3) using (0.6) yields Mednykh’s formula (0.7).

For a non-orientable surface S, the formula for the number of re-
presentations of π1(S) involves more detailed information on irreducible
representations of G. Using the Frobenius-Schur indicator of irreducible
characters [15], we decompose the set of complex irreducible representa-
tions Ĝ into the union of three disjoint subsets, corresponding to real,
complex, and quaternionic irreducible representations:

(0.8)




Ĝ1 =
{
λ ∈ Ĝ ;

1
|G|

∑
w∈G

χλ(w2) = 1
}
,

Ĝ2 =
{
λ ∈ Ĝ ;

1
|G|

∑
w∈G

χλ(w2) = 0
}
,

Ĝ4 =
{
λ ∈ Ĝ ;

1
|G|

∑
w∈G

χλ(w2) = −1
}
.

The suffix 1, 2 or 4 indicates the dimension of the base field R, C
or H, respectively. In the fundamental paper of Frobenius and Schur [15]
published in 1906, we find

(0.9)
∑
λ∈Ĝ1

(dimλ)χ(S) +
∑
λ∈Ĝ4

(−dimλ)χ(S) = |G|χ(S)−1 ·
∣∣Hom(π1(S), G)

∣∣.
TOME 55 (2005), FASCICULE 6
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It is somewhat strange that a formula for non-orientable surfaces was
known much earlier than its orientable counterpart. Actually, Frobenius
and Schur obtained the formula as a counting formula for the number of
group elements satisfying x2

1 · · ·x2
k = 1, but no relation to surface topology

was in their motivation. If we take S = RP 2, then the formula reduces to
the well-known formula [24], [47]

∑
λ∈Ĝ1

dimλ−
∑
λ∈Ĝ4

dimλ = the number of involutions of G.

The formula (0.9) immediately follows from the generating function (0.4)
and the decomposition of R[G] into simple factors, which include real,
complex, and quaternionic matrix algebras.

In a beautiful paper of Pierre van Moerbeke [52], we see the list of
matrix-type integrals and the nonlinear integrable systems that characterize
the integrals as functions on the potential. The simple von Neumann
algebra integrals all fit into his scope. More general von Neumann algebra
integrals of this article can be considered as a multi-matrix model with
trivial interaction terms between matrices. They can be also interpreted
as a matrix integral over an algebra different from R,C and H. In either
point of view, we do not have any clear picture on the relation between
our formulas (0.1), (0.2) and integrable equations. Since the generating
functions for the Hurwitz numbers and the Gromov-Witten invariants of
the Riemann surfaces are proven to satisfy integrable systems [41], [42],
the integrability of the von Neumann algebra integrals seems to pose a
condition on the structure of the algebra. However, the present article does
not address this question.

The study of the volume of the representation variety Hom(π1(S), G)
of a surface group in a compact connected simply connected semi-simple
Lie group is carried out by many authors including Witten [53], Gross-
Taylor [18], and Liu [28], [29], [30]. Although their focus was on the
moduli spaceM(S,G) of flat G-connections on a closed surface S, through
a relation

M(S,G) =
Hom(π1(S), G)

G/Z(G)
,

the study of moduli spaces is equivalent to that of representation varieties.
Here Z(G) is the center of the group G that acts trivially on the
representation variety through conjugation. It is interesting to note that
exactly the same formulas (0.7) and (0.9) hold for a compact Lie group if the

ANNALES DE L’INSTITUT FOURIER
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infinite sum of LHS converges absolutely and the cardinality is interpreted
as the volume of the variety in an appropriate sense. The naive extension of
the method of this article does not work for the case of Lie groups, however,
because the von Neumann algebra involved becomes infinite-dimensional
and the integration (0.3) makes no sense.

The present paper is organized as follows. We review the notion of
ribbon graphs and Möbius graphs in Section 1. Then in Section 2, we
compute Feynman diagram expansion of integrals over a finite-dimensional
complex von Neumann algebra in terms of ribbon graphs. Since integrals
over a real von Neumann algebra behave differently, they are treated
separately in Section 3. The generating functions for the number of
representations of surface groups in a finite group are given in Section 4.
As an application, we give a new proof of the formulas of Frobenius-Schur
and Mednykh.

Acknowledgements. — The authors thank Michael Penkava and
Andrew Waldron for discussions on non-commutative matrix integrals.

1. Ribbon graphs and Möbius graphs.

We review basic facts about graphs drawn on an orientable or non-
orientable surface. Definition of the automorphism groups of these graphs
is crutial when we use them to compute non-commutative matrix integrals.
Graphs on an oriented surface are called ribbon or fat graphs. We refer to
[6], [21], [22], [27], [40], [41], [42], [43], [54] for the use of ribbon/fat graphs
in the study of moduli spaces of Riemann surfaces and related topics. The
double line notation was first introduced in [50], generalizing the graphical
expansion idea of [12]. Graphs on complex algebraic curves were studied
from the quite different point of view of Grothendieck’s dessins d’enfants [5],
[20], [45], [46]. A relation between Strebel differentials [16], [49] and dessins
d’enfants was studied in [37]. The terminology Möbius graph was introduced
in [38] for a graph on a surface that is not oriented in order to avoid possible
confusion, since ribbon or fat graphs are usually oriented. Graphs on an
orientable or non-orientable surface are also called maps. Maps were studied
mainly in the context of map coloring theorems [19], [44].

For a detailed treatment of ribbon graphs, we refer to the references
cited above. Only a brief description is given here. A graph Γ = (V, E , ι)

TOME 55 (2005), FASCICULE 6



2168 Motohico MULASE & Josephine T.YU

consists of a set of vertices V, a set of edges E , and an incidence relation

ι : E −→ (V × V)
/
S2.

Following [37], let us introduce the edge refinement ΓE of a graph Γ, which
is the original graph together with a two-valent vertex (the midpoint)
chosen from each edge. A half-edge of Γ is an edge of its edge refinement.
A ribbon graph is a graph with a cyclic order assigned at each vertex to
the set of half-edges incident to the vertex. When a cyclic order is given,
a vertex can be placed on an oriented plane, and half-edges incident to
the vertex can be represented by double lines. The orientation of the plane
gives an orientation of the ribbon-like structure, and its boundaries inherit
a compatible orientation (see Figure 1.1).

Figure 1.1. A vertex with a cyclic order given to incident half-edges.

It is placed on a plane with the clockwise orientation. The half-edges

become crossroads with a compatible orientation at the boundary.

Figure 1.2. A ribbon graph is obtained by connecting cyclically

ordered vertices with a ribbon like edge preserving the orientation.

A topological realization of a ribbon graph Γ is obtained by connecting
these half-edges in an orientation-compatible manner. Since each boundary
has a well-defined orientation, we can attach an oriented disk to the
boundary and form a compact oriented surface SΓ. Let f(Γ) denote the
number of disks attached. This number is uniquely determined by the
ribbon graph structure of a graph. The attached disks, together with the
vertices and edges of Γ, form a cell-decomposition of the surface SΓ. The
genus of the surface is determined by the formula for the Euler characteristic

(1.1) χ(SΓ) = 2− 2g(SΓ) = v(Γ)− e(Γ) + f(Γ),

ANNALES DE L’INSTITUT FOURIER
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where v(Γ) = |V| is the number of vertices and e(Γ) = |E| the number of
edges of Γ.

Conversely, if a connected graph Γ is drawn on an oriented surface S
in a way that S \ Γ is the union of disjoint open disks, then Γ is a ribbon
graph that defines a cell-decomposition of S. The cyclic order of half-
edges incident to a vertex is determined by the orientation of the surface
(see Figure 1.3). Obviously we have S = SΓ.

Figure 1.3. A graph drawn on an oriented surface. At each vertex,

the orientation of the surface determines a cyclic order of the edges

incident to the vertex.

DEFINITION (see [37]). — Let Γ be a ribbon graph. The group
AutR Γ of automorphisms of Γ consists of graph automorphisms of the
edge refinement ΓE that preserves the cyclic order at each vertex of Γ.

In a ribbon graph, an edge connects two oriented vertices in the
orientation-compatible manner. If we connect vertices without paying
attention to the orientation, then we obtain a Möbius graph. An edge
connecting two oriented vertices is not twisted if the connection is consistent
with the orientation, and is twisted otherwise. Thus a double twist is the
same as no twist. A new operation allowed in a Möbius graph that preserves
the Möbius graph structure is a vertex flip at a vertex. This operation
reverses the cyclic order assigned at the vertex, and twists every half-edge
incident to the vertex (see Figure 1.4). If an edge is incident to a vertex and
forms a loop, then the vertex flip at this vertex does not change the twist
of the edge.

We can formalize the definition of a Möbius graph in the following
way.

DEFINITION 1.2. — A Möbius graph is the equivalence class of ribbon
graphs with a Z/2Z-color assigned to each edge. Two edge-colored ribbon
graphs are equivalent if one is obtained from the other by a sequence of
vertex flip operations. A vertex flip reverses the cyclic order of a vertex

TOME 55 (2005), FASCICULE 6
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Figure 1.4. A vertex flip operation. It reverses the cyclic order at a

vertex, and gives an extra twist to each half-edge incident to the vertex.

and the color of each half-edge incident to it. The group AutM Γ of
automorphisms of a Möbius graph consists of graph automorphisms of the
edge refinement of the underlying graph Γ that preserve the equivalence
class of the edge-colored ribbon graph.

Figure 1.5. A Möbius graph.

A topological realization of a Möbius graph is the realization of the
Z/2Z-color of each edge as a twist or non-twist. Each boundary component
of a Möbius graph is a circle, without any consistent orientation. By
attaching an open disk to each boundary circle, a Möbius graph gives
rise to a closed surface without orientation. Let us denote this surface
by SΓ and by f(Γ) the number of disks, as before. We note that Γ
defines a cell-decomposition of SΓ. Every closed non-orientable surface is
constructed by removing k disks from a sphere and attaching a cross-cap
at each hole. The number k is the cross-cap genus of the surface, and the
Euler characteristic of the surface is given by 2 − k. If the surface SΓ is
non-orientable, then we have

(1.2) χ(SΓ) = 2− k(SΓ) = v(Γ)− e(Γ) + f(Γ).

A ribbon graph Γ is also a Möbius graph. If Γ and its flip Γt

(the graph obtained by applying the vertex flip operation at every vertex

ANNALES DE L’INSTITUT FOURIER
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simultaneously) is the same ribbon graph, then we have

(1.3) |AutM Γ| = 2|AutR Γ|.

Otherwise, Γ and Γt are different ribbon graphs but the same as a Möbius
graph, and we have

(1.4) AutM Γ ∼= AutR Γ.

2. Integrals over a finite-dimensional complex
von Neumann algebra.

We define the integrals over a finite-dimensional complex von
Neumann algebra that we study, and establish their graphical expansion
formulas in terms of ribbon graphs.

DEFINITION 2.1. — A finite-dimensional complex von Neumann algebra
is a finite-dimensional C-algebra with a conjugate-linear anti-isomorphism
∗:A → A and a C-linear map called trace 〈〉:AarrowC that satisfy the
following conditions for every a,b ∈ A:

(2.1)




(a∗)∗ = a, (ab)∗ = b∗a∗ ,

〈a∗〉 = 〈a〉 , 〈ab〉 = 〈ba〉,
〈1〉 = 1, 〈aa∗〉 > 0, a �= 0.

If A is an R-algebra with a real valued trace, then it is called a real von
Neunamm algebra.

To avoid confusion, we only deal with complex von Neumann algebras
in this section. Real ones are considered in Section 3. A finite-dimensional
von Neumann algebra A is a real vector space with a non-degenerate
hermitian inner product defined by

(2.2) 〈a, b〉 = 〈ab∗〉.

As usual, an invertible linear transformation of A that preserves the
hermitian form is called a unitary transformation. We denote by U(A)
the group of unitary transformations of A. A real vector subspace of A
consisting of self-adjoint elements

(2.3) HA = {a ∈ A ; a∗ = a}

TOME 55 (2005), FASCICULE 6
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is of our particular interest. We note that HA is invariant under the
conjugation action of U(A). Let us denote by dx the translation invariant
Lebesgue measure of the real vector space HA that is also invariant under
the conjugation action of U(A). We notice that the quadratic form 〈x2〉 is
positive definite on the space HA of self-adjoint elements. We denote by

(2.4) dµ(x) =
dx∫

HAe−
1
2 〈x2〉 dx

the normalized Lebesgue measure on HA.

Our subject of study is the following integral

(2.5)
n∏
j=1

1
vj ! · jvj

∫
HA

e−
1
2 〈x

2〉
n∏
j=1

〈xj〉vj dµ(x)

for every n-tuple of positive integers (v1, . . . , vn) ∈ Nn, n = 0, 1, 2, . . .
The constant factor in front of the integral is placed for a combinatorial
reason explained later in this section. To consider a generating function of
these integrals, it is more convenient to introduce

(2.6) e(v1, v2, v3, . . .) =
∑
j≥1

jvj

and the sum of the integrals over all elements of

N
∞ = lim−→

n

N
n =

{
(v1, v2, v3, . . .) ; vj = 0 for j � 0

}
with a fixed value of e(v1, v2, v3, . . .). Notice that for every finite value of n,

(v1, v2, v3, . . .) ∈ Nn if e(v1, v2, v3, . . .) ≤ n.

Thus let us define

(2.7) ZCA(t1, t2, t3, . . .) =
∞∑
n=0

∑
(v1,v2,v3,...)∈N∞
e(v1,v2,v3,...)=n

finite∏
j≥1

t
vj
j

vj ! · jvj
∫
HA

e−
1
2 〈x

2〉
finite∏
j≥1

〈xj〉vj dµ(x),

where t1, t2, t3, . . . are expansion parameters carrying the weight

(2.8) deg tj = j.
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The monomial
∏
j t
vj
j for every (v1, v2, v3, . . .) satisfying e(v1, v2, v3, . . .) = n

has weighted homogeneous degree n by (2.6) and (2.8). Hence (2.7) is
an infinite sum of weighted homogeneous polynomials of degree n for
every n ≥ 0.

Symbolically, we can write the generating function in an integral form

(2.9) ZCA(t) =
∫
HA

e−
1
2 〈x

2〉 eΣ
∞
j=1tj/j〈xj〉

vj dµ(x).

As an actual integral, (2.9) is ill-defined because of the infinite sum in the
exponent. There is a way to make it well-defined so that (2.7) is a rigorous
asymptotic expansion of (2.9). Since we do not employ this point of view in
this paper, we refer to [35], [36] for more detail, and work on the expansion
form only.

Let {e1, . . . , eN} be an orthonormal basis for A with respect to the
hermitian form (2.2), where N = dimCA. Since

〈ei, ej〉 = 〈eie∗j 〉 =
〈
e∗j (e

∗
i )
∗〉 = 〈e∗j , e∗i 〉,

{e∗1, . . . , e∗N} also forms an orthonormal basis for A. For every a ∈ A we
have

(2.10) a =
N∑
j=1

〈a, ej〉ej =
N∑
j=1

〈a, e∗j 〉e∗j .

Equivalently,

(2.11) 〈a, b〉 =
N∑
j=1

〈a, ej〉 · 〈ej , b〉 =
N∑
j=1

〈a, e∗j 〉 · 〈e∗j , b〉

holds for every a, b ∈ A.

LEMMA 2.2. — Choose two elements

x =
N∑
i=1

xiei and y =
N∑
i=1

yiei

of A, and consider e〈xy〉 as a function in 2N variables

(x1 , . . . ,xN ,y1 , . . . ,yN ) ∈ C2N .
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With respect to the differential operator

(2.12)
∂

∂y
=

N∑
i=1

∂

∂yi
e∗i ,

we have

(2.13)
∂

∂y
e〈xy〉 = x e〈xy〉.

In particular,

(2.14)
〈( ∂

∂y

)j〉m
e〈xy〉 = 〈xj〉m e〈xy〉

for every j ,m > 0.

Proof. — By definition,
∂

∂y
e〈xy〉 =

∑
i

∂

∂yi
e∗i exp

(〈 ∑
j

xjej
∑
k

ykek

〉)

=
∑
i

∑
j

xj〈ej ei〉e∗i e〈xy〉

=
∑
j

xj
∑
i

〈ej , e∗i 〉e∗i e〈xy〉 =
∑
j

xjej e〈xy〉 = x e〈xy〉.

Using the linearity of the trace and (2.13) repeatedly, we obtain (2.14).

LEMMA 2.3. — Let A be a finite-dimensional complex von Neumann

algebra. Then we have the following Laplace transform formula for (2.5):

(2.15)
∫
HA

e−
1
2 〈x

2〉
n∏
j=1

〈xj〉vj dµ(x) =
n∏
j=1

〈( ∂

∂y

)j〉vj
e

1
2 〈(y+y

∗)2〉
y=0

.

Proof. — For y ∈ A of Lemma 2.2, its adjoint is given by

y∗ =
N∑
i=1

y ie
∗
i .

Note that ∂y∗/∂y = 0 since ∂y i/∂yj = 0 for any i and j. Now Lemma 2.2
yields∫
HA

e−
1
2 〈x

2〉〈xj〉m dµ(x) =
〈( ∂

∂y

)j〉m ∫
HA

e−
1
2 〈x

2〉 e〈x(y+y
∗)〉 dµ(x)

y=0
.

Since y + y∗ ∈ HA and dµ(x) is a translational invariant measure, we have∫
HA

e−
1
2 〈x

2〉 e〈x(y+y
∗)〉 dµ(x) =

∫
HA

e−
1
2 〈(x−(y+y∗))2〉 e

1
2 〈(y+y

∗)2〉 dµ(x)

= e
1
2 〈(y+y

∗)2〉.

Equation (2.15) follows from these formulas.
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In the same way as in the proof of Lemma 2.2, we obtain

∂

∂y
e

1
2 〈(y+y

∗)2〉 =
∑
i

∂

∂yi
e∗i e

1
2 〈(Σjyjej+Σj ȳje

∗
j )

2〉

=
∑
i

〈
(y + y∗)ei

〉
e∗i e

1
2 〈(y+y

∗)2〉

=
∑
i

〈y + y∗, e∗i 〉e∗i e
1
2 〈(y+y

∗)2〉

= (y + y∗) e
1
2 〈(y+y

∗)2〉.

In particular,

∂

∂yi
e

1
2 〈(y+y

∗)2〉 = 〈y + y∗, e∗i 〉 e
1
2 〈(y+y

∗)2〉,

and hence

∂

∂yi

∂

∂yj
e

1
2 〈(y+y

∗)2〉
y=0

=
∂

∂yi

〈
y + y∗, e∗j

〉
y=0

(2.16)

= 〈ei, e∗j 〉 = 〈eiej〉.

Our purpose is to compute

(2.17)
∑

(v1,v2,v3,...)∈N∞
e(v1,v2,v3,...)=n

finite∏
j≥1

1
vj ! · jvj

〈( ∂

∂y

)j〉vj
e

1
2 〈(y+y

∗)2〉
y=0

.

To this end, first we observe

(2.18)
〈( ∂

∂y

)j〉
=

∑
i1,...,ij

∂

∂yi1
· · · ∂

∂yij
〈e∗i1· · · e

∗
ij 〉.

Notice that 〈e∗i1· · · e∗ij 〉 is invariant under cyclic permutations. For every
factor (2.18) of (2.17), let us assign a j-valent vertex with j half-edges
incident to it, with a cyclic order of these half-edges. Every half-edge
corresponds to an index ik, k = 1, . . . , j, and we assign e∗ik ∈ A to this
half-edge. We then assign 〈e∗i1· · · e∗ij 〉 to this vertex (see Figure 2.1).

e∗i1
e∗i2

e∗ij

Figure 2.1. A j-valent vertex with a cyclic order given to incident half-

edges. Each half-edge is labeled by ik, and an element e∗ik is assigned.
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For every j = 1, 2, 3, . . ., we draw vj j-valent vertices with 〈e∗i1· · · e∗ij 〉
assigned. Every vertex has j degrees of freedom coming from cyclic
rotations. This redundancy is compensated by the factor jvj in (2.17). The
redundancy of permuting vj vertices of the same valence j is compensated
by vj ! in (2.17). To indicate the effect of (2.16), we connect two half-edges
according to the paired differentiation. We notice that since we set y = 0
after differentiation, no term in (2.17) survives unless all differentiations
are paired as in (2.16). When we connect a half-edge labeled by ik at one
vertex with another half-edge labeled by h�, we assign 〈eikeh�〉 to this edge
(see Figure 2.2). This quantity is called the propagator of the edge. Notice
that the propagator is symmetric

(2.19) 〈eikeh�〉 = 〈eh�eik〉,

and hence we do not have any particular direction on our edge.

e∗i1 e∗i2 e∗j1
e∗i3

e∗i6

e∗j4

〈ei3 ej4〉

Figure 2.2. A half-edge labeled by i3 of the left vertex is

connected with a half-edge labeled by j4 of the vertex at

the right. A propagator 〈ei3ej4〉 is assigned to this edge.

Here we have to be cautious when two vertices are connected. For
example, the connection described in Figure 2.2 preserves the cyclic orders
of two vertices. An edge is connecting two vertices in the orientation-
preserving manner if the cyclic orders of the two vertices agree when
the edge is shrunk to a point and the two vertices are put together.
Otherwise, the edge is orientation-reversing. All connections we make
in this section should be orientation-preserving. When all half-edges are
paired and connected in the orientation-preserving manner, we obtain a
ribbon graph Γ. It is easy to see that the compensation of rotations around
each vertex and permutations of vertices of the same valence leads to the
factor of 1/|AutR(Γ)| coming from the automorphism of Γ (see [36], [37]).
The quantity vj represents the number of j-valent vertices of Γ by the
construction. Thus

(2.20) v(Γ) =
∑
j

vj and e(Γ) =
1
2

∑
j

jvj
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represent the total number of vertices and edges of Γ, respectively. Notice
the combinatorial constraint

2e(Γ) = e(v1, v2, v3, . . .),

which comes from the fact that unless every half-edge is paired with another
one to form an edge of a ribbon graph, the corresponding contribution of
(v1, v2, v3, . . .) in the sum of (2.17) is 0. Summarizing, we have

PROPOSITION 2.4. — Let RG(e) denote the set of all ribbon graphs,
may or may not be connected, consisting of a total of e edges. The number

of j-valent vertices of Γ ∈ RG(e) is denoted by vj = vj(Γ). For each j-valent

vertex of Γ, let us assign 〈e∗i1· · · e∗ij 〉. For every edge we assign 〈eikeh�〉, so

that the incidence relation is consistent with the relation described above,
namely, this edge connects the half-edge labeled by ik of a vertex to the

half-edge labeled by h� from another vertex, which could be the same

vertex. Let Aor
Γ denote the sum with respect to all indices of the product of

all contributions from vertices and edges. Then we have

∑
(v1 ,v2 ,v3 ,...)∈N∞
e(v1 ,v2 ,v3 ,...)=2e

∫
HA

e−
1
2 〈x

2〉
finite∏
j≥1

1
vj ! · jvj

〈xj〉vj dµ(x)(2.21)

=
∑

(v1 ,v2 ,v3 ,...)∈N∞
e(v1 ,v2 ,v3 ,...)=2e

finite∏
j≥1

1
vj ! · jvj

〈( ∂

∂y

)j〉vj
e

1
2 〈(y+y

∗)2〉
y=0

=
∑

Γ∈RG(e)

1
|AutR(Γ)|A

or
Γ ,

where AutR(Γ) is the automorphism group of ribbon graph Γ defined in

Section 1.

Therefore, to evaluate the integral, it suffices to calculate Aor
Γ for each

ribbon graph Γ. A key fact is the following.

LEMMA 2.5. — Let Γ be a connected ribbon graph with two or more

vertices, and E an edge of Γ incident to two distinct vertices. Then the

contribution of the graph Aor
Γ is invariant under the edge-contraction:

(2.22) Aor
Γ = Aor

Γ/E ,

where Γ/E denotes the ribbon graph obtained by shrinking E to a point

in Γ and joining the two incident vertices together.
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Remark. — This invariance is found in many literatures including [53].
Witten uses the invariance to calculate quantum Yang-Mills theory over a
Riemann surface by approximation through lattice gauge theory. It appears
also in [38].

Proof. — Let V1 and V2 be the two vertices of Γ incident to E. The
contribution from V1 can be written as 〈ae∗i 〉 and that from V2 as 〈e∗jb〉,
where a and b are products of the basis elements e∗k of the von Neumann
algebra A. The invariance of the edge contraction is local, and comes down
to the following computation:∑

i,j

〈ae∗i 〉 · 〈eiej〉 · 〈e∗j b〉 =
∑
i,j

〈a, ei〉 · 〈ei, e∗j 〉 · 〈e∗j , b∗〉(2.23)

= 〈a, b∗〉 = 〈ab〉.

The quantity 〈ab〉 is exactly the contribution of the new vertex obtained
by joining V1 and V2.

Every connected ribbon graph Γ gives rise to an oriented surface SΓ

whose Euler characteristic is determined by

χ(SΓ) = 2− 2g(SΓ) = v(Γ)− e(Γ) + f(Γ).

The graph defines a cell-decomposition of SΓ. The topological type of Γ
is (g, f), the genus of the surface and the number of faces of its cell-
decomposition. Note that since the edge contraction operation decreases
v(Γ) and e(Γ) by one and preserves the number of faces, the topological
type is preserved. A theorem of topology states that if Γ1 and Γ2 are
two connected ribbon graphs with the same topological type, then by
consecutive applications of edge contraction and its inverse operation (edge
expansion), Γ1 can be brought to Γ2 (see [23]). Therefore, to compute Aor

Γ ,
we can use our favorite graph of the same topological type, for example, a
graph of Figure 2.3.

︷
︸︸

︷ ︷
︸︸

︷

f − 1 g

Figure 2.3. A standard graph of topological type (g, f). It has

f − 1 tadpoles on the left, and g bi-petal flowers on the right.

ANNALES DE L’INSTITUT FOURIER



MATRIX INTEGRALS AND REPRESENTATION VARIETIES 2179

PROPOSITION 2.6. — Let Aor
g,f denote the contribution of the standard

graph of Figure 2.3. Then

(2.24) Aor
g,f =

N∑
i1 ,...,ig ;j1 ,...,jg
h1 ,...,hf−1

〈
ei1ej1e

∗
i1e
∗
j1· · · eigejge

∗
ige
∗
jg

× eh1e
∗
h1
· · · ehf−1e

∗
hf−1

〉
.

Proof. — By definition,

Aor
g,f =

N∑
i1,...,ig;j1,...,jg
a1,...,ag;b1,...,bg

k1,...,kf−1;h1,...,hf−1

〈
e∗a1e

∗
b1e
∗
i1e
∗
j1 · · · e

∗
age
∗
bge
∗
ige
∗
jg · e

∗
h1
e∗k1· · · e

∗
hf−1

e∗kf−1

〉
× 〈ea1ei1〉〈eb1ej1〉 · · · 〈eageig 〉〈ebgejg 〉

× 〈eh1ek1〉 · · · 〈ehf−1ekf−1〉.
Using cyclic invariance of the trace and (2.11), the desired formula (2.24)
follows.

The generating function ZCA(t) of (2.7) is expanded in terms of all
ribbon graphs, connected or non-connected. Since ZCA(0) = 1, the formal
logarithm is well-defined for ZCA(t). The graphical expansion of logZCA(t)
then consists of connected ribbon graphs.

THEOREM 2.7. — The graphical expansion of the logarithm of the

generating function ZCA(t) of (2.7) is given by

logZCA(t) = log
∫
HA

e−
1
2 〈x

2〉 eΣjtj/j〈xj〉 dµ(x)(2.25)

=
∑

Γ connected
ribbon graph

1
|AutR(Γ)|A

or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j .

Recall the graph theoretic formulas (2.20). If we change tj to βtj , then
the graph expansion receives an extra factor of βv(Γ) in the contribution
from Γ. If we change e−

1
2 〈x

2〉 to e−
1
2 α〈x

2〉 with a positive real number α,
then a change of variable x �→ x/

√
α produces a factor α−e(Γ) to the Γ-

contribution. Therefore,

(2.26) log
∫
HA

e−
1
2 α〈x

2〉 eβΣjtj/j〈xj〉 dµα(x)

=
∑

Γ connected
ribbon graph

α−e(Γ)βv(Γ)

|AutR(Γ)| A
or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j ,

where the normalized Lebesgue measure is adjusted for e−
1
2 α〈x

2〉. An
important example of Theorem 2.7 is a hermitian matrix integral.
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Example 2.1. — Let us apply (2.25) to a complex matrix algebra
A = M(n,C). The ∗-operation on this algebra is the matrix adjoint, and

(2.27) 〈X〉 =
1
n

trX

is the normalized trace. The space of self-adjoint elements is the set of
hermitian matrices:

HM(n,C) = Hn,C.
As an orthonormal basis, we use {√n eij}, where

eij =
[
δiαδjβ

]
α,β

is the n×n elementary matrix which has 1 at its ij entry and 0 everywhere
else. Then we have

(2.28) log
∫
Hn,C

e−
1
2 tr(X2) eΣjtj/j tr(Xj) dµ(X)

=
∑

Γ connected
ribbon graph

1
|AutR(Γ)| n

f(Γ)
∏
j

t
vj(Γ)
j .

Indeed, the computation of M(n,C)org,f is just evaluating the trace of the
identity matrix I. Each tadpole contributes∑

i,j

eij e
∗
ij =

∑
i,j

eii = n · I,

while each bi-petal flower contributes∑
i,j,k,�

eij ek�ejie�k =
∑
i,j

eiiejj = I.

Therefore, we have

M(n,C)org,f = n2gn2(f−1)〈I〉 = n−v+e+f .

Equation (2.28) follows from (2.27) and (2.26). Another useful form of
hermitian matrix integral is

(2.28) log
∫
Hn,C

e−
1
2 n tr(X2) enΣjtj/j tr(Xj) dµ(X)

=
∑

Γ connected
ribbon graph

1
|AutR(Γ)| n

χ(SΓ)
∏
j

t
vj(Γ)
j ,

which also follows from (2.26).

Equation (2.28) is due to [6] and has been used by many authors in
the study of hermitian matrix integrals [22], [35], [40], [41], [42], [43], [54].
In Section 4, we give another example of the general formula, where we
consider A = C[G].
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3. Integrals over a real von Neumann algebra.

For a finite-dimensional real von Neumann algebra A, the correspon-
ding formulas become quite different. Since its trace is real valued, the
hermitian inner product is real symmetric:

〈a, b〉 = 〈ab∗〉 = 〈ba∗〉 = 〈b, a〉.

The integral we wish to evaluate is

(3.1)
∑

(v1,v2,v3,...)∈N∞
e(v1,v2,v3,...)=n

∫
HA

e−
1
4 〈x

2〉
finite∏
j≥1

1
vj ! · (2j)vj

〈xj〉vj dµ(x)

for every n ≥ 0 with respect to a different normalized Lebesgue measure

(3.2) dµ(x) =
dx∫

HA e−
1
4 〈x2〉 dx

·

The generating function for (3.1) is given by

ZRA(t) =
∫
HA

e−
1
4 〈x

2〉 eΣ
∞
j=1tj/2j〈xj〉 dµ(x)(3.3)

=
∞∑
n=0

∑
(v1,v2,v3,...)∈N∞
e(v1,v2,v3,...)=n

finite∏
j≥1

1
vj ! · (2j)vj

×
∫
HA

e−
1
4 〈x

2〉
finite∏
j≥1

〈xj〉vj dµ(x).

LEMMA 3.1. — Let A be a real von Neumann algebra. Then

(3.4)
∫
HA

e−
1
4 〈x

2〉
n∏
j=1

〈xj〉vj dµ(x) =
n∏
j=1

〈( ∂

∂y

)j〉vj
e

1
4 〈(y+y

∗)2〉
y=0

.

Proof. — The adjoint of the element y ∈ A of Lemma 2.2 is given by

y∗ =
N∑
i−1

yie
∗
i .

We note here that yi ∈ R and the orthonormal basis {e1, . . . , eN} for A is a
real basis. Unlike the complex case, we have 〈xy∗〉 = 〈x∗y〉, and hence

∂

∂y
e〈xy

∗〉 =
∂

∂y
e〈x
∗y〉 = x∗ e〈xy

∗〉

TOME 55 (2005), FASCICULE 6



2182 Motohico MULASE & Josephine T.YU

from Lemma 2.2. Therefore, for x ∈ HA,

∂

∂y
e〈

1
2 x(y+y

∗)〉 =
1
2

(x+ x∗) e〈
1
2 x(y+y

∗)〉 = x e〈
1
2 x(y+y

∗)〉.

The completion of the square is modified to∫
HA

e−
1
4 〈x

2〉 e〈
1
2 x(y+y

∗)〉 dµ(x) =
∫
HA

e−
1
4 〈(x−(y+y∗))2〉 e

1
4 〈(y+y

∗)2〉 dµ(x)

= e
1
4 〈(y+y

∗)2〉.

The rest of the proof is the same as the complex case.

To compute the RHS of (3.4), we first note

∂

∂y
e

1
4 〈(y+y

∗)2〉 =
1
2

∑
i

∂

∂yi
e∗i e

1
4 〈(Σjyjej+Σjyje

∗
j )

2〉

=
1
2

∑
i

〈(y + y∗)(ei + e∗i )〉e∗i e
1
4 〈(y+y

∗)2〉

=
1
2

∑
i

〈y + y∗, ei + e∗i 〉e∗i e
1
4 〈(y+y

∗)2〉

= (y + y∗) e
1
4 〈(y+y

∗)2〉.

In particular,

∂

∂yi
e

1
4 〈(y+y

∗)2〉 =
1
2
〈y + y∗, ei + e∗i 〉 e

1
4 〈(y+y

∗)2〉,

and hence

∂

∂yi

∂

∂yj
e

1
4 〈(y+y

∗)2〉
y=0

=
1
2
∂

∂yi
〈y + y∗, ej + e∗j 〉

y=0
(3.5)

=
1
2
〈ei + e∗i , ej + e∗j 〉

= 〈eie∗j 〉+ 〈eiej〉 = δij + 〈eiej〉.

This formula has an extra term δij compared to (2.16). To compute the
graphical expansion of

(3.6)
∑

(v1,v2,v3,...)∈N∞
e(v1,v2,v3,...)=n

finite∏
j≥1

1
vj ! · (2j)vj

〈( ∂

∂y

)j〉vj
e

1
4 〈(y+y

∗)2〉
y=0

,
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we proceed as before and assign a cyclically ordered j-valent vertex to
each factor 〈(∂/∂y)j〉 of the differentiation, assign the vertex contribution
〈e∗i1· · · e∗ij 〉 to it, and place the vertex consistently on an oriented plane
with the clockwise orientation. When a pair of differentiation is applied,
because of (3.5), there are now two choices: straight connection as in the
ribbon graph case Figure 2.2 with a propagator 〈eiej〉 assigned to the
edge, or connection with a twisted edge carrying a propagator 〈eie∗j 〉 = δij
as in Figure 3.1.

e∗i1

e∗i5

e∗i2

e∗j2

e∗j1

e∗j3

∗

e∗i3

〈ei3 ej3〉

Figure 3.1. A half-edge labeled by i3 of the left vertex is connected

to a half-edge labeled by j3 of the vertex at the right by a twisted

edge. A propagator 〈ei3e∗j3〉 is assigned to this edge.

If the straight connection is used at every edge, then the resulting
graph is a ribbon graph as before. Otherwise, we obtain a Möbius graph Γ
with some twisted edges. It has to be noted that the existence of twisted
edges does not necessarily mean that the Möbius graph is non-orientable.
For a Möbius graph Γ thus obtained, let us define the graph contributionARΓ
as the sum with respect to all indices of the product of all vertex
contributions 〈e∗i1· · · e∗ij 〉 and the product of all propagators, where 〈eiej〉 is
chosen for a straight edge and 〈eie∗j 〉 is chosen for a twisted edge.

The reality condition of the trace provides another invariance:

(3.7) 〈e∗i1e
∗
i2· · · e

∗
ij−1

e∗ij 〉 = 〈eijeij−1· · · ei2ei1〉.

This equality brings an equivalence relation into the set of Möbius graphs.
To identify it, let us observe the following:

LEMMA 3.2. — Let us denote by 〈eie±∗j 〉 either 〈eiej〉 or 〈eie∗j 〉, and

use 〈eie∓∗j 〉 to indicate the other propagator. Then

(3.8)
∑
i1 ,...,ij

〈e∗i1· · · e
∗
ij 〉〈ei1e

±∗
h1
〉 · · · 〈eije±∗hj 〉

=
∑
i1 ,...,ij

〈e∗ij· · · e
∗
i1〉〈ei1e

∓∗
h1
〉 · · · 〈eije∓∗hj 〉.
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Proof. — Using the contraction formula (2.11), the LHS is equal to
〈e±∗h1
· · · e±∗hj 〉. Similarly, the RHS is equal to 〈e∓∗hj · · · e

∓∗
h1
〉. Because of the

reality condition (3.7), these are actually the same.

Notice that the equation (3.8) is exactly the vertex flip operation
of Figure 1.4. This allows us to define the graph contribution ARΓ slightly
differently: it is the sum with respect to all indices of the product of all
vertex contributions 〈e∗i1· · · e∗ij 〉 each of which has a cyclic order that is
determined according to the cyclic order of the vertex, and the product of
all propagators of edges determined by their twist. The extra redundancy
of the vertex flip is compensated with the factor (2j)vj in front of (3.6),
which is the order of the product of dihedral groups acting on the vertices
through rotations and flips. In a parallel way with Proposition 2.4, we have
thus established:

PROPOSITION 3.3. — Let MG(e) be the set of all Möbius graphs

consisting of e edges. For each j-valent vertex of Γ, let us assign 〈e∗i1· · · e∗ij 〉,
where the cyclic order of the product is determined by the cyclic order of the

vertex. For every edge we assign a propagator 〈eikeh�〉 if the edge is straight

and 〈eike∗h�〉 if it is twisted. The incidence relation should be consistent

with the labeling of half-edges, namely, the edge labeled with ikh� connects

the half-edge labeled by ik of a vertex to the half-edge labeled by h� from

another vertex. Let ARΓ denote the sum with respect to all indices of the

product of all contributions from vertices and edges. Then

∑
(v1 ,v2 ,v3 ,...)∈N∞
e(v1 ,v2 ,v3 ,...)=2e

∫
HA

e−
1
4 〈x

2〉
finite∏
j≥1

〈xj〉vj
vj ! · (2j)vj

dµ(x)(3.9)

=
∑

(v1 ,v2 ,v3 ,...)∈N∞
e(v1 ,v2 ,v3 ,...)=2e

finite∏
j≥1

1
vj ! · (2j)vj

〈( ∂

∂y

)j〉vj
e

1
4 〈(y+y

∗)2〉
y=0

=
∑

Γ∈MG(e)

1
|AutM (Γ)|A

R
Γ ,

where AutM (Γ) is the automorphism group of Γ as a Möbius graph.

If Γ is orientable, then a series of vertex flip operations makes Γ a
ribbon graph, and for such a graph, ARΓ = Aor

Γ . Although the von Neumann
algebra A is real, we can use the same definition of Aor

Γ as in Proposition 2.4
for a real A. Its invariance with respect to the topological type of the
orientable surface SΓ is the same as before. Even a Möbius graph Γ is
non-orientable, we still have the following:
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LEMMA 3.4. — Let Γ be a connected Möbius graph with two or more

vertices, and E an edge of Γ incident to two distinct vertices. Then the

contribution of the graph ARΓ is invariant under the edge-contraction:

(3.10) ARΓ = ARΓ/E .

Proof. — Let V1 and V2 be the two vertices incident to the edge E.
If E is not twisted, then the same argument of Lemma 2.5 applies. If the
edge is twisted, then first apply a vertex flip operation to V2 and untwist E.
Then the situation is the same as before, and we can contract the edge,
joining V1 and V2 together. We give the cyclic oder of V1 as the new cyclic
order to the newly created vertex.

It is known [23] that the set of all connected Möbius graphs with f
faces drawn on a closed non-orientable surface of cross-cap genus k is
connected with respect to the edge contraction and edge expansion moves.
(These moves are called diagonal flips in [23].) Therefore, we can compute
the invariant ARΓ for a non-orientable Möbius graph again by choosing our
favorite graph. If we use a graph of Figure 3.2, then for every non-orientable
Möbius graph of topological type (k, f), the graph contribution is equal to

(3.11) Anor
k,f =

∑
i1,...,ik
h1,...,hf−1

〈
(e∗i1)

2 · · · (e∗ik)
2 · eh1e

∗
h1
· · · ehf−1e

∗
hf−1

〉
.

︷
︸︸

︷ ︷
︸︸

︷

f − 1 k

Figure 3.2. A standard graph for a non-orientable surface of

topological type (k, f). It has f − 1 tadpoles on the left, and

k twisted tadpoles on the right.

Now we have

THEOREM 3.5. — The graphical expansion of the logarithm of the

generating function ZRA(t) of (3.3) associated with a real von Neumann

algebra A is given by
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logZRA(t) = log
∫
HA

e−
1
4 〈x

2〉 eΣjtj/2j〈xj〉 dµ(x)(3.12)

=
∑

Γ connected orientable
Möbius graph

1
|AutM (Γ)|A

or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j

+
∑

Γ connected non-
orientable Möbius graph

1
|AutM (Γ)|A

nor
k(Γ),f(Γ)

∏
j

t
vj(Γ)
j .

For future convenience, we also record

log
∫
HA

e−
1
4 α〈x

2〉 eβΣjtj/2j〈xj〉 dµ(x)(3.13)

=
∑

Γ connected orientable
Möbius graph

α−e(Γ)βv(Γ)

|AutM (Γ)| A
or
g(Γ),f(Γ)

∏
j

t
vj(Γ)
j

+
∑

Γ connected non-
orientable Möbius graph

α−e(Γ)βv(Γ)

|AutM (Γ)| A
nor
k(Γ),f(Γ)

∏
j

t
vj(Γ)
j

for a positive α and any β.

As an example of these formulas, let us consider the case when A is a
simple algebra. This time, it is isomorphic to either M(n,R) or M(n,H).

Example 3.1. — Let A = M(n,R). Then as in Example 2.1, we can use
{√n eij} as our orthonormal basis. The space HA of self-adjoint elements
is the set of all real symmetric matrices Hn,R. Since elementary matrices
are defined over the reals, we immediately see

Aor
g,f = n−v+e+f

as before. To calculate Anor
k,f , we note that

(ei1j1)
2 · · · (eikjk)2 = 0

unless all 2k indices are the same, and if they are the same, then the result
is eii. Thus the sum of all these products is the identity matrix I. The
contribution from the tadpoles of Figure 3.2 is the same as in Example 2.1,
so we have

log
∫
Hn,R

e−
1
4 tr(X2) eΣj

tj
2j tr(Xj) dµ(X)(3.14)

=
∑

Γ connected
Möbius graph

1
|AutM (Γ)| n

f(Γ)
∏
j

t
vj(Γ)
j ,
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or more conveniently,

log
∫
Hn,R

e−
n
4 tr(X2) en

∑
j

tj
2j tr(Xj) dµ(X)(3.15)

=
∑

Γ connected
Möbius graph

1
|AutM (Γ)| n

χ(SΓ)
∏
j

t
vj(Γ)
j .

These formulas are well known (see for example, [9], [17]).

Example 3.2. — This time let us choose A = M(n,H). As a real basis
for quaternions, we use

(3.16) e0 =
( 1

1

)
, e1 =

( 1
−1

)
, e2 =

( i
−i

)
, e3 =

( −i
−i

)
.

The adjoint operation ( eµ)∗ on these 2 × 2 matrices is the same as the
conjugate transposition ( eµ)†. A real basis for M(n,H) is given by

eνij = eij ⊗ eν , i, j = 1, . . . , n, ν = 0, . . . , 3.

The normalized trace is defined by

〈eνij〉 =
1
2n

trn×n(eij) · tr2×2( eν)

for the basis elements and R-linearly extended to all matrices. We notice
that 〈 〉 is real valued because the 2 × 2 trace has value 0 for imaginary
quaternionic units. With respect to the normalized trace, {√n eνij} is an
orthonormal basis. The ∗-operation with respect the basis is given by

(eνij)
∗ = eji ⊗ ( eν)†.

The space of self-adjoint elements HA = Hn,H consists of self-adjoint
quatermionic matrices of size n×n, and is spanned by eij⊗ eν+eji⊗( eν)†.
Note that the diagonal entries of a self-adjoint matrix are spanned
by eν + (eν)†, and hence are real. Thus we have a real linear map

trn×n : Hn,H −→ R.

Since eν(eν)† = e0, we have∑
i,j,ν

eνij(e
ν
ij)
∗ = 4nI ⊗ e0.
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Similarly, e0 = (e0)2 = −(e1)2 = −(e2)2 = −(e3)2, hence∑
i,j,ν

(eνij)
2 = −2I ⊗ e0.

To compute eµij e
ν
k�(e

µ
ij)
∗(eνk�)

∗, we use

(3.17) eµeν(eµ)†(eν)† =
{−e0 if µ, ν > 0, µ �= ν,

+e0 otherwise.

Therefore, of the 16 combinations, six cases are equal to −e0 and ten are
equal to e0. Thus ∑

µ,ν

eµeν(eµ)†(eν)† = 4e0,

and altogether, we have∑
i,j,k,�,µ,ν

eµij e
ν
k�(e

µ
ij)
∗(eνk�)

∗ = 4I ⊗ e0.

From all the above, we calculate

M(n,H)org,f = (4n2)g(4n2)f−1〈I ⊗ e0〉 = (2n)−v+e+f ,

M(n,H)nor
k,f = (−2n)k(4n2)f−1〈I ⊗ e0〉 = (−1)k(2n)−v+e+f .

Note that (−1)k = (−1)χ(SΓ). Combining these computations with (3.13)
and using the n× n trace of M(n,H), we finally obtain

log
∫
Hn,H

e−
1
2 tr(X2) eΣjtj/j tr(Xj) dµ(X)(3.18)

=
∑

Γ connected
Möbius graph

(−1)χ(SΓ)

|AutM (Γ)| (2n)f(Γ)
∏
j

t
vj(Γ)
j ,

or equivalently,

log
∫
Hn,H

e−n tr(X2) e2n
∑

j
tj/j tr(Xj) dµ(X)(3.19)

=
∑

Γ connected
Möbius graph

1
|AutM (Γ)| (−2n)χ(SΓ)

∏
j

t
vj(Γ)
j .

These results are in agreement with recently established formulas
found in [38].
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4. Generating functions for the number of
representations of surface groups.

Let us now turn our attention to the case of the complex group
algebra A = C[G] of a finite group G. The ∗-operation is defined by

(4.1) ∗ : C[G] � x =
∑
w∈G

x(w) · w �−→ x∗ =
∑
w∈G

x(w) · w−1 ∈ C[G].

As the trace, we use

(4.2) 〈 〉 =
1
|G| χreg,

where χreg is the character of the regular representation of G on C[G],
linearly extended to the whole group algebra. The self-adjoint condition
x∗ = x means x(w−1) = x(w), and we have HC[G] = R

|G| as a real
vector space. A natural orthonormal basis for C[G] is the group G itself,
since we have

〈uv∗〉 =
1
|G| χreg(uv−1) =

{
1 if u = v,

0 otherwise.

It is because the normalized trace on G takes value 1 only when the group
element is the identity and 0 otherwise. Recall that

π1(S) = 〈a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g = 1〉,

where S is an orientable surface of genus g. With respect the orthonormal
basis, we immediately see

C[G]org,f =
∑

ui,vi,wj∈G
〈u1v1u

−1
1 v−1

1 · · ·ugvgu−1
g v−1

g · w1w
−1
1 · · ·wf−1w

−1
f−1〉(4.3)

= |G|f−1 ·
∣∣Hom(π1(S), G)

∣∣.
Summarizing these facts and changing the constant factors using (2.26), we
obtain a generating function of the number of homomorphisms from the
fundamental group of an orientable surface into the finite group.

THEOREM 4.1. — Let G be a finite group. The following integral

over the self-adjoint elements of the complex group algebra C[G] gives the
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generating function for the cardinality of the representation variety of an

orientable surface group in G:

log
∫
HC[G]

exp
(
− 1

2
χreg(x2)

)
exp

( ∑
j

tj
j
χreg(xj)

)
dµ(x)(4.4)

=
∑

Γ connected
ribbon graph

1
|AutR Γ| |G|

χ(SΓ)−1 ·
∣∣Hom(π1(SΓ),G)

∣∣ ·∏
j

t
vj(Γ)
j .

Note that we have a von Neumann algebra isomorphism

(4.5) C[G] ∼=
⊕
λ∈Ĝ

End(Vλ),

which decomposes the character of the regular representation into the sum
of irreducible characters:

χreg =
∑
λ∈Ĝ

(dimλ)χλ =
∑
λ∈Ĝ

(dimλ) trλ,

where dimλ is the dimension of λ ∈ Ĝ and χλ is its character. Therefore,
using (2.29) for each irreducible factor, we calculate

log
∫
HC[G]

exp
(
− 1

2
χreg(x2)

)
exp

( ∑
j

tj
j
χreg(xj)

)
dµ(x)(4.6)

= log
∫
HC[G]

∏
λ∈Ĝ

exp
(
− dimλ

2
trλ(x2)

)
exp

(
dimλ

∑
j

tj
j

trλ(xj)
)

dµλ(x)

=
∑
λ∈Ĝ

log
∫
Hdimλ,C

exp
(
− dimλ

2
trλ(x2)

)
exp

(
dimλ

∑
j

tj
j

trλ(xj)
)

dµλ(x)

=
∑

Γ connected
ribbon graph

1
|AutR Γ|

∑
λ∈Ĝ

(dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j ,

where dµλ is the normalized Lebesgue measure on the space of dimλ×dimλ

hermitian matrices. Comparing expressions (4.4) and (4.6), we recover
Mednykh’s formula (0.7):

∑
λ∈Ĝ

(dimλ)χ(S) = |G|χ(S)−1 ·
∣∣Hom(π1(S), G)

∣∣.
ANNALES DE L’INSTITUT FOURIER



MATRIX INTEGRALS AND REPRESENTATION VARIETIES 2191

Remark. — Another proof of Mednykh’s formula is found in [13],
which uses Chern-Simons gauge theory with a finite gauge group. Burnside
asked a related question on p. 319 (§ 238, Ex. 7) of his textbook [10]. The
formula for genus 1 case is found in Frobenius [14] of 1896. We refer to [48]
for the relation of these formulas to combinatorics. An excellent historical
account on this and Frobenius-Schur formula (0.9) is found in [26].

Now consider the real group algebra R[G]. For a non-orientable surface
of cross-cap genus k, we know

π1(S) = 〈a1, . . . , ak | a2
1 · · · a2

k = 1〉.

Therefore,

R[G]nor
k,f =

∑
ui,wj∈G

〈u2
1 · · ·u2

k · w−1
1 w1 · · ·w−1

f−1wf−1〉(4.7)

= |G|f−1 ·
∣∣Hom(π1(S), G)

∣∣.
Our general formula (3.13) yields

THEOREM 4.2. — Let G be a finite group. The following integral

over the space of self-adjoint elements of the real group algebra R[G]
gives the generating function for the number of homomorphisms from the

fundamental group of a closed surface into G, |Hom(π1(S),G)|, for all S,
including orientble and non-orientable surfaces.

log
∫
HR[G]

e−
1
4 χreg(x2) e

1
2

∑
j
tj/j χreg(xj) dµ(x)

=
∑

Γ connected
Möbius graph

1
|AutM Γ| |G|

χ(SΓ)−1 ·
∣∣Hom(π1(SΓ),G)

∣∣ ∏
j

t
vj(Γ)
j .

Recall that the real group algebra R[G] decomposes into simple
factors according to the three types of irreducible representations (0.8).
Notice that Ĝ1 consists of complex irreducible representations of G that
are defined over R. A representation in Ĝ2 is not defined over R, and its
character is not real-valued. Thus the complex conjugation acts on the
set Ĝ2 without fixed points. Let Ĝ2+ denote a half of Ĝ2 such that

(4.9) Ĝ2+ ∪ Ĝ2+ = Ĝ2.
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A complex irreducible representation of G that belongs to Ĝ4 admits a
skew-symmetric bilinear form. In particular, its dimension (over C) is even.
Now we have a von Neumann algebra isomorphism

(4.10) R[G] ∼=
⊕
λ∈Ĝ1

EndR(λR)⊕
⊕
λ∈Ĝ2+

EndC(λ)⊕
⊕
λ∈Ĝ4

EndH(λH),

where λR is a real irreducible representation of G that satisfies λ = λR⊗RC.
The representation space λH is a 1

2 dimλ-dimensional vector space defined
over H for λ ∈ Ĝ4 such that its image under the natural injection

(4.11) EndH(λH) −→ EndC(λ)

coincides with the image of

ρλ : R[G] −→ EndC(λ),

where ρλ is the representation of R[G] corresponding to λ ∈ Ĝ. The injective
algebra homomorphism (4.11) is defined by the 2× 2 matrix representation
of the quaternions (3.16). The algebra isomorphism (4.10) gives a formula
for the character of the regular representation on R[G]:

χreg =
∑
λ∈Ĝ1

(dimλ)χλ +
∑
λ∈Ĝ2+

(dimλ)(χλ + χλ)(4.12)

+
∑
λ∈Ĝ4

2(dimλ) · traceλH ,

where in the last term the character is given as the trace of quaternionic
( 1

2 dimλ) × ( 1
2 dimλ) matrices. Notice that if λ ∈ Ĝ2, then for every

x = x∗ ∈ HR[G], we have

χλ(x) = χλ(x) = trdimλ

(
ρλ(x)

)
since ρλ(x) is a hermitian matrix of size dimλ× dimλ.

The integration (4.8) can be carried out using (2.29), (3.15) and (3.19)
with the decomposition (4.10) and (4.12). The result is

log
∫
HR[G]

e−
1
4 χreg(x2) e

1
2

∑
j

tj
j χreg(xj) dµ(x)

=
∑
λ∈Ĝ1

log
∫
Hdimλ,R

e−
1
4 dimλ tr(x2) edimλ

∑
j

tj
2j tr(xj) dµλ(x)
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+
∑
λ∈Ĝ2

log
∫
Hdimλ,C

e−
1
4 dimλ tr(x2) edimλ

∑
j

tj
2j tr(xj) dµλ(x)

+
∑
λ∈Ĝ4

log
∫
H 1

2 dimλ,H

e−
1
2 dimλ tr(x2) e

dimλ
∑

j

tj
j tr 1

2 dimλ
(xj)

dµλ(x)

=
∑

Γ connected
Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ1

(dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j

+
∑

Γ connected orientable
Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ2

(dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j

+
∑

Γ connected
Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ4

(−dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j

=
∑

Γ connected orientable
Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ

(dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j

+
∑

Γ connected non-
orientable Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ1

(dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j

+
∑

Γ connected non-
orientable Möbius graph

1
|AutM (Γ)|

∑
λ∈Ĝ4

(−dimλ)χ(SΓ)
∏
j

t
vj(Γ)
j .

Notice that the sum over orientable Möbius graphs recovers Mednykh’s
formula (0.7) again, because the Euler characteristic χ(S) is even for an
orientable surface. From the sum over non-orientable Möbius graphs, we
obtain the formula of Frobenius-Schur (0.9) of [15]:

∑
λ∈Ĝ1

(dimλ)χ(S) +
∑
λ∈Ĝ4

(−dimλ)χ(S) = |G|χ(S)−1 ·
∣∣Hom(π1(S), G)

∣∣.
Note that the Ĝ2 component has no contribution in this formula. This is
due to the fact that graphical expansion of a complex hermitian matrix
integral contains only orientable ribbon graphs.
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