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IMMEDIATE AND VIRTUAL BASINS OF NEWTON’S
METHOD FOR ENTIRE FUNCTIONS

by Sebastian MAYER & Dierk SCHLEICHER

Abstract. — We investigate the well known Newton method to find roots
of entire holomorphic functions. Our main result is that the immediate basin of
attraction for every root is simply connected and unbounded. We also introduce
“virtual immediate basins” in which the dynamics converges to infinity; we prove
that these are simply connected as well.

Résumé. — Nous étudions la méthode bien connue de Newton pour trouver
les racines des applications holomorphes entières. Notre résultat principal est que
le domaine d’attraction immédiat de chaque racine est simplement connexe et
non borné. D’ailleurs, nous introduisons les “domaines immédiats virtuels” dans
lesquels la dynamique converge vers l’infini ; nous démontrons aussi qu’ils sont
simplement connexes.

1. Introduction

Newton’s method is one of the preferred methods to find roots of differ-
entiable maps: it often converges very fast and it is very easy to implement.
But there are problems: for example, even for polynomials, there are open
sets of initial conditions for which the Newton map does not converge to
any root.

There has been substantial progress understanding the dynamics of New-
ton’s method for finding roots of complex polynomials: Przytycki [9] has
shown that all immediate basins are simply connected and unbounded;
Shishikura [12] has shown more generally that if a rational map has a
multiply connected Fatou component, then it must have two repelling or
parabolic fixed points (which is impossible for Newton maps of polyno-
mials). Hubbard, Schleicher and Sutherland [7] used this to find a rather
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326 Sebastian MAYER & Dierk SCHLEICHER

small set of starting points which together find all roots of a complex poly-
nomial; and in [11] there is a (not very efficient) bound on the number
of iterations it takes to find all roots with given accuracy. In a different
spirit, Smale [13] has shown that Newton’s method is quite efficient from
a probabilistic point of view.

Newton’s method for transcendental entire functions is less understood.
Bergweiler and Terglane [2] have shown that Newton maps have no multiply
connected wandering domains, and in certain cases no wandering domains
at all.

In this note, we extend Przytycki’s result to entire holomorphic func-
tions: for every root ξ of a non-constant entire holomorphic function f , the
immediate basin of attraction for the Newton map associated to f is simply
connected and unbounded. This result goes back to the Diploma thesis [8].
The result is in analogy to the polynomial case. It turns out that essential
ideas of the polynomial proof apply in the entire case, even though it might
appear a priori that the possibility of a dense set of singularities in C could
cause serious problems. However, the dynamics of Newton’s method for
entire functions allows for an important kind of Fatou components which
we call “virtual immediate basins” and which do not occur in the case of
polynomials: virtual immediate basins are domains in which the dynamics
converges to ∞ as if there was a root at ∞ (subject to further conditions;
see Definition 3.2). It has recently been shown by Buff and Rückert [3]
that in many (but not all) cases, virtual immediate basins are related to
asymptotic values 0 of f similarly as immediate basins of roots are related
to zeroes of f . We show also that every virtual immediate basin is sim-
ply connected. One area where virtual immediate basins come naturally
into play is when considering the combinatorial restrictions on immediate
basins; see Section 3 and [10].

It would be interesting to extend the ideas of [12] to the transcendental
case, showing that all Fatou components are simply connected; the case of
wandering domains is treated in [2].

Acknowledgements. We would like to thank Johannes Rückert for his
many helpful comments. We are grateful for the hospitality and the con-
structive atmosphere at the Institut Henri Poincaré, Université Paris VI.

2. Immediate Basins

Throughout this paper, let f : C → C be a nonlinear entire holomorphic
map and Nf = id− f/f ′ its associated Newton map. We will be concerned
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NEWTON’S METHOD FOR ENTIRE FUNCTIONS 327

with the set of points which converge to any given root ξ of f . Clearly, the
roots of f are exactly the fixed points of Nf in C, and these are attracting.

Definition 2.1 (Immediate basin). — Let ξ be an attracting fixed
point of Nf . The basin of attraction of ξ is the open set of all points z

such that (N◦m
f (z))m∈N converges to ξ. The connected component contain-

ing ξ of the basin is called the immediate basin of ξ.

