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THE NUMBER OF VERTICES
OF A FANO POLYTOPE

by Cinzia CASAGRANDE

Abstract. — Let X be a Gorenstein, Q-factorial, toric Fano variety. We prove
two conjectures on the maximal Picard number of X in terms of its dimension and
its pseudo-index, and characterize the boundary cases. Equivalently, we determine
the maximal number of vertices of a simplicial reflexive polytope.

Résumé. — Soit X une variété de Fano torique, Gorenstein et Q-factorielle.
Nous démontrons deux conjectures sur le nombre de Picard maximal de X en
fonction de sa dimension et de son pseudo-indice, et nous caractérisons les cas
limites. De façon équivalente, nous déterminons le nombre maximal de sommets
d’un polytope réflexif simplicial.

Let X be a normal, complex, projective variety of dimension n. Assume
that X is Gorenstein and Fano, namely the anticanonical divisor −KX of
X is Cartier and ample. The pseudo-index of X was introduced in [18] as

ιX := min{−KX · C |C rational curve in X} ∈ Z>0.

By Mori theory we know that ιX 6 n + 1 when X is smooth, and ιX 6 2n

in general (see for instance [8, Theorems 3.4 and 3.6]).
The object of this paper is to give some bounds on the Picard number

ρX of X, in terms of n and ιX , when X is toric and Q-factorial (1) . More
precisely, we will prove the following:

Theorem 1. — Let X be a Q-factorial, Gorenstein, toric Fano variety
of dimension n, Picard number ρX and pseudo-index ιX . Then:

(i) ρX 6 2n, with equality if and only if n is even and X ∼= (S3)n/2,
where S3 is the blow-up of P2 at three non collinear points;

Keywords: toric varieties, Fano varieties, reflexive polytopes, Fano polytopes.
Math. classification: 52B20, 14M25, 14J45.
(1) For every Weil divisor D there exists m ∈ Z>0 such that mD is Cartier.
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(ii) ρX(ιX − 1) 6 n, with equality if and only if X ∼= (PιX−1)ρX .

Part (ii) of Theorem 1 has been conjectured in [5] for any smooth Fano
variety X, generalizing a conjecture by S. Mukai. For such X, (ii) is known
in the cases ιX > 1

2n + 1 [18, 7, 14], n 6 4 [5], n = 5 [1], and, provided
that X admits an unsplit covering family of rational curves, ιX > 1

3n + 1
[1]. For X smooth and toric, (ii) was already known in the cases n 6 7 or
ιX > 1

3n + 1 [5].
For a smooth toric Fano X, (i) was conjectured by V. V. Batyrev (see

[10, page 337]) and was already known to hold up to dimension 5 (for
n 6 4 thanks to the classifications [2, 17, 4, 15], and for n = 5 it is [6,
Theorem 4.2]). Recently B. Nill [13] has extended this conjecture to the
Q-factorial Gorenstein case, and has shown (i) for a certain class of Q-
factorial, Gorenstein toric Fano varieties (see on page 124).

Observe that the bound in (i) does not hold for non toric Fano varieties,
already in dimension two. It is remarkable that in the non toric case, there
is no known bound for the Picard number of a smooth Fano variety in terms
of its dimension (at least to our knowledge). If S is a surface obtained by
blowing-up P2 at eight general points, for any even n the variety Sn/2 has
Picard number 9n/2, and one could conjecture this is the maximum for
any dimension n (see [9, page 122]).

For X smooth, toric, and Fano, V. E. Voskresenskĭı and A. Klyachko have
shown that ρX 6 n2−n+1 [16, Theorem 1]; O. Debarre has improved this
bound in ρX 6 2 +

√
(2n− 1)(n2 − 1) [9, Theorem 8].

The common approach to these questions in the toric case, is to associate
a so-called “reflexive” polytope to a Gorenstein toric Fano variety, and to
combine the techniques coming from geometry with the ones coming from
the theory of polytopes.

We recall some basic notions on reflexive polytopes and toric Fano vari-
eties; we refer the reader to [10], [9] and references therein for more details.
Let N ∼= Zn be a lattice and let M := HomZ(N, Z) be the dual lattice. Set
NQ := N ⊗Z Q and MQ := M ⊗Z Q; for x ∈ NQ and y ∈ MQ we denote
by 〈x, y〉 the standard pairing. For any set of points x1, . . . , xr ∈ NQ, we
denote by Conv(x1, . . . , xr) ⊂ NQ their convex hull.

Let P ⊂ NQ be a lattice polytope of dimension n containing the origin in
its interior. We denote by V (P ) the set of vertices of P . The dual polytope
of P is defined as

P ∗ := {y ∈ MQ | 〈x, y〉 > −1 for all x ∈ P}.
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P is called a reflexive polytope if P ∗ is a lattice polytope; if so, also P ∗ is
reflexive and (P ∗)∗ = P . Reflexive polytopes were introduced in [3]; their
isomorphism classes are in bĳection with isomorphism classes of Gorenstein
toric Fano varieties.

Let P be a reflexive polytope of dimension n; we denote by XP the
associated n-dimensional Gorenstein toric Fano variety. The fan of XP is
given by the cones over the faces of P in NQ.

Many geometric properties of XP can be read from P . In particular, XP

is Q-factorial if and only if P is simplicial(2) , while XP is smooth if and
only if the vertices of every facet of P are a basis of the lattice. In this last
case, we say that P is smooth.

Example. — In dimension two, let e1, e2 be a basis of N , and e∗1, e
∗
2 the

dual basis of M . Consider P := Conv(e1, e2,−e1− e2); its dual polytope is
P ∗ = Conv(2e∗1 − e∗2, 2e∗2 − e∗1,−e∗1 − e∗2).

P P ∗

Both polytopes are reflexive, the associated surfaces are XP = P2 and
XP∗ = {xyz = w3} ⊂ P3. The surface XP∗ has three singular points of
type A2. We have ιXP

= 3, while ιXP∗ = 1.

We denote by |A| the cardinality of a finite set A. When P is simplicial,
the number of vertices |V (P )| of P is equal to ρXP

+ n.
Recall that there is a bĳection between the vertices of P ∗ and the facets

of P ; if u ∈ V (P ∗), we denote by Fu the corresponding facet of P , namely
Fu := {x ∈ P | 〈x, u〉 = −1}. We define

δP := min{ 〈v, u〉 | v ∈ V (P ), u ∈ V (P ∗), v 6∈ Fu} ∈ Z>0.

The pseudoindex ιXP
is related to δP as follows.

(2) A polytope is simplicial if the vertices of every facet are linearly independent, where
a facet is a proper face of maximal dimension.

TOME 56 (2006), FASCICULE 1
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Lemma 2. — Let P be a simplicial reflexive polytope and XP the as-
sociated Fano variety. Then ιXP

6 δP + 1. If moreover P is smooth, then
ιXP

= δP + 1.

Theorem 1 is then a consequence of Lemma 2 and of the following:

Theorem 3. — Let P be a simplicial reflexive polytope of dimension n.
Then:

(i) |V (P )| 6 3n, with equality if and only if n is even and XP
∼=

(S3)n/2;
(ii) if δP > 0, then |V (P )| 6 n + n

δP
, with equality if and only if the

following two conditions hold:
(a) P = Conv(Q1, . . . , Qr) with r = n

δP
and each Qj ⊂ NQ a

reflexive lattice simplex of dimension δP , the sum of whose
vertices is zero;

(b) if Hj is the linear span of Qj in NQ, we have NQ = H1⊕· · ·⊕Hr.

In [13], Theorem 3 (i) is proven for a simplicial reflexive polytope P for
which there exists a vertex u of P ∗ such that −u ∈ P ∗ [13, Theorem 5.8].
We refer the reader to [13] for a discussion on the number of vertices of a
reflexive polytope in the non simplicial case.

Example. — The polytopes P and P ∗ of the previous example have
δP = δP∗ = 2, and both satisfy equality in (ii). Notice that ιXP∗ < δP∗ +1.

We will first prove Theorem 3, then Lemma 2 and Theorem 1. For the
proof, we will use the same technique as [16] and [9], and also some results
from [13].

First of all, we need a property of pairs of vertices v ∈ V (P ) and u ∈
V (P ∗) with 〈v, u〉 = δP .

Let P be a simplicial polytope of dimension n. We say that a vertex v

is adjacent to a facet F = Conv(e1, . . . , en) if Conv(v, e1 . . . , ěi, . . . , en) is
a facet of P for some i = 1, . . . , n.

Lemma 4. — Let P be a simplicial reflexive polytope and v ∈ V (P ),
u ∈ V (P ∗) such that 〈v, u〉 = δP . Then v is adjacent to Fu.

Proof. — This property is shown in [9, Remark 5(2)] and [13, Lemma 5.5]
in the case δP = 0. The same proof works for the general case. �

Proof of Theorem 3. — First of all, observe that for any u ∈ V (P ∗) we
have

(1) |{v ∈ V (P ) | 〈v, u〉 = −1}| = n and |{v ∈ V (P ) | 〈v, u〉 = 0}| 6 n.

ANNALES DE L’INSTITUT FOURIER
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In fact, since P is simplicial, the facet Fu contains n vertices. Moreover, if
〈v, u〉 = 0, then δP = 0, and by Lemma 4 we know that v is adjacent to
Fu. Again, since P is simplicial, Fu has at most n adjacent vertices, and
we get (1).

The origin lies in the interior of P ∗, so we can write a relation

(2) m1u1 + · · ·+ mhuh = 0

where h > 0, u1, . . . , uh are vertices of P ∗, and m1, . . . ,mh are positive
integers. Set I := {1, . . . , h} and M :=

∑
i∈I mi. For any vertex v of P

define

A(v) := {i ∈ I | 〈v, ui〉 = −1} and B(v) := {i ∈ I | 〈v, ui〉 = 0}.

Then observe that 〈v, ui〉 > 1 for any i 6∈ A(v)∪B(v). So for every v ∈ V (P )
we have

0 =
∑
i∈I

mi〈v, ui〉 = −
∑

i∈A(v)

mi +
∑

i 6∈A(v)∪B(v)

mi〈v, ui〉

> −
∑

i∈A(v)

mi +
∑

i 6∈A(v)∪B(v)

mi = M − 2
∑

i∈A(v)

mi −
∑

i∈B(v)

mi.

Summing over all vertices of P we get

M |V (P )| 6 2
∑

v∈V (P )

∑
i∈A(v)

mi +
∑

v∈V (P )

∑
i∈B(v)

mi

= 2
∑
i∈I

mi |{v ∈ V (P ) | 〈v, ui〉 = −1}|

+
∑
i∈I

mi|{v ∈ V (P ) | 〈v, ui〉 = 0}|

and using (1) this gives |V (P )| 6 3n.
Assume that |V (P )| = 3n. Then all inequalities above are equalities; in

particular, for any v and ui such that 〈v, ui〉 > 0, we must have 〈v, ui〉 = 1.
Observe now that we can choose a relation as (2) involving all vertices of
P ∗, namely with h = |V (P ∗)| (see Remark 5), so 〈v, u〉 ∈ {−1, 0, 1} for
every v ∈ V (P ) and u ∈ V (P ∗). Then P and P ∗ are centrally symmetric.

Smooth centrally symmetric reflexive polytopes are classified in [16, The-
orem 6], and the only case with 3n vertices is for n even and
XP

∼= (S3)n/2. For the general case, we apply [13, Theorem 5.8].

TOME 56 (2006), FASCICULE 1
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Now assume that δP > 0 and let’s prove (ii). For every vertex v of P we
have 〈v, ui〉 > δP if i 6∈ A(v); similarly to what precedes, we get

0 =
∑
i∈I

mi〈v, ui〉 = −
∑

i∈A(v)

mi +
∑

i 6∈A(v)

mi〈v, ui〉

> −
∑

i∈A(v)

mi + δP

∑
i 6∈A(v)

mi = (−δP − 1)
∑

i∈A(v)

mi + δP M,
(3)

namely δP

δP +1M 6
∑

i∈A(v) mi. This gives

|V (P )| δP

δP + 1
M 6

∑
v∈V (P )

∑
i∈A(v)

mi = nM

and

|V (P )| 6 n(δP + 1)
δP

= n +
n

δP
.

Suppose that |V (P )| = n + n/δP . Again, we can choose a relation as (2)
involving all vertices of P ∗. Then, since we must have all equalities in (3),
we conclude that 〈v, u〉 ∈ {−1, δP } for any v ∈ V (P ) and u ∈ V (P ∗).

Set r := n/δP . Fix u ∈ V (P ∗) and call e1, . . . , en the vertices of Fu, and
f1, . . . , fr the remaining vertices. Set K := {1, . . . , n} and
J := {1, . . . , r}. For any k ∈ K, the face Conv(e1, . . . , ěk, . . . , en) lies on
exactly two facets, one of which is Fu. Hence there exists a unique ϕ(k) ∈ J

such that
Fk := Conv(fϕ(k), e1, . . . , ěk, . . . , en)

is a facet of P . This defines a function ϕ : K → J .
Since P is simplicial, e1, . . . , en is a basis of NQ; if e∗1, . . . , e

∗
n is the dual

basis in MQ, we have u = −e∗1 − · · · − e∗n. Fix k ∈ K and let uk be the
vertex of P ∗ such that Fk = Fuk

. We have

〈ei, uk〉 = −1 for all i ∈ K r {k} , and 〈ek, uk〉 = δP ,

so uk = u + (δP + 1)e∗k.
Now for any j ∈ J we have

〈fj , e
∗
k〉 =

1
δP + 1

(〈fj , uk〉 − δP ) =

{
−1 if ϕ(k) = j,

0 otherwise.

This means fj +
∑

k∈ϕ−1(j) ek = 0. Finally, we have δP = 〈fj , u〉 = |ϕ−1(j)|,
so as j varies in J , the ϕ−1(j)’s give a partition of K in r subsets of cardi-
nality δP . Setting Qj := Conv{fj , ek | k ∈ ϕ−1(j)}, we see that Q1, . . . , Qr

satisfy the properties claimed in (ii). �
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Remark 5. — Consider any polytope Q ⊂ MQ, of dimension n, con-
taining the origin in its interior. Let u be a vertex of Q and let F be the
minimal face of Q such that −u is contained in the cone over F in MQ.
Then writing −u as a linear combination of the vertices of F , we get a
relation as (2) containing u. Summing enough relations of this type, one
easily finds a relation

∑
u∈V (Q) muu = 0 with all mu’s positive integers.

It is interesting to observe that when Q is a reflexive polytope, there is
a special relation:

(4)
∑

u∈V (Q)

Vol(Fu) u = 0,

where Fu is the facet of Q∗ corresponding to u, and Vol(Fu) is the lattice
volume of Fu. This follows from a theorem by Minkowski, see [11, page 332]
and [12, Lemma 4.9].

If P is a smooth reflexive polytope, then all facets of P are standard
simplices, so (4) yields that the sum of all vertices of P ∗ is zero. This
remarkable fact can also be proven using the recent results on the factor-
ization of birational maps between smooth toric varieties, and it was used
for the proof of Theorem 3 in a previous version of this work.

Let P be a simplicial reflexive polytope. We denote by N1(XP ) the Q-
vector space of 1-cycles in XP , with rational coefficients, modulo numerical
equivalence. It is a well known fact in toric geometry (see for instance [19])
that there is an exact sequence

0 −→ N1(XP ) −→ QV (P ) −→ NQ −→ 0,

so that N1(XP ) is canonically identified with the group of linear rational
relations among the vertices of P .

Moreover, if a class γ ∈ N1(XP ) corresponds to a relation∑
v∈V (P )

mvv = 0, mv ∈ Q,

then the anticanonical degree of γ is −KXP
· γ =

∑
v∈V (P ) mv.

Proof of Lemma 2. — To show that ιXP
6 δP +1, we exhibit a rational

curve in XP whose anticanonical degree is less or equal than δP + 1. Fix
v ∈ V (P ) and u ∈ V (P ∗) such that 〈v, u〉 = δP . By Lemma 4, v is adjacent
to Fu. Let e1, . . . , en be the vertices of Fu; up to reordering, we can assume
that Conv(v, e2, . . . , en) is a facet of P . Since P is simplicial, e1, . . . , en is a
basis of NQ; if e∗1, . . . , e

∗
n is the dual basis of MQ, we have u = −e∗1−· · ·−e∗n.

TOME 56 (2006), FASCICULE 1
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Consider the relation

v +
n∑

i=1

aiei = 0,

and the corresponding class γ ∈ N1(XP ). We have

−KXP
· γ = 1 +

n∑
i=1

ai = 1 + 〈v, u〉 = 1 + δP .

Now consider the invariant curve C0 ⊂ XP corresponding to the cone over
the face Conv(e2, . . . , en). There exists b ∈ Q, b ∈ (0, 1], such that the
numerical class of C0 is bγ (see [19, § 2]). Then

−KXP
· C0 = b(δP + 1) 6 δP + 1.

Assume now that XP is smooth, and let C be an invariant curve having
minimal anticanonical degree ιXP

. The numerical class of C corresponds to
a relation f0 +

∑n
i=1 bifi = 0, where bi ∈ Z and Conv(f1, . . . , fn) is a facet

F of P (see [19, § 2]). The vertices f1, . . . , fn are a basis of N ; if f∗1 , . . . , f∗n
is the dual basis of M , then F = Fu0 with u0 = −f∗1 − · · · − f∗n. So

ιXP
= −KXP

· C = 1 +
n∑

i=1

bi = 1 + 〈f0, u0〉 > 1 + δP > ιXP
,

and ιXP
= δP + 1. �

Proof of Theorem 1. — Part (i) and the inequality in (ii) are straight-
forward consequences of Theorem 3 and Lemma 2.

Assume that ρXP
(ιXP

− 1) = n. Again using Lemma 2 and Theorem 3,
we get δP > ιXP

− 1 > 0 and

|V (P )| 6 n +
n

δP
6 n +

n

ιXP
− 1

= n + ρXP
= |V (P )|,

so ιXP
= δP +1, |V (P )| = n+ n

δP
and the characterization in Theorem 3 (ii)

holds. This means that XP is the quotient of (P δP )ρXP by a finite subgroup
G of the big torus; it is then enough to show that XP is smooth.

We keep the same notation as in the proof of Theorem 3. In order to
show the smoothness of XP , we have to show that e1, . . . , en is a basis of
N . Let w ∈ N and write w =

∑n
i=1

ti

si
ei with ti, si ∈ Z, si 6= 0, and ti, si

with no common factors for all i.
Suppose that t1 6= 0, we show that s1 = 1 (for the other indices the proof

is analogous). Consider the relation

fϕ(1) +
∑

k∈ϕ−1(ϕ(1))

ek = 0,
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and the corresponding class γ ∈ N1(XP ). Now consider the invariant curve
C ⊂ XP corresponding to the cone over the face Conv(e2, . . . , en), and
recall that Conv(e1, . . . , en) and Conv(fϕ(1), e2, . . . , en) are faces of P . Then
there exists b ∈ Q, b ∈ (0, 1], such that the numerical class of C is bγ

(see [19, § 2]). So we have

ιXP
6 −KXP

· C = b(−KXP
· γ) = b(δP + 1) = bιXP

6 ιXP
,

which gives b = 1. This is equivalent to saying that in the quotient lattice
N/N ∩ (Qe2⊕· · ·⊕Qen), the image e1 of e1 is a generator. Now if w is the
image of w, we have s1w = t1e1 with s1, t1 non zero and with no common
factors, so s1 = 1. �

Acknowledgments. I am grateful to Benjamin Nill for pointing out to
me the relation (4).
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