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GENERALIZED DESCENT ALGEBRA AND
CONSTRUCTION OF IRREDUCIBLE CHARACTERS

OF HYPEROCTAHEDRAL GROUPS

by Cédric BONNAFÉ & Christophe HOHLWEG (*)

WITH AN APPENDIX
by Pierre BAUMANN & Christophe HOHLWEG

Abstract. — We construct a subalgebra Σ′(Wn) of dimension 2 · 3n−1 of the
group algebra of the Weyl group Wn of type Bn containing its usual Solomon al-
gebra and the one of Sn: Σ′(Wn) is nothing but the Mantaci-Reutenauer algebra
but our point of view leads us to a construction of a surjective morphism of al-
gebras Σ′(Wn) → ZIrr(Wn). Jöllenbeck’s construction of irreducible characters of
the symmetric group by using the coplactic equivalence classes can then be trans-
posed to Wn. In an appendix, P. Baumann and C. Hohlweg present in an explicit
and combinatorial way the relation between this construction of the irreducible
characters of Wn and that of W. Specht.

Résumé. — Nous construisons une sous-algèbre Σ′(Wn) de dimension 2 · 3n−1

de l’algèbre du groupe de Weyl Wn de type Bn contenant son algèbre de Solo-
mon usuelle ainsi que celle de Sn : Σ′(Wn) n’est autre que l’algèbre de Mantaci-
Reutenauer mais notre point de vue nous permet de construire un morphisme
d’algèbres surjectif Σ′(Wn) → ZIrr(Wn). La construction de Jöllenbeck des carac-
tères irréductibles de Sn à partir des classes d’équivalence coplaxique se transpose
alors à Wn. Un appendice à cet article, écrit par P. Baumann et C. Hohlweg, donne
le lien combinatoire explicite entre cette construction des caractères irréductibles
de Wn et celle obtenue par W. Specht en 1932.

1. Introduction

Let (W,S) be a finite Coxeter system and let ` : W → N denote the
length function. If I ⊂ S, WI =< I > is the standard parabolic subgroup

Keywords: descent algebra, hyperoctahedral group, coplactic algebra.
Math. classification: 05E15.
(*) This work was done during the time where the second author was at the Institut de
recherche mathématique avancée, Strasbourg.



132 Cédric BONNAFÉ & Christophe HOHLWEG

generated by I and XI = {w ∈ W | ∀ s ∈ I, `(ws) > `(w)} is a cross-
section of W/WI . Write xI =

∑
w∈XI

w ∈ ZW , then Σ(W ) = ⊕I⊂SZxI

is a subalgebra of ZW and the Z-linear map θ : Σ(W ) → Z IrrW , xI 7→
IndW

WI
1 is a morphism of algebras: Σ(W ) is called the descent algebra or

the Solomon algebra of W [18]. However, the morphism θ is surjective if
and only if W is a product of symmetric groups.

The aim of this paper is to construct, whenever W is of type C, a subalge-
bra Σ′(W ) of ZW containing Σ(W ) and a surjective morphism of algebras
θ′ : Σ′(W ) → Z IrrW build similarly as Σ(W ) by starting with a bigger
generating set. More precisely, let (Wn, Sn) denote a Coxeter system of
type Cn and write Sn = {t, s1, . . . , sn−1} where the Dynkin diagram of
(Wn, Sn) is:

�������� �������� �������� . . . ��������t s1 s2 sn−1

Let t1 = t, ti = si−1ti−1si−1 (2 6 i 6 n) and S′n = Sn ∪ {t1, . . . , tn}.
Let P0(S′n) denote the set of subsets I of S′n such that I =< I > ∩S′n. If
I ∈ P0(S′n), let WI , XI and xI be defined as before. Then:

Theorem. — Σ′(Wn) = ⊕I∈P0(S′n)ZxI is a subalgebra of ZWn and the
Z-linear map θn : Σ′(Wn) → Z IrrWn, xI 7→ IndW

WI
1 is a surjective mor-

phism of algebras. Moreover, Ker θn =
∑

I≡I′ Z(xI −xI′) and Q⊗Z Ker θn

is the radical of the Q-algebra Q⊗Z Σ′(Wn).

In this theorem, the notation I ≡ I ′ means that there exists w ∈Wn such
that I ′ = wI, that is, WI and WI′ are conjugated. This theorem is stated
and proved in §3.3. Note that it is slightly differently formulated: in fact,
it turns out that there is a natural bĳection between signed compositions
of n and P0(S′n) (see Lemma 2.5). So, everything in the text is indexed
by signed compositions instead of P0(S′n). It must also be noticed that,
by opposition with the classical case, the multiplication xIxJ may involve
negative coefficients. Using another basis, we show that Σ′(Wn) is precisely
the generalized descent algebra discovered by Mantaci and Reutenauer [16].

Using this theorem and the Robinson-Schensted correspondence for type
C constructed by Stanley [20] and a Knuth version of it given in [4], we
obtain an analog of Jöllenbeck’s result (on the construction of characters
of the symmetric group [11]) using an extension θ̃n : Qn → Z IrrWn of θn

to the coplactic space Qn (see Theorem 4.14). The coplactic space refers
to Jöllenbeck’s construction revised in [3].

Now, let SP = ⊕n>0ZWn, Σ′ = ⊕n>0Σ′(Wn) and Q = ⊕n>0Qn. Let
θ = ⊕n>0θn and θ̃ = ⊕n>0θ̃n. Aguiar and Mahajan have proved that SP

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 133

is naturally a Hopf algebra and that Σ′ is a Hopf subalgebra [1]. We prove
here that Q is also a Hopf subalgebra of SP (containing Σ′) and that θ and
θ̃ are surjective morphisms of Hopf algebras (see Theorem 5.8). This gener-
alizes similar results in symmetric groups ([17] and [3]), which are parts of
combinatorial tools used within the framework of the representation theory
of type A (see for instance [21]).

In the last section of this paper, we give some explicit computations
in Σ′(W2) (characters, complete set of orthogonal primitive idempotents,
Cartan matrix of Σ′(W2)...).

In the Appendix, P. Baumann and the second author link the above con-
struction with the Specht construction and symmetric functions
(see [14]).

Remark. — It seems interesting to try to construct a subalgebra Σ′(W )
of ZW containing Σ(W ) and a morphism θ′ : Σ′(W )→ Z IrrW extending
θ for arbitrary Coxeter group W . But it is in general impossible to do so
in a same way as we did for type C (by extending the generating set).
Computations using CHEVIE programs [7] show us that it is impossible to
work it in type D4 and that the reasonable choices in F4 fail (we do not
obtain a subalgebra!). However, it is possible to do something similar for
type G2. More precisely, let (W,S) be of type G2. Write S = {s, t} and let
S′ = {s, t, sts, tstst} and repeat the procedure described above to obtain a
sub-Z-module Σ′(W ) of ZW and a morphism θ′ : Σ′(W )→ Z IrrW . Then
Σ′(W ) is a subalgebra of ZW , θ′ is surjective but θ′ is not a morphism of
algebras. We have rankZ Σ′(W ) = 8 and rankZ Ker θ′ = 2.

2. Some reflection subgroups of hyperoctahedral groups

In this article, we denote [m,n] = {i ∈ Z | m 6 i 6 n} =
{m,m + 1, . . . , n − 1, n}, for all m 6 n ∈ Z, and sign (i) ∈ {±1} the sign
of i ∈ Z \ {0}. If E is a set, we denote by S(E) the group of permutations
on the set E. If m ∈ Z, we often denote by m the integer −m.

2.1. The hyperoctahedral group

We begin by making clear some notation and definitions concerning the
hyperoctahedral group Wn. Denote 1n the identity of Wn (or 1 if no con-
fusion is possible). We denote by `t(w) the number of occurrences of t in a
reduced decomposition of w and we define `s(w) = `(w)− `t(w).

TOME 56 (2006), FASCICULE 1



134 Cédric BONNAFÉ & Christophe HOHLWEG

It is well-known that Wn acts on the set In = [1, n] ∪ [n̄, 1̄] by permuta-
tions as follows: t = (1̄, 1) and si = (i+ 1, i)(i, i+ 1) for any i ∈ [1, n− 1].
Through this action, we have

Wn = {w ∈ S(In) | ∀ i ∈ In, w( i ) = w(i)}.

We often represent w ∈Wn as the word w(1)w(2) . . . w(n) in examples.
The subgroup Wn̄ = {w ∈ Wn | w([1, n]) = [1, n]} of Wn is naturally

identified with Sn, the symmetric group of degree n, by restriction of its
elements to [1, n]. Note that Wn̄ is generated, as a reflection subgroup of
Wn, by Sn̄ = {s1, . . . , sn−1}.

A standard parabolic subgroup ofWn is a subgroup generated by a subset
of Sn (a parabolic subgroup of Wn is a subgroup conjugate to some stan-
dard parabolic subgroup). Note that (Wn̄, Sn̄) is a Coxeter group, which
is a standard parabolic subgroup of Wn. If m 6 n, then Sm is naturally
identified with a subset of Sn and Wm will be identified with the standard
parabolic subgroup of Wn generated by Sm.

Now, we set Tn = {t1, . . . , tn}, with ti as in the Introduction. As a permu-
tation of In, note that ti = (i, ī). Then the reflection subgroup Tn generated
by Tn is naturally identified with (Z/2Z)n. Therefore Wn = Wn̄nTn is just
the wreath product of Sn by Z/2Z. If w ∈Wn, we denote by (wS , wT ) the
unique pair in Sn × Tn such that w = wSwT . Note that `t(w) = `t(wT ).
In this article, we will consider reflection subgroups generated by subsets
of S′n = Sn ∪ Tn.

2.2. Root system

Before studying the reflection subgroups generated by subsets of S′n, let
us recall some basic facts about Weyl groups of type C (see [5]). Let us
endow Rn with its canonical euclidean structure. Let (e1, . . . , en) denote
the canonical basis of Rn: this is an orthonormal basis. If α ∈ Rn \{0}, we
denote by sα the orthogonal reflection such that sα(α) = −α. Let

Φ+
n = {2ei | 1 6 i 6 n} ∪ {ej + νei | ν ∈ {1,−1} and 1 6 i < j 6 n},

Φ−n = −Φ+
n and Φn = Φ+

n ∪ Φ−n . Then Φn is a root system of type Cn and
Φ+

n is a positive root system of Φn. By sending t to s2e1 and si to sei+1−ei

(for 1 6 i 6 n− 1), we will identify Wn with the Weyl group of Φn. Then

∆n = {2e1, e2 − e1, e3 − e2, . . . , en − en−1}

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 135

is the basis of Φn contained in Φ+
n and the subset Sn of Wn is naturally

identified with the set of simple reflections {sα | α ∈ ∆n}. Therefore, for
any w ∈Wn we have

`(w) = |Φ+
n ∩ w−1(Φ−n )|;

and `(wsα) < `(w) if and only if w(α) ∈ Φ−, for all α ∈ Φ+.

Remark 2.1. — If i ∈ [1, n− 1], then

`(wsi) < `(w)⇔ w(i) > w(i+ 1),

and, if j ∈ [1, n], then

`(wtj) < `(w)⇔ w(j) < 0.

Therefore, we deduce from the strong exchange condition (see [10, §5.8])

(2.2) `t(w) = |{i ∈ [1, n] | w(i) < 0}|.

2.3. Some closed subsystems of Φn

Consider the subsets {s1, t1} and {s1, t2} of S′n (n > 2). It is readily seen
that these two sets of reflections generate the same reflection subgroup of
Wn. This lead us to find a parametrization of subgroups generated by a
subset of S′n.

A signed composition is a sequence C = (c1, . . . , cr) of non-zero elements
of Z. The number r is called the length of C. We set |C| =

∑r
i=1 |ci|. If

|C| = n, we say that C is a signed composition of n and we write C ||=n.
We also define C+ = (|c1|, . . . , |cr|) ||=n, C− = −C+ and C = −C. We
denote by Comp(n) the set of signed compositions of n. In particular, any
composition is a signed composition (any part is positive). Note that

(2.3) |Comp(n)| = 2.3n−1.

Now, to each C = (c1, . . . , cr) ||=n, we associate a reflection subgroup
WC of Wn which is isomorphic to Wc1 × . . .×Wcr

. We proceed as follows:
for 1 6 i 6 r, set

I
(i)
C =

{
I
(i)
C,+ if ci < 0,

I
(i)
C,+ ∪ −I

(i)
C,+ if ci > 0,

where I(i)
C,+ =

[
|c1|+ · · ·+ |ci−1|+ 1, |c1|+ · · ·+ |ci|

]
. Then

WC = {w ∈Wn | ∀ 1 6 i 6 r, w(I(i)
C ) = I

(i)
C }

TOME 56 (2006), FASCICULE 1



136 Cédric BONNAFÉ & Christophe HOHLWEG

is a reflection subgroup generated by

SC = {sp ∈ Sn̄ | ∀1 6 i 6 r, p 6= |c1|+ · · ·+ |ci|}

∪
{
t|c1|+···+|cj−1|+1 ∈ Tn | cj > 0

}
⊂ S′n

Therefore, WC 'Wc1×· · ·×Wcr
: we denote by (w1, . . . , wr) 7→ w1×· · ·×wr

the natural isomorphism Wc1 × · · · ×Wcr

∼−→ WC .

Example. — The group W(2,3,1,3,1) ' S2 ×W3 ×S1 ×S3 ×W1 is gen-
erated, as a reflection subgroup of W10, by S(2,3,1,3,1) = {s1}∪{t3, s3, s4}∪
{s7, s8} ∪ {t10} ⊂ S′10.

The signed composition C is said semi-positive if ci > −1 for every
i ∈ [1, r]. Note that a composition is a semi-positive composition. We say
that C is negative if ci < 0 for every i ∈ [1, r]. We say that C is parabolic if
ci < 0 for i ∈ [2, r]. Note that C is parabolic if and only if WC is a standard
parabolic subgroup.

Now, let S′C = S′n∩WC , ΦC = {α ∈ Φn | sα ∈WC} and Φ+
C = ΦC ∩Φ+

n .
Then WC is the Weyl group of the closed subsystem ΦC of Φn. Moreover,
Φ+

C is a positive root system of ΦC and we denote by ∆C the basis of
ΦC contained in Φ+

C . We have SC = {sα | α ∈ ∆C}. Then (WC , SC) is a
Coxeter group.