Throughout this paper, we will fix a root ξ of f and denote its imme-
diate basin by U . In order to show that U is both simply connected and
unbounded, we will construct a curve γ : R+

0 → U with Nf (γ(t)) = γ(t−1)
for t > 1. If U is multiply connected, then we can arrange things so that
γ(R+

0 ) is bounded (and the same is obviously true if U itself is bounded).
In this case, we show that limt→+∞ γ(t) is a fixed point of Nf in ∂U ∩ C,
and this will lead to a contradiction. Note that U cannot contain a punc-
tured neighborhood of ∞: otherwise, ∞ would be in the Fatou set, but
for Newton maps of entire functions, ∞ is either an essential singulary or
a parabolic or repelling fixed point (compare Subsection 3.2). Sinc U is
invariant, this implies that U also cannot contain a pole of Nf .

2.1. An Exhaustion of Immediate Basins

Let Crit(Nf ) be the set of critical values of Nf and

PU :=
⋃

m>0

N◦m
f (Crit(Nf ) ∩ U)

be the postcritical set restricted to critical values in U . Since Crit(Nf ) is
countable, the set PU is countable as well (but in general not closed). There
is thus an open disk S0 = Br(ξ) ⊂ U centered at ξ such that ∂S0∩PU = ∅,
and small enough such that Nf (S0) ⊂ S0. For every k ∈ N0 define Sk+1 to
be the connected component of N−1

f (Sk) containing S0; then Sk+1 is the
connected component of N−1

f (Sk) containing S0.

Lemma 2.2. — The immediate basin satisfies U =
⋃

k∈N Sk .

Proof. — Clearly, U is open and U ′ :=
⋃

k∈N Sk is an open subset of U .
Suppose there is a z ∈ U \U ′. Then there is an M ∈ N with N◦M

f (z) ∈ S0,
so there is a connected neighborhood V ⊂ U of z with N◦M

f (V ) ⊂ S0. For
all m > M , z is by assumption in a component of N−m

f (S0) different from
Sm, and so is V . Hence U \ U ′ is open in contradiction to the fact that U

is connected. �
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328 Sebastian MAYER & Dierk SCHLEICHER

Clearly, if U is multiply connected, then some of the Sk are multiply
connected (if U is multiply connected, then it contains a non-contractible
loop which is compact and thus contained in finitely many Sk, hence in a
single Sk).

Lemma 2.3. — If SM is mutiply connected but SM−1 is not, then all
Sm with m < M are bounded and homeomorphic to open disks.

Proof. — There is a bounded connected component B of C \ SM . Its
boundary ∂B is a compact subset of SM , so Nf (∂B) is a compact subset
of SM−1. There are no postcritical points in ∂S0, so N◦M

f restricted to a
neighborhood of ∂B is a local injection and N◦M

f : ∂B → ∂S0 is a cover-
ing map. This implies that ∂B and Nf (∂B) are homeomorphic to circles.
Since Nf (∂B) is a boundary component of SM−1 and SM−1 is simply con-
nected, it follows that SM−1 is contained in the bounded complementary
component of Nf (∂B), so SM−1 is bounded and homeomorphic to an open
disk.

Clearly, all Sm with m < M are contained in SM−1, hence also bounded
and simply connected. �

2.2. Extending Paths Invariantly to Infinity

The goal of this section is the construction of curves δ : R+
0 → U such

that Nf (δ(t)) = δ(t− 1) for t > 1.

Definition 2.4 (Extension of a curve). — If δ : [0, 1] → C \ Crit(Nf )
is a curve with Nf (δ(1)) = δ(0), then define its (maximal) extension extδ :
[0,Mδ) → C \ Crit(Nf ) to be the curve with

∀ t ∈ [0,Mδ − 1) : Nf (extδ(t + 1)) = extδ(t)

extδ|[0,1] ≡ δ

where Mδ is chosen maximal in [1,∞) ∪ {∞}. By analytic continuation,
this defines both Mδ and the curve extδ uniquely.

Lemma 2.5 (Possibilities for the extension of a curve). — Given any
curve δ : [0, 1] → C \ Crit(Nf ), then exactly one of three cases occurs:

(i) Mδ = ∞,
(ii) Mδ < ∞ and limt→Mδ

extδ(t) is a critical point of Nf , or
(iii) Mδ < ∞, extδ(Mδ − 1) is an asymptotic value, and extδ(t) →∞ as

t → Mδ.
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NEWTON’S METHOD FOR ENTIRE FUNCTIONS 329

Proof. — Choose T ∈ (0,Mδ] with T < ∞ and suppose there is a se-
quence tn ↗ T with extδ(tn) → a ∈ C. If a is not a critical point, then
there is a neighborhood V of a such that Nf |V is univalent, and it follows
that T < Mδ. Therefore, if Mδ < ∞, then extδ converges either to a critical
point or to infinity along an asymptotic path. �

The following lemma is related to typical proofs of “landing of periodic
dynamic rays” for iterated polynomials.

Lemma 2.6 (A homotopy class of unbounded curves). — Let W,W ′ ⊂
U \ S0 be two simply connected domains such that Nf (W ′) ⊂ W and
W ′ ⊂ W . Let

SW ′,W := {σ : [0, 1] → W continuous, σ(1) ∈ W ′, σ(0) = Nf (σ(1))} .

If there is an extension extσ : [0,∞) → C \ Crit(Nf ) for all σ ∈ SW,W ′ ,
then every σ ∈ SW,W ′ has limt→∞ extσ(t) = ∞.

Nf
Nf Nf Nf

W ′

Nf

extσ σ

W

Nf (W ′)

Figure 2.1. W and W ′ and an extended curve σ.

Proof. — Set Y :=
⋃

σ∈SW,W ′ image (extσ). We use SW ′,W to construct a
sequence of local inverse mappings of N◦m

f on W . Note that the hypothesis
implies that W ∩ Crit(Nf ) = ∅.

For n ∈ N, we define maps ηn : W −→ Y as follows: given z ∈ W , choose
a curve σ ∈ SW ′,W and 0 6 t 6 1 such that σ(t) = z and define ηn(z) =
extσ(t + n). It is easy to check that this is well-defined, i.e. independent of
the choice of curve and its parametrization. The maps ηn are continuous for
all n ∈ N with η−1

n = N◦n
f , so all ηn are holomorphic. The sequence (ηn)n∈N

clearly forms a normal family, so there is a locally uniformly convergent
subsequence (ηnl

)l∈N; its limit function η : W → Y is holomorphic by the
theorem of Weierstraß.

Suppose there is a y0 ∈ image (η) ∩ C. We have W ∩ S0 = ∅, so for
all m ∈ N and sufficiently big n (depending on m), image (ηn) ∩ Sm = ∅.
Furthermore U =

⋃
m>0 Sm is open, so y0 ∈ ∂U and by Hurwitz’ theorem,

TOME 56 (2006), FASCICULE 2



330 Sebastian MAYER & Dierk SCHLEICHER

η ≡ y0 is constant. If y0 6= ∞, then choose some w ∈ W ′ and define
z := Nf (w). Then

Nf (y0) = Nf (η(w)) = lim
l→∞

Nf (ηnl
(w)) = lim

l→∞
ηnl

(z) = η(z) = y0 .

Thus y0 is a fixed point of Nf on ∂U ∩ C, while the only fixed points of
Nf in C are the zeros of f , and these are not on the boundary of U . This
contradiction shows that y0 = ∞.

Suppose there is a single curve σ ∈ SW,W ′ for which limt→∞ extσ(t) = ∞
is false. Then there is a subsequence (ηnl

) for which the limit function
η : W → Y could not be identically equal to ∞, and this is a contradiction
which proves the lemma. �

Remark 2.7. — A different way to prove this lemma is to use contraction
properties of the hyperbolic metric in U \ PU .

2.3. Immediate Basins are Simply Connected and Unbounded

Now it is time for our first main result.

Theorem 2.8 (Immediate basins). — Let f : C → C be a nonlinear
entire map, Nf := id − f

f ′ its Newton map and ξ a root of f . Then the
immediate basin U of ξ is simply connected and unbounded.

Proof. — Choose an open disk S0 around ξ with Nf (S0) ⊂ S0, ∂S0 ∩
PU = ∅ and define Sk+1 as the component of N−1

f (Sk) containing S0. Note
that Nf has no postcritical points on ∂S0, so there are no critical points
on any ∂Sk and Nf is locally biholomorphic in a neighborhood of ∂Sk.

By Lemma 2.2, U =
⋃

n>0 Sn. If U is not simply connected, then there
is a minimal M such that SM is mutiply connected. Choose a bounded
component B0 of C \SM ; then there is a bounded component B of U \SM

as well. If U is bounded, let B := U \SM for an arbitrary M . In both cases,
B is a bounded component of U \SM , and this will lead to a contradiction
(compare Figure 2.2).

Define PB :=
⋃

m>0 N◦m
f (Crit(Nf ) ∩B); since B is bounded, Crit(Nf )∩

B is finite, and the only accumulation point of PB is ξ. Choose w ∈(
SM+1 \ SM

)
∩ B \ PB (compare Figure 2.3) and set z := Nf (w) ∈ SM \

SM−1. There is an injective path γ0 : [0, 1] →
(
SM+1 \ SM−1

)
\ PB with

γ0(0) = z and γ0(1) = w.
We want to show that extγ0 converges to ∞ within B, which would

be a contradiction. Since γ0([0, 1]) ∩ PB = ∅, there is a maximal curve
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p

S0
S1

SM

. . .

C \ U

C \ U

SM−1

B0

B

Figure 2.2. U =
⋃

n>0 Sn and B

p

SM

z
γ0

SM+1

C \ U

C \ U

B0

B

w

Figure 2.3. How to choose γ0.

γ := extγ0 : [0,Mγ) → C with:

∀t ∈ [1,Mγ) : Nf (γ(t)) = γ(t− 1)

γ|[0,1] ≡ γ0 .

By induction, it follows that γ([n, n + 1]) ⊂ SM+n+1 \ SM+n−1 for every
n ∈ N, and in particular we have γ([1,Mγ)) ⊂ U \ SM . In fact, even
γ([1,Mγ)) ⊂ B (because B is the component of U \ SM containing γ(1) =
w). Since B is bounded, Lemma 2.5 implies that Mγ = ∞.

Choose an open, bounded and simply connected neighborhood W ⊂
SM+1 \ SM−1 of image

(
γ0

)
disjoint from PB . This can be done because

image
(
γ0

)
and PB = PB ∪ {ξ} are compact and disjoint.

Nf

W ′

SM

zw

γ0

W

Figure 2.4. W and W ′.

Let W ′ ⊂ W be a simply connected neighborhood of w with Nf (W ′) ⊂
W (compare Figure 2.4). By Lemma 2.5, every curve

σ ∈ S := {σ : [0, 1] → W continuous, σ(1) ∈ W ′, σ(0) = Nf (σ(1))}

has an extension extσ : [0,∞) → B∪W . By Lemma 2.6, every curve σ ∈ S

satisfies limt→∞ extσ(t) = ∞, so B is unbounded: a contradiction. �
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332 Sebastian MAYER & Dierk SCHLEICHER

Remark 2.9. — In many cases, it even follows that∞ is accessible within
U . The case in which we cannot prove this is if U contains infinitely many
critical points of Nf such that PU is dense in U .

3. Virtual Immediate Basins

3.1. A Motivating Example

The dynamics of Newton’s map for transcendental entire functions has a
class of Fatou components which we want to call virtual immediate basins.
Let f(z) := z exp(− 1

nzn); its Newton map Nf (z) = z
(
1− 1

1−zn

)
is a ra-

tional function. The involution ι : Ĉ → Ĉ, z 7→ 1
z conjugates Nf to the

polynomial ι ◦Nf ◦ ι(ζ) = ζ − ζn+1. In this case, the Leau-Fatou “Flower
Theorem” shows that there are exactly n attracting and n repelling petals
at ζ = 0, so Nf has exactly n unbounded Fatou components with conver-
gence to z = ∞; moreover, the immediate basin of the root 0 has exactly n

accesses to ∞ (these accesses are called “channels to ∞” [7]); compare Fig-
ure 3.1. We call the attracting petals at infinity virtual immediate basins:
their dynamics is similar as if there was a root at ∞ in each of these n

directions. Note that the n channels of the root 0 separate all these n vir-
tual basins. The immediate basin of 0 has finite area if n > 3 [6] but not if
n ∈ {1, 2} [4].

For Newton’s method of polynomials, it is known [10] that any pair
of channels to ∞ of the same root must enclose a different root of the
polynomial. As this example shows, an analogous statement for transcen-
dental entire functions would be false if virtual immediate basins were not
taken into account. An investigation of the combinatorial possibilities be-
tween channels to ∞ and immediate basins (including virtual basins) can
be found in [10].

3.2. An Exhaustion of Virtual Immediate Basins

In order to define virtual immediate basins, we need the following defi-
nition.

Definition 3.1 (Absorbing set). — If U is an Nf -invariant domain in
C, then an open set A ( U is called absorbing set (of U) if the following
conditions hold:

ANNALES DE L’INSTITUT FOURIER



NEWTON’S METHOD FOR ENTIRE FUNCTIONS 333

Figure 3.1. Dynamics of Newton’s map for f(z) = ze−
1
5 z5

. The im-
mediate basin of the root 0 is white, the other colors correspond to
virtual immediate basins and their backward images. The unit circle
S1 is marked in grey. Right: the same situation in ζ = ι(z) = 1/z

coordinates: ι ◦Nf ◦ ι−1(ζ) = ζ − ζn+1 is a polynomial.

(1) A is simply connected;
(2) Nf (A ∩ C) ⊂ A;
(3) for every z ∈ U there is a k such that N◦k

f (z) ∈ A.

Definition 3.2 (Virtual immediate basin). — A domain U ⊂ C is
called a virtual immediate basin if it is maximal (among domains in C)
with respect to the following properties:

(1) lim
n→∞

N◦n
f (z) = ∞ for all z ∈ U ;

(2) there is an absorbing set A ⊂ U .

Clearly, every virtual immediate basin, and every absorbing set there of,
must be unbounded with ∞ as accessible boundary point.

If f is a polynomial, then Nf is a rational function with a repelling fixed
point at ∞. If f is an entire function of the form PeQ where P and Q are
polynomials (such that Q is non-constant and P does not identically van-
ish), then Nf is a rational function for which ∞ is a parabolic fixed point,
as in our example above; these two statements are proved by a simple calcu-
lation. For all other transcendental entire functions f , the Newton map Nf

is a transcendental meromorphic function with essential singularity at ∞
[1, Sec. 6.1]; a proof can be found in [10]. In the case of transcendental Nf ,
virtual basins can still occur (but they are no longer Leau-Fatou petals).

TOME 56 (2006), FASCICULE 2



334 Sebastian MAYER & Dierk SCHLEICHER

In [8], the following example is given: the function f(z) = zeez

has a single
zero, Nf has infinitely many virtual immediate basins, and the immediate
basin of the unique zero has infinitely many channels; moreover, no two
channels of the zero of f enclose further roots of f (because there aren’t
any), but they always enclose a virtual immediate basin. In this example
f(z) = zeez

, as well as in the trivial example f(z) = ez with Nf (z) = z−1,
virtual immediate basins of Nf are related to asymptotic values 0 of f .
This is true in many (but not all) cases; see [3].

Let U be a virtual immediate basin with absorbing set S0. Similarly as for
immediate basins, define Sk+1 to be the connected component of N−1(Sk)
containing S0, for all k > 0. As before, we have the following:

Lemma 3.3. — U is open and U =
⋃

k∈N Sk. If U is mutiply connected,
then one of the Sk is mutiply connected.

3.3. Simple Connectivity

In a number of ways, virtual immediate basins have similar properties as
immediate basins of roots; here is one such result.

Theorem 3.4. — Virtual immediate basins are simply connected.

Proof. — Let U be a virtual immediate basin with absorbing set S0. By
Lemma 3.3 there is an exhaustion U =

⋃
m∈N Sm of U . If U is multiply

connected, then there is a minimal M such that SM is multiply connected.
There is a bounded connected component B of C\SM . Its boundary ∂B

is a compact subset of ∂SM . We claim that there is a point b ∈ ∂B∩SM+1.
If not, then ∂B ⊂ SM ∩ (∂U ∪ U\SM+1), and it then follows that every
point in ∂B will either iterate to ∞ during the first M iterates of Nf , or
it will map to ∂S0 ∪ (∂U ∪ U\S1) ∩ C. The first case can occur only for
countably many points, while the second case is excluded by definition of
an absorbing set: ∂S0 ∩ C ⊂ S1.

Therefore, every neighborhood of b contains a point w ∈ B∩(SM+1\SM )
which can be joined to z : Nf (w) by a curve γ0 : [0, 1] → SM+1\SM−1), and
we can assume that γ0 avoids the countable set of all postcritical points.

Now the same argument as in the proof of Theorem 2.8 shows that under
iterated pull-backs, this curve must converge to a fixed point of Nf within
B, and this is again a contradiction. �

We cannot show in general that every virutal immediate basin equals an
entire Fatou component; however, we have the following.
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NEWTON’S METHOD FOR ENTIRE FUNCTIONS 335

Remark 3.5. — Every virtual immediate basin U is contained in an
invariant Fatou component F , which is necessarily a Baker domain if Nf is
transcendental and a parabolic domain otherwise. If F is simply connected,
then F is a virtual immediate basin.

This follows by using a Riemann map ϕ : F → D to transport the
dynamics of F into the unit disk D, and using the main result of Cowen
[5] which assures the existence of an absorbing set (except that Cowen
does not explicitly state the condition Nf (A ∩ C) ⊂ A; but he gives three
dynamical models for the absorbing sets, up to conformal conjugacy, and
in each of them the absorbing set can be deformed so as to satisfy this
condition, and even be bounded by a smooth curve). It might be possible
to extend Shishikura’s results [12] to the transcendental case, to show the
more general result that every Fatou component of Newton’s map for entire
functions is simply connected. In this case, every virtual immediate basin
would be an entire Fatou component.
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