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GENERALIZED DESCENT ALGEBRA AND
CONSTRUCTION OF IRREDUCIBLE CHARACTERS
OF HYPEROCTAHEDRAL GROUPS

by Cédric BONNAFE & Christophe HOHLWEG (*)

WITH AN APPENDIX
by Pierre BAUMANN & Christophe HOHLWEG

ABSTRACT. — We construct a subalgebra /(W) of dimension 2 -3"~1 of the
group algebra of the Weyl group Wy, of type By containing its usual Solomon al-
gebra and the one of G,: ¥/(Wy,) is nothing but the Mantaci-Reutenauer algebra
but our point of view leads us to a construction of a surjective morphism of al-
gebras X/ (W,,) — ZIrr(W,). Jollenbeck’s construction of irreducible characters of
the symmetric group by using the coplactic equivalence classes can then be trans-
posed to Wy,. In an appendix, P. Baumann and C. Hohlweg present in an explicit
and combinatorial way the relation between this construction of the irreducible
characters of W, and that of W. Specht.

RESUME. — Nous construisons une sous-algebre ¥/(W,,) de dimension 2 - 371
de l'algébre du groupe de Weyl W,, de type B, contenant son algébre de Solo-
mon usuelle ainsi que celle de &, : E’(Wn) n’est autre que ’algebre de Mantaci-
Reutenauer mais notre point de vue nous permet de construire un morphisme
d’algebres surjectif X/ (W,,) — ZIrr(W,,). La construction de Jollenbeck des carac-
teres irréductibles de &,, a partir des classes d’équivalence coplaxique se transpose
alors & Wy,. Un appendice a cet article, écrit par P. Baumann et C. Hohlweg, donne
le lien combinatoire explicite entre cette construction des caracteres irréductibles
de Wy, et celle obtenue par W. Specht en 1932.

1. Introduction

Let (W, S) be a finite Coxeter system and let £ : W — N denote the
length function. If I C S, W =< I > is the standard parabolic subgroup

Keywords: descent algebra, hyperoctahedral group, coplactic algebra.
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132 Cédric BONNAFE & Christophe HOHLWEG

generated by I and X; = {w € W |V s € I, {(ws) > ¢(w)} is a cross-
section of W/Wj. Write x; = 3 ., w € ZW, then X(W) = ©1csZx
is a subalgebra of ZW and the Z-linear map 0 : (W) — ZIrr W, x; —
Ind%} 1 is a morphism of algebras: 3(W) is called the descent algebra or
the Solomon algebra of W [18]. However, the morphism 6 is surjective if
and only if W is a product of symmetric groups.

The aim of this paper is to construct, whenever W is of type C, a subalge-
bra X' (W) of ZW containing (W) and a surjective morphism of algebras
0 : X (W) — ZIrr W build similarly as (W) by starting with a bigger
generating set. More precisely, let (W, S,) denote a Coxeter system of
type C, and write S,, = {t,$1,...,8,_1} where the Dynkin diagram of
(W, Sy) is:

4 S1 S2 Sn—1

Let tl = t, ti = Si—lti—lsi—l (2 g ) g TL) and S;L = Sn ] {tl,...,tn}.
Let Py(S),) denote the set of subsets I of S), such that I =< I > NS, If

n

I € Py(S)), let Wi, X; and x; be defined as before. Then:

THEOREM. — X/(W),) = @1¢cp,(s,) L is a subalgebra of ZW,, and the
Z-linear map 0,, : ¥'(W,,)) —» ZIrr W,,, x5 — Ind%} 1 is a surjective mor-
phism of algebras. Moreover, Ker 8, =" ,_, Z(zx; —zp) and Q®z Ker 6,
is the radical of the Q-algebra Q ®z X/ (W,,).

In this theorem, the notation I = I’ means that there exists w € W,, such
that I’ = I, that is, W; and W;/ are conjugated. This theorem is stated
and proved in §3.3. Note that it is slightly differently formulated: in fact,
it turns out that there is a natural bijection between signed compositions
of n and Py(S],) (see Lemma 2.5). So, everything in the text is indexed
by signed compositions instead of Py(S),). It must also be noticed that,
by opposition with the classical case, the multiplication z;x; may involve
negative coefficients. Using another basis, we show that X/(W,,) is precisely
the generalized descent algebra discovered by Mantaci and Reutenauer [16].

Using this theorem and the Robinson-Schensted correspondence for type
C' constructed by Stanley [20] and a Knuth version of it given in [4], we
obtain an analog of Jollenbeck’s result (on the construction of characters
of the symmetric group [11]) using an extension 0, : Q, — ZIrt W, of 0,
to the coplactic space Q,, (see Theorem 4.14). The coplactic space refers
to Jollenbeck’s construction revised in [3].

Now, let SP = ©p>0ZW,, ¥ = @n>02/(Wn) and Q = ©,>09n. Let
0 = ®p>0b, and 0= @n>0§n. Aguiar and Mahajan have proved that SP
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GENERALIZED DESCENT ALGEBRA 133

is naturally a Hopf algebra and that ¥’ is a Hopf subalgebra [1]. We prove
here that Q is also a Hopf subalgebra of SP (containing ¥’) and that 6 and
6 are surjective morphisms of Hopf algebras (see Theorem 5.8). This gener-
alizes similar results in symmetric groups ([17] and [3]), which are parts of
combinatorial tools used within the framework of the representation theory
of type A (see for instance [21]).

In the last section of this paper, we give some explicit computations
in X/(W3) (characters, complete set of orthogonal primitive idempotents,
Cartan matrix of X/(WWa)...).

In the Appendix, P. Baumann and the second author link the above con-
struction with the Specht construction and symmetric functions
(see [14]).

Remark. — Tt seems interesting to try to construct a subalgebra >/ (W)
of ZW containing (W) and a morphism ¢’ : ¥/(W) — ZIrr W extending
0 for arbitrary Coxeter group W. But it is in general impossible to do so
in a same way as we did for type C' (by extending the generating set).
Computations using CHEVIE programs [7] show us that it is impossible to
work it in type D, and that the reasonable choices in Fy fail (we do not
obtain a subalgebral). However, it is possible to do something similar for
type Ga. More precisely, let (W, S) be of type Ga. Write S = {s,t} and let
S’ = {s,t,sts,tstst} and repeat the procedure described above to obtain a
sub-Z-module ¥'(W) of ZW and a morphism ¢’ : ¥'(W) — ZIrr W. Then
/(W) is a subalgebra of ZW, ¢’ is surjective but 8’ is not a morphism of
algebras. We have rankz ¥/(W) = 8 and rankz Ker 6’ = 2.

2. Some reflection subgroups of hyperoctahedral groups

In this article, we denote [m,n] = {i € Z | m < i < n} =
{m,m+1,...,n—1,n}, for all m < n € Z, and sign (i) € {£1} the sign
of i € Z\ {0}. If E is a set, we denote by &(E) the group of permutations
on the set E. If m € Z, we often denote by T the integer —m.

2.1. The hyperoctahedral group

We begin by making clear some notation and definitions concerning the
hyperoctahedral group W,,. Denote 1,, the identity of W,, (or 1 if no con-
fusion is possible). We denote by ¢;(w) the number of occurrences of ¢ in a
reduced decomposition of w and we define {4(w) = £(w) — £x(w).

TOME 56 (2006), FASCICULE 1



134 Cédric BONNAFE & Christophe HOHLWEG

It is well-known that W,, acts on the set I,, = [1,n] U [7, 1] by permuta-
tions as follows: t = (1, 1) and s; = (i + 1,4)(i,3 + 1) for any i € [1,n — 1].
Through this action, we have

W, ={we6&(,) |Viecl,, wi)=uw()}.
We often represent w € W, as the word w(1)w(2)...w(n) in examples.

The subgroup W5 = {w € W,, | w([1,n]) = [1,n]} of W, is naturally
identified with &,,, the symmetric group of degree n, by restriction of its
elements to [1,n]. Note that W5 is generated, as a reflection subgroup of
Wh, by Sa = {s1,--.,8n-1}-

A standard parabolic subgroup of W, is a subgroup generated by a subset
of S, (a parabolic subgroup of W, is a subgroup conjugate to some stan-
dard parabolic subgroup). Note that (W5, S5) is a Coxeter group, which
is a standard parabolic subgroup of W,,. If m < n, then S, is naturally
identified with a subset of .S,, and W,,, will be identified with the standard
parabolic subgroup of W,, generated by S,,.

Now, we set T;, = {t1,...,t,}, with ¢; as in the Introduction. As a permu-
tation of I,,, note that ¢; = (i,4). Then the reflection subgroup %,, generated
by T), is naturally identified with (Z/2Z)". Therefore W,, = W x T, is just
the wreath product of &,, by Z/2Z. If w € W,,, we denote by (wg,wr) the
unique pair in &,, x ¥,, such that w = wswy. Note that ¢;(w) = £, (wr).
In this article, we will consider reflection subgroups generated by subsets
of 8!, =S, UT,.

2.2. Root system

Before studying the reflection subgroups generated by subsets of SJ,, let
us recall some basic facts about Weyl groups of type C (see [5]). Let us
endow R™ with its canonical euclidean structure. Let (eq,...,e,) denote
the canonical basis of R": this is an orthonormal basis. If « € R™\ {0}, we
denote by s, the orthogonal reflection such that s, (a) = —a. Let

®f ={2¢; |1<i<n}U{ej+ve |ve{l,—1}and 1 <i<j<n},

o =—d} and &, = &} UD, . Then &, is a root system of type C,, and
<I>;‘L‘ is a positive root system of ®,,. By sending ¢ to sz., and s; to s¢, ., e,
(for 1 < i< n—1), we will identify W,, with the Weyl group of ®,. Then

A, ={2e1,e0 —e1,e3 —€2,...,6 —€n_1}
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GENERALIZED DESCENT ALGEBRA 135

is the basis of ®,, contained in ®;" and the subset S,, of W,, is naturally
identified with the set of simple reflections {s, | & € A,}. Therefore, for
any w € W,, we have
Uw) =12 Nw ™ (@7)];
and £(wsy) < £(w) if and only if w(a) € &, for all « € ®T.
Remark 2.1. — 1If i € [1,n — 1], then
Lws;) < l(w) < w(i) > w(i+ 1),
and, if j € [1,n], then
l(wtj) < l(w) < w(j) <O0.
Therefore, we deduce from the strong exchange condition (see [10, §5.8])

(2.2) t(w) = [{i € [L,n] | w(i) < O}].

2.3. Some closed subsystems of @,

Consider the subsets {s1,t1} and {s1,t2} of S}, (n > 2). It is readily seen
that these two sets of reflections generate the same reflection subgroup of
W,,. This lead us to find a parametrization of subgroups generated by a
subset of S7,.

A signed composition is a sequence C' = (cy, .. ., ¢, ) of non-zero elements
of Z. The number r is called the length of C. We set |C| = >_, |¢;]. If
|C| = n, we say that C is a signed composition of n and we write C [=n.
We also define C* = (|cy],...,|c ) IEn, C7 = —C* and C = —C. We
denote by Comp(n) the set of signed compositions of n. In particular, any
composition is a signed composition (any part is positive). Note that

(2.3) | Comp(n)| = 2.3""1.

Now, to each C = (cy,...,¢.) |=n, we associate a reflection subgroup
We of W, which is isomorphic to W,, x ... x W, . We proceed as follows:
for 1 <i<r, set

[(Z) _ I(Z) if ¢; <0,
¢ I“) U—I3) ife; >0
C,+ 1 )

where IéJr [len] + - +\ci,1|+1,|cl|—|—-~-+|ci|] Then

We={weW, |V1<i<r, wI) =1}

TOME 56 (2006), FASCICULE 1



136 Cédric BONNAFE & Christophe HOHLWEG

is a reflection subgroup generated by

Sc={sp € Sp [VI<i<rp#|al+ - +]al}
U {tiesjetiesal+1 € Tnle; >0} C Sy,

Therefore, We ~ W, x- - - x W, _: we denote by (w1, ..., w,) — w1 X Xw,
the natural isomorphism W, x --- x W, — We.

Example. — The group W(§,3,T,§,1) ~ Gy X W3 X 61 x &3 x Wy is gen-
erated, as a reflection subgroup of Wiy, by S@ 3131) = {s1}U{ts, 83,84} U
{87, 58} U {tlo} C SiO

The signed composition C' is said semi-positive if ¢; > —1 for every
i € [1,7]. Note that a composition is a semi-positive composition. We say
that C' is negative if ¢; < 0 for every i € [1,7]. We say that C is parabolic if
¢; < 0for i € [2,r]. Note that C is parabolic if and only if W is a standard
parabolic subgroup.

Now, let S, = S), NWe, @ = {a € ®,, | 5o € W} and O = N @},
Then W is the Weyl group of the closed subsystem ®¢ of ®,,. Moreover,
@JCT is a positive root system of &~ and we denote by Ac the basis of
@ contained in ®F,. We have Sc = {s, | @ € Ac}. Then (W, Sc) is a
Coxeter group.

Let fc : We — N denote the length function on We with respect to
Sc. Let we denote the longest element of W with respect to £¢. If C
is a composition, we denote by oc the longest element of &¢ = W with
respect to £ (which is the restriction of £ to &¢). In other words, oc = wg.
In particular, w,, (resp. o,,) denotes the longest element of W,, (resp. &,,).

Write Tec =T, N We and €¢ = T,, N W, then observe that

(2.4) We = WC— X Tc = 6c+ X SC.

Remarks.

(1) This class of reflection subgroups contains the standard parabolic
subgroups, since S, C S/. But it contains also some other sub-
groups which are not parabolic (for instance, consider the sub-
group generated by {¢1,t2}). In other words, it may happen that
Ac ¢ A,. In fact, A¢ C A, if and only if Wy is a standard
parabolic subgroup of W,,.

(2) If We is not a standard parabolic subgroup of W,,, then £¢ is not
the restriction of £ to W¢.

We close this subsection by an easy characterization of the subsets S¢.:
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GENERALIZED DESCENT ALGEBRA 137

LEMMA 2.5. — Let X be a subset of S},. Then the following are equiv-
alent:

(1) <X >nS, =X.

(2) X NT, is stable under conjugation by < X >.

(3) X NT, is stable under conjugation by < X N Sy >.

(4) There exists a signed composition C' of n such that X = S..

COROLLARY 2.6. — Let w € W,, and let C'|=n. If ¥S;, C S],, then
there exists a (unique) signed composition D such that “S;, = ST,.

Proof. — Indeed, “S,NT,, = “(SxNT,) and “S;NSH = “(SeNSE). O

2.4. Orbits of closed subsystems of &,

In this subsection, we determine when two subgroups W and Wp of W,
are conjugated. A bipartition of n is a pair A = (AT, A7) of partitions such
that |A| := |AT| 4+ |A\7| = n. We write A I n to say that A is a bipartition
of n, and the set of bipartitions of n is denoted by Bip(n). It is well-known
that the conjugacy classes of W,, are in bijection with Bip(n) (see [8, 14]).
We define \ as the signed composition of n obtained by concatenation of
At and —A~. The map Bip(n) — Comp(n), X — A is injective.

Now, let C be a signed composition of n. We define A(C') = (AT, A7)
as the bipartition of n such that A™ (resp. A7) is obtained from C by
reordering in decreasing order the positive parts of C' (resp. the absolute
value of the negative parts of C). One can easily check that the map

A : Comp(n) — Bip(n)

is surjective (indeed, if A € Bip(n), then A(A) = A\) and that the following
proposition holds:

ProproOSITION 2.7. — Let C, D |=n, then W and Wp are conjugate in
W, if and only if \(C') = A(D). If ¥ is a closed subsystem of ®,,, then there
exists a unique bipartition A of n and some w € W,, such that ¥ = w(®jy).

The above proposition gives a classification of W-orbits of closed sub-
systems of ®,, in terms of bipartitions. However, this does not give the
classification of W-conjugacy classes of reflection subgroups of W,, (for in-
stance, the subgroup of type D, is not in this list).

Let C, D |=n, then we write C C D if W C Wp. Moreover, if C, C' C D
and if We and Wer are conjugate under Wp, then we write C =p C'.

TOME 56 (2006), FASCICULE 1



138 Cédric BONNAFE & Christophe HOHLWEG

2.5. Distinguished coset representatives

Let C|=n, then
Xe={zeW, |VweWg, lzw) > {(x)}

is a distinguished set of minimal coset representatives for W, /We (see
proposition below). It is readily seen that

Xo = {weW,|w@®)cC oy}
= {weW,|VacAg, wl)ed}}.

Finally
Xoe={weW, |VreSec, l{(wr)>{l(w)}.

We need a relative notion: if D |=n such that C' C D, the set Xg = XN
Wp is a distinguished set of minimal coset representatives for Wp/We.

PROPOSITION 2.8. — Let C |=n, then:

(a) The map X¢ x Wo — W, (v, w) — zw is bijective.

(b) If C C D, then the map Xp x X5 — X¢, (z,y) — wy is bijective.

(¢) If x € X¢ and w € W, then £, (zwx1) > £, (w). Consequently,
S, N*We =6,N"Cc+.

Proof. — (a) is stated, in a general case, in [13, Lemma 1.9]. (b) follows
easily from (a). Let us now prove (c). Let x € X¢ and w € We. Let
I={iel,|w()<0}and J = {i € I, | zwz~1(i) < 0}, then ¢;(w) = |I|
and ¢;(zwz~t) = |J|, by (2.2). Now let i € I, then t; € W, so {y(xt;) >
ly(z). In other words, x(i) > 0. Now, we have zwz~!(z(i)) = zw(i). But,
w(i) < 0 and t_y () = wt;w™" € We. Therefore, z(—w(i)) = —zw(i) > 0.
This shows that x(i) € J. So, the map I — J, i — (i) is well-defined and
clearly injective, implying |I| < |J| as desired.

The last assertion of this proposition follows easily from this inequality
and from the fact that o+ = {w € We | £(w) = 0}. O

PROPOSITION 2.9. — Let C'|=n and x € X¢ be such that *S;, C S),.
Let D be the unique signed composition of n such that *S;, = St (see
Corollary 2.6). Then X¢ = Xpax.

Proof. — By symmetry, it is sufficient to prove that, if w € Xp, then
wz € Xc. Let a € ®F. Then, since z € X¢, we have z(a) € ®,F N0 =
®F. So w(z(a)) € ;f since w € Xp. So wz € Xc. O
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2.6. Maximal element in X¢o

It turns out that, for every signed composition C' of n, X contains a
unique element of maximal length (see Proposition 2.12). First, note the
following two examples:

(1) if C is parabolic, it is well-known that £ is the restriction of £ and
that, for all (z,w) € X¢ x W, we have

L(zw) = L(z) + l(w)

In particular, w,we is the longest element of X (see [8, Lemma 2.2.1]);

(2) let C be a composition of n, then W is not in general a standard
parabolic subgroup of W,,. However, since W contains ¥,,, X is contained
in G,,. This shows that

Xo = X%: XN G,
In particular, X contains a unique element of maximal length: this is
OR0C.-

Now, let k£ and [ be two non-zero natural numbers such that k 4+ = n.
Then Wi is not a parabolic subgroup of W,,. However, W, ; is a standard
parabolic subgroup of W, and Wy, ; C Wy ;. So Xy C X, 1. So, if z € Xj
and w € Wy j, then
(2.10) Lzw) = £(z) + L(w).

This applies for instance if w € Wy, C Wy, 7.
Then, we need to introduce a decomposition of X< using Proposition 2.8
(b). Write C' = (c1,...,¢) [=n. We set

vy (el FHeilscigaseeser)
Xei = X(|C1|+"'+\Cz‘71|,Ci,~-707-)'

Then the map

XC,r X e X XC72 X XC71 — Xc
(Tpy. .., 22,21) —  Zy...ToX1

is bijective by Proposition 2.8 (b). Moreover, by (2.10), we have
(2.11) Uzy ... x0x1) = L)) + - + L(z2) + £(21)

for every (x,,...,22,21) € X¢o,r X -+ X Xc2 X X¢1. For every i € [1,7],
Xc,i contains a unique element of maximal length (see (1)-(2) above). Let
us denote it by nc,;. We set:

nc ="nc,---MNc2Mc,1-
Then, by (2.11), we have

TOME 56 (2006), FASCICULE 1



140 Cédric BONNAFE & Christophe HOHLWEG

PropPOSITION 2.12. — Let C'|=n, then nc is the unique element of X¢
of maximal length.

2.7. Double cosets representatives

If C and D are two signed compositions of n, we set
Xop = X' N Xp.

PrOPOSITION 2.13. — Let C' and D be two signed composition of n
and let d € X¢p. Then:

(a) There exists a unique signed composition E of n such that S =
S, N 4SY,. It will be denoted by C N <D or D N C. We have (C'N
4Dy~ = C~ N 4D~

(b) Wen dWD = Wenap and We N dS/D = S/C’ n dWD = Sé}’ﬁdD'

(c) If w € Wenap, then £y(w) = £y(d~ wd).

(d) If w € WedWp, then there exists a unique pair (z,y) € X5 ap X
Wp such that w = xdy.

(e) Let (z,y) € X5rap X Wp, then l(zdy) > l(zg) + b(x) + ((d) +
Uys) + Le(y)-

(f) d is the unique element of WodWp of minimal length.

Proof. — (a) follows immediately from Lemma 2.5 (equivalence between
(3) and (4)).

(b) Tt is clear that Wr C We N 9Wp. Let us show the reverse inclusion.
Let w € We N Wp. We will show by induction on /;(w) that w € Wg. If
l;(w) = 0, then we see from Proposition 2.8 (d) that w € St NG pt =
G g+ by definition of E7T.

Assume now that ¢;(w) > 0 and that, if w’ € W N 9Wp is such that
i (w') < Ly(w), then w’ € Wg. Since £¢(w) > 0, there exists ¢ € [1,n] such
that w(i) < 0. In particular, ¢t; € T¢. By the same argument as in the proof
of Proposition 2.8 (d), we have that t; € ‘Wp. So, t; € Tc N Tp = Tg.
Now, let w’ = wt;. Then t; € Wg, w' € We N Wp and £(w') = £ (w) — 1.
So, by the induction hypothesis, w’ € Wg, so w € Wg.

The other assertions of (b) follow easily.

(c) Let w = 071...0; be a reduced decomposition of w with respect to
Sc. Then dYwd = (d~'oyd) ... (d " oyd). But dloyd € @' (S, N 4S),) =

h-1pnpe 80 Li(d ™ oyd) = £i(07). Since £(w) = £(01) + -+ Le(07), we see
that £;(w) > £;(d~'wd). By symmetry, we obtain the reverse inequality.

(d) Let w € WodWp. Let us write w = adb, with a € W and b € Wp.
We then write a = za’ with # € X§_.,, and @’ € Wonap. Then d~'a'd €
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GENERALIZED DESCENT ALGEBRA 141

Wi-rpnp © Wp. Write y = (d~'a’d)b. Then (z,y) € X5 ap x Wp and
w = xdy.

Now let (z/,y') € XS ap x Wp such that w = 2'dy’. Then '~ 'z
d(yy'=1)d=t. So 2’7tz € Wenap, that is aWenap = @' Wenap. So @ =
and y = y/.

(e) Let (z,y) € X§

~

x Wp. We will show by induction on ¢;(x) + ¢ (y)

ne¢D
that
Uzdy) 2 lxg) + (z) + £(d) + L(ys) + L(y).
If ¢s(2) = £:(y) = 0, then = € Xg:md(Df)’ y € 6p+ and d € Xo- p-. So,

by [8, Proposition 2.1.7], we have ¢(xzdy) = {(zs) + £(d) + £(ys), as desired.

Now, let us assume that ¢,(z) + ¢;(y) > 0 and that the result holds for
every pair (z/,y) € X5 ap X Wp such that £¢(z) + 4, (y') < €e(z) + Ci(y).
By symmetry, and using (c), we can assume that £;(y) > 0. So there exists
i € I, such that y(i) < 0. Let y' = yt;. Then t; € T, L(ys) = L(ys),
£ (y') = £:(y) — 1. Therefore, by induction hypothesis, we have

Uxdy') > l(xs) + l(x) + £(d) + L(ys) + L(y) — L.
It is now enough to show that £(zdy’t;) > £(zdy’), that is xdy’ (i) > 0. Note
that ¢/(7) > 0 and that t,,;y = y't;y'~* € Wp. So the result follows from
the following lemma:

LEMMA 2.14. — Ifd € X¢p, ifv € X[ 4, and if j € [1,n] is such that
tj € Tp, then xzd(j) > 0.