Let `C : WC → N denote the length function on WC with respect to
SC . Let wC denote the longest element of WC with respect to `C . If C
is a composition, we denote by σC the longest element of SC = WC with
respect to `C (which is the restriction of ` to SC). In other words, σC = wC .
In particular, wn (resp. σn) denotes the longest element of Wn (resp. Sn).

Write TC = Tn ∩WC and TC = Tn ∩WC , then observe that

(2.4) WC = WC− n TC = SC+ n TC .

Remarks.

(1) This class of reflection subgroups contains the standard parabolic
subgroups, since Sn ⊂ S′n. But it contains also some other sub-
groups which are not parabolic (for instance, consider the sub-
group generated by {t1, t2}). In other words, it may happen that
∆C 6⊂ ∆n. In fact, ∆C ⊂ ∆n if and only if WC is a standard
parabolic subgroup of Wn.

(2) If WC is not a standard parabolic subgroup of Wn, then `C is not
the restriction of ` to WC .

We close this subsection by an easy characterization of the subsets S′C :

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 137

Lemma 2.5. — Let X be a subset of S′n. Then the following are equiv-
alent:

(1) < X > ∩S′n = X.
(2) X ∩ Tn is stable under conjugation by < X >.
(3) X ∩ Tn is stable under conjugation by < X ∩ Sn̄ >.
(4) There exists a signed composition C of n such that X = S′C .

Corollary 2.6. — Let w ∈ Wn and let C ||=n. If wS′C ⊂ S′n, then
there exists a (unique) signed composition D such that wS′C = S′D.

Proof. — Indeed, wS′C∩Tn = w(S′C∩Tn) and wS′C∩Sn̄ = w(S′C∩Sn̄). �

2.4. Orbits of closed subsystems of Φn

In this subsection, we determine when two subgroups WC and WD of Wn

are conjugated. A bipartition of n is a pair λ = (λ+, λ−) of partitions such
that |λ| := |λ+| + |λ−| = n. We write λ 
 n to say that λ is a bipartition
of n, and the set of bipartitions of n is denoted by Bip(n). It is well-known
that the conjugacy classes of Wn are in bĳection with Bip(n) (see [8, 14]).
We define λ̂ as the signed composition of n obtained by concatenation of
λ+ and −λ−. The map Bip(n)→ Comp(n), λ 7→ λ̂ is injective.

Now, let C be a signed composition of n. We define λ(C) = (λ+, λ−)
as the bipartition of n such that λ+ (resp. λ−) is obtained from C by
reordering in decreasing order the positive parts of C (resp. the absolute
value of the negative parts of C). One can easily check that the map

λ : Comp(n) −→ Bip(n)

is surjective (indeed, if λ ∈ Bip(n), then λ(λ̂) = λ) and that the following
proposition holds:

Proposition 2.7. — Let C,D ||=n, then WC and WD are conjugate in
Wn if and only if λ(C) = λ(D). If Ψ is a closed subsystem of Φn, then there
exists a unique bipartition λ of n and some w ∈Wn such that Ψ = w(Φλ̂).

The above proposition gives a classification of Wn-orbits of closed sub-
systems of Φn in terms of bipartitions. However, this does not give the
classification of W -conjugacy classes of reflection subgroups of Wn (for in-
stance, the subgroup of type Dn is not in this list).

Let C,D ||=n, then we write C ⊂ D if WC ⊂WD. Moreover, if C, C ′ ⊂ D
and if WC and WC′ are conjugate under WD, then we write C ≡D C ′.

TOME 56 (2006), FASCICULE 1



138 Cédric BONNAFÉ & Christophe HOHLWEG

2.5. Distinguished coset representatives

Let C ||=n, then

XC = {x ∈Wn | ∀ w ∈WC , `(xw) > `(x)}

is a distinguished set of minimal coset representatives for Wn/WC (see
proposition below). It is readily seen that

XC = {w ∈Wn | w(Φ+
C) ⊂ Φ+

n }
= {w ∈Wn | ∀ α ∈ ∆C , w(α) ∈ Φ+

n }.

Finally

XC = {w ∈Wn | ∀ r ∈ SC , `(wr) > `(w)}.

We need a relative notion: if D ||=n such that C ⊂ D, the set XD
C = XC∩

WD is a distinguished set of minimal coset representatives for WD/WC .

Proposition 2.8. — Let C ||=n, then:

(a) The map XC ×WC →Wn, (x,w) 7→ xw is bĳective.
(b) If C ⊂ D, then the map XD ×XD

C → XC , (x, y) 7→ xy is bĳective.
(c) If x ∈ XC and w ∈ WC , then `t(xwx−1) > `t(w). Consequently,

Sn ∩ xWC = Sn ∩ xSC+ .

Proof. — (a) is stated, in a general case, in [13, Lemma 1.9]. (b) follows
easily from (a). Let us now prove (c). Let x ∈ XC and w ∈ WC . Let
I = {i ∈ In | w(i) < 0} and J = {i ∈ In | xwx−1(i) < 0}, then `t(w) = |I|
and `t(xwx−1) = |J |, by (2.2). Now let i ∈ I, then ti ∈ WC , so `t(xti) >
`t(x). In other words, x(i) > 0. Now, we have xwx−1(x(i)) = xw(i). But,
w(i) < 0 and t−w(i) = wtiw

−1 ∈ WC . Therefore, x(−w(i)) = −xw(i) > 0.
This shows that x(i) ∈ J . So, the map I → J , i 7→ x(i) is well-defined and
clearly injective, implying |I| 6 |J | as desired.

The last assertion of this proposition follows easily from this inequality
and from the fact that SC+ = {w ∈WC | `t(w) = 0}. �

Proposition 2.9. — Let C ||=n and x ∈ XC be such that xS′C ⊂ S′n.
Let D be the unique signed composition of n such that xS′C = S′D (see
Corollary 2.6). Then XC = XDx.

Proof. — By symmetry, it is sufficient to prove that, if w ∈ XD, then
wx ∈ XC . Let α ∈ Φ+

C . Then, since x ∈ XC , we have x(α) ∈ Φ+
n ∩ xΦC =

Φ+
D. So w(x(α)) ∈ Φ+

n since w ∈ XD. So wx ∈ XC . �

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 139

2.6. Maximal element in XC

It turns out that, for every signed composition C of n, XC contains a
unique element of maximal length (see Proposition 2.12). First, note the
following two examples:

(1) if C is parabolic, it is well-known that `C is the restriction of ` and
that, for all (x,w) ∈ XC ×WC , we have

`(xw) = `(x) + `(w)

In particular, wnwC is the longest element of XC (see [8, Lemma 2.2.1]);
(2) let C be a composition of n, then WC is not in general a standard

parabolic subgroup of Wn. However, since WC contains Tn, XC is contained
in Sn. This shows that

XC = X n̄
C

= XC ∩Sn.

In particular, XC contains a unique element of maximal length: this is
σnσC .

Now, let k and l be two non-zero natural numbers such that k + l = n.
Then Wk,l is not a parabolic subgroup of Wn. However, Wk,l̄ is a standard
parabolic subgroup of Wn and Wk,l̄ ⊂Wk,l. So Xk,l ⊂ Xk,l̄. So, if x ∈ Xk,l

and w ∈Wk,l̄, then

(2.10) `(xw) = `(x) + `(w).

This applies for instance if w ∈Wk ⊂Wk,l̄.
Then, we need to introduce a decomposition of XC using Proposition 2.8

(b). Write C = (c1, . . . , cr) ||=n. We set

XC,i = X
(|c1|+···+|ci|,ci+1,...,cr)
(|c1|+···+|ci−1|,ci,...,cr) .

Then the map

XC,r × · · · ×XC,2 ×XC,1 −→ XC

(xr, . . . , x2, x1) 7−→ xr . . . x2x1

is bĳective by Proposition 2.8 (b). Moreover, by (2.10), we have

(2.11) `(xr . . . x2x1) = `(xr) + · · ·+ `(x2) + `(x1)

for every (xr, . . . , x2, x1) ∈ XC,r × · · · ×XC,2 ×XC,1. For every i ∈ [1, r],
XC,i contains a unique element of maximal length (see (1)-(2) above). Let
us denote it by ηC,i. We set:

ηC = ηC,r . . . ηC,2ηC,1.

Then, by (2.11), we have

TOME 56 (2006), FASCICULE 1



140 Cédric BONNAFÉ & Christophe HOHLWEG

Proposition 2.12. — Let C ||=n, then ηC is the unique element of XC

of maximal length.

2.7. Double cosets representatives

If C and D are two signed compositions of n, we set

XCD = X−1
C ∩XD.

Proposition 2.13. — Let C and D be two signed composition of n
and let d ∈ XCD. Then:

(a) There exists a unique signed composition E of n such that S′E =
S′C ∩ dS′D. It will be denoted by C ∩ dD or dD ∩ C. We have (C ∩
dD)− = C− ∩ dD−.

(b) WC ∩ dWD = WC∩dD and WC ∩ dS′D = S′C ∩ dWD = S′C∩dD.
(c) If w ∈WC∩dD, then `t(w) = `t(d−1wd).
(d) If w ∈ WCdWD, then there exists a unique pair (x, y) ∈ XC

C∩dD ×
WD such that w = xdy.

(e) Let (x, y) ∈ XC
C∩dD ×WD, then `(xdy) > `(xS) + `t(x) + `(d) +

`(yS) + `t(y).
(f) d is the unique element of WCdWD of minimal length.

Proof. — (a) follows immediately from Lemma 2.5 (equivalence between
(3) and (4)).

(b) It is clear that WE ⊂WC ∩ dWD. Let us show the reverse inclusion.
Let w ∈ WC ∩ dWD. We will show by induction on `t(w) that w ∈ WE . If
`t(w) = 0, then we see from Proposition 2.8 (d) that w ∈ SC+ ∩ dSD+ =
SE+ by definition of E+.

Assume now that `t(w) > 0 and that, if w′ ∈ WC ∩ dWD is such that
`t(w′) < `t(w), then w′ ∈ WE . Since `t(w) > 0, there exists i ∈ [1, n] such
that w(i) < 0. In particular, ti ∈ TC . By the same argument as in the proof
of Proposition 2.8 (d), we have that ti ∈ dWD. So, ti ∈ TC ∩ dTD = TE .
Now, let w′ = wti. Then ti ∈WE , w′ ∈WC ∩ dWD and `t(w′) = `t(w)− 1.
So, by the induction hypothesis, w′ ∈WE , so w ∈WE .

The other assertions of (b) follow easily.
(c) Let w = σ1 . . . σl be a reduced decomposition of w with respect to

SC . Then d−1wd = (d−1σ1d) . . . (d−1σld). But d−1σid ∈ d−1
(S′C ∩ dS′D) =

S′
d−1C∩D

, so `t(d−1σid) = `t(σi). Since `t(w) = `t(σ1)+ · · ·+ `t(σl), we see
that `t(w) > `t(d−1wd). By symmetry, we obtain the reverse inequality.

(d) Let w ∈ WCdWD. Let us write w = adb, with a ∈ WC and b ∈ WD.
We then write a = xa′ with x ∈ XC

C∩dD and a′ ∈ WC∩dD. Then d−1a′d ∈
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Wd−1C∩D ⊂ WD. Write y = (d−1a′d)b. Then (x, y) ∈ XC
C∩dD ×WD and

w = xdy.
Now let (x′, y′) ∈ XC

C∩dD × WD such that w = x′dy′. Then x′−1x =
d(yy′−1)d−1. So x′−1x ∈ WC∩dD, that is xWC∩dD = x′WC∩dD. So x = x′

and y = y′.
(e) Let (x, y) ∈ XC

C∩dD×WD. We will show by induction on `t(x)+`t(y)
that

`(xdy) > `(xS) + `t(x) + `(d) + `(yS) + `t(y).

If `t(x) = `t(y) = 0, then x ∈ XC−

C−∩d(D−)
, y ∈ SD+ and d ∈ XC−,D− . So,

by [8, Proposition 2.1.7], we have `(xdy) = `(xS)+ `(d)+ `(yS), as desired.
Now, let us assume that `t(x) + `t(y) > 0 and that the result holds for

every pair (x′, y′) ∈ XC
C∩dD ×WD such that `t(x′) + `t(y′) < `t(x) + `t(y).

By symmetry, and using (c), we can assume that `t(y) > 0. So there exists
i ∈ In such that y(i) < 0. Let y′ = yti. Then ti ∈ TD, `(yS) = `(y′S),
`t(y′) = `t(y)− 1. Therefore, by induction hypothesis, we have

`(xdy′) > `(xS) + `t(x) + `(d) + `(yS) + `t(y)− 1.

It is now enough to show that `(xdy′ti) > `(xdy′), that is xdy′(i) > 0. Note
that y′(i) > 0 and that ty′(i) = y′tiy

′−1 ∈ WD. So the result follows from
the following lemma:

Lemma 2.14. — If d ∈ XCD, if x ∈ XD
C∩dD and if j ∈ [1, n] is such that

tj ∈ TD, then xd(j) > 0.

Proof. — Since tj ∈WD and d ∈ XD, we have d(j) > 0. Two cases may
occur. If td(j) ∈ TC , then td(j) = dtjd

−1 ∈ TC∩dD. Therefore, x(d(j)) > 0
since x ∈ XC

C∩dD. If td(j) 6∈ TC , then x(d(j)) > 0 since x ∈ WC = SC+ n
TC . �

(f) follows immediately from (e). �

Remark 2.15. — Let C and D be two signed compositions of n and let
d ∈ XCD. Then d−1 ∈ XDC and, by Proposition 2.9, we have that

XC∩dDd = Xd−1C∩D.

Corollary 2.16. — The map XCD →WC\Wn/WD is bĳective.

