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ON THE EMBEDDING AND COMPACTIFICATION
OF q-COMPLETE MANIFOLDS

by Ionuţ CHIOSE

Abstract. — We characterize intrinsically two classes of manifolds that can
be properly embedded into spaces of the form PN \ PN−q . The first theorem is
a compactification theorem for pseudoconcave manifolds that can be realized as
X \ (X ∩ PN−q) where X ⊂ PN is a projective variety. The second theorem is an
embedding theorem for holomorphically convex manifolds into P1 × CN .

Résumé. — On caractérise intrinsèquement deux classes de variétés qui peuvent
être incluses proprement dans des espaces de la forme PN \PN−q . Le premier théo-
rème est un théorème de compactification pour les variétés pseudoconcaves qui
peuvent être réalisées comme PN \ PN−q , où X ⊂ PN est une variété projective.
Le deuxième théorème est un théorème d’inclusion pour les variétés holomorphi-
quement convexes dans l’espace P1 × CN .

Introduction

Two of the important problems in complex geometry are the compact-
ification problem — to characterize complex manifolds which are isomor-
phic with a Zariski open subset of a compact variety, and the embedding
problem — to characterize complex manifolds which can be realized as
submanifolds of some standard spaces — usually projective spaces or affine
spaces.

The compactification problem has had various solutions, both from the
point of view of Riemannian geometry (Mok and Zhang, Yeung, Siu and
Yau) and from the point of view of analytic geometry (Demailly, Nadel and
Tsuji). Demailly [5] showed that if a complex manifold X of finite topolog-
ical type carries a C∞ strictly plurisubharmonic exhaustion function which

Keywords: Pseudoconvex and pseudoconcave spaces, embeddings and compactifications,
positive line bundles, Remmert reduction.
Math. classification: 32Q40 , 32J05, 32F10.



374 Ionuţ CHIOSE

satisfies two aditional conditions (finiteness of the volume and an estimate
involving a Ricci curvature), then X is biholomorphic to an affine algebraic
manifold. Therefore X can be compactified by adding a hyperplane at in-
finity. Nadel’s result [10] settles the other extreme case, when X can be
compactified by adding finitely many points. Nadel’s theorem states that if
X is a hyper 1-concave manifold which carries a line bundle whose ring of
sections separates the points of X and gives local coordinates on X, and if
X can be covered by Zariski open subsets which are uniformized by Stein
manifolds, then X is biholomorphic to a quasi-projective manifold which
can be compactified by adding finitely many points.

Our first result can be thought of as an “interpolation” between De-
mailly’s result and Nadel’s result:

Theorem 0.1. — Let X be a connected complex manifold of dimension
n and let q > 2. Suppose that:

(i) there exists a map π : X → Pq−1

(ii) there exists a C∞ exhaustion function ϕ : X → R such that

(∗) ω := i∂∂̄ϕ+ π∗iΘ(OPq−1(1)) > 0

(iii) there exist µ ∈ C∞(X,R) and k0 ∈ N such that k0ω + Ricci(ω) >
−i∂∂̄µ

(iv) X is (n− q + 1)-concave
(v) dimH2p(X,R) <∞ for q 6 p < n+q

2 .

Then there exist a projective variety X ⊂ PN and L ' PN−q a linear
subspace of codimension q in PN such that X is isomorphic to X \ (X ∩L).
Moreover, all the conditions except (iv) are necessary conditions, while (iv)
is a “generically” necessary condition.

Note that the conditions appearing in Theorem 0.1 are similar to those in
the above mentioned theorems. Note also that when q = n condition (v) is
empty and we obtain a particular case of Nadels’ theorem. When q = n+1
we obtain the class of compact projective manifolds of dimension n.

The two most famous embedding theorems are Kodaira’s embedding the-
orem which characterizes the projective manifolds in terms of the positiv-
ity of a line bundle, and the theorem on the proper embedding of Stein
manifolds into affine spaces CN . An intermediate result between the two
embedding theorems is Takayama’s theorem [12]: a complex manifold can
be properly embedded into a product PN ×CM if and only if it is holomor-
phically convex and it carries a positive line bundle.

Our second result is a refined version of Takayama’s theorem:
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EMBEDDING q-COMPLETE MANIFOLDS 375

Theorem 0.2. — Let X be a connected complex manifold of dimension
n. Then X is biholomorphic to a proper submanifold of P1 × CN if and
only if:

(i) X is holomorphically convex; we let f : X → Y be the Remmert
reduction of X

(ii) there exists a map π : X → P1

(iii) there exists a C∞ plurisubharmonic function ψ : Y → R such that

(∗) ω := i∂∂̄ϕ+ π∗iΘ(OP1(1)) > 0

where ϕ = ψ ◦ f .

Note that the Segre embedding P1 × PN ↪→ PM , M = 2(N + 1) − 1
restricts to P1×CN to give a proper embedding into PM \PM−2. Therefore
in Theorem 0.2 we characterize a special class of holomorphically convex
manifolds which can be embedded into PN \ PN−2.

The two conditions (i) and (ii) in Theorem 0.1 and (ii) and (iii) in The-
orem 0.2 appear also in the theory of q-Stein spaces introduced by Barlet
and Silva in [3]. And indeed, Theorem 0.1 implies in particular that (X,πk)
becomes a q-Stein manifold (1-Stein=Stein) for k sufficiently large, where
πk is the composition between π and Pq−1 3 [z0 : · · · : zq−1] → [zk0 : · · · :
zkq−1] ∈ Pq−1, and Theorem 0.2 implies that (X,π) is a 2-Stein manifold.