Proof. — Since t; € Wp and d € Xp, we have d(j) > 0. Two cases may
oceur. If t4;y € Te, then tqq;) = dt;d~" € Tonap. Therefore, z(d(j)) > 0
since © € X5 ap- If tyj) € Te, then z(d(j)) > 0 since z € We = S+ X
<c. O

(f) follows immediately from (e). O

Remark 2.15. — Let C and D be two signed compositions of n and let
d € Xcp. Then d=' € Xpc and, by Proposition 2.9, we have that

XcﬂdDd = Xd—ICmD.
COROLLARY 2.16. — The map X¢p — W \W,,/Wp is bijective.

Proof. — The Proposition 2.13 (f) shows that the map is injective. The
surjectivity follows from the fact that, if w € W, is an element of minimal

length in WewWp, then w € X¢op. O
COROLLARY 2.17. — If C' is parabolic or if D is semi-positive, then
Xp= [[ X&nupd.

deXep
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Proof. — It follows from Corollary 2.16 that

| Xp| = |Wa/Wpl= Y [WedWp/Wp|l= > [XErapl,
deXcp deXcp
the last equality following from Proposition 2.13 (d). So, it remains to show
that, if d € X¢p and if z € XgmdD7 then zd € Xp.

Assume that we have found s € Sp such that ¢(zds) < ¢(zd). If s € Tp,
then s = t; for some ¢ € I,,. But, by Lemma 2.14, zd(i) > 0, so ¢(zdt;) >
{(zd), contradicting our hypothesis. Therefore, s € Sp-, that is s = s; for
some i € [1,n — 1]. If C is parabolic, C N ¢D is also parabolic. Therefore,
£(xds) > £(xd) which is a contradiction, so D is semi-positive. Therefore,
we have that ¢; and t;;1 belong to Tp. Thus, by Lemma 2.14, we have
xd(i) > 0 and zd(i + 1) > 0. Moreover, since £(zds;) < ¢(xzd), we have

(%) 0<zd(i+1) < zd(3).

But, since d € Xp, we have d(i+1) > d(i). So, by Proposition 2.13 (b), we
have that ds;d~' € Scnap. Thus {(z(ds;d™")) > {(z) because z € X&)
In other words, xzd(i 4+ 1) > xd(i). This contradicts (). O

If F is a signed composition of n such that C C E and D C E, we set
XgD = Xep NWg.

Example. — It is not true in general that Xp = HdeXCD XgmdDd' This
is false, if n = k+1 with k, l > 1, C = (k,1) and D = (n). See Example 2.25

for precisions.

2.8. A partition of W,

If C =(c1,...,¢) is a signed composition of n, we set

Ac = {5)c,|+tles| | 1 € [1,7] and ¢; < 0 and ¢;41 > 0}

and Ac = S'CHAC.

As example, A1 37271) = {85,88}. Note that Ac = Ap if and only if
C = D. If we W, then we define the ascent set of w:

U (w) = {s € S, | (ws) > (w)}.

Finally, following Mantaci-Reutenauer, we associate to each element w €
W, a signed composition C(w) as follows. First, let C(w) = (c¢f,...,cF)
denote the biggest composition (for the order C) of n such that, for every
0

C*(w),+ — In 18 increasing and has constant sign.

1 <i<r, the map w:
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Now, we define v; = sign (w(j)) for j € Igl(w). The descent composition

of wis C(w) = (vicf,...,v.ch).
Example. — C(9.321.4.58.6.7) = (1,3,1,2,1,1) |=9.
—
Wy

The following proposition is easy to check (see Remark 2.1):
PROPOSITION 2.18. — If w € Wy, then U], (w) = Ac(w)-

Remark. — Mantaci and Reutenauer have defined the descent shape of
a signed permutation [16]. It is a signed composition defined similarly than
descent composition except that the absolute value of the letters in u; must
be in increasing order. For instance, the descent shape of 9.3.2.14.58.6.7 is
(1,1,1,2,2,1,1).

Example 2.19. — Let n’ be a non-zero natural number, n’ < n and
let ¢ € Z such that n —n’ = |¢|. Let w € W,, C W,, and write C(w) =
(c1,...,¢) [En. Then C (1 cyw) = (c1, ..., ¢, ¢). Consequently, if C'[=n,
an easy induction argument shows that C(n¢) = C.

We have then defined a surjective map
C : W, — Comp(n)

whose fibers are equal to those of the application U], : W,, — P(S},). The
surjectivity follows from Example 2.19. If C'|=n, we define

Yoe={weW, | Cw)=C}

W, = ]_[ Ye.

ClEn

Example 2.20. — We have Y,, = {1,,}, Ya = {opwn}, Y, 1) = {on}
and Y(1 . 1) = {wn}.

Then

First, note the following elementary facts.

LEMMA 2.21. — Let C' and D be two signed compositions of n. Then:
(a) f Ye N Xp # @, then Yo C Xp.
(b) ne € Yo and Yo C Xe.

Proof. — (a) If w € W, then w € Xp if and only if U] (w) contains S7,.
Since the map w — U], (w) is constant on Yo (see Proposition 2.18), (a)
follows.

(b) By Example 2.19, we have nc € Yo N X¢. Therefore, by (a), Yo C
Xe. |
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We then define a relation < between signed composition of n as follow.
If C, D|=n, we write C « D if Yp C X¢. We denote by < the transitive
closure of the relation «. It follows from Lemma 2.21 (a) that

(2.22) Xo = ]_[ Yp.
C«+~—D
Example 2.23. — Let w € W,,. By Remark 2.1, w € X5 if and only if
the sequence (w(1),w(2),...,w(n)) of elements of I,, is strictly increasing

(see Remark 2.1). So there exists a unique k¥ € {0,1,2,...,n} such that
w(i) > 0 if and only if ¢ > k. Note that k = £;(w). Let i1 < --- < i), be the
sequence of elements of I,, such that (w(1),...,w(k)) = (ik,...,41). Then
W =71;Ti...7; where, if 1 <i < n, we set r; = s;_1...5251t. Note that
C(w) = (k,n — k). Therefore,

Xn={ryri,...1, |0<k<nand 1 <iy <ip < -+ <ip <n}.

Note that €(ry,7i, ... 75,) = i1 +i2+ -+ +ix and be(ry,riy ... 75,) = k. We
get

Xo= [T Yen-n

0<k<n

and, for every k € {0,1,2,...,n}, we have
Yr(l?:,nfk) = {7"1'17”7;2 < Ty | 1<t <ig <+ < < TL}
This shows that (7) « (k,n — k).
PRrROPOSITION 2.24. — Let C and D be two signed compositions of n.

Then:

(a) C < C.
(b) If C C D, then C « D.
(¢) = is an order on Comp(n).

Proof. — (a) follows immediately from Lemma 2.21 (b).

(b) If C C D, then Xp C X¢. But, by Lemma 2.21 (b), we have Yp C
XD. So C «— D.

(c) Let ac = £(nc). By (a), < is reflexive. By definition, it is transitive.
So it is sufficient to show that it is antisymmetric. But it follows from
Lemma 2.21 (b) that:

o If C « D, then ap < ac.
o If C — D and if ac = ap, then C' = D.
The assertion (¢) now follows easily from these two remarks. ]

A precise description of the relation < will be given in Theorem 3.15.
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Example 2.25. — It C = (¢y, ..., ¢,) is a composition of n (not a signed
composition), we will prove that
_ C
X = H X(El7m25527m27~~;mra57‘7m7‘)
0<ma<es
0<ms<es Y(El,mg,cz7m2,...,m7,,c,,.7m,,.) -1

(€1,M2,c2—ma,.cc;Mp,Cr—my) ~ Comag,..;my?
o<m,-<c,

where 0 m,....m, € &y satisfies
/ /
O-C7m2:~~7mr(S(cl,mz,(:27m2,...,m7v,c,,.7m,,.)) C Sn

and

0C,ma,...,m, € X(q,mg,CQ—mz,...,m,,V,cr—mT) .

By an easy induction argument, it is sufficient to prove it whenever r = 2.
In other words, we want to prove that, if £ 4+ 1 =n with k, [ > 0, then

(%) X- — H X(Evl_) Y(l_f,m,l—m)a_l
" (

k,m,—m) " (k,m,l—m) = k,l,m’
0<m<l

where 0, 1.m € &, satisfies Uk,l,m(sllg,m,l—m) C S} and ok 1.m € X(km,i—m)-
But, if 0 < m < [, we set

m+i if1<i<k,
okam(i) =1 i—k ifk+1<i<k+m,
i if k+m+1<i<n,

and one can easily check that (%) holds. Moreover, since S ., ..
S;L\{Sk, 5k’+m}a we get that O’kam(S];’m’lim) C S;L and Ok,i,m € X(k,m,l—m)-

3. Generalized descent algebra

3.1. Definition

If C and D are two signed compositions of n such that C C D, we set
zg = Z w € ZWp

weXl

and
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Now, let
Y(Wp)= @ Zyb C ZWp.
ccD

Note that
' (Wp) = 2, Zal
by (2.22) and Proposition 2.24. We define
0p : X' (Wp) — ZTrr Wp
as the unique Z-linear map such that
Op(z8) = Indyy? 1¢

for every C' C D. Here, 1¢ is the trivial character of W. We denote by ep
the sign character of Wp.

Notation. — If D = (n), we set xg =zc, yg = y¢ for simplification. If
E is Z-module, we denote by QF the Q-vector space Q ®z E. We denote
by 6p q the extension of 8p to QX' (Wp) by Q-linearity.

Remark. — ¥/(W,,) contains the Solomon descent algebras of W,, and
S,,. Moreover, X' (W,,) is precisely the Mantaci-Reutenauer algebra which
is, by definition, generated by yp = yg), for all D |=n.

3.2. First properties of 0p

By the Mackey formula for the tensor product of two induced characters
and by Proposition 2.13, we have that

(3.1) On(xc)0n(xp) = Z On(Ta—10np)-
deXcp

Example 3.2. — 1If C' is parabolic or D is semi-positive, then, by Corol-

lary 2.17, we have
Tp = Z mgmdDd.
deXcp
Therefore, by Proposition 2.8 (b) and Remark 2.15, we get

Toxp = E xd_lCﬂD‘
deXcp

So zcxp € E/(VVn) and, by (3'1)7 en(meD) = en(xC)en(xD)
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Before starting the proof of the fact that ¥X'(Wp) is a subalgebra of
ZWp and that 6p is a morphism of algebras, we need the following result,
which will be useful for arguing by induction. If C' C D, the transitivity of
induction and Proposition 2.8 (b) show that the diagram

D,
Y (We) —————= ¥ (Wph)

Oc 0p

Ind%g

ZIrr We ZIrr Wp

is commutative.

Now, let pp : Wp — Gp+ be the canonical projection. It induces an
injective morphism of Z-algebras p}, : ZIrr &p+ — ZIrr Wp. Moreover,
the algebra X/(& p+ ) coincides with the usual descent algebra in symmetric
groups and is contained in X'(Wp). Also, the diagram

¥(6p+ ) ¥ (Wp)
(34) GD— eD

*
p
ZIrr GD+C—D> ZIrr Wp
is commutative.

Example 3.5. — We have y1, . 1) = Wn, Yn = WnOpn = OpWp, Yn = 1
and y(1,...1) = 0p. It is well-known [18] that y(1, 1) belongs to the classical
descent algebra of W,, and that

(a) O (W) = €.
On the other hand,
(b) 0n(1n) = 1(ny.

Also, by the commutativity of the diagram (3.4) and as above, we have

(c) On(on) = Tn,
where 7, = pies. Finally, w, is a Z-linear combination of x¢, where C

runs over the parabolic compositions of n. Therefore, by Example 3.2, we
have, for every x € ¥'(W,,),

(d) O (W) = O (W), (x) = €,0, ().
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In particular,

So we have obtained the four linear characters of W,, as images by 6,, of
explicit elements of X' (W,,).

Let degp : ZIrr Wp — Z be the Z-linear map sending an irreducible
character of Wp to its degree. It is a morphism of Z-algebras. Let
augp : ZWp — Z denote the augmentation morphism. Then the diagram

0
S (Wp) D

ZIrr Wp

augp degp

is commutative.

3.3. Main result

We are now ready to prove that ¥/(Wp) is a Z-subalgebra of ZWp and
that 0p is a surjective morphism of algebras.

THEOREM 3.7. — Let D be a signed composition of n, then:
(a) ¥ (Wp) is a Z-subalgebra of ZWp;
(b

) 6p is a morphism of algebra;
(¢) Op is surjective and Ker0p =Y ¢ crcp Z(xz8 — x8));
)

Ker0p.q is the radical of the algosci);gcéz’(WD).

Moreover, QY/(Wp) is a split algebra whose largest semisimple
quotient is commutative. In particular, all its simple modules are
of dimension 1.

(d

Proof. — We want to prove the theorem by induction on |Wp|. By taking
direct products, we may therefore assume that D = (n) or D = (n). If
D = (n), then it is well-known that (a), (b), (c) and (d) hold. So we may
assume that D = (n) and that (a), (b), (c) and (d) hold for every signed
composition D’ of n different from (n).

(a) and (b): Let A and B be two signed compositions of n. We want to
prove that x 25 € X' (W,,) and that 0, (zazp) = 0,(24)0,(zp). If A is
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parabolic or B is semi-positive, then this is just Example 3.2. So we may
assume that A is not parabolic and B is not semi-positive.
First, note that B C B and that BT is semi-positive. Therefore, by
Proposition 2.8(b) and Example 3.2, we have
$A$B:=$A$B+$g+:= 2: xdlAmB+$g+
deXA‘B-F
BT BT

= I+ E xdilAf‘lB"'xB .
deXA,B+

Assume first that BT # (n). Then, by induction hypothesis,
Bt Bt
Z xd_lAﬂB‘*'xB EE/(63+)
deXA,B+
and
Bt Bt Bt BT
ZHUD DR SV, 1 B DN HC SPNISTINC: B
deXA‘B+ dEXA,B+

Therefore, by (3.3) and (3.4), zazp € 25+X/(6p+) C ¥ (6,,) C T/'(W,)
and, by (3.3) and by the Mackey formula for tensor product, we get

On(Tazp) = Ind%;;+ ( Z Op+ (xflemB+)93+ (WE*))
de€X, py
= Ou(va)Indy”  Op:(@F )
= On(za)0n(zB),
as desired.

Therefore, it remains to consider the case where BT = (n). In partic-
ular, B = (n) or (7). Since B is not semi-positive, we have B = (7). By
Example 2.25, we have

e —acA + Z anD (opt —1)
DcA+
where ap € Z and op(Sp) C S}, and op € Xp for every D C A™.
Therefore,

—1
xAxB:xAxﬁzxAJr(xfl xA + E aprh xé (cp —1)).
DCA+

Now, W4 is a standard parabolic subgroup of Wy4+. So, by Example 3.2,
we have

TATg = Z L1 gn(a-) + Z (aD Z xd—lAmD(O'Bl —1)).

+ + A+
dex 2 Dca dexat,
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Therefore, since op(Sp) C S), and op € Xp, we have that xd—lAmDo'Bl =
%o p (a1 4nD)" So xaxp € ¥'(W,) and 0, (xaxp) = 0p(xa)0n(zp) by the
Mackey formula for tensor product of induced characters. This concludes
the proof of (a) and (b).

(c) First, let us show that 6, is surjective. Using the induction hypothesis,
the commutativity of the diagram (3.3), and the classical description of
irreducible characters of W,,, we are reduced to prove that, for every y €
Irr &, pi(x) and p%(x)en lie in the image of 6,. But it is well-known
that 65 is surjective. So the result follows from the commutativity of the
diagram (3.4) and from Example 3.5 (d).

Now, let

1= Z Z(zc — xcr).
[eNoI=2")
c=,C’
Then it is clear that I C Ker6,. Let J = ©xcpip(n)Zzs. Then X'(W,) =
I ® J and the map 6, : J — ZIrr W, is surjective. Since J and ZIrr W,
have the same rank (equal to | Bip(n)|), we get that J N Ker#6,, = 0. So
I =Kerb,.

(d) Let R = Rad(QX/(W,,)) and K = Kerb, q. Since Im(0, q) =
QIrr W, is a semisimple algebra, we get that R C K.

Now, let x : QW,, — Q be the character of the QW,-module QW,, (the
regular representation). Then, x(w) = 0 for every w # 1. Let x’ denote
the restriction of x to X/(W,,). We have x/(z¢) = x(1) for every C [=n.
Therefore, x'(x) = 0 for every x € K by (c). We fix now z € K. Then, for
every y € QX' (W,,), we have x/(zy) = 0 because zy € K by (b). Since the
QX' (W, )-module QW,, is faithful, this implies that x € R. So K C R. O

Remark. — X/'(We) =X/ (W,,) @ X/ (We,) @ --- @ X/ (W, ).

3.4. Further properties of 0p

Let 7p : ZWp — Z be the unique linear map such that 7p(w) = 0 if
w # 1 and 7p(1) = 1. Then 7p is the canonical symmetrizing form on
ZWp: in particular, the map ZWp x ZWp — Z, (z,y) — 7p(zy) is a
non-degenerate symmetric bilinear form on ZWp. We denote by (.,.)p
the scalar product on Z Irr Wp such that Irr Wp is an orthonormal basis.

The following property is a kind of “isometry property” for the morphism
0p.
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PROPOSITION 3.8. — Ifz, y € ¥/(Wp), then

mo(zy) = (0p(2),0p(y) )p

Proof. — Let C and C’ be two signed compositions of n such that C,
C’' C D. Then 7p(282L8,) = |XE..| by definition of 7. Moreover, since
Op(zc) and Op(xcr) take only rational values, we have

(6p(x8).0p(xE)))p = (Op(28)8p(2E1): lwp ) -
But, by (3.1) and by Frobenius reciprocity, we have
(0p(x&)0p(28:), wp ) p = [XEer-

So the proposition follows now from the fact that (z2)ccp generates
>(Wp). O

COROLLARY 3.9. — We have

Kerfp = {x € ¥’ (Wp) |Vy € X (Wp), mp(zy) = 0}.

Proof. — Since (.,.)p is non-degenerate on Z Irr Wp, this follows from
Proposition 3.8. ]

Write D = (dy,...,d,) and let Bip(D) denote the set of r-tuples
(A1), ---»A()) of bipartitions A = ()\z;), Apy) such that Ay =0 if d; <0
and |[\;)| = |d;| for every i € [1,r]. If X € Bip(D), we denote by C¥’ the
conjugacy class in Wp of a Coxeter element of Wy (with respect to S5).
Let f/(D denote the characteristic function of C/(D . Then fAD is a primitive
idempotent of QIrr Wp. Moreover, (f/{D)AGBip(D) is a complete family of

orthogonal primitive idempotents of Q Irr Wp. Since 6p is surjective, there
exists a family of idempotents (Ef)AeBip(D) of QX/(Wp) such that
(1) V X € Bip(D), 0p(EP) = fP.
(2) V A\ € Bip(D), A # = EPEP = EPEP = 0.
(3) > EY=1L
AeBip(D)
PROPOSITION 3.10. — Ifx € ¥/(Wp), then

E
= |Wp] Z TD :c ’\ f/\ € ZIrr Wph.
XEFD
Proof. —If f € QIrr Wp, then

f=|Wp| Z {f: f/\ ) f>\ € ZIrr Wph.

A€EBip(D) ‘ A ‘
If f = 60p(x) with x € X/(Wp), then we get the desired formula just by
applying Proposition 3.8 and the property (1) above. O
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3.5. Character table

Since all irreducible characters of Wp have rational values, the alge-
bra QIrr Wp may be identified with the Q-algebra of central functions
Wp — Q. If X € Bip(D), we denote by evf :QIrWp — Q, x — x(cP),

where ¢’ is some element of C{ (for instance, a Coxeter element of W5).

Then evP is a morphism of algebras: it is an irreducible representation
of QIrr Wp. Moreover, {evl | A € Bip(D)} is a complete set of repre-
sentatives of isomorphy classes of irreducible representations of Q Irr Wp.
Now, let QY denote the QY/(Wp)-module whose underlying vector space
is Q and on which an element x € QX/(Wp) acts by multiplication by
70(2) = (evD 0 0p)(@).

Then, by Theorem 3.7, we get:

ProPOSITION 3.11. — {Q¥ | A € Bip(D)} is a complete set of isomor-
phy classes of simple QX' (Wp)-modules. We have

Irr(QX'(Wp)) = {72 | X\ € Bip(D)}.

The character table of QYX/(Wp) is the square matrix whose rows and
the columns are indexed by Bip(D) and whose (A, u)-entry is the value of
the irreducible character 79 (7). Note that

ﬂ/\D(xﬁ)) = (Ind%’? 1ﬂ> ().

Notation. — If D = (n), we denote C2, fP, EP, P evl QP and 7P

by Cx, fx, Ex, ¢y, evy, Qx and 7y respectively.

Now, if A\, p € Bip(D), we write A C p if there exists some w € Wp such
that W5 C “Wj. By Proposition 2.7, C is a partial order on Bip(D). For
this partial order, the character table of QX'(Wp) is triangular :

PROPOSITION 3.12. — If i}’ (xf) # 0, then A C pu.

Proof. — We may, and we will, assume that D = (n). If mx(zz) # 0,
then there exists w € W,, such that weyw™! € Wj. Therefore, there exists
v € Bip(1) and w’ € W, such that w'weyw™'w'~! is a Coxeter element of
Wy. Let C denote the unique signed composition of n such that W, = W¢
and let N = X(C). Then w'wcyw *w'~! is conjugate to cy,. Therefore,
A = ). This completes the proof of the proposition. O

w'™

In the last section of this paper, we will give the character table of
X(Wa).
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3.6. Combinatorial description

In &,,, the refinement of compositions is useful to construct X from
Yp without considering subsets of Si. The aim of this subsection is to de-
scribe such a procedure in our case. Let us start with an example. Consider
C = (2,1), then the subsets of S} containing S¢ = {s1,t3} are {s1, s2,t3} =
Az {s1, b2 ts} = Ay {s1, 8, te, B3t = Ay, {s1, 52,82, t3} = Ag )
and S3 = A(z). Observe that (1,2) (which corresponds to {s2,t1,%2,t3} 2
Sc¢) is not obtained. Here, we define a procedure which give (2,1), (1,1,1),
(1,2) and (3) from (2,1), without obtaining (1,2).

Let C = (¢1,...,ck) |=n, we write:

e CZD if D = (a1,b1,as,ba,...,a5,b;) =n is such that for all
i € [1,k] we havela;| + |bi] = |cil; a; = ¢ (hence b; = 0) if
¢i > 0;a; <0 < b if ¢ < 0 (remove the 0 from the list
(a1,b1,a2,ba,...,a,by)). That is, D is obtained from C by break-
ing negative parts operations.

o O D if O is finer than D len, that is, D can be obtained from
C by summing consecutive parts of C' having the same sign (refine-
ment operations).

Example 3.13. — Let C = (1,2,1), then
{D\|:4|CiD}

— {(1,2,1), (1,1,1,1),(1,1,1,1),(1,2,1),(1,2,1), (1,2, 1)}.

Remark 3.14. — Let C, D |=n, then we have C' « D if and only if S¢ C
Ap. We deduce easily from definitions, Lemma 2.21 and Example 2.23 the
following properties for any i € [1,k — 1]:

e if signc; = signc;y1, then
R
C:(Cl,...7C¢,C¢+1,...,Ck)<—(cl,...,Ci+C¢+1,...,Ck):D7

and this means that Ap = Ac @ {s|cl|+.4.+|ci|};
e if ¢;,c;11 <0, then

B
C=(c1, - yCiyCit1y---sck)—(c1,. .y +1,1,¢41,...,c) =D
(remove the 0 from the list), and this means that

Ap = Ac W {tie,|4tfer]} 5
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e if ¢; <0 and ¢;y1 > 0, then
C= (cl,...,ci,ci+1,...,ck)<i(cl,...,cz-+1,1,ci+1,...,ck) =D
(remove the 0 from the list), and this means that
Ap W {sje; 1 tleit ) = Ac W {Tey 1 tiea }
Moreover, as s, |+...4|c,| & Sc, we have S¢ C Ap, that is, C' « D;
e finally, if ¢; < 0, then Ci(cl, e+ 1,1,¢41,...,0) =D and
C’i(cl,...,ci +2,2,¢i41,...,c1) =D’
(remove the 0 from the list), and this means that
Ap = Ap W {tjc, | 4ticy) }-
Hence Sc € Ap C Ap.
In all these cases, we have C' «— D.

THEOREM 3.15. — Let C, D I n, then C «— D if and only if there is
FE |=n such that c2 g Dp. Moreover, E is uniquely determined.

Proof. — Suppose that E exists, then it is easy to check (using Re-
mark 3.14 and induction) that S¢ C Ag C Ap, which implies C « D.

Now, suppose that C «— D. As S¢ C Ap, it is easy to construct a
unique E |=n such that AgNT,, = ApNT, and clE (hence C «— B). It
remains to show that E<iD, that is, to show that AgNS; C ApNS;. Let
s; € ApN Sy, then either j € [[e|+ -+ [cimi|+1,... e |+ + || — 1]
hence s; € S C Ap; or j =|ci| + -+ |¢;| and ¢; < 0 and ¢;41 > 0 by
definition. But refinement operations do not act on parts having not the
same sign, that is, s; € Ap. O

Example 3.16. — Consider the signed composition C' = (1,2,1) . Then
we obtain from Theorem 3.15 and Example 3.13

Xazn =YaznUYusUYaiinU YaiiyUYainU YanyUYs
UYaz1)U YaeUYsyUYas UYy.
4. Coplactic space
4.1. Robinson-Schensted correspondence for Wp

In [20], the author defined a bijection between W,, and a certain set of
bitableaux, which sounds like a Robinson-Schensted correspondence. Let
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us recall here some of his results. A bitableau is a pair T = (T+,T7)
of tableaux. The shape of T is the bipartition (AT, A7), where AT is the
shape of " and A~ is the shape of T~: it is denoted by shT. We note
|T'| = |shT|. The bitableau T is said to be standard if the set of numbers
in TT and T~ is [1,m], where m = |T|, and if the fillings of T and T~
are increasing in rows and in column.

Let D|=n. Write D = (dy,...,d,) and denote by SBT (D) the set of
r-tuples T = (T1,...,T,) of bitableaux T; = (7;7,7;") such that |T;| =
\d;|, T, = 0 if d; < 0, T;" and T; are standard and the fillings of 7"
and T; are exactly the numbers in Ig?+ = [ldi| + -+ |diza]| + 1, |d1| +
-+ =+ |d;]]. The shape of T, denoted by shT, is the r-tuple of bipartitions
(shTh,...,shT,). It T € SBT (D), then shT € Bip(D). If X € Bip(D), we
denote by SBTY the set of elements T' € SBT (D) such that shT = \. In
[20], the author defined a bijection (which we call generalized Robinson-
Schensted correspondence)

0 :Wp — {(P,Q) € SBT(D)x SBT(D) | shP =shQ}
w — (Pp(w),Qp(w)).

Note that, in [20] (see also [4, Section 3]), the bijection has been defined
only for D = (n). It is not difficult to deduce from this the bijection 7p

for general D. To this bijection is associated a partition of W,, as follows:
if Q € SBT (D), we set

Z8 ={w e Wp | Qp(w) = Q}.
Then

wp= [ 25
QESBT (D)

4.2. Properties

First, note that the bijection 7p satisfies the following property: if w €
W, then

(4.1) mp(w™) = (Qp(w), Pp(w)).
In particular, if Q and Q' are two elements of SB7 (D), then

1 if shQ =sh@’,

4.2 ZEn(ZE) Y =
(42) | @ (Q) | 0 otherwise.
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Remark. — 75 is the usual Robinson-Schensted correspondence. For
simplification, we denote by Zg = Zg) if @ € SBT (n).

In [4, Section 3], the authors give another way to define the equiva-
lence relation associated to this partition which looks like coplactic equiv-
alence or dual-Knuth equivalence. If w € Wp, let Dj,(w) denote the set
{s € S | l(ws) < L(w)}. If w, w' € Wp, we write w —p w' if w'w™! €
Sp- C Si={s1,...,8n-1} and Dp(w™?t) ¢ Dp(w'~!) and D (w'~1) ¢
D, (w™1). Note that the relation —p is symmetric. We denote by ~p the
reflexive and transitive closure of —p. It is an equivalence relation, called
the coplactic equivalence relation. The equivalence classes for this relation
are called the coplactic classes of Wp. We denote by Cop(Wp) the set of
coplactic classes for the relation ~p.

By [4, Proposition 3.8], we have, for every w, w’ € Wp,

(4.3) w~pw <= Qpw)=Qpw).
So Cop(Wp) = {Zg | Q € SBT(D)}.

Remark 4.4. — The relation —p has a useful combinatorial interpreta-
tion (see [4, Proof of Proposition 3.8]): w —p s;w (s; € Sp-) if and only
if:

e either sign (w(i)) # sign (w(i +1));

e or sign (w(i)) = sign (w(i + 1)), then s;w is obtained from w by a
classical dual-Knuth transformation; that is, w=!(i—1) or w=1(i+2)
lie between w ™! (i) and w=!(i + 1).

PROPOSITION 4.5. — Let w,w’ € Wp, then
w ~p w' = Dp(w) = Dp(w').

Proof. — We may, and we will, assume that D = (n). If Tj is a Young
tableau, let D(Ty) = {s, € Sz | p+1 lies in a row above the row containing
p}. Let 'Ty denote the transposed tableau of T. If T = (T+,T7) is a
standard bitableau, we set

D(T)={t,lpeT }W{sp|peTT and p+1€ T }wD(TT)wD('T™).

Then it is easy to check that D!, (w) = D'(Q(w)). This completes the proof
of the proposition. a

Example 4.6. — Let

-

9 . 23‘5‘) € SBT(9).

‘OO@H
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Then
D’(T) = {517837567887t27t33t4at5}-

Remark 4.7. — Using Proposition 4.5, we may assign a signed com-
position C(Q)|=n to any standard bitableau @ € SBT (n) by setting
C(Q) = C(w) for any w € W, such that Q(w) = Q. One can deter-
mine C(Q) directly from @ thanks to the following procedure, which is a
combinatorial translation of the proof of Proposition 4.5. First one looks
for maximal subwords j j+1j74+2...k of 123...n such that

e either the numbers j, j+1, 742, ..., k can be found in this order in
Q% when one goes from left to right (changes of rows are allowed)

e or they can be found in this order in @~ when one goes from top
to bottom (changes of column are allowed).

The word 1 2 3...n is then the concatenation of these maximal subwords,
and the signed composition C(Q) is the sequence of the lengths of these
subwords, adorned with a minus sign if the letters of the subword can be
found in Q™. As an example, consider Q = (Q*, Q™) with

1[2]6[7]8[13 ‘214‘
Q" =[91112 and Q*:K
o 15

The partition of 1 2...14 15 in maximal subwords is 12345678 |9
10 11 12 13 | 14 15, from what we can deduce that C(Q) = (2,3,3,1,4,2).
Therefore, we have by definitions

Xo = ]_[ Zgo.

C—C(Q)

PROPOSITION 4.8. — Let C, D |=n such that C C D. Let w, w' € W¢
and z, ¥’ € XZ, then:
(a) If w ~c w', then wr=! ~p w'z~1.
(b) If zw ~p a'w’, then w ~¢ w'.
(¢) If w ~¢ w', then wow ~¢c wew' and wwe ~c Wwe.

Proof. — (c) is clear. Let us now prove (a). We may assume that
w —c w'. But De(w™!) € Dp(zw™?) and De(w'™t) € Dp(zw'™t). So
wr™t —p w'zL.

We now prove (b). If W is a standard parabolic subgroup of Wp, and
using the fact that coplactic classes are left cells for a particular choice of

parameters [4, Theorem 7.7], then (b) follows from [6]. Therefore, by taking

TOME 56 (2006), FASCICULE 1



158 Cédric BONNAFE & Christophe HOHLWEG

direct products and by arguing by induction on |XZ|, we may now assume
that D = (n) and C = (k,l) with k, I > 1 and k+1 =n.

Let us start by proving (a). We may assume that w —¢ w’. But
De(w™t) € Dp(rw=!) and De(w'=1) C Dp(aw'~1). So war™! —p w'z~ .

Let us now prove (b). We may assume that zw —p z'w’. Let Q =
Q- (w) = Qo (w'). From Remark 4.4, we have two cases: either 2w’ is ob-
tained from zw by a dual-Knuth relation, or z’w’ = s;zw and sign (zw(i)) #
sign (zw(i + 1)). In the first case, observe that, for any i € [1,k — 1] and
ielk+1,k+1—-1], zw(k) < zw(k + 1) if and only if w(k) < w(k + 1),
since © € X1 = X((;)l—) C W;. Then we conclude by Remark 4.4 (which is
exactly the result of Lascoux and Schiitzenberger on the shuffle of plactic
classes [12]).

In the second case, observe that, for any k € [1,n],

(%) sign (w(k)) = sign (zw(k)) = sign (s;zw(k))
since X1y = X((g)—) C Wy and s; € S. If s;2 = 2/, then w = w’ and the
result follows. If s;z = xs;, with s; € Sz ;) (by Deodhar’s Lemma), then

x’ = x. Therefore w’ = s;w, by (x) and Remark 4.4. So w —¢ w'. O

4.3. Coplactic space

Let D=n. If Q € SBT (D), we set

25: Z w € ZWhp.

weZg
Now, let
Qp = @ Zzg C ZWp
QESBT (D)
and
Q= & Z(zg — zg,) C 9p.
Q.Q'€SBT(D)
sh Q=sh Q’

Then, by Proposition 4.5, we have
(49) E/(WD) C 9Qp.

o . . . . l .
The next proposition justifies the notation Qz:

PROPOSITION 4.10. — QF ={x € Qp |V y € Qp, mp(zy) = 0}.
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Proof. — Let @, ={z € Qp | Vy € Op, Tp(zy) = 0}. Let Q and @’

be elements of SBT (D). Then, by (4.2), we have

1 if shQ =sh@Q’
4.11 o (2828) = ’
( ) ol Qe ) {0 otherwise.
This shows in particular that Qll) C 9.

Let us now prove that Q, C Qﬁ. Now, since Qp/ Qﬁ is torsion free, it is
sufficient to prove that dimg Q@ < dimgq QQ%. But, by construction, we
have dimg QQp — dimg QQ% = | Bip(D)|. Moreover, by Proposition 3.8,
we have dimqg QQp — dimg QQ/, > |Irr Wp| = | Bip(D)]. O

The next lemma is a generalization to our case of a result of Blessenohl
and Schocker concerning the symmetric group [3].

PROPOSITION 4.12. — We have Qp = ¥'(Wp) + QF and ¥'(Wp) N
1 _
Q —KGI‘GD.

Proof. — Let us first prove that Qp = X/(Wp) + Q7. For this, we may,
and we will, assume that D = (n). We first need to introduce an order
on bipartitions of n. We denote by <_ the lexicographic order on Bip(n)
induced by the following order on I,,:

I<51§<51~-~<Slﬁ<511<512<51'~<51n.

If X is a bipartition of n, we denote by Qx = Q(n5). If A = (AT, A7), then it
is easy to check that sh @y = (AT, *A™) = A\*, where ‘A~ is the transpose of
the partition A, and, using Remark 4.7, that @) is obtained by numbered

Qj (resp. 'Qy ) the first column first, then the second one and so on. Now,
let @ € SBT (n). Then:

LEMMA 4.13. — Assume that Zg C X5, then X <q (shQ)*. Moreover,
if sh@Q = X\*, then Q = Q.

Proof. — First, we easily check (using Remark 4.7), that A(C(Q)) <
(sh @Q)* with equality if and only if @ = Q.

Then, observe (using Theorem 3.15), that A <g )\(C(Q)) with equality
if and only if C(Q) = A. This conclude the proof. a

We are now ready to prove by descending induction on (sh@)* that
29 € X/(W,) + Q1. If (shQ)* = (n,0), then Zg = {1} =Y,,. So 29 = yn, €
(W,).

Now, assume that (shQ)* <q (n,0) and that 2o € X/(W,,) + Qf for
every Q' € SBT (n) such that (sh@)* <q (sh@')*. Let A = (shQ)*. Then
zg = zg, + (20 — 20,) € zg, + Q. So it is sufficient to prove that
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2o, € ¥'(W,) + Qi But, by Lemma 4.13 5 — 2, is a sum of z¢ with
A <lex (sh@)*. Hence, by the induction hypothesis, we have x) — 2q, €
Y(W,) + 9, as desired.

Now, let us prove that ¥'(Wp) N QF = Kerfp. The natural map
Y (Wp) — Qp/Q%F is surjective, so rankz X'(Wp) N QF = rankz Ker fp.
Since the Z-modules >'(Wp)/(X/(Wp)N Q%) and X/(Wp)/ Ker fp are tor-
sion free, it is sufficient to prove that X/(Wp) N QF is contained in Ker fp.
But this follows from Proposition 4.10 and Corollary 3.9. O

Using Proposition 4.12, we can easily extend the linear map 6p to a linear
map 0p : Op — ZIrWp. If x € Qp, write z = a + b with a € >'(Wp)
and b € Qﬁ and set

QD(J?) = OD(G,).
Then Proposition 4.12 shows that p is well-defined (that is, 6p(a) does
not depend on the choice of a and b).

THEOREM 4.14. — Let D |=n. Then:
(a) 0p 1's~ an extension of 0p to Qp;
(b) Kerfp = Q5; . .
(¢) ifz and y are two elements of Qp, then Tp(xy) = (0p(x),0p(y) )p;
(d) the diagram

9p — P 7w Wp

aug degp

is commutative;
(e) ifx € Qp, then
~ D IED
Ipl@)=wo| Y 2B o

AEBip(D) Y]

Proof. — (a) and (b) are easy. (c) follows from Proposition 3.8 and
Proposition 4.10. (d) follows from the commutativity of the diagram (3.6)
and from the fact that aug,(Q%) = 0 (indeed, if Q and @’ are two elements
of SBT (D) of the same shape, then |Z| = |Z})|). Using Proposition 4.12,
it is sufficient to prove (e) for x € X/(Wp) or x € QF. If z € ¥/(Wp),
this follows from Proposition 3.10. If z € Q3 this follows from Proposi-
tion 4.10. |
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Remark. — In the theorem, the case D = (1) is precisely the symmetric
group case.
COROLLARY 4.15. — If6 is an extension of 0 to the Qp such that, for

all z and y in Qp, 7p(zy) = (0(x),0(y) ) p, then § = Op.

Proof. — Assume that 6 is an extension of 0 to Qp such that 7p (xy) =
(0(x),0(y))p for all z and y in Qp. Then, if x € QF and x € ZIrr Wp,
then there exists y € Qp such that 0p(y) = x. So

(x,0(x))p = (0(y),0(x) ) p = Tp(xy) =0

by hypothesis and by Proposition 4.10. Since (.,.)p is a perfect pairing on
ZTIrr Wp, we get that 6(z) = 0. So 0 coincides with fp on ¥'(Wp) and on

9%, s0 8 = Op by Proposition 4.12. O
Let A € Bip(D). Let @ € SBT (D) be of shape A. Now, let
& = 0p(2q)-

Then &) depends only on A and not on the choice of (). Moreover,
& € ZIrrWp, degpéy = |Zg| > 0 (see Theorem 4.14 (d)) and, by
Theorem 4.14 (c) and (4.11), we have (&x,&x)p = 1. This shows that
&\ € Irr Wp. Moreover, if A\ # pu, it also follows from Theorem 4.14 (c)
and (4.11) that (&x,&,)p = 0. So we have proved the following proposi-
tion:

PROPOSITION 4.16. — The map Bip(D) — It Wp, A — &, is well-
defined and bijective.

Remark 4.17. — If T = (T+,T~) € SBT(n), we denote by TV the
standard bitableau (T—,7%). If A\ = (AT,A\7) € Bip(n), we set \V =
(A7, AT) € Bip(n). In particular, shTV = (shT)".

Now, let w € W,,. Then 7, (w,w) = (P(w)Y, Q(w)"Y). Therefore, if Q €
SBT (n) then w,Zg = Zgv. This shows in particular that w,Q, = Q,
and that w, Q,LL = Q,f. Moreover,

(4.18) On(wnz) = en0n(2)

for all z € Q,,. Indeed, this equality is true if z € ¥'(W,,) by Theorem 3.7
and it is obviously true if z € Q. So we can conclude using Proposi-
tion 4.12. In particular, if A € Bip(n), then

(4.19) Ev = enéa
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Remark 4.20. — Let Q € SBT (n) be such that @~ = (). Then zg € Q5.
Therefore, Qn C 9,,. Moreover, Qﬂ{ = Qﬂ; N Qp. Therefore, it follows from
the commutativity of Diagram (3.4) that the diagram

Qﬁ( Qn

(4.21) 0 0,

ZIrr GHCL ZIrr W,

is commutative. In particular, if A = (AT, () is the shape of Q, and if we
denote by X7, the irreducible character of &,, associated to A* (apply
Proposition 4.16 with D = (1)), we have

(4.22) Ex = PhXis-

4.4. Induction

We first start by an easy consequence of Proposition 4.8.

LEMMA 4.23. — Let C, D |=n be such that C C D. Let x € Q¢. Then
(a) zBx € Qp.
(b) Ifz € QF, then z8z € OF.

Proof. — (a) By linearity, we may assume that @ = 28 with @ € SBT(C).
Then, by Proposition 4.8 (a), we have that X2 .Zg is a union of coplactic
classes. So J:gx € QOp.

(b) By linearity, we may assume that x = zg — zg, where Q, Q' €
SBT(C) and sh(Q) = sh(Q'). We denote by ¢ : Z§ — Z§, the unique
bijection such that P (¢(w)) = Pe(w) for every w € ZS.

Then z8x = z&. ZwEZS (w —(w)). But, if a € XF and w € 287 then
Pp(aw) = Pp(ap(w)) by Proposition 4.8 (b) and (4.1). We set ¢’ (aw) =
ap(w), then the map v’ : Xg.ZS — Xg.Zg, is bijective and satisfies
shQp (¥ (w)) = shQp(w) for every w € XF.Z§.

Now, let A € Bip(D) and let £y (resp. £5) be the set of w € Xg.Zg
(resp. w € Xg.ZS/) such that sh@Qp(w) = A. Then ¢’ induces a bijection
between €y and &5. Write £x = [[i_; 25, and & = H:;l Zg,i, using (a).
Then, since |Z5 | =--- =28 | = |Z5,1\ =...= |Z5w| and |E\| = |E}[, we

have 7 = r’. This shows that 2z € QF. O
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COROLLARY 4.24. — Let C, D|=n be such that C C D. Then the
diagram

22,

Qc 9p

fo O
Indyy?
ZIrrWg ———— = ZIrr Wp
is commutative.
Proof. — This follows immediately from Proposition 4.23 and from the
commutativity of the diagram (3.3). O

Now, if A\ € Bip(n), then we denote by A* the conjugate bipartition and
by x the irreducible character of W, associated to A via Clifford theory
(see [8, §5.5]). The link between the two parametrizations (the £’s and the
X’s) is given by the following result:

COROLLARY 4.25. — If )\ is a bipartition of n, then £\ = xx~-

Proof. — Write A = (AT,A\7), &k = |[AT| and [ = |[A7|. Let QT be a
standard tableau of shape AT filled with {I + 1,1+ 2,...,n} and let Q~
be a standard tableau of shape A~ filled with {1,2,...,1}. Then, by [4,
Proposition 4.8],

Zg = Xip(wiZg- x Zg+).
Therefore, by Corollary 4.24, we have
& =Indyr (Oi(wiZg) R Ok(Z5))-

Here, X denotes the (external) tensor product of characters. So, by (4.22)
and by Remark 4.17, we have

& = Indyr (piix’§+ X 6z(p7X§—)>-

The result now follows from [8, §5.5]. O

5. Related Hopf algebras
5.1. Hopf algebra of signed permutations
Consider the graded Z-module

SP = S Zan

n=0
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where Wy = 1. In [1], Aguiar and Mahajan have shown that SP has a
structure of Hopf algebra which is similar to the structure of the Malvenuto-
Reutenauer Hopf algebra on permutations [15]. Moreover, they have shown
that

Y= YW,

n>=0
is a Hopf subalgebra of SP. We revise here the definition of the product
and the coproduct on SP with our point of view.

Notation. — 1If C is a signed composition, then we denote by x¢c the
element of SP lying in ZW|¢| corresponding to the r¢ defined in §3. Sim-
ilarly, if @ is a standard bitableau, then 2 € ZW|q, | is viewed as an
element of SP.

Let (u,v) € W, x W,,, we denote u x v the corresponding element of
Wom = Wy x W, If w € Wy, ,,, we denote by (wzn)7 wg'm)) the correspond-
ing element of W,, x W,,,. We now define

UKV =Ty m(U X V) € ZWyim.
We extend * by linearity to a bilinear map SP x SP — SP.

Now, let w € W,,. Then, for each i € [0,n]|, we denote by m;(w) the
unique element of W; ,,_; such that w € m; (w)X; .. We set

A(w) = Zm(w)’(i) ®z Ti(W)(p—sy) € SP @ SP.
i=0

We extend A by linearity to a map A : SP — SP ®z SP.

Remark 5.1. — Combinatorially, we see this product as follows: let w =
wy ... w, be a word of length n in the alphabet I,,, the standardsigned
permutation is the unique element sts (w) € W,, such that

sts (w) (i) < sts (w)(j) & (w; <wj) or (w; =w; and i < j)
and  sign (sts (w)(i)) = sign (w;).
Then

UkY = g ww'
w,w’

where ww’ is the concatenation of w and w’; and the sum is taken over
all words w,w’ on the alphabet I,, such that sts (w) = u, sts (w’) = v and
alph (u) W alph (v) = [1,n] (where alph (u) = the set of absolute values of
the letters in u). For instance, 12 x 21 = 1243 and

T2,2) = Y22 T Y
= 1234 + 1324 + 1423 + 2314 + 2413 + 3412.
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Hence 12%21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421.

Remark 5.2. — For w € W,, seen as a word on the alphabet I,, and
i < j € [1,n], we denote w|[i, j] the subword obtained by taking only the
digits such that their absolute values are in [, j]. Then we see combinato-
rially the coproduct as

n

A(w) = Zle,z] ® sts (w|[i + 1,n]).

i=0

As example, consider w = 2314, then we have the following decompositions:
w™! = 3124 = 3124(1 x 123) = 1324(21 x 12) = 1234(312 x 1).
Hence
w = 2314 = (1 x 123)2314 = (21 x 12)1324 = (231 x 1)1234.
Thus
A(2314) =0 ®2314+1®123+21 ® 12+ 231 ® 1+ 2314 ® 0.

Example 5.3. — Let C and D be two signed composition. We denote
by C' U D the signed composition obtained by concatenation of C' and D.
Then

Tc*XTp = ZTCuD-

Example 5.4. — We have

n
Az,) = Z T Q7 Tn—;
1=0

n
and Azy) = Z T; @z T
i=0
We state here a result of Aguiar and Mahajan [1], with our basis con-
sisting of the z¢.

THEOREM 5.5. — The graded vector space SP, with the product % and
the coproduct A is a connected graded Hopf algebra; and Y is a Hopf
subalgebra of SP which is freely generated by elements (¥n)nez\{0} as
algebra.

If z, y € SP, we define the product zy € SP as follows: if x € ZW,, and
y € ZW,,, then xy = 0 if m # n and zy coincides with the usual product
xy in ZW, if m = n. Let 7 : SP — Z be the unique linear map which
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coincides with 7,, on ZW,,. The the map SP x SP — Z, (x,y) — 7(xy) is
a scalar product on SP. If z, y € SP, we set
To(z @y) = 7(2)7(y).
The following proposition is easily checked from definitions:
PROPOSITION 5.6. — SP is self-dual for T, that is,
7o ((u®v)A(w)) = 7((u*v)w)

for all u, v, w € SP.

5.2. The Hopf algebra of characters

We give here a short recall of a result of Geissinger [9]. Consider the
graded Z-module

CHAR = @& ZIrrW,.

n=0
If k and [ are two natural numbers, we denote by ¢ ; the canonical isomor-
phism
teg t LIrr Wy, @z ZIrr W = ZTr Wit
Let (x,v) € ZIrr Wy, x ZIrr W;. We define

xXey= Ind%’;ﬁl Lkl (X Rz 1/)) € ZIrr Wiy
Now, let x € CLqW,,. We define

n

Res(x) = Zfl -Res%’_‘ X € é ZIrtW; @z ZIrr W,,_;
i &

pard sn—1
C CHAR ®z CHAR.
We denote (-, -) the unique scalar product on CHAR which coincides with
(+,* ) on ZIrr W,, and such that ZIrr W,, and ZIrr W,, are orthogonal if
m # n. We now define (-, )g on CHAR ®z CHAR as follows: if x, X/, ¥,
' € CHAR, we set

(x®@U, X' @Y )g = (x, X" ) (¥, ¢").

Geissinger [9] has shown that CHAR with product e and coproduct Res
is a connected graded Hopf algebra. Moreover, for any x,v¢,( € CHAR,
the reciprocity law of Frobenius can be viewed as

(5.7) (X®Y,Res()g = (x 9, ().
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5.3. The coplactic algebra and a Hopf epimorphism

Let us intoduce

and
CHAR = & ZIrrW,.
0

n>

We define 0 : ¥/ — CHAR and 6 : Q — CHAR by

0= @® 0, and 0= & 0,
n=0 n>=0
The first part of the following theorem shows that Q is a generalization
of the Poirier-Reutenauer Hopf algebra of tableaux [17] to our case (see also
[3]), and the second part shows that Jollenbeck’s construction generalizes
to our case.

THEOREM 5.8. — Q is a Hopf subalgebra of SP containing Y. More-
over, § : ¥ — CHAR and 6 : Q@ — CHAR are surjective Hopf algebra

homomorphisms.

Proof. — The fact that Q is a subalgebra of SP follows from Proposi-
tion 4.23. To prove that it is a subcoalgebra, we proceed as in the proof
of the result of Poirier and Reutenauer [17], using Remark 4.4: let Z be
a coplactic class in Wy, i € [0,n] and w € Z. Write w = m;(w)z, where
r71 € X, ;. Let u € W, such that u ~ () m(w)’(i). As sign (:cflwfl(k)) =
sign (w™'(k)) and z71(l) < 7'(l + 1), for all L € [1,i — 1] and for all
L€ li+1,n—1], we easily check that (u x m;(w){,_;))® —(n) w, using Re-
mark 4.4. Let v € W,,_; such that v —,_ m(w)’(
w as above. Therefore

MY =3 ¥ (Swel X o).

weZ =0 Z;,Zn—i UEZ,; VEL i

n—iy> then (uxv)x — ()

where Z; (resp. Z,—_;) are coplactic classes in W; (resp. W, _;).

We now need to prove that 6 is an homomorphism of Hopf algebras.
We first need a lemma concerning the symmetric bilinear form g : (Q ®z
Q) x (Q®z Q) — Z, (z,y) — Te(zy). Let g = 0 @70 : Q®z Q —
CHAR @z CHAR. Then:

LEMMA 5.9. — Ker§® = 9 Qg Ker 6 + Keré@z Q is the kernel of 3.
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Proof. — By Theorem 4.14 (c), we have

Bx,y) = (0s(2),05(y) e
for all z, y € Q@ ®z Q. This proves the lemma. O

Proposition 5.6 and Lemma 5.9 show that Ker 6 is an ideal and a coideal
of Q. Since Q@ = ¥’ +Ker 0~, it is sufficient to prove that 6 is a bialgebra ho-
momorphism. First, it is clear that (z¢*zp) = (zcup). So 6 is an algebra
homomorphism. Using this last propoerty and Theorem 5.5, it is sufficient
to prove that fg(A(x,)) = Res(0(zy)) and Og(A(zr)) = Res((z5)) But
this follows easily from Example 5.4. g

6. The case n =2

In this Section, we will give a complete description of the algebra X/(13).
For simplification, we set s = s;. Note that t; = ¢ and t5 = sts. In other
words, S} = {s,t, sts}. Table I gives the correspondence between reduced
decomposition of elements of W5 and permutations of Iy (if w € W, we
only give the couple (w(1),w(2)) since it determines w as a permutation of
I,). It also gives the value of U4 (w) and C(w). Table IT gives representatives
of the conjugacy classes of Ws. Table III gives, for each signed composition
C of 2, the subgroup W¢ of W, the set S¢, the elements z¢ and yo of
ZW5 and also gives the value of Ag. Table IV provides the decomposition
of the induced characters Ind%ﬁ; 15 = 02(x;) as a combination of the &, for
A lF 2. Table V gives the character table of QX/(W3) (see Subsection 3.5).
We give in Table VI a complete set of orthogonal primitive idempotents of
QX' (W3). Table VII gives the Cartan matrix of ¥/(W2). As usual, the dots
in the tables represent the number 0. Note that

wy = stst = tsts.

We conclude the Section by a description of the algebra QX'(W5) as a
product of classical indecomposable algebras.

Convention. — For avoiding the use of too many parenthesis, we have
denoted by &5, 75 or E5 the objects &y, my or E respectively. For instance,

§1,1 = &((1),(1)) and m2 = 7((2),0) and E71 = Ep,1,1))-
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Table 6.1. Elements.

169

Table 6.2. Conjugacy classes.

w | (@),w@) | Ww) |Cw) PN
1 (1,2) {s,t,sts} | (2) (2) | st| 2
s (2,1) {t,sts} | (1,1) (L,1) wy | 1
t (1,2) {s,sts} | (1,1) (L) | ¢t | 2
st (2,1) {s,sts} | (1,1) (2) | s | 2
ts (2,1) {t} (1,1) (1,1)| 1| 1
sts (1,2) {t} (1,1)
st| o @20) 5| e
wa (1,2) 0 (1,1)
Table 6.3. Bases of ¥'(W).
C We Sc Trc Yc -AC
(2) Wy {s,t} 1 1 {s,t, sts}
(1,1) | Wy x Wy | {t, sts} 1+s s {t, sts}
(1,1) | &y x Wy | {sts} | 1+s+t+st | t+st {t}
(1,1) | Wy x &, {t} | 1+s+ts+sts|ts+sts| {s,sts}
(2) S, {s} | 1+t+st+tst tst {s, sts}
(1,1) 1 0 > wew, W wa 0
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Table 6.4. Decomposition
of induced characters.

Table 6.5. Character table
of ¥/ (Wa).

& | &1 | &1 | & | &t Tz | 11 | T3 | T | T11
O2(x2) 1 T 1
Oz(z11) || 1 1 ma |l 1 2
Op(zyr) | 1| 1| 1 mill 1] 2] 2
Oa(x3) || 1 1 ]1 w3 || 1
bo(zi) | 1| 1 | 2 | 1] 1 il 1] 2 | 4|48

Remark. — Using these tables, one can check that 02(x3)(x11) = 6 #
4 = 05(x1,1)(z3). In other words, the symmetry property (see [2]) does not

hold in our case.

Table 6.6. A complete set of orthogonal primitive idempotents.

1 1 1 1
Ey=mp— a3 — 71+ 1710 — 5T+ {20
1 1 1
Ey1 = 5 \ P11 7 5T T 5%t
1 1
E 1= 5 <=’E1,1 - 2»'31,1)
1 1
By =3 (afz - 2131,1)
1
Eig=coig
1,1 8x1,1

We will now give the Cartan matrix of ¥'(W2). If 11 € Bip(2), we denote
by II,, the character of the projective cover QX/(W>)E, of Q,. Write

HH = Z ’Y)xuﬂ-)v

WEBIpP(2)
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Then (Yau)a,ueBip(2) is the Cartan matrix of ¥'(Ws). It is given in the
following table:

Table 6.7. Cartan matrix of ¥'(W3).

Mal@ (LY 1) 2 (11
(2 |1

(1,1) | . 1

wn| . . 11

(2) 1

an| . . L

Let Ey = By 1+ Es5. Then (Es, Ey 1, Ey, E3) is a complete set of central
primitive idempotents (they are of course orthogonal). Therefore, write
A, = QY (W)E,, for w e {2,(1,1),0,2}. Then

QY (Wa) = Ay @ Ay 1 @ As & Ao,

as a sum of algebras. Morever, 4> ~ Q, A1 1 ~ Q, A5 ~ Q. On the other
hand,

Ao=QE; 19 QE; & Q(z11 — 21,1)s
as a vector space. Now, let B be the algebra

B:{(S l;) | a,b,c € Q}.

Then the Q-linear map o : Ag — B such that

o= (g o) oE=(g 1)

0 1
o(ry 7 —r1;) = ( 0 0 )

is an isomorphism of algebras. Therefore, we have an isomorphism of alge-

and

bras

QY'(Wy)~ Qe Qe Q@ B.

TOME 56 (2006), FASCICULE 1



172 Cédric BONNAFE & Christophe HOHLWEG

A. Appendix: Comparison with Specht’s construction
by Pierre BAUMANN & Christophe HOHLWEG

The present text is an appendix to the article Generalized descent algebra
and construction of irreducible characters of hyperoctahedral groups, by
Cédric Bonnafé and the second present author. Our aim here is to relate two
constructions of the irreducible characters of the hyperoctahedral groups:
the one given in that article, and Specht’s one [19]. Meant as a sequel
to Bonnafé and Hohlweg’s article, this text uses the same notations and
references.

We first recall briefly Specht’s construction, using Macdonald’s book as
a reference [14, I, Appendix B].

Specht’s construction

Let G be a finite group, let G be the set of conjugacy classes in G and
let G* be the set of irreducible characters of G. Given a conjugacy class
¢ € Gy, we denote by (. the order of the centralizer of an element of ¢. We
denote the value of a character v of G at any element of a conjugacy class
c € Gy by v(¢).

We denote the wreath product G1&,, by G,,. This wreath product is the
semidirect product G™ x &,, for the action of &,, on G™ given by

g (917 cee agn) = (90*1(1)7 v 790—1(n)),

where o € &, and (g1,-..,9,) € G™, so that we can always represent an
element in G,, as a product (g1,...,9,) 0.

Given a complex representation V of G, we construct a complex repre-
sentation 1, (V) of G,, on the space V®" by letting a product (g1,...,g,) o
act on a pure tensor v; ® - -+ ® v, € VO™ in the following way:

((917 cee 7971) U) : (Ul & Q Un) = (gl : 1)071(1)) - (gn 'Uafl(n))-

The character of 7, (V) does not depend on V but only of its character; if
p denotes the latter, then we will denote the former by 7, (p).

We let P be the set of all partitions, and we set Pg = PC . Given an
element A = (\y),ec~ in Pg, we denote by |A| the sum > [A,].

Now let Ac be the (free) ring of symmetric polynomials with complex
coeflicients. As is well-known, Ac is generated over C by a countable family
of algebraically independent elements: one can choose for generators the
family (hy)n>1 of complete symmetric functions or the family (pn)n>1 of
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power sums. On the other hand, the family of Schur functions (sx)x.p is a
basis of the vector space Ac. Following Macdonald, we denote by Ac(G)
the ring of polynomials over C in the family of variables (pn(c))
Setting

n>1l,ceG.’

) = 3 (e ()
ceG,
for any v € G*, one deduces from the invertibility of the character table of G
that Ac(G) is also the ring of polynomials in the variables (pj, (’Y))n%,weG* .
Each symmetric polynomial P € Ac can be uniquely expressed as a poly-
nomial with complex coefficients in the power sums p,; given v € G*,
we denote by P(y) the element of Ac(G) obtained by replacing the vari-
ables p, by the variables p,(v) in the expression of P. Given an element

A = (M) eq- in Pg, we set

Sx = H sx, (7)-
yeG*
The set of complex irreducible characters of GG, is a basis of the algebra
of complex-valued class functions of G,,, so that we can denote this latter
by CIrr(G,,). The direct sum

R(G) = P Ccr(G,)
n=0
can be endowed with the structure of a commutative and cocommutative
N-graded Hopf algebra, where the product is given by the induction func-
tors Indg:;’bn and the coproduct is afforded by the restriction functors

Resg"”’" [14, I, Appendix B, 4 and I, 7, Example 26]. Since Ac(G) is a

mXGn
free commutative algebra, there is a unique homomorphism of C-algebras

ch™: Ac(G) — R(G)

with the following property: for each n > 1 and each ¢ € G,, ch™ maps
the variable p,(c) to the characteristic function of the conjugacy class of
G, consisting of the products (g1, g2,...,9,) o, where the permutation
o € 6, is a n-cycle and the product g1gs - - - g, belongs to the conjugacy
class ¢. It turns out that ch™' is an isomorphism of Hopf algebra, whose
inverse will be denoted by ch. Then, using arguments of orthogonality and
integrality, it can be shown [14, I, Appendix B, 9] that the image under ch
of the irreducible characters of G,, are the elements s, where A € Pg is
such that |A| = n.

Later on, we will need to know the image under ch of characters 7, (p).
We do the computation now.
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LEMMA A.1. — Let 71,...,7s be the irreducible characters of G, let 1,
, ¢s be non-negative integers, and set p = c1y1 + -+ - + ¢s7ys. Then

3 o) = 1)

Proof. — The proof given in [14, I, Appendix B, 8] for the case where p
is irreducible can be easily adapted. Indeed in the computation that follows
Equation (8.2) in that reference, the steps that lead to the equality

S (o) _m{z S e )

n>=0 r>1  ceG.

are valid even if the character 7 is reducible. Applying this formula to the
character p, we get

> ch(malp) —eXp<Z > plepe(e )

n>=0 r>1l  ceG.

[T |oe(3%2 5 ctomto) ||

r>1l  ceG.

= H exp (Z im(%)) ] i
i=1L

r>1

= ﬁ Z hn(%‘)} Ci,

i=1 n>0

the last step in the computation coming from Newton’s formulas. (|

The comparison result

Having now recalled Specht’s construction of the irreducible characters
for the wreath product G16,, of an arbitrary finite group G by the symmet-
ric group &,,, we specialize to the case where G is the group W = Z /2Z with
two elements. The notation W, for the wreath product W&, then agrees
with its use by Bonnafé and Hohlweg. The Hopf algebra R(W) is identical
to the complexified Hopf algebra CHAR ®z C with its product e. The set

* of irreducible characters of W has two elements, namely the trivial
character 7 and the signature €. One can view an element A = (A, A;) of
Pw as a bipartition (AT, A7) by setting AT = A, and A~ = A.. As a final
piece of notation, we set A* = (A*, (A7)’) for any bipartition A = (AT, A7),
where (A—)" is the conjugate of the partition A~.
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Generalizing Poirier and Reutenauer’s work [17] for symmetric groups to
the case of W,,, we define a linear map

f:Q®zC — Ac(W)

by setting f(zé?")) = 5(sh @) for any bitableau @) € SBT (n). With all these
notations, our result can be stated as follows:

THEOREM A.2. — The following diagram of N-graded Hopf algebras

Q®zC Ac(W)

.

Y ®z C —> CHAR ®z C

is commutative. In particular ch(£y) = sy~, for any bipartition \, so that
Bonnaté and Hohlweg’s construction is equivalent to Specht’s one, up to a
relabelling.

Some further notation and a bijection will be needed for the proof. We
present them now.

Some notation and a bijection

We call quasicomposition a sequence F = (eq, €2, €3, .. .) of non-negative
integers, all of whose terms but a finite number vanish. The size |E| of
FE is the sum e + e3 + e3 + - -+ of the terms. Given a partition p and a
quasicomposition F, we denote by Tab (i, E') the set of all semistandard
tableau of shape p and weight E, that is the set of all fillings of the Ferrers
diagram of shape p with positive integers, in such a way that the numbers
are weakly increasing from left to right in the rows, strictly increasing from
top to bottom in the columns, and that there is e; times the number 1, eg
times the number 2, and so on [14, p. 5]. The set Tab (i, E') is of course

empty unless |u| = |E|. Given any quasicomposition F = (e1,eq, €3, ...),
the formula
hey hey hey -+ = |Tab (1, E)|s,,
neP
holds in Ac (see [14, I, (6.4)] for a proof).
Now we fix a positive integer n and a signed composition C = (c1,

.., ¢cg) of it. Let ¢ be the length of C. We define Comp(C) as the set
of all quasicompositions D = (dy,...,dy) such that d; = 0 if ¢; > 0 and
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0 <d; < —¢; if ¢; < 0. Given such a D, we further define two quasicompo-
sitions TC,D = (tl, ‘e ,tg) and EC,D = (61, ey 6[) by

c; ife; >0, 0 if ¢; > 0,
t; = and e; =
d; if ¢; <O0; —c; —d; if¢; <O.

The signed composition obtained by omitting the zeros in the list
(—e1,t1, —ea,ta, ..., —ep, ty)

will be denoted by B¢ p. For instance, for C' = (2,2,3,1,1,2,2,2) =15, we
can choose D = (0,0,2,0,1,0,0,0), and then T¢p = (2,0,2,1,1,2,2,0),
Ec.p =(0,2,1,0,0,0,0,2) and Be.p = (2,2,1,2,1,1,2,2,2).

Finally, given a bipartition A = (AT, A7) and a signed composition C
with |A| = |C|, we define Bitab(A, C) as the set of all standard bitableaux
@ such that sh(Q) = A\* and C «— C(Q) (see Remark 4.7).

One of the keys to the proof of Theorem A.2 is the following combina-
torial result.

ProPOSITION A.3. — Given a bipartition A and a signed composition
C with |\| = |C|, the sets Bitab(A, C') and

H Tab (/\+7 TC,D) x Tab ()\77 EC,D)
DeComp(C)

have the same cardinality.

Proof. — Let n be a positive integer, C' be a signed composition of n,
and A = (A*,;\7) be a bipartition with |A\| = n. We construct mutually
inverse bijections between Bitab(\, C) and

[l Tab(\",Tep) x Tab (A, Ec.p)
DeComp(C)
as follows.
First let (R,S) be in the second set, so that R € Tab(A*,T¢ p) and
S € Tab (A, E¢ p) for some D € Comp(C'). We put a total order on the
boxes in R and S by requiring that:

e A box is smaller than another one if the label written in it is smaller
than the one in the other.

e Given two boxes with the same label in it, a box in S is smaller
than a box in R.

e For boxes containing the same label and located in the same tableau
(R or S), boxes located south-west are smaller than boxes located
north-east.
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Then we enumerate in increasing order the boxes in R and S. Filling now
each box of R and S by its rank of appearance in the enumeration, we con-
struct a standard bitableau Q of shape A\. We then define @ as the bitableau
obtained from Q by transposing Q™ so that Q has shape \*. Comparing
this construction with the combinatorial rule in Remark 4.7 that computes
C(Q), we easily check that the signed composition Be p can be obtained
from C(Q) by refinement of the parts, so that CﬁBC’DiC(Q), which
implies @ € Bitab(\, C).

In the other direction, let @ be a given element in Bitab(\, C). From The-
orem 3.15, there exists a unique signed composition B such that
C’<iB<£C(Q)7 and we can find a (unique) element D € Comp(C) so
that B = Bg,p. Now we transpose @~ and get a bitableau Q. We con-
struct a list L = (ly,ls,...,1,) of positive integers by placing first |¢1]
times the number 1, then |co| times the number 2, and so on. Then we
substitute I; to 1, I3 to 2, and so on, in the boxes of @, and obtain in this
way a pair (R,S) of tableaux of shapes AT and A~ respectively. The fact
that Bc, DiC(Q) implies that this construction yields two semistandard
tableaux R and S with weights T p and E¢ p respectively, that is to say

(R7 S) € Tab ()\JF,TC’D) x Tab ()\7, EQD).
It is a routine task to check that the two above constructions yield mu-
tually inverse bijections between
[l Tab(\",Tep) x Tab (A, Ec.p)
DeComp(C)
and Bitab(\, C). O
We end this paragraph by an example that illustrates the constructions

needed in the proof above. We take n = 15 and choose the same signed
composition C as in the previous example, namely

C=(23231,1,2,2,2).

We choose AT = 631 and A~ = 41, so that \* = (631,2111). Starting from
the pair (R,.S) with

1[1]3]3]4]7]

R=|56|7 and 5222‘3‘8‘,

8
i L=
we construct Q = (Q+, Q_) where

: 1[2]6[7]8[13 B

Ot =l9h112 and Q_:1344\5\15\’
10 —
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whence Q = (Q*, Q™) with

_ [1[2[6]7]8 13 ) 214‘
QT =Q" =[91112 and Q*:tQ*:F
19 15

Since C(Q) = (2,3,3,1,4,2), it holds that C+«2-B<2-C(Q) with
B=(221,21,1,2,273),
which implies C' — C(Q).

In the other direction, we start from the bitableau ). We observe that
the signed composition B such that C’iB&C(Q) is B¢, p, where D is
given by D = (0,0,2,0,1,0,0,0). Now we write down the list

L=(1,1,2,2,3,3,3,4,5,6,6,7,7,8,8)
from C. Transposing the negative tableau Q~, we write down Q and sub-
stitute the elements of L to the numbers in the boxes of Q). We recover our
original pair (R, S). We easily verify that R has weight
TC,D = (27 07 2a 1) 17 27 27 O)
and that S has weight
EC,D = (Oa 27 17 07 07 Oa O? 2)

Proof of Theorem A.2
1. — We first compute the image by ch of the induced character IndW" 1
of W,,, where n is a positive integer. To do that, we construct the compleX
representation 7, (V) of W,,, where V is the left regular representation of
W = Z/2Z. Denoting by C; the trivial representation of &,, we then
observe that the isomorphism of vector spaces Ind‘g: C; = n, (V) given by
the sequence of natural identifications

Indg: C, = CW, ®ce, C1 2 C[W"] = (CW)®" = VE" =y, (V)

is compatible with the action of W,,. Since V has 7 4 ¢ for character, it
follows that Ind‘éV: 1 =n,(7 +¢). Lemma A.1 now implies that

> ch(Indd" 1) = (Zh )(Zhn(s)>.

n>=0 n>=0 n>=0

On the other side, it is easy to check that 7, (7) is the trivial character
of W,,. Therefore ch maps the trivial character Ind%: 1 of W, to hy (7). To
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comply with the philosophy used by Bonnafé and Hohlweg, we write for
any positive integer n

ch(Indy" 1) = hy(7) for '+ sign,
Pip = ch(Ind“j‘V,;l 1) = )
ch(Indd™ 1) = S0 hue(7)h—i(e) for "= sign.

2. — We now prove the equality foi = chof. Given any signed compo-
sition C' = (cy, ..., ce), there holds ¢ = @, - - Z¢,. Since 6 is a morphism
of Hopf algebras, we can write

Indyy' 1e = 0(xc) = 0(xc,) -+ O(ze,) = Tndy/" 1o .mdmj‘ 1,
and taking its image under ch,
W,
ChIndel =cho 9(1'0) = Py Pey-
The formula

$n = hi(T)hn-i(e),
k=0

valid for any positive integer n, makes possible to continue the computation:

choG(xc) = Z htl (T)'”htz(T) hﬁl (6) "'hﬁe(g)v
DeComp(C)
where the quasicompositions (¢1,...,%¢) and (e1,...,ep) appearing in the

sum are T¢, p and E¢, p respectively. We thus get, using Proposition A.3
and the decomposition of X given at the end of Remark 4.7:

chof(zc) = Z ( Z ’Tab ()ﬁ’Tc,D) ‘SH (T))

DeComp(C) \\TeP
X ( S ’Tab ()\,EC’D)‘S)\—(@)
A-eP
- ¥ > |Tab (A", Tep) x Tab (A7, Ee.p))|

(At A7)ePw \DeComp(C)
X $x+(7) sx-(€)

-y ‘Bitab(A, C’)‘s,\

AEPwW

= Z S(sh Q)

Q std. bitableau
C—C(Q)
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= > e

Q std. bitableau
C—C(Q)

= foi(zc).

Since the elements x¢ generate ¥/ ®z C as a vector space, it follows that
chof = foi.

3. — Step 2 implies that the maps f and ch 06 coincide on the image of
i in Q ®z C, because § = 6 o4. On the other hand, f and ch o § have the
same kernel, namely the graded subspace of Q whose degree n component
is the span Q;- of the elements zg) — zgf), where () and Q' are standard
bitableaux with the same shape (see Theorem 4.14). Moreover this kernel
and the image of i together span Q ®z C, because 6 is surjective (see
Proposition 4.12). It follows that f = cho 6, which completes the proof of
Theorem A.2.
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