Proof. — The Proposition 2.13 (f) shows that the map is injective. The
surjectivity follows from the fact that, if w ∈Wn is an element of minimal
length in WCwWD, then w ∈ XCD. �

Corollary 2.17. — If C is parabolic or if D is semi-positive, then

XD =
∐

d∈XCD

XC
C∩dDd.
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Proof. — It follows from Corollary 2.16 that

|XD| = |Wn/WD| =
∑

d∈XCD

|WCdWD/WD| =
∑

d∈XCD

|XC
C∩dD|,

the last equality following from Proposition 2.13 (d). So, it remains to show
that, if d ∈ XCD and if x ∈ XC

C∩dD, then xd ∈ XD.
Assume that we have found s ∈ SD such that `(xds) < `(xd). If s ∈ TD,

then s = ti for some i ∈ In. But, by Lemma 2.14, xd(i) > 0, so `(xdti) >
`(xd), contradicting our hypothesis. Therefore, s ∈ SD− , that is s = si for
some i ∈ [1, n − 1]. If C is parabolic, C ∩ dD is also parabolic. Therefore,
`(xds) > `(xd) which is a contradiction, so D is semi-positive. Therefore,
we have that ti and ti+1 belong to TD. Thus, by Lemma 2.14, we have
xd(i) > 0 and xd(i+ 1) > 0. Moreover, since `(xdsi) < `(xd), we have

(∗) 0 < xd(i+ 1) < xd(i).

But, since d ∈ XD, we have d(i+1) > d(i). So, by Proposition 2.13 (b), we
have that dsid

−1 ∈ SC∩dD. Thus `(x(dsid
−1)) > `(x) because x ∈ XC

C∩dD.
In other words, xd(i+ 1) > xd(i). This contradicts (∗). �

If E is a signed composition of n such that C ⊂ E and D ⊂ E, we set
XE

CD = XCD ∩WE .

Example. — It is not true in general that XD =
∐

d∈XCD
XC

C∩dDd. This
is false, if n = k+ l with k, l > 1, C = (k, l) and D = (n). See Example 2.25
for precisions.

2.8. A partition of Wn

If C = (c1, . . . , cr) is a signed composition of n, we set

AC = {s|c1|+···+|ci| | i ∈ [1, r] and ci < 0 and ci+1 > 0}

and AC = S′C
∐

AC .

As example, A(1,3̄,1̄,2,1̄,1) = {s5, s8}. Note that AC = AD if and only if
C = D. If w ∈Wn, then we define the ascent set of w:

U ′n(w) = {s ∈ S′n | `(ws) > `(w)}.

Finally, following Mantaci-Reutenauer, we associate to each element w ∈
Wn a signed composition C(w) as follows. First, let C+(w) = (c+1 , . . . , c

+
r )

denote the biggest composition (for the order ⊂) of n such that, for every
1 6 i 6 r, the map w : I(i)

C+(w),+
→ In is increasing and has constant sign.
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Now, we define νi = sign (w(j)) for j ∈ I(i)

C+(w)
. The descent composition

of w is C(w) = (ν1c+1 , . . . , νrc
+
r ).

Example. — C(9.3̄2̄1̄.4̄.58.6̄.7︸ ︷︷ ︸
∈W9

) = (1, 3̄, 1̄, 2, 1̄, 1) ||=9.

The following proposition is easy to check (see Remark 2.1):

Proposition 2.18. — If w ∈Wn, then U ′n(w) = AC(w).

Remark. — Mantaci and Reutenauer have defined the descent shape of
a signed permutation [16]. It is a signed composition defined similarly than
descent composition except that the absolute value of the letters in ui must
be in increasing order. For instance, the descent shape of 9.3̄.2̄.1̄4̄.58.6̄.7 is
(1, 1̄, 1̄, 2̄, 2, 1̄, 1).

Example 2.19. — Let n′ be a non-zero natural number, n′ < n and
let c ∈ Z such that n − n′ = |c|. Let w ∈ Wn′ ⊂ Wn and write C(w) =
(c1, . . . , cr) ||=n′. Then C(η(n′,c)w) = (c1, . . . , cr, c). Consequently, if C ||=n,
an easy induction argument shows that C(ηC) = C.

We have then defined a surjective map

C : Wn −→ Comp(n)

whose fibers are equal to those of the application U ′n : Wn → P(S′n). The
surjectivity follows from Example 2.19. If C ||=n, we define

YC = {w ∈Wn | C(w) = C}.

Then
Wn =

∐
C ||= n

YC .

Example 2.20. — We have Yn = {1n}, Yn̄ = {σnwn}, Y(1,...,1) = {σn}
and Y(1̄,...,1̄) = {wn}.

First, note the following elementary facts.

Lemma 2.21. — Let C and D be two signed compositions of n. Then:
(a) If YC ∩XD 6= ∅, then YC ⊂ XD.
(b) ηC ∈ YC and YC ⊂ XC .

Proof. — (a) If w ∈Wn, then w ∈ XD if and only if U ′n(w) contains S′D.
Since the map w 7→ U ′n(w) is constant on YC (see Proposition 2.18), (a)
follows.

(b) By Example 2.19, we have ηC ∈ YC ∩XC . Therefore, by (a), YC ⊂
XC . �
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We then define a relation ← between signed composition of n as follow.
If C, D ||=n, we write C ← D if YD ⊂ XC . We denote by 4 the transitive
closure of the relation ←. It follows from Lemma 2.21 (a) that

(2.22) XC =
∐

C←D

YD.

Example 2.23. — Let w ∈ Wn. By Remark 2.1, w ∈ Xn̄ if and only if
the sequence (w(1), w(2), . . . , w(n)) of elements of In is strictly increasing
(see Remark 2.1). So there exists a unique k ∈ {0, 1, 2, . . . , n} such that
w(i) > 0 if and only if i > k. Note that k = `t(w). Let i1 < · · · < ik be the
sequence of elements of In such that (w(1), . . . , w(k)) = (̄ik, . . . , ī1). Then
w = ri1ri2 . . . rik

where, if 1 6 i 6 n, we set ri = si−1 . . . s2s1t. Note that
C(w) = (k̄, n− k). Therefore,

Xn̄ = {ri1ri2 . . . rik
| 0 6 k 6 n and 1 6 i1 < i2 < · · · < ik 6 n}.

Note that `(ri1ri2 . . . rik
) = i1 + i2 + · · ·+ ik and `t(ri1ri2 . . . rik

) = k. We
get

Xn̄ =
∐

06k6n

Y(k̄,n−k),

and, for every k ∈ {0, 1, 2, . . . , n}, we have

Y(k̄,n−k) = {ri1ri2 . . . rik
| 1 6 i1 < i2 < · · · < ik 6 n}.

This shows that (n̄)← (k̄, n− k).

Proposition 2.24. — Let C and D be two signed compositions of n.
Then:

(a) C ← C.
(b) If C ⊂ D, then C ← D.
(c) 4 is an order on Comp(n).

Proof. — (a) follows immediately from Lemma 2.21 (b).
(b) If C ⊂ D, then XD ⊂ XC . But, by Lemma 2.21 (b), we have YD ⊂

XD. So C ← D.
(c) Let aC = `(ηC). By (a), 4 is reflexive. By definition, it is transitive.

So it is sufficient to show that it is antisymmetric. But it follows from
Lemma 2.21 (b) that:

• If C ← D, then aD 6 aC .
• If C ← D and if aC = aD, then C = D.

The assertion (c) now follows easily from these two remarks. �

A precise description of the relation ← will be given in Theorem 3.15.
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Example 2.25. — If C = (c1, . . . , cr) is a composition of n (not a signed
composition), we will prove that

Xn̄ =
∐

06m26c2

06m36c3

. . .

06mr6cr

XC
(c̄1,m2,c2−m2,...,mr,cr−mr)

× Y (c̄1,m2,c2−m2,...,mr,cr−mr)
(c̄1,m̄2,c2−m2,...,m̄r,cr−mr) σ

−1
C,m2,...,mr

,

where σC,m2,...,mr
∈ Sn satisfies

σC,m2,...,mr
(S′(c1,m2,c2−m2,...,mr,cr−mr)) ⊂ S

′
n

and

σC,m2,...,mr ∈ X(c1,m2,c2−m2,...,mr,cr−mr).

By an easy induction argument, it is sufficient to prove it whenever r = 2.
In other words, we want to prove that, if k + l = n with k, l > 0, then

(∗) Xn̄ =
∐

06m6l

X
(k̄,l̄)

(k̄,m,l−m)
Y

(k̄,m,l−m)

(k̄,m̄,l−m)
σ−1

k,l,m,

where σk,l,m ∈ Sn satisfies σk,l,m(S′k,m,l−m) ⊂ S′n and σk,l,m ∈ X(k,m,l−m).
But, if 0 6 m 6 l, we set

σk,l,m(i) =


m+ i if 1 6 i 6 k,

i− k if k + 1 6 i 6 k +m,

i if k +m+ 1 6 i 6 n,

and one can easily check that (∗) holds. Moreover, since S′k,m,l−m =
S′n\{sk, sk+m}, we get that σk,l,m(S′k,m,l−m) ⊂ S′n and σk,l,m ∈ X(k,m,l−m).

3. Generalized descent algebra

3.1. Definition

If C and D are two signed compositions of n such that C ⊂ D, we set

xD
C =

∑
w∈XD

C

w ∈ ZWD

and

yD
C =

∑
w∈Y D

C

w ∈ ZWD.
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Now, let
Σ′(WD) = ⊕

C⊂D
ZyD

C ⊂ ZWD.

Note that
Σ′(WD) = ⊕

C⊂D
ZxD

C

by (2.22) and Proposition 2.24. We define

θD : Σ′(WD) −→ Z IrrWD

as the unique Z-linear map such that

θD(xD
C ) = IndWD

WC
1C

for every C ⊂ D. Here, 1C is the trivial character of WC . We denote by εD

the sign character of WD.

Notation. — If D = (n), we set xD
C = xC , yD

C = yC for simplification. If
E is Z-module, we denote by QE the Q-vector space Q⊗Z E. We denote
by θD,Q the extension of θD to QΣ′(WD) by Q-linearity.

Remark. — Σ′(Wn) contains the Solomon descent algebras of Wn and
Sn. Moreover, Σ′(Wn) is precisely the Mantaci-Reutenauer algebra which
is, by definition, generated by yD = y

(n)
D , for all D ||=n.

3.2. First properties of θD

By the Mackey formula for the tensor product of two induced characters
and by Proposition 2.13, we have that

(3.1) θn(xC)θn(xD) =
∑

d∈XCD

θn(xd−1C∩D).

Example 3.2. — If C is parabolic or D is semi-positive, then, by Corol-
lary 2.17, we have

xD =
∑

d∈XCD

xC
C∩dDd.

Therefore, by Proposition 2.8 (b) and Remark 2.15, we get

xCxD =
∑

d∈XCD

xd−1C∩D.

So xCxD ∈ Σ′(Wn) and, by (3.1), θn(xCxD) = θn(xC)θn(xD).

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 147

Before starting the proof of the fact that Σ′(WD) is a subalgebra of
ZWD and that θD is a morphism of algebras, we need the following result,
which will be useful for arguing by induction. If C ⊂ D, the transitivity of
induction and Proposition 2.8 (b) show that the diagram

(3.3)

Σ′(WC)
xD

C . //

θC

��

Σ′(WD)

θD

��
Z IrrWC

IndWD

WC // Z IrrWD

is commutative.
Now, let pD : WD → SD+ be the canonical projection. It induces an

injective morphism of Z-algebras p∗D : Z IrrSD+ → Z IrrWD. Moreover,
the algebra Σ′(SD+) coincides with the usual descent algebra in symmetric
groups and is contained in Σ′(WD). Also, the diagram

(3.4)

Σ′(SD+) � � //

θD−

��

Σ′(WD)

θD

��
Z IrrSD+

� � p∗D // Z IrrWD

is commutative.

Example 3.5. — We have y(1̄,...,1̄) = wn, yn̄ = wnσn = σnwn, yn = 1
and y(1,...,1) = σn. It is well-known [18] that y(1̄,...,1̄) belongs to the classical
descent algebra of Wn and that

(a) θn(wn) = εn.

On the other hand,

(b) θn(1n) = 1(n).

Also, by the commutativity of the diagram (3.4) and as above, we have

(c) θn(σn) = γn,

where γn = p∗nεn̄. Finally, wn is a Z-linear combination of xC , where C
runs over the parabolic compositions of n. Therefore, by Example 3.2, we
have, for every x ∈ Σ′(Wn),

(d) θn(wnx) = θn(wn)θn(x) = εnθn(x).
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In particular,

(e) θn(yn̄) = θn(wnσn) = εnγn.

So we have obtained the four linear characters of Wn as images by θn of
explicit elements of Σ′(Wn).

Let degD : Z IrrWD → Z be the Z-linear map sending an irreducible
character of WD to its degree. It is a morphism of Z-algebras. Let
augD : ZWD → Z denote the augmentation morphism. Then the diagram

(3.6)

Σ′(WD)
θD //

augD

$$HHHHHHHHHHHHHHHHHHHH
Z IrrWD

degD

��
Z

is commutative.

3.3. Main result

We are now ready to prove that Σ′(WD) is a Z-subalgebra of ZWD and
that θD is a surjective morphism of algebras.

Theorem 3.7. — Let D be a signed composition of n, then:
(a) Σ′(WD) is a Z-subalgebra of ZWD;
(b) θD is a morphism of algebra;
(c) θD is surjective and Ker θD =

∑
C,C′⊂D
C≡DC′

Z(xD
C − xD

C′);

(d) Ker θD,Q is the radical of the algebra QΣ′(WD).
Moreover, QΣ′(WD) is a split algebra whose largest semisimple
quotient is commutative. In particular, all its simple modules are
of dimension 1.

Proof. — We want to prove the theorem by induction on |WD|. By taking
direct products, we may therefore assume that D = (n) or D = (n̄). If
D = (n̄), then it is well-known that (a), (b), (c) and (d) hold. So we may
assume that D = (n) and that (a), (b), (c) and (d) hold for every signed
composition D′ of n different from (n).

(a) and (b): Let A and B be two signed compositions of n. We want to
prove that xAxB ∈ Σ′(Wn) and that θn(xAxB) = θn(xA)θn(xB). If A is
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parabolic or B is semi-positive, then this is just Example 3.2. So we may
assume that A is not parabolic and B is not semi-positive.

First, note that B ⊂ B+ and that B+ is semi-positive. Therefore, by
Proposition 2.8(b) and Example 3.2, we have

xAxB = xAxB+xB+

B =
∑

d∈XA,B+

xd−1A∩B+x
B+

B

= xB+

∑
d∈XA,B+

xB+

d−1A∩B+x
B+

B .

Assume first that B+ 6= (n). Then, by induction hypothesis,∑
d∈XA,B+

xB+

d−1A∩B+x
B+

B ∈ Σ′(SB+)

and

θB+

( ∑
d∈XA,B+

xB+

d−1A∩B+x
B+

B

)
=

∑
d∈XA,B+

θB+(xB+

d−1A∩B+)θB+(xB+

B ).

Therefore, by (3.3) and (3.4), xAxB ∈ xB+Σ′(SB+) ⊂ Σ′(Sn) ⊂ Σ′(Wn)
and, by (3.3) and by the Mackey formula for tensor product, we get

θn(xAxB) = IndWn

WB+

( ∑
d∈XA,B+

θB+(xB+

d−1A∩B+)θB+(xB+

B )
)

= θn(xA) IndWn

WB+
θB+(xB+

B )

= θn(xA)θn(xB),

as desired.
Therefore, it remains to consider the case where B+ = (n). In partic-

ular, B = (n) or (n̄). Since B is not semi-positive, we have B = (n̄). By
Example 2.25, we have

xn̄ = xA+

A− +
∑

D⊂A+

aDx
A+

D (σ−1
D − 1)

where aD ∈ Z and σD(S′D) ⊂ S′n and σD ∈ XD for every D ⊂ A+.
Therefore,

xAxB = xAxn̄ = xA+

(
xA+

A xA+

A− +
∑

D⊂A+

aDx
A+

A xA+

D (σ−1
D − 1)

)
.

Now, WA is a standard parabolic subgroup of WA+ . So, by Example 3.2,
we have

xAxB =
∑

d∈XA+

A,A−

xd−1A∩(A−) +
∑

D⊂A+

(
aD

∑
d∈XA+

A,D

xd−1A∩D(σ−1
D − 1)

)
.
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Therefore, since σD(S′D) ⊂ S′n and σD ∈ XD, we have that xd−1A∩Dσ
−1
D =

xσD(d−1A∩D)
. So xAxB ∈ Σ′(Wn) and θn(xAxB) = θn(xA)θn(xB) by the

Mackey formula for tensor product of induced characters. This concludes
the proof of (a) and (b).

(c) First, let us show that θn is surjective. Using the induction hypothesis,
the commutativity of the diagram (3.3), and the classical description of
irreducible characters of Wn, we are reduced to prove that, for every χ ∈
IrrSn, p∗n(χ) and p∗n(χ)εn lie in the image of θn. But it is well-known
that θn̄ is surjective. So the result follows from the commutativity of the
diagram (3.4) and from Example 3.5 (d).

Now, let

I =
∑

C,C′ ||= n
C≡nC′

Z(xC − xC′).

Then it is clear that I ⊂ Ker θn. Let J = ⊕λ∈Bip(n)Zxλ̂. Then Σ′(Wn) =
I ⊕ J and the map θn : J → Z IrrWn is surjective. Since J and Z IrrWn

have the same rank (equal to |Bip(n)|), we get that J ∩ Ker θn = 0. So
I = Ker θn.

(d) Let R = Rad(QΣ′(Wn)) and K = Ker θn,Q. Since Im(θn,Q) =
Q IrrWn is a semisimple algebra, we get that R ⊂ K.

Now, let χ : QWn → Q be the character of the QWn-module QWn (the
regular representation). Then, χ(w) = 0 for every w 6= 1. Let χ′ denote
the restriction of χ to Σ′(Wn). We have χ′(xC) = χ(1) for every C ||=n.
Therefore, χ′(x) = 0 for every x ∈ K by (c). We fix now x ∈ K. Then, for
every y ∈ QΣ′(Wn), we have χ′(xy) = 0 because xy ∈ K by (b). Since the
QΣ′(Wn)-module QWn is faithful, this implies that x ∈ R. So K ⊂ R. �

Remark. — Σ′(WC) ' Σ′(Wc1)⊗ Σ′(Wc2)⊗ · · · ⊗ Σ′(Wcr
).

3.4. Further properties of θD

Let τD : ZWD → Z be the unique linear map such that τD(w) = 0 if
w 6= 1 and τD(1) = 1. Then τD is the canonical symmetrizing form on
ZWD: in particular, the map ZWD × ZWD → Z, (x, y) 7→ τD(xy) is a
non-degenerate symmetric bilinear form on ZWD. We denote by 〈 ., . 〉D
the scalar product on Z IrrWD such that IrrWD is an orthonormal basis.
The following property is a kind of “isometry property” for the morphism
θD.
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Proposition 3.8. — If x, y ∈ Σ′(WD), then

τD(xy) = 〈 θD(x), θD(y) 〉D.

Proof. — Let C and C ′ be two signed compositions of n such that C,
C ′ ⊂ D. Then τD(xD

Cx
D
C′) = |XD

CC′ | by definition of τD. Moreover, since
θD(xC) and θD(xC′) take only rational values, we have

〈 θD(xD
C ), θD(xD

C′) 〉D = 〈 θD(xD
C )θD(xD

C′), 1WD
〉D.

But, by (3.1) and by Frobenius reciprocity, we have

〈 θD(xD
C )θD(xD

C′), 1WD
〉D = |XD

CC′ |.

So the proposition follows now from the fact that (xD
C )C⊂D generates

Σ′(WD). �

Corollary 3.9. — We have

Ker θD = {x ∈ Σ′(WD) | ∀ y ∈ Σ′(WD), τD(xy) = 0}.

Proof. — Since 〈 ., . 〉D is non-degenerate on Z IrrWD, this follows from
Proposition 3.8. �

Write D = (d1, . . . , dr) and let Bip(D) denote the set of r-tuples
(λ(1), . . . , λ(r)) of bipartitions λ(i) = (λ+

(i), λ
−
(i)) such that λ−(i) = ∅ if di < 0

and |λ(i)| = |di| for every i ∈ [1, r]. If λ ∈ Bip(D), we denote by CD
λ the

conjugacy class in WD of a Coxeter element of Wλ̂ (with respect to Sλ̂).
Let fD

λ denote the characteristic function of CD
λ . Then fD

λ is a primitive
idempotent of Q IrrWD. Moreover, (fD

λ )λ∈Bip(D) is a complete family of
orthogonal primitive idempotents of Q IrrWD. Since θD is surjective, there
exists a family of idempotents (ED

λ )λ∈Bip(D) of QΣ′(WD) such that
(1) ∀ λ ∈ Bip(D), θD(ED

λ ) = fD
λ .

(2) ∀ λ, µ ∈ Bip(D), λ 6= µ⇒ ED
λ E

D
µ = ED

µ E
D
λ = 0.

(3)
∑

λ∈Bip(D)

ED
λ = 1.

Proposition 3.10. — If x ∈ Σ′(WD), then

θD(x) = |WD|
∑

λ∈
D

τD(xED
λ )

|CD
λ |

fD
λ ∈ Z IrrWD.

Proof. — If f ∈ Q IrrWD, then

f = |WD|
∑

λ∈Bip(D)

〈 f, fD
λ 〉D
|CD

λ |
fD

λ ∈ Z IrrWD.

If f = θD(x) with x ∈ Σ′(WD), then we get the desired formula just by
applying Proposition 3.8 and the property (1) above. �
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3.5. Character table

Since all irreducible characters of WD have rational values, the alge-
bra Q IrrWD may be identified with the Q-algebra of central functions
WD → Q. If λ ∈ Bip(D), we denote by evD

λ : Q IrrWD → Q, χ 7→ χ(cDλ ),
where cDλ is some element of CD

λ (for instance, a Coxeter element of Wλ̂).
Then evD

λ is a morphism of algebras: it is an irreducible representation
of Q IrrWD. Moreover, {evD

λ | λ ∈ Bip(D)} is a complete set of repre-
sentatives of isomorphy classes of irreducible representations of Q IrrWD.
Now, let QD

λ denote the QΣ′(WD)-module whose underlying vector space
is Q and on which an element x ∈ QΣ′(WD) acts by multiplication by
πD

λ (x) = (evD
λ ◦ θD)(x).

Then, by Theorem 3.7, we get:

Proposition 3.11. — {QD
λ | λ ∈ Bip(D)} is a complete set of isomor-

phy classes of simple QΣ′(WD)-modules. We have

Irr(QΣ′(WD)) = {πD
λ | λ ∈ Bip(D)}.

The character table of QΣ′(WD) is the square matrix whose rows and
the columns are indexed by Bip(D) and whose (λ, µ)-entry is the value of
the irreducible character πD

λ (xD
µ̂ ). Note that

πD
λ (xD

µ̂ ) =
(
IndWD

Wµ̂
1µ̂

)
(cDλ ).

Notation. — If D = (n), we denote CD
λ , fD

λ , ED
λ , cDλ , evD

λ , QD
λ and πD

λ

by Cλ, fλ, Eλ, cλ, evλ, Qλ and πλ respectively.

Now, if λ, µ ∈ Bip(D), we write λ ⊂ µ if there exists some w ∈WD such
that Wλ̂ ⊂

wWµ̂. By Proposition 2.7, ⊂ is a partial order on Bip(D). For
this partial order, the character table of QΣ′(WD) is triangular :

Proposition 3.12. — If πD
λ (xD

µ̂ ) 6= 0, then λ ⊂ µ.

Proof. — We may, and we will, assume that D = (n). If πλ(xµ̂) 6= 0,
then there exists w ∈Wn such that wcλw−1 ∈Wµ̂. Therefore, there exists
ν ∈ Bip(µ̂) and w′ ∈Wµ̂ such that w′wcλw−1w′−1 is a Coxeter element of
Wν̂ . Let C denote the unique signed composition of n such that Wν̂ = WC

and let λ′ = λ(C). Then w′wcλw
−1w′−1 is conjugate to cλ′ . Therefore,

λ = λ′. This completes the proof of the proposition. �

In the last section of this paper, we will give the character table of
Σ′(W2).
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3.6. Combinatorial description

In Sn, the refinement of compositions is useful to construct XC from
YD without considering subsets of S′n̄. The aim of this subsection is to de-
scribe such a procedure in our case. Let us start with an example. Consider
C = (2̄, 1), then the subsets of S′3 containing SC = {s1, t3} are {s1, s2, t3} =
A(2̄,1); {s1, t2, t3} = A(1̄,1,1); {s1, t1, t2, t3} = A(2,1), {s1, s2, t2, t3} = A(1̄,2)

and S′3 = A(3). Observe that (1, 2) (which corresponds to {s2, t1, t2, t3} 6⊃
SC) is not obtained. Here, we define a procedure which give (2̄, 1), (1̄, 1, 1),
(1̄, 2) and (3) from (2̄, 1), without obtaining (1, 2).

Let C = (c1, . . . , ck) ||=n, we write:

• C B←−D if D = (a1, b1, a2, b2, . . . , ak, bk) ||=n is such that for all
i ∈ [1, k] we have|ai| + |bi| = |ci|; ai = ci (hence bi = 0) if
ci > 0; ai 6 0 6 bi if ci < 0 (remove the 0 from the list
(a1, b1, a2, b2, . . . , ak, bk)). That is, D is obtained from C by break-
ing negative parts operations.
• C R←−D if C is finer than D ||=n, that is, D can be obtained from
C by summing consecutive parts of C having the same sign (refine-
ment operations).

Example 3.13. — Let C = (1, 2̄, 1̄), then{
D ||=4 |C B←−D

}
=
{

(1, 2̄, 1̄), (1, 1̄, 1, 1̄), (1, 1̄, 1, 1), (1, 2, 1̄), (1, 2̄, 1), (1, 2, 1)
}
.

Remark 3.14. — Let C,D ||=n, then we have C ← D if and only if SC ⊂
AD. We deduce easily from definitions, Lemma 2.21 and Example 2.23 the
following properties for any i ∈ [1, k − 1]:

• if sign ci = sign ci+1, then

C = (c1, . . . , ci, ci+1, . . . , ck) R←−(c1, . . . , ci + ci+1, . . . , ck) = D,

and this means that AD = AC ]
{
s|c1|+···+|ci|

}
;

• if ci, ci+1 < 0, then

C = (c1, . . . , ci, ci+1, . . . , ck) B←−(c1, . . . , ci + 1, 1, ci+1, . . . , ck) = D

(remove the 0 from the list), and this means that

AD = AC ]
{
t|c1|+···+|ci|

}
;
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• if ci < 0 and ci+1 > 0, then

C = (c1, . . . , ci, ci+1, . . . , ck) B←−(c1, . . . , ci + 1, 1, ci+1, . . . , ck) = D

(remove the 0 from the list), and this means that

AD ]
{
s|c1|+···+|ci|

}
= AC ]

{
t|c1|+···+|ci|

}
.

Moreover, as s|c1|+···+|ci| /∈ SC , we have SC ⊂ AD, that is, C ← D;

• finally, if ci < 0, then C
B←−(c1, . . . , ci + 1, 1, ci+1, . . . , ck) = D and

C
B←−(c1, . . . , ci + 2, 2, ci+1, . . . , ck) = D′

(remove the 0 from the list), and this means that

AD′ = AD ]
{
t|c1|+···+|ci|

}
.

Hence SC ⊂ AD ⊂ AD′ .
In all these cases, we have C ← D.

Theorem 3.15. — Let C,D 
 n, then C ← D if and only if there is
E ||=n such that C B←−E R←−D. Moreover, E is uniquely determined.

Proof. — Suppose that E exists, then it is easy to check (using Re-
mark 3.14 and induction) that SC ⊂ AE ⊂ AD, which implies C ← D.

Now, suppose that C ← D. As SC ⊂ AD, it is easy to construct a
unique E ||=n such that AE∩Tn = AD∩Tn and C B←−E (hence C ← B). It
remains to show that E R←−D, that is, to show that AE∩Sn̄ ⊂ AD∩Sn̄. Let
sj ∈ AE ∩Sn̄, then either j ∈ [|c1|+ · · ·+ |ci−1|+ 1, . . . , |c1|+ · · ·+ |ci| − 1]
hence sj ∈ SC ⊂ AD; or j = |c1| + · · · + |ci| and ci < 0 and ci+1 > 0 by
definition. But refinement operations do not act on parts having not the
same sign, that is, sj ∈ AD. �

Example 3.16. — Consider the signed composition C = (1, 2̄, 1̄) . Then
we obtain from Theorem 3.15 and Example 3.13

X(1,2̄,1̄) =Y(1,2̄,1̄) ∪ Y(1,3̄) ∪ Y(1,1̄,1,1̄) ∪ Y(1,1̄,1,1) ∪ Y(1,1̄,2) ∪ Y(1,2,1̄) ∪ Y(3,1̄)

∪ Y(1,2̄,1) ∪ Y(1,2,1) ∪ Y(3,1) ∪ Y(1,3) ∪ Y(4).

4. Coplactic space

4.1. Robinson-Schensted correspondence for WD

In [20], the author defined a bĳection between Wn and a certain set of
bitableaux, which sounds like a Robinson-Schensted correspondence. Let

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 155

us recall here some of his results. A bitableau is a pair T = (T+, T−)
of tableaux. The shape of T is the bipartition (λ+, λ−), where λ+ is the
shape of T+ and λ− is the shape of T−: it is denoted by shT . We note
|T | = | shT |. The bitableau T is said to be standard if the set of numbers
in T+ and T− is [1,m], where m = |T |, and if the fillings of T+ and T−

are increasing in rows and in column.
Let D ||=n. Write D = (d1, . . . , dr) and denote by SBT (D) the set of

r-tuples T = (T1, . . . , Tr) of bitableaux Ti = (T+
i , T

−
i ) such that |Ti| =

|di|, T−i = ∅ if di < 0, T+
i and T−i are standard and the fillings of T+

i

and T−i are exactly the numbers in I
(i)
D,+ = [|d1| + · · · + |di−1| + 1, |d1| +

· · · + |di|]. The shape of T , denoted by shT , is the r-tuple of bipartitions
(shT1, . . . , shTr). If T ∈ SBT (D), then shT ∈ Bip(D). If λ ∈ Bip(D), we
denote by SBT D

λ the set of elements T ∈ SBT (D) such that shT = λ. In
[20], the author defined a bĳection (which we call generalized Robinson-
Schensted correspondence)

πD : WD −→ {(P,Q) ∈ SBT (D)× SBT (D) | shP = shQ}
w 7−→ (P D(w),QD(w)).

Note that, in [20] (see also [4, Section 3]), the bĳection has been defined
only for D = (n). It is not difficult to deduce from this the bĳection πD

for general D. To this bĳection is associated a partition of Wn as follows:
if Q ∈ SBT (D), we set

ZD
Q = {w ∈WD | QD(w) = Q}.

Then
WD =

∐
Q∈SBT (D)

ZD
Q .

4.2. Properties

First, note that the bĳection πD satisfies the following property: if w ∈
Wn, then

(4.1) πD(w−1) = (QD(w),P D(w)).

In particular, if Q and Q′ are two elements of SBT (D), then

(4.2) |ZD
Q ∩ (ZD

Q′)−1| =

{
1 if shQ = shQ′,

0 otherwise.
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Remark. — πn̄ is the usual Robinson-Schensted correspondence. For
simplification, we denote by ZQ = Z

(n)
Q if Q ∈ SBT (n).

In [4, Section 3], the authors give another way to define the equiva-
lence relation associated to this partition which looks like coplactic equiv-
alence or dual-Knuth equivalence. If w ∈ WD, let D′D(w) denote the set
{s ∈ S′D | `(ws) < `(w)}. If w, w′ ∈ WD, we write w ^D w′ if w′w−1 ∈
SD− ⊂ Sn̄ = {s1, . . . , sn−1} and D′D(w−1) 6⊂ D′D(w′−1) and D′D(w′−1) 6⊂
D′D(w−1). Note that the relation ^D is symmetric. We denote by ∼D the
reflexive and transitive closure of ^D. It is an equivalence relation, called
the coplactic equivalence relation. The equivalence classes for this relation
are called the coplactic classes of WD. We denote by Cop(WD) the set of
coplactic classes for the relation ∼D.

By [4, Proposition 3.8], we have, for every w, w′ ∈WD,

(4.3) w ∼D w′ ⇐⇒ QD(w) = QD(w′).

So Cop(WD) = {ZD
Q | Q ∈ SBT (D)}.

Remark 4.4. — The relation ^D has a useful combinatorial interpreta-
tion (see [4, Proof of Proposition 3.8]): w ^D siw (si ∈ SD−) if and only
if:

• either sign
(
w(i)

)
6= sign

(
w(i+ 1)

)
;

• or sign
(
w(i)

)
= sign

(
w(i + 1)

)
, then siw is obtained from w by a

classical dual-Knuth transformation; that is, w−1(i−1) or w−1(i+2)
lie between w−1(i) and w−1(i+ 1).

Proposition 4.5. — Let w,w′ ∈WD, then

w ∼D w′⇒D′D(w) = D′D(w′).

Proof. — We may, and we will, assume that D = (n). If T0 is a Young
tableau, let D(T0) = {sp ∈ Sn̄ | p+1 lies in a row above the row containing
p}. Let tT0 denote the transposed tableau of T . If T = (T+, T−) is a
standard bitableau, we set

D′(T ) =
{
tp | p ∈ T−

}
]
{
sp | p ∈ T+ and p+ 1 ∈ T−

}
]D(T+)]D

(
tT−).

Then it is easy to check that D′n(w) = D′(Q(w)). This completes the proof
of the proposition. �

Example 4.6. — Let

T =
( 1 7

6 9
8

, 2 3 5
4

)
∈ SBT (9).
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Then

D′(T ) = {s1, s3, s6, s8, t2, t3, t4, t5}.

Remark 4.7. — Using Proposition 4.5, we may assign a signed com-
position C(Q) ||=n to any standard bitableau Q ∈ SBT (n) by setting
C(Q) = C(w) for any w ∈ Wn such that Q(w) = Q. One can deter-
mine C(Q) directly from Q thanks to the following procedure, which is a
combinatorial translation of the proof of Proposition 4.5. First one looks
for maximal subwords j j + 1 j + 2 . . . k of 1 2 3 . . . n such that

• either the numbers j, j+1, j+2, . . . , k can be found in this order in
Q+ when one goes from left to right (changes of rows are allowed)

• or they can be found in this order in Q− when one goes from top
to bottom (changes of column are allowed).

The word 1 2 3 . . . n is then the concatenation of these maximal subwords,
and the signed composition C(Q) is the sequence of the lengths of these
subwords, adorned with a minus sign if the letters of the subword can be
found in Q−. As an example, consider Q = (Q+, Q−) with

Q+ =
1 2 6 7 8 13
9 1112
10

and Q− =

3 14
4
5
15

.

The partition of 1 2 . . . 14 15 in maximal subwords is 1 2 | 3 4 5 | 6 7 8 | 9 |
10 11 12 13 | 14 15, from what we can deduce that C(Q) = (2, 3̄, 3, 1, 4, 2̄).

Therefore, we have by definitions

XC =
∐

C←C(Q)

ZQ.

Proposition 4.8. — Let C,D ||=n such that C ⊂ D. Let w, w′ ∈ WC

and x, x′ ∈ XD
C , then:

(a) If w ∼C w′, then wx−1 ∼D w′x−1.
(b) If xw ∼D x′w′, then w ∼C w′.
(c) If w ∼C w′, then wCw ∼C wCw

′ and wwC ∼C w′wC .

Proof. — (c) is clear. Let us now prove (a). We may assume that
w ^C w′. But DC(w−1) ⊂ DD(xw−1) and DC(w′−1) ⊂ DD(xw′−1). So
wx−1 ^D w′x−1.

We now prove (b). If WC is a standard parabolic subgroup of WD, and
using the fact that coplactic classes are left cells for a particular choice of
parameters [4, Theorem 7.7], then (b) follows from [6]. Therefore, by taking
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direct products and by arguing by induction on |XD
C |, we may now assume

that D = (n) and C = (k, l) with k, l > 1 and k + l = n.

Let us start by proving (a). We may assume that w ^C w′. But
DC(w−1) ⊂ DD(xw−1) and DC(w′−1) ⊂ DD(xw′−1). So wx−1 ^D w′x−1.

Let us now prove (b). We may assume that xw ^D x′w′. Let Q =
QC(w) = QC(w′). From Remark 4.4, we have two cases: either x′w′ is ob-
tained from xw by a dual-Knuth relation, or x′w′ = sixw and sign (xw(i)) 6=
sign (xw(i + 1)). In the first case, observe that, for any i ∈ [1, k − 1] and
i ∈ [k + 1, k + l − 1], xw(k) < xw(k + 1) if and only if w(k) < w(k + 1),
since x ∈ X(k,l) = X

(n̄)

(k̄,l̄)
⊂Wn̄. Then we conclude by Remark 4.4 (which is

exactly the result of Lascoux and Schützenberger on the shuffle of plactic
classes [12]).

In the second case, observe that, for any k ∈ [1, n],

(?) sign (w(k)) = sign (xw(k)) = sign (sixw(k))

since X(k,l) = X
(n̄)

(k̄,l̄)
⊂ Wn̄ and si ∈ Sn̄. If six = x′, then w = w′ and the

result follows. If six = xsj , with sj ∈ S(k̄,l̄) (by Deodhar’s Lemma), then
x′ = x. Therefore w′ = sjw, by (?) and Remark 4.4. So w ^C w′. �

4.3. Coplactic space

Let D ||=n. If Q ∈ SBT (D), we set

zD
Q =

∑
w∈ZD

Q

w ∈ ZWD.

Now, let
QD = ⊕

Q∈SBT (D)
ZzD

Q ⊂ ZWD

and
Q⊥D = ⊕

Q,Q′∈SBT (D)
sh Q=sh Q′

Z(zD
Q − zD

Q′) ⊂ QD.

Then, by Proposition 4.5, we have

(4.9) Σ′(WD) ⊂ QD.

The next proposition justifies the notation Q⊥D:

Proposition 4.10. — Q⊥D = {x ∈ QD | ∀ y ∈ QD, τD(xy) = 0}.
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Proof. — Let Q′D = {x ∈ QD | ∀ y ∈ QD, τD(xy) = 0}. Let Q and Q′

be elements of SBT (D). Then, by (4.2), we have

(4.11) τD(zD
Qz

D
Q′) =

{
1 if shQ = shQ′,

0 otherwise.

This shows in particular that Q⊥D ⊂ Q′D.
Let us now prove that Q′D ⊂ Q⊥D. Now, since QD/Q⊥D is torsion free, it is

sufficient to prove that dimQ QQ′D 6 dimQ QQ⊥D. But, by construction, we
have dimQ QQD − dimQ QQ⊥D = |Bip(D)|. Moreover, by Proposition 3.8,
we have dimQ QQD − dimQ QQ′D > | IrrWD| = |Bip(D)|. �

The next lemma is a generalization to our case of a result of Blessenohl
and Schocker concerning the symmetric group [3].

Proposition 4.12. — We have QD = Σ′(WD) + Q⊥D and Σ′(WD) ∩
Q⊥D = Ker θD.

Proof. — Let us first prove that QD = Σ′(WD) +Q⊥D. For this, we may,
and we will, assume that D = (n). We first need to introduce an order
on bipartitions of n. We denote by 6sl the lexicographic order on Bip(n)
induced by the following order on In:

1̄ <sl 2̄ <sl · · · <sl n̄ <sl 1 <sl 2 <sl · · · <sl n.

If λ is a bipartition of n, we denote by Qλ = Q(ηλ̂). If λ = (λ+, λ−), then it
is easy to check that shQλ = (λ+, tλ−) = λ∗, where tλ− is the transpose of
the partition λ, and, using Remark 4.7, that Qλ is obtained by numbered
Q+

λ (resp. tQ−λ ) the first column first, then the second one and so on. Now,
let Q ∈ SBT (n). Then:

Lemma 4.13. — Assume that ZQ ⊂ Xλ̂, then λ 6sl (shQ)∗. Moreover,
if shQ = λ∗, then Q = Qλ.

Proof. — First, we easily check (using Remark 4.7), that λ
(
C(Q)

)
6sl

(shQ)∗ with equality if and only if Q = Qλ.
Then, observe (using Theorem 3.15), that λ 6sl λ

(
C(Q)

)
with equality

if and only if C(Q) = λ̂. This conclude the proof. �

We are now ready to prove by descending induction on (shQ)∗ that
zQ ∈ Σ′(Wn)+Q⊥n . If (shQ)∗ = (n, ∅), then ZQ = {1} = Yn. So zQ = yn ∈
Σ′(Wn).

Now, assume that (shQ)∗ <sl (n, ∅) and that zQ′ ∈ Σ′(Wn) + Q⊥n for
every Q′ ∈ SBT (n) such that (shQ)∗ <sl (shQ′)∗. Let λ = (shQ)∗. Then
zQ = zQλ

+ (zQ − zQλ
) ∈ zQλ

+ Q⊥n . So it is sufficient to prove that
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zQλ
∈ Σ′(Wn) +Q⊥n . But, by Lemma 4.13 xλ̂ − zQλ

is a sum of zQ′ with
λ <lex (shQ)∗. Hence, by the induction hypothesis, we have xλ − zQλ̂

∈
Σ′(Wn) +Q⊥n , as desired.

Now, let us prove that Σ′(WD) ∩ Q⊥D = Ker θD. The natural map
Σ′(WD) → QD/Q⊥D is surjective, so rankZ Σ′(WD) ∩ Q⊥D = rankZ Ker θD.
Since the Z-modules Σ′(WD)/(Σ′(WD)∩Q⊥D) and Σ′(WD)/Ker θD are tor-
sion free, it is sufficient to prove that Σ′(WD)∩Q⊥D is contained in Ker θD.
But this follows from Proposition 4.10 and Corollary 3.9. �

Using Proposition 4.12, we can easily extend the linear map θD to a linear
map θ̃D : QD → Z IrrWD. If x ∈ QD, write x = a + b with a ∈ Σ′(WD)
and b ∈ Q⊥D and set

θ̃D(x) = θD(a).

Then Proposition 4.12 shows that θ̃D is well-defined (that is, θD(a) does
not depend on the choice of a and b).

Theorem 4.14. — Let D ||=n. Then:
(a) θ̃D is an extension of θD to QD;
(b) Ker θ̃D = Q⊥D;
(c) if x and y are two elements of QD, then τD(xy) = 〈 θ̃D(x), θ̃D(y) 〉D;
(d) the diagram

QD

θ̃D //

augD

##FFFFFFFFFFFFFFFFFFF Z IrrWD

degD

��
Z

is commutative;
(e) if x ∈ QD, then

θ̃D(x) = |WD|
∑

λ∈Bip(D)

τD(xED
λ )

|CD
λ |

fD
λ .

Proof. — (a) and (b) are easy. (c) follows from Proposition 3.8 and
Proposition 4.10. (d) follows from the commutativity of the diagram (3.6)
and from the fact that augD(Q⊥D) = 0 (indeed, if Q and Q′ are two elements
of SBT (D) of the same shape, then |ZD

Q | = |ZD
Q′ |). Using Proposition 4.12,

it is sufficient to prove (e) for x ∈ Σ′(WD) or x ∈ Q⊥D. If x ∈ Σ′(WD),
this follows from Proposition 3.10. If x ∈ Q⊥D, this follows from Proposi-
tion 4.10. �
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Remark. — In the theorem, the case D = (n̄) is precisely the symmetric
group case.

Corollary 4.15. — If θ̃ is an extension of θD to the QD such that, for
all x and y in QD, τD(xy) = 〈 θ̃(x), θ̃(y) 〉D, then θ̃ = θ̃D.

Proof. — Assume that θ̃ is an extension of θD to QD such that τD(xy) =
〈 θ̃(x), θ̃(y) 〉D for all x and y in QD. Then, if x ∈ Q⊥D and χ ∈ Z IrrWD,
then there exists y ∈ QD such that θ̃D(y) = χ. So

〈χ, θ̃(x) 〉D = 〈 θ̃(y), θ̃(x) 〉D = τD(xy) = 0

by hypothesis and by Proposition 4.10. Since 〈 ., . 〉D is a perfect pairing on
Z IrrWD, we get that θ̃(x) = 0. So θ̃ coincides with θ̃D on Σ′(WD) and on
Q⊥D, so θ̃ = θ̃D by Proposition 4.12. �

Let λ ∈ Bip(D). Let Q ∈ SBT (D) be of shape λ. Now, let

ξλ = θ̃D(zQ).

Then ξλ depends only on λ and not on the choice of Q. Moreover,
ξλ ∈ Z IrrWD, degD ξλ = |ZQ| > 0 (see Theorem 4.14 (d)) and, by
Theorem 4.14 (c) and (4.11), we have 〈 ξλ, ξλ 〉D = 1. This shows that
ξλ ∈ IrrWD. Moreover, if λ 6= µ, it also follows from Theorem 4.14 (c)
and (4.11) that 〈 ξλ, ξµ 〉D = 0. So we have proved the following proposi-
tion:

Proposition 4.16. — The map Bip(D) → IrrWD, λ 7→ ξλ is well-
defined and bĳective.

Remark 4.17. — If T = (T+, T−) ∈ SBT (n), we denote by T∨ the
standard bitableau (T−, T+). If λ = (λ+, λ−) ∈ Bip(n), we set λ∨ =
(λ−, λ+) ∈ Bip(n). In particular, shT∨ = (shT )∨.

Now, let w ∈ Wn. Then πn(wnw) = (P (w)∨,Q(w)∨). Therefore, if Q ∈
SBT (n) then wnZQ = ZQ∨ . This shows in particular that wnQn = Qn

and that wnQ⊥n = Q⊥n . Moreover,

(4.18) θ̃n(wnz) = εnθ̃n(z)

for all z ∈ Qn. Indeed, this equality is true if z ∈ Σ′(Wn) by Theorem 3.7
and it is obviously true if z ∈ Q⊥n . So we can conclude using Proposi-
tion 4.12. In particular, if λ ∈ Bip(n), then

(4.19) ξλ∨ = εnξλ.
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Remark 4.20. — Let Q ∈ SBT (n) be such that Q− = ∅. Then zQ ∈ Qn̄.
Therefore, Qn̄ ⊂ Qn. Moreover, Q⊥n̄ = Q⊥n ∩Qn̄. Therefore, it follows from
the commutativity of Diagram (3.4) that the diagram

(4.21)

Qn̄
� � //

θ̃n̄

��

Qn

θ̃n

��
Z IrrSn

� � p∗n // Z IrrWn

is commutative. In particular, if λ = (λ+, ∅) is the shape of Q, and if we
denote by χn̄

λ+ the irreducible character of Sn associated to λ+ (apply
Proposition 4.16 with D = (n̄)), we have

(4.22) ξλ = p∗nχ
n̄
λ+ .

4.4. Induction

We first start by an easy consequence of Proposition 4.8.

Lemma 4.23. — Let C, D ||=n be such that C ⊂ D. Let x ∈ QC . Then
(a) xD

Cx ∈ QD.
(b) If x ∈ Q⊥C , then xD

Cx ∈ Q⊥D.

Proof. — (a) By linearity, we may assume that x = zC
Q withQ ∈ SBT (C).

Then, by Proposition 4.8 (a), we have that XD
C .Z

C
Q is a union of coplactic

classes. So xD
Cx ∈ QD.

(b) By linearity, we may assume that x = zC
Q − zC

Q′ where Q, Q′ ∈
SBT (C) and sh(Q) = sh(Q′). We denote by ψ : ZC

Q → ZC
Q′ the unique

bĳection such that P C(ψ(w)) = P C(w) for every w ∈ ZC
Q .

Then xD
Cx = xD

C .
∑

w∈ZC
Q

(w − ψ(w)). But, if a ∈ XD
C and w ∈ ZC

Q , then
P D(aw) = P D(aψ(w)) by Proposition 4.8 (b) and (4.1). We set ψ′(aw) =
aψ(w), then the map ψ′ : XD

C .Z
C
Q → XD

C .Z
C
Q′ is bĳective and satisfies

sh QD(ψ′(w)) = shQD(w) for every w ∈ XD
C .Z

C
Q .

Now, let λ ∈ Bip(D) and let Eλ (resp. E ′λ) be the set of w ∈ XD
C .Z

C
Q

(resp. w ∈ XD
C .Z

C
Q′) such that sh QD(w) = λ. Then ψ′ induces a bĳection

between Eλ and E ′λ. Write Eλ =
∐r

i=1 Z
D
Qi

and E ′λ =
∐r′

i=1 Z
D
Q′

i
, using (a).

Then, since |ZD
Q1
| = · · · = |ZD

Qr
| = |ZD

Q′
1
| = · · · = |ZD

Qr′
| and |Eλ| = |E ′λ|, we

have r = r′. This shows that xD
Cx ∈ Q⊥D. �
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Corollary 4.24. — Let C, D ||=n be such that C ⊂ D. Then the
diagram

QC

xD
C . //

θ̃C

��

QD

θ̃D

��
Z IrrWC

IndWD

WC // Z IrrWD

is commutative.

Proof. — This follows immediately from Proposition 4.23 and from the
commutativity of the diagram (3.3). �

Now, if λ ∈ Bip(n), then we denote by λ∗ the conjugate bipartition and
by χλ the irreducible character of Wn associated to λ via Clifford theory
(see [8, §5.5]). The link between the two parametrizations (the ξ’s and the
χ’s) is given by the following result:

Corollary 4.25. — If λ is a bipartition of n, then ξλ = χλ∗ .

Proof. — Write λ = (λ+, λ−), k = |λ+| and l = |λ−|. Let Q+ be a
standard tableau of shape λ+ filled with {l + 1, l + 2, . . . , n} and let Q−

be a standard tableau of shape λ− filled with {1, 2, . . . , l}. Then, by [4,
Proposition 4.8],

ZQ = Xl,k(wlZQ− × ZQ+).

Therefore, by Corollary 4.24, we have

ξλ = IndWn

Wl,k
(θ̃l(wlZ

l
Q−) � θ̃k(Zk

Q+)).

Here, � denotes the (external) tensor product of characters. So, by (4.22)
and by Remark 4.17, we have

ξλ = IndWn

Wk,l

(
p∗kχ

k̄
λ+ � εl(p∗l χ

l̄
λ−)
)
.

The result now follows from [8, §5.5]. �

5. Related Hopf algebras

5.1. Hopf algebra of signed permutations

Consider the graded Z-module

SP = ⊕
n>0

ZWn,
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where W0 = 1. In [1], Aguiar and Mahajan have shown that SP has a
structure of Hopf algebra which is similar to the structure of the Malvenuto-
Reutenauer Hopf algebra on permutations [15]. Moreover, they have shown
that

Σ′ = ⊕
n>0

Σ′(Wn)

is a Hopf subalgebra of SP. We revise here the definition of the product
and the coproduct on SP with our point of view.

Notation. — If C is a signed composition, then we denote by xC the
element of SP lying in ZW|C| corresponding to the xC defined in §3. Sim-
ilarly, if Q is a standard bitableau, then zQ ∈ ZW| sh Q| is viewed as an
element of SP.

Let (u, v) ∈ Wn ×Wm, we denote u × v the corresponding element of
Wn,m 'Wn×Wm. If w ∈Wn,m, we denote by (w′(n), w

′′
(m)) the correspond-

ing element of Wn ×Wm. We now define

u ∗ v = xn,m(u× v) ∈ ZWn+m.

We extend ∗ by linearity to a bilinear map SP × SP → SP.
Now, let w ∈ Wn. Then, for each i ∈ [0, n], we denote by πi(w) the

unique element of Wi,n−i such that w ∈ πi(w)X−1
i,n−i. We set

∆(w) =
n∑

i=0

πi(w)′(i) ⊗Z πi(w)′′(n−i) ∈ SP ⊗ SP.

We extend ∆ by linearity to a map ∆ : SP → SP ⊗Z SP.

Remark 5.1. — Combinatorially, we see this product as follows: let w =
w1 . . . wn be a word of length n in the alphabet In, the standardsigned
permutation is the unique element sts (w) ∈Wn such that{

sts (w)(i) < sts (w)(j)⇔
(
wi < wj) or (wi = wj and i < j

)
and sign

(
sts (w)(i)

)
= sign (wi).

Then
u∗v =

∑
w,w′

ww′

where ww′ is the concatenation of w and w′; and the sum is taken over
all words w,w′ on the alphabet In such that sts (w) = u, sts (w′) = v and
alph (u) ] alph (v) = [1, n] (where alph (u) = the set of absolute values of
the letters in u). For instance, 1̄2× 21̄ = 1̄243̄ and

x(2,2) = y(2,2) + y(4)

= 1234 + 1324 + 1423 + 2314 + 2413 + 3412.
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Hence 1̄2∗21̄ = 1̄243̄ + 1̄342̄ + 1̄432̄ + 2̄341̄ + 2̄431̄ + 3̄421̄.

Remark 5.2. — For w ∈ Wn seen as a word on the alphabet In and
i < j ∈ [1, n], we denote w|[i, j] the subword obtained by taking only the
digits such that their absolute values are in [i, j]. Then we see combinato-
rially the coproduct as

∆(w) =
n∑

i=0

w|[1, i]⊗ sts
(
w|[i+ 1, n]

)
.

As example, consider w = 2̄314̄, then we have the following decompositions:

w−1 = 31̄24̄ = 3124(1× 1̄23̄) = 1324(21̄× 12̄) = 1234(31̄2× 1̄).

Hence

w = 2̄314̄ = (1× 1̄23̄)2314 = (2̄1× 12̄)1324 = (2̄31× 1̄)1234.

Thus

∆(2̄314̄) = ∅ ⊗ 2̄314̄ + 1⊗ 1̄23̄ + 2̄1⊗ 12̄ + 2̄31⊗ 1̄ + 2̄314̄⊗ ∅.

Example 5.3. — Let C and D be two signed composition. We denote
by C tD the signed composition obtained by concatenation of C and D.
Then

xC ∗ xD = xCtD.

Example 5.4. — We have

∆(xn) =
n∑

i=0

xi ⊗Z xn−i

and ∆(xn̄) =
n∑

i=0

xī ⊗Z xn−i.

We state here a result of Aguiar and Mahajan [1], with our basis con-
sisting of the xC .

Theorem 5.5. — The graded vector space SP, with the product ∗ and
the coproduct ∆ is a connected graded Hopf algebra; and Σ′ is a Hopf
subalgebra of SP which is freely generated by elements (xn)n∈Z\{0} as
algebra.

If x, y ∈ SP, we define the product xy ∈ SP as follows: if x ∈ ZWn and
y ∈ ZWm, then xy = 0 if m 6= n and xy coincides with the usual product
xy in ZWn if m = n. Let τ : SP → Z be the unique linear map which
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coincides with τn on ZWn. The the map SP × SP → Z, (x, y) 7→ τ(xy) is
a scalar product on SP. If x, y ∈ SP, we set

τ⊗(x⊗ y) = τ(x)τ(y).

The following proposition is easily checked from definitions:

Proposition 5.6. — SP is self-dual for τ , that is,

τ⊗
(
(u⊗ v)∆(w)

)
= τ

(
(u ∗ v)w

)
for all u, v, w ∈ SP.

5.2. The Hopf algebra of characters

We give here a short recall of a result of Geissinger [9]. Consider the
graded Z-module

CHAR = ⊕
n>0

Z IrrWn.

If k and l are two natural numbers, we denote by ιk,l the canonical isomor-
phism

ιk,l : Z IrrWk ⊗Z Z IrrWl
∼−→ Z IrrWk,l.

Let (χ, ψ) ∈ Z IrrWk × Z IrrWl. We define

χ • ψ = IndWk+l

Wk,l
ιk,l

(
χ⊗Z ψ

)
∈ Z IrrWk+l.

Now, let χ ∈ CLQWn. We define

Res(χ) =
n∑

i=0

ι−1
i,n−i ResWn

Wi,n−i
χ ∈

n
⊕

i=0
Z IrrWi ⊗Z Z IrrWn−i

⊂ CHAR⊗Z CHAR.

We denote 〈 ·, · 〉 the unique scalar product on CHAR which coincides with
〈 ·, · 〉n on Z IrrWn and such that Z IrrWn and Z IrrWm are orthogonal if
m 6= n. We now define 〈 ·, · 〉⊗ on CHAR⊗Z CHAR as follows: if χ, χ′, ψ,
ψ′ ∈ CHAR, we set

〈χ⊗ ψ, χ′ ⊗ ψ′ 〉⊗ = 〈χ, χ′ 〉〈ψ,ψ′ 〉.

Geissinger [9] has shown that CHAR with product • and coproduct Res
is a connected graded Hopf algebra. Moreover, for any χ, ψ, ζ ∈ CHAR,
the reciprocity law of Frobenius can be viewed as

(5.7) 〈χ⊗ ψ,Res ζ 〉⊗ = 〈χ • ψ, ζ 〉.
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5.3. The coplactic algebra and a Hopf epimorphism

Let us intoduce

Q = ⊕
n>0
Qn.

and

CHAR = ⊕
n>0

Z IrrWn.

We define θ : Σ′ → CHAR and θ̃ : Q → CHAR by

θ = ⊕
n>0

θn and θ̃ = ⊕
n>0

θ̃n.

The first part of the following theorem shows that Q is a generalization
of the Poirier-Reutenauer Hopf algebra of tableaux [17] to our case (see also
[3]), and the second part shows that Jöllenbeck’s construction generalizes
to our case.

Theorem 5.8. — Q is a Hopf subalgebra of SP containing Σ′. More-
over, θ : Σ′ → CHAR and θ̃ : Q → CHAR are surjective Hopf algebra
homomorphisms.

Proof. — The fact that Q is a subalgebra of SP follows from Proposi-
tion 4.23. To prove that it is a subcoalgebra, we proceed as in the proof
of the result of Poirier and Reutenauer [17], using Remark 4.4: let Z be
a coplactic class in Wn, i ∈ [0, n] and w ∈ Z. Write w = πi(w)x, where
x−1 ∈ Xi,n−i. Let u ∈Wi such that u ^(i) πi(w)′(i). As sign

(
x−1w−1(k)

)
=

sign
(
w−1(k)

)
and x−1(l) < x−1(l + 1), for all l ∈ [1, i − 1] and for all

l ∈ [i+ 1, n− 1], we easily check that (u× πi(w)′′(n−i))x ^(n) w, using Re-
mark 4.4. Let v ∈Wn−i such that v ^(n−i) πi(w)′′(n−i), then (u× v)x ^(n)

w as above. Therefore

∆
( ∑

w∈Z

w
)

=
n∑

i=0

∑
Zi,Zn−i

( ∑
u∈Zi

u
)
⊗
( ∑

v∈Zn−i

v
)
,

where Zi (resp. Zn−i) are coplactic classes in Wi (resp. Wn−i).
We now need to prove that θ̃ is an homomorphism of Hopf algebras.

We first need a lemma concerning the symmetric bilinear form β : (Q ⊗Z

Q) × (Q ⊗Z Q) → Z, (x, y) 7→ τ⊗(xy). Let θ̃⊗ = θ̃ ⊗Z θ̃ : Q ⊗Z Q →
CHAR⊗Z CHAR. Then:

Lemma 5.9. — Ker θ̃⊗ = Q⊗Z Ker θ̃ + Ker θ̃ ⊗Z Q is the kernel of β.
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Proof. — By Theorem 4.14 (c), we have

β(x, y) = 〈 θ̃⊗(x), θ̃⊗(y) 〉⊗
for all x, y ∈ Q⊗Z Q. This proves the lemma. �

Proposition 5.6 and Lemma 5.9 show that Ker θ̃ is an ideal and a coideal
of Q. Since Q = Σ′+Ker θ̃, it is sufficient to prove that θ is a bialgebra ho-
momorphism. First, it is clear that θ̃(xC ∗xD) = (̃xCtD). So θ̃ is an algebra
homomorphism. Using this last propoerty and Theorem 5.5, it is sufficient
to prove that θ̃⊗(∆(xn)) = Res(θ̃(xn)) and θ̃⊗(∆(xn̄)) = Res(θ̃(xn̄)) But
this follows easily from Example 5.4. �

6. The case n = 2

In this Section, we will give a complete description of the algebra Σ′(W2).
For simplification, we set s = s1. Note that t1 = t and t2 = sts. In other
words, S′2 = {s, t, sts}. Table I gives the correspondence between reduced
decomposition of elements of W2 and permutations of I2 (if w ∈ W2, we
only give the couple (w(1), w(2)) since it determines w as a permutation of
I2). It also gives the value of U ′2(w) and C(w). Table II gives representatives
of the conjugacy classes of W2. Table III gives, for each signed composition
C of 2, the subgroup WC of W2, the set SC , the elements xC and yC of
ZW2 and also gives the value of AC . Table IV provides the decomposition
of the induced characters IndW2

Wλ̂
1λ̂ = θ2(xλ̂) as a combination of the ξµ, for

λ 
 2. Table V gives the character table of QΣ′(W2) (see Subsection 3.5).
We give in Table VI a complete set of orthogonal primitive idempotents of
QΣ′(W2). Table VII gives the Cartan matrix of Σ′(W2). As usual, the dots
in the tables represent the number 0. Note that

w2 = stst = tsts.

We conclude the Section by a description of the algebra QΣ′(W2) as a
product of classical indecomposable algebras.

Convention. — For avoiding the use of too many parenthesis, we have
denoted by ξλ̂, πλ̂ or Eλ̂ the objects ξλ, πλ or Eλ respectively. For instance,
ξ1,1̄ = ξ((1),(1)) and π2 = π((2),∅) and E1̄,1̄ = E(∅,(1,1)).
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Table 6.1. Elements.

w (w(1), w(2)) U ′2(w) C(w)

1 (1, 2) {s, t, sts} (2)

s (2, 1) {t, sts} (1, 1)

t (1̄, 2) {s, sts} (1̄, 1)

st (2̄, 1) {s, sts} (1̄, 1)

ts (2, 1̄) {t} (1, 1̄)

sts (1, 2̄) {t} (1, 1̄)

tst (2̄, 1̄) {s} (2̄)

w2 (1̄, 2̄) ∅ (1̄, 1̄)

Table 6.2. Conjugacy classes.

λ̂ cλ |Cλ|

(2) st 2

(1, 1) w2 1

(1, 1̄) t 2

(2̄) s 2

(1̄, 1̄) 1 1

Table 6.3. Bases of Σ′(W2).

C WC SC xC yC AC

(2) W2 {s, t} 1 1 {s, t, sts}
(1, 1) W1 ×W1 {t, sts} 1 + s s {t, sts}
(1̄, 1) S1 ×W1 {sts} 1 + s+ t+ st t+ st {t}
(1, 1̄) W1 ×S1 {t} 1 + s+ ts+ sts ts+ sts {s, sts}
(2̄) S2 {s} 1 + t+ st+ tst tst {s, sts}

(1̄, 1̄) 1 ∅
∑

w∈W2
w w2 ∅
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Table 6.4. Decomposition
of induced characters.

ξ2 ξ1,1 ξ1,1̄ ξ2̄ ξ1̄,1̄

θ2(x2) 1 . . . .

θ2(x1,1) 1 1 . . .

θ2(x1,1̄) 1 1 1 . .

θ2(x2̄) 1 . 1 1 .

θ2(x1̄,1̄) 1 1 2 1 1

Table 6.5. Character table
of Σ′(W2).

x2 x1,1 x1,1̄ x2̄ x1̄,1̄

π2 1 . . . .

π1,1 1 2 . . .

π1,1̄ 1 2 2 . .

π2̄ 1 . . 2 .

π1̄,1̄ 1 2 4 4 8

Remark. — Using these tables, one can check that θ2(x2̄)(x1,1) = 6 6=
4 = θ2(x1,1)(x2̄). In other words, the symmetry property (see [2]) does not
hold in our case.

Table 6.6. A complete set of orthogonal primitive idempotents.

E2 = x2 −
1
2
x2̄ −

1
4
x1,1̄ +

1
4
x1̄,1 −

1
2
x1,1 +

1
4
x1̄,1̄

E1,1 =
1
2

(
x1,1 −

1
2
x1,1̄ −

1
2
x1̄,1 +

1
4
x1̄,1̄

)
E1,1̄ =

1
2

(
x1,1̄ −

1
2
x1̄,1̄

)
E2̄ =

1
2

(
x2̄ −

1
2
x1̄,1̄

)
E1̄,1̄ =

1
8
x1̄,1̄

We will now give the Cartan matrix of Σ′(W2). If µ ∈ Bip(2), we denote
by Πµ the character of the projective cover QΣ′(W2)Eµ of Qµ. Write

Πµ =
∑

µ∈Bip(2)

γλµπλ.

ANNALES DE L’INSTITUT FOURIER



GENERALIZED DESCENT ALGEBRA 171

Then (γλµ)λ,µ∈Bip(2) is the Cartan matrix of Σ′(W2). It is given in the
following table:

Table 6.7. Cartan matrix of Σ′(W2).

λ̂ \ µ̂ (2) (1, 1) (1, 1̄) (2̄) (1̄, 1̄)

(2) 1 . . . .

(1, 1) . 1 . . .

(1, 1̄) . . 1 1 .

(2̄) . . . 1 .

(1̄, 1̄) . . . . 1

Let E0 = E1,1̄ + E2̄. Then (E2, E1,1, E0, E2̄) is a complete set of central
primitive idempotents (they are of course orthogonal). Therefore, write
Aω = QΣ′(W2)Eω, for ω ∈ {2, (1, 1), 0, 2̄}. Then

QΣ′(W2) = A2 ⊕A1,1 ⊕A2̄ ⊕A0,

as a sum of algebras. Morever, A2 ' Q, A1,1 ' Q, A2̄ ' Q. On the other
hand,

A0 = QE1,1̄ ⊕QE2̄ ⊕Q(x1,1̄ − x1̄,1),

as a vector space. Now, let B be the algebra

B = {
(
a b

0 c

)
| a, b, c ∈ Q}.

Then the Q-linear map σ : A0 → B such that

σ(E1,1̄) =
(

1 0
0 0

)
, σ(E2̄) =

(
0 0
0 1

)
and

σ(x1,1̄ − x1̄,1) =
(

0 1
0 0

)
is an isomorphism of algebras. Therefore, we have an isomorphism of alge-
bras

QΣ′(W2) ' Q⊕Q⊕Q⊕B.
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A. Appendix: Comparison with Specht’s construction
by Pierre BAUMANN & Christophe HOHLWEG

The present text is an appendix to the article Generalized descent algebra
and construction of irreducible characters of hyperoctahedral groups, by
Cédric Bonnafé and the second present author. Our aim here is to relate two
constructions of the irreducible characters of the hyperoctahedral groups:
the one given in that article, and Specht’s one [19]. Meant as a sequel
to Bonnafé and Hohlweg’s article, this text uses the same notations and
references.

We first recall briefly Specht’s construction, using Macdonald’s book as
a reference [14, I, Appendix B].

Specht’s construction

Let G be a finite group, let G∗ be the set of conjugacy classes in G and
let G∗ be the set of irreducible characters of G. Given a conjugacy class
c ∈ G∗, we denote by ζc the order of the centralizer of an element of c. We
denote the value of a character γ of G at any element of a conjugacy class
c ∈ G∗ by γ(c).

We denote the wreath product G oSn by Gn. This wreath product is the
semidirect product Gn o Sn for the action of Sn on Gn given by

σ · (g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)),

where σ ∈ Sn and (g1, . . . , gn) ∈ Gn, so that we can always represent an
element in Gn as a product (g1, . . . , gn) σ.

Given a complex representation V of G, we construct a complex repre-
sentation ηn(V ) of Gn on the space V ⊗n by letting a product (g1, . . . , gn) σ
act on a pure tensor v1 ⊗ · · · ⊗ vn ∈ V ⊗n in the following way:

((g1, . . . , gn) σ) · (v1 ⊗ · · · ⊗ vn) = (g1 · vσ−1(1))⊗ · · · ⊗ (gn · vσ−1(n)).

The character of ηn(V ) does not depend on V but only of its character; if
ρ denotes the latter, then we will denote the former by ηn(ρ).

We let P be the set of all partitions, and we set PG = PG∗
. Given an

element λ = (λγ)γ∈G∗ in PG, we denote by |λ| the sum
∑

γ |λγ |.
Now let ΛC be the (free) ring of symmetric polynomials with complex

coefficients. As is well-known, ΛC is generated over C by a countable family
of algebraically independent elements: one can choose for generators the
family (hn)n>1 of complete symmetric functions or the family (pn)n>1 of
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power sums. On the other hand, the family of Schur functions (sλ)λ∈P is a
basis of the vector space ΛC. Following Macdonald, we denote by ΛC(G)
the ring of polynomials over C in the family of variables

(
pn(c)

)
n>1,c∈G∗

.
Setting

pn(γ) =
∑

c∈G∗

ζ−1
c γ(c)pr(c)

for any γ ∈ G∗, one deduces from the invertibility of the character table ofG
that ΛC(G) is also the ring of polynomials in the variables

(
pn(γ)

)
n>1,γ∈G∗ .

Each symmetric polynomial P ∈ ΛC can be uniquely expressed as a poly-
nomial with complex coefficients in the power sums pn; given γ ∈ G∗,
we denote by P (γ) the element of ΛC(G) obtained by replacing the vari-
ables pn by the variables pn(γ) in the expression of P . Given an element
λ = (λγ)γ∈G∗ in PG, we set

sλ =
∏

γ∈G∗

sλγ (γ).

The set of complex irreducible characters of Gn is a basis of the algebra
of complex-valued class functions of Gn, so that we can denote this latter
by C Irr(Gn). The direct sum

R(G) =
⊕
n>0

C Irr(Gn)

can be endowed with the structure of a commutative and cocommutative
N-graded Hopf algebra, where the product is given by the induction func-
tors IndGm+n

Gm×Gn
and the coproduct is afforded by the restriction functors

ResGm+n

Gm×Gn
[14, I, Appendix B, 4 and I, 7, Example 26]. Since ΛC(G) is a

free commutative algebra, there is a unique homomorphism of C-algebras

ch−1 : ΛC(G)→ R(G)

with the following property: for each n > 1 and each c ∈ G∗, ch−1 maps
the variable pn(c) to the characteristic function of the conjugacy class of
Gn consisting of the products (g1, g2, . . . , gn) σ, where the permutation
σ ∈ Sn is a n-cycle and the product g1g2 · · · gn belongs to the conjugacy
class c. It turns out that ch−1 is an isomorphism of Hopf algebra, whose
inverse will be denoted by ch. Then, using arguments of orthogonality and
integrality, it can be shown [14, I, Appendix B, 9] that the image under ch
of the irreducible characters of Gn are the elements sλ, where λ ∈ PG is
such that |λ| = n.

Later on, we will need to know the image under ch of characters ηn(ρ).
We do the computation now.
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Lemma A.1. — Let γ1, . . . , γs be the irreducible characters of G, let c1,
. . . , cs be non-negative integers, and set ρ = c1γ1 + · · ·+ csγs. Then∑

n>0

ch
(
ηn(ρ)

)
=

s∏
i=1

(∑
n>0

hn(γi)

)
ci

.

Proof. — The proof given in [14, I, Appendix B, 8] for the case where ρ
is irreducible can be easily adapted. Indeed in the computation that follows
Equation (8.2) in that reference, the steps that lead to the equality∑

n>0

ch
(
ηn(γ)

)
= exp

(∑
r>1

1
r

∑
c∈G∗

ζ−1
c γ(c)pr(c)

)
are valid even if the character γ is reducible. Applying this formula to the
character ρ, we get∑

n>0

ch
(
ηn(ρ)

)
= exp

(∑
r>1

1
r

∑
c∈G∗

ζ−1
c ρ(c)pr(c)

)

=
s∏

i=1

[
exp

(∑
r>1

1
r

∑
c∈G∗

ζ−1
c γi(c)pr(c)

)]
ci

=
s∏

i=1

[
exp

(∑
r>1

1
r
pr(γi)

)]
ci

=
s∏

i=1

[∑
n>0

hn(γi)
]ci

,

the last step in the computation coming from Newton’s formulas. �

The comparison result

Having now recalled Specht’s construction of the irreducible characters
for the wreath product GoSn of an arbitrary finite group G by the symmet-
ric group Sn, we specialize to the case whereG is the groupW = Z/2Z with
two elements. The notation Wn for the wreath product W oSn then agrees
with its use by Bonnafé and Hohlweg. The Hopf algebra R(W ) is identical
to the complexified Hopf algebra CHAR⊗Z C with its product •. The set
W ∗ of irreducible characters of W has two elements, namely the trivial
character τ and the signature ε. One can view an element λ = (λτ , λε) of
PW as a bipartition (λ+, λ−) by setting λ+ = λτ and λ− = λε. As a final
piece of notation, we set λ∗ =

(
λ+, (λ−)′

)
for any bipartition λ = (λ+, λ−),

where (λ−)′ is the conjugate of the partition λ−.
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Generalizing Poirier and Reutenauer’s work [17] for symmetric groups to
the case of Wn, we define a linear map

f : Q⊗Z C −→ ΛC(W )

by setting f(z(n)
Q ) = s(sh Q)∗ for any bitableau Q ∈ SBT (n). With all these

notations, our result can be stated as follows:

Theorem A.2. — The following diagram of N-graded Hopf algebras

Q⊗Z C
f // //

θ̃

'' ''NNNNNNNNNNNN ΛC(W )

Σ′ ⊗Z C
?�

i

OO

θ
// // CHAR⊗Z C

∼ ch

OO

is commutative. In particular ch(ξλ) = sλ∗ , for any bipartition λ, so that
Bonnafé and Hohlweg’s construction is equivalent to Specht’s one, up to a
relabelling.

Some further notation and a bĳection will be needed for the proof. We
present them now.

Some notation and a bĳection

We call quasicomposition a sequence E = (e1, e2, e3, . . .) of non-negative
integers, all of whose terms but a finite number vanish. The size |E| of
E is the sum e1 + e2 + e3 + · · · of the terms. Given a partition µ and a
quasicomposition E, we denote by Tab (µ,E) the set of all semistandard
tableau of shape µ and weight E, that is the set of all fillings of the Ferrers
diagram of shape µ with positive integers, in such a way that the numbers
are weakly increasing from left to right in the rows, strictly increasing from
top to bottom in the columns, and that there is e1 times the number 1, e2
times the number 2, and so on [14, p. 5]. The set Tab (µ,E) is of course
empty unless |µ| = |E|. Given any quasicomposition E = (e1, e2, e3, . . .),
the formula

he1 he2 he3 · · · =
∑
µ∈P

∣∣Tab (µ,E)
∣∣sµ

holds in ΛC (see [14, I, (6.4)] for a proof).
Now we fix a positive integer n and a signed composition C = (c1,

. . . , c`) of it. Let ` be the length of C. We define Comp(C) as the set
of all quasicompositions D = (d1, . . . , d`) such that di = 0 if ci > 0 and
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0 6 di 6 −ci if ci < 0. Given such a D, we further define two quasicompo-
sitions TC,D = (t1, . . . , t`) and EC,D = (e1, . . . , e`) by

ti =

{
ci if ci > 0,
di if ci < 0;

and ei =

{
0 if ci > 0,
−ci − di if ci < 0.

The signed composition obtained by omitting the zeros in the list

(−e1, t1,−e2, t2, . . . ,−e`, t`)

will be denoted by BC,D. For instance, for C = (2, 2̄, 3̄, 1, 1̄, 2, 2, 2̄) ||=15, we
can choose D = (0, 0, 2, 0, 1, 0, 0, 0), and then TC,D = (2, 0, 2, 1, 1, 2, 2, 0),
EC,D = (0, 2, 1, 0, 0, 0, 0, 2) and BC,D = (2, 2̄, 1̄, 2, 1, 1, 2, 2, 2̄).

Finally, given a bipartition λ = (λ+, λ−) and a signed composition C

with |λ| = |C|, we define Bitab(λ,C) as the set of all standard bitableaux
Q such that sh(Q) = λ∗ and C ← C(Q) (see Remark 4.7).

One of the keys to the proof of Theorem A.2 is the following combina-
torial result.

Proposition A.3. — Given a bipartition λ and a signed composition
C with |λ| = |C|, the sets Bitab(λ,C) and∐

D∈Comp(C)

Tab
(
λ+, TC,D

)
× Tab

(
λ−, EC,D

)
have the same cardinality.

Proof. — Let n be a positive integer, C be a signed composition of n,
and λ = (λ+, λ−) be a bipartition with |λ| = n. We construct mutually
inverse bĳections between Bitab(λ,C) and∐

D∈Comp(C)

Tab
(
λ+, TC,D

)
× Tab

(
λ−, EC,D

)
as follows.

First let (R,S) be in the second set, so that R ∈ Tab (λ+, TC,D) and
S ∈ Tab (λ−, EC,D) for some D ∈ Comp(C). We put a total order on the
boxes in R and S by requiring that:

• A box is smaller than another one if the label written in it is smaller
than the one in the other.

• Given two boxes with the same label in it, a box in S is smaller
than a box in R.

• For boxes containing the same label and located in the same tableau
(R or S), boxes located south-west are smaller than boxes located
north-east.
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Then we enumerate in increasing order the boxes in R and S. Filling now
each box of R and S by its rank of appearance in the enumeration, we con-
struct a standard bitableau Q̃ of shape λ. We then define Q as the bitableau
obtained from Q̃ by transposing Q̃−, so that Q has shape λ∗. Comparing
this construction with the combinatorial rule in Remark 4.7 that computes
C(Q), we easily check that the signed composition BC,D can be obtained
from C(Q) by refinement of the parts, so that C B←−BC,D

R←−C(Q), which
implies Q ∈ Bitab(λ,C).

In the other direction, let Q be a given element in Bitab(λ,C). From The-
orem 3.15, there exists a unique signed composition B such that
C

B←−B R←−C(Q), and we can find a (unique) element D ∈ Comp(C) so
that B = BC,D. Now we transpose Q− and get a bitableau Q̃. We con-
struct a list L = (l1, l2, . . . , ln) of positive integers by placing first |c1|
times the number 1, then |c2| times the number 2, and so on. Then we
substitute l1 to 1, l2 to 2, and so on, in the boxes of Q̃, and obtain in this
way a pair (R,S) of tableaux of shapes λ+ and λ− respectively. The fact
that BC,D

R←−C(Q) implies that this construction yields two semistandard
tableaux R and S with weights TC,D and EC,D respectively, that is to say

(R,S) ∈ Tab
(
λ+, TC,D

)
× Tab

(
λ−, EC,D

)
.

It is a routine task to check that the two above constructions yield mu-
tually inverse bĳections between∐

D∈Comp(C)

Tab
(
λ+, TC,D

)
× Tab

(
λ−, EC,D

)
and Bitab(λ,C). �

We end this paragraph by an example that illustrates the constructions
needed in the proof above. We take n = 15 and choose the same signed
composition C as in the previous example, namely

C = (2, 2̄, 3̄, 1, 1̄, 2, 2, 2̄).

We choose λ+ = 631 and λ− = 41, so that λ∗ = (631, 2111). Starting from
the pair (R,S) with

R =
1 1 3 3 4 7
5 6 7
6

and S = 2 2 3 8
8

,

we construct Q̃ = (Q̃+, Q̃−) where

Q̃+ =
1 2 6 7 8 13
9 1112
10

and Q̃− = 3 4 5 15
14

,
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whence Q = (Q+, Q−) with

Q+ = Q̃+ =
1 2 6 7 8 13
9 1112
10

and Q− = tQ̃− =

3 14
4
5
15

.

Since C(Q) = (2, 3̄, 3, 1, 4, 2̄), it holds that C B←−B R←−C(Q) with

B = (2, 2̄, 1̄, 2, 1, 1, 2, 2, 2̄),

which implies C ← C(Q).
In the other direction, we start from the bitableau Q. We observe that

the signed composition B such that C B←−B R←−C(Q) is BC,D, where D is
given by D = (0, 0, 2, 0, 1, 0, 0, 0). Now we write down the list

L = (1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 7, 7, 8, 8)

from C. Transposing the negative tableau Q−, we write down Q̃ and sub-
stitute the elements of L to the numbers in the boxes of Q̃. We recover our
original pair (R,S). We easily verify that R has weight

TC,D = (2, 0, 2, 1, 1, 2, 2, 0)

and that S has weight

EC,D = (0, 2, 1, 0, 0, 0, 0, 2).

Proof of Theorem A.2

1. — We first compute the image by ch of the induced character IndWn

Sn
1

of Wn, where n is a positive integer. To do that, we construct the complex
representation ηn(V ) of Wn, where V is the left regular representation of
W = Z/2Z. Denoting by C1 the trivial representation of Sn, we then
observe that the isomorphism of vector spaces IndWn

Sn
C1
∼= ηn(V ) given by

the sequence of natural identifications

IndWn

Sn
C1
∼= CWn ⊗CSn C1

∼= C[Wn] ∼= (CW )⊗n = V ⊗n = ηn(V )

is compatible with the action of Wn. Since V has τ + ε for character, it
follows that IndWn

Sn
1 = ηn(τ + ε). Lemma A.1 now implies that∑

n>0

ch
(
IndWn

Sn
1
)

=

(∑
n>0

hn(τ)

)(∑
n>0

hn(ε)

)
.

On the other side, it is easy to check that ηn(τ) is the trivial character
of Wn. Therefore ch maps the trivial character IndWn

Wn
1 of Wn to hn(τ). To
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comply with the philosophy used by Bonnafé and Hohlweg, we write for
any positive integer n

ϕ±n = ch
(
IndWn

W±n
1
)

=

ch
(
IndWn

Wn
1
)

= hn(τ) for ’+’ sign,

ch
(
IndWn

Sn
1
)

=
∑n

k=0 hk(τ)hn−k(ε) for ’−’ sign.

2. — We now prove the equality f ◦ i = ch ◦ θ. Given any signed compo-
sition C = (c1, . . . , c`), there holds xC = xc1 · · ·xc`

. Since θ is a morphism
of Hopf algebras, we can write

IndW|C|
WC

1C = θ(xC) = θ(xc1) · · · θ(xc`
) = Ind

W|c1|
Wc1

1• · · · • Ind
W|c`|
Wc`

1,

and taking its image under ch,

ch IndW|C|
WC

= ch ◦ θ(xC) = ϕc1 · · ·ϕc`
.

The formula

ϕ−n =
n∑

k=0

hk(τ)hn−k(ε),

valid for any positive integer n, makes possible to continue the computation:

ch ◦ θ(xC) =
∑

D∈Comp(C)

ht1(τ) · · ·ht`
(τ) he1(ε) · · ·he`

(ε),

where the quasicompositions (t1, . . . , t`) and (e1, . . . , e`) appearing in the
sum are TC,D and EC,D respectively. We thus get, using Proposition A.3
and the decomposition of XC given at the end of Remark 4.7:

ch ◦ θ(xC) =
∑

D∈Comp(C)

( ∑
λ+∈P

∣∣∣Tab
(
λ+, TC,D

)∣∣∣sλ+(τ)

)

×

( ∑
λ−∈P

∣∣∣Tab
(
λ−, EC,D

)∣∣∣sλ−(ε)

)

=
∑

(λ+,λ−)∈PW

 ∑
D∈Comp(C)

∣∣∣Tab
(
λ+, TC,D

)
× Tab

(
λ−, EC,D

)∣∣∣


× sλ+(τ) sλ−(ε)

=
∑

λ∈PW

∣∣∣Bitab(λ,C)
∣∣∣sλ

=
∑

Q std. bitableau
C←C(Q)

s(sh Q)∗
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=
∑

Q std. bitableau
C←C(Q)

f(z(|C|)
Q )

= f ◦ i(xC).

Since the elements xC generate Σ′ ⊗Z C as a vector space, it follows that
ch ◦ θ = f ◦ i.

3. — Step 2 implies that the maps f and ch ◦ θ̃ coincide on the image of
i in Q⊗Z C, because θ = θ̃ ◦ i. On the other hand, f and ch ◦ θ̃ have the
same kernel, namely the graded subspace of Q whose degree n component
is the span Q⊥n of the elements z(n)

Q − z(n)
Q′ , where Q and Q′ are standard

bitableaux with the same shape (see Theorem 4.14). Moreover this kernel
and the image of i together span Q ⊗Z C, because θ is surjective (see
Proposition 4.12). It follows that f = ch ◦ θ̃, which completes the proof of
Theorem A.2.
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