The original motivation of this paper was the problem raised by Harvey
and Lawson in [7]:

Problem 0.3. — Characterize (intrinsically) the proper submanifolds
of PN \ PN−q.

Such an intrinsic characterization should be an interpolation between
Kodaira’s embedding theorem (case q = N + 1) and the embedding of
Stein manifolds into an affine space (case q = 1). Our theorems mentioned
above provide such characterizations in two “extreme” special cases.

We now sketch the proofs of the two Theorems 0.1 and 0.2. There are
several main ingrediendts in the proof of the pseudoconcave case. The first
one is Demailly’s Theorem 1.1; it allows us to construct sufficiently many
sections in high powers of a positive line bundle. We will be able to “em-
bed” any compact subset of X. The second one is Andreotti’s theory of
pseudoconcave spaces. It provides us with a Siegel-type theorem, with a
compactification theorem for pseudoconcave spaces and some other results
about the structure of our embedding. The third ingredient is a theorem
of Dingoyan which says that if an open subset of a projective manifold
is both “pseudoconcave” and “locally pseudoconvex”, then its complement

TOME 56 (2006), FASCICULE 2



376 Ionuţ CHIOSE

consists of a finite number of hypersurfaces. In our case the “pseudoconcav-
ity” condition is given in the hypothesis, while the “local pseudoconvexity”
condition is a consequence of (∗). The finite dimensionality of the singular
cohomology groups will permit us to embed the “infinity” of X, via an ele-
mentary but important proposition due to Demailly. Finally we use Mok’s
method to show that the embedding has the desired form. It consists essen-
tially of showing that a certain Stein manifold is holomorphically convex
with respect to the algebra of “algebraic” functions on that manifold.

For the pseudoconvex case we use a technical lemma to show that the only
compact subvarieties of X are either points or rational curves isomorphic to
P1 through the projection π. Then we consider the Remmert reduction of
X. The problem is that in general a singular analytic Stein space cannot be
embedded into an affine space. But a relatively compact subset of a Stein
space can always be embedded, and we use this to show that X can be
embedded into the desired space. Along the way we use an approximation
theorem and some category arguments.

Acknowledgements. — I would like to thank my advisor, Blaine Lawson,
for all his help, support and inspiration.

1. The pseudoconcave case

In this section we prove Theorem 0.1 in the case q = 2. The proof of
the general case for an arbitrary q > 2 follows similarly with only minor
changes.

1.1. Preliminaries

In this section we recall some definitions and theorems needed for proving
Theorem 0.1.

1.1.1. We will repeatedly make use of the following theorem of De-
mailly [4]

Theorem 1.1. — Let (E, h) be a Hermitian holomorphic line bundle
with semi-positive curvature (i.e., iΘ(E, h) > 0) on a complete Kähler
manifold (X,ω) of dimension n. Suppose ϕ : X → [−∞, 0] is a function
which is of class C∞ outside a discrete subset S of X and near each point
p ∈ S, ϕ(z) = Ap ln |z|2 where Ap is a positive constant and z = (z1, . . . , zn)
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EMBEDDING q-COMPLETE MANIFOLDS 377

are local coordinates centered at p. Assume that iΘ(E, e−ϕh) = iΘ(E, h)+
i∂∂̄ϕ > 0 on X \ S and let λ : X → [0, 1] be a continuous function such
that iΘ(E, h) + i∂∂̄ϕ > λω on X \ S. Then for every C∞ form v of type
(n, 1) with values in E on X such that ∂̄v = 0 and∫

X

1
λ
|v|2e−ϕdVω <∞

there exists a C∞ form u of type (n, 0) with values in E on X such that
∂̄u = v and ∫

X

|u|2e−ϕdVω 6
∫
X

1
λ
|v|2e−ϕdVω

If E is a line bundle on X a complex manifold then we say that the ring

A(X,E) =
∞⊕
k=0

H0(X,Ek)

separates the points of X if ∀x 6= y ∈ X, ∃k ∈ N,∃s ∈ H0(X,Ek) s.t.
s(x) = 0 6= s(y) and that it gives local coordinates on X if ∀x ∈ X, ∃k ∈
N,∃s0, s1, . . . , sn ∈ H0(X,Ek) s.t. s0(x) 6= 0 and

d

(
s1
s0

)
∧ · · · ∧ d

(
sn
s0

)
(x) 6= 0.

The following lemma is a simple application of the above Theorem 1.1

Lemma 1.2. — Let (X,ω) be a complete Kähler manifold of dimension
n and (E, h) a positive Hermitian line bundle on X. Assume that there
exists k0 ∈ N such that Ek0 ⊗K∗

X is semipositive. Then A(X,E) separates
the points of X and gives local coordinates on X.

1.1.2. We will also make use of the theory of pseudoconcave manifolds
as developed by Andreotti.

Definition 1.3. — A manifold X of dimension n is said to be q-com-
plete, 1 6 q 6 n if X has a C∞ exhaustion function ϕ : X → [0,∞) such
that i∂∂̄ϕ(x) has at least n− q + 1 positive eigenvalues ∀x ∈ X.

A manifold X is said to be p-concave, 1 6 p 6 n, if X has a C∞ exhaus-
tion (i.e., proper) function ψ : X → [a, b) such that i∂∂̄ψ(x) has at least
n−p+1 negative eigenvalues, ∀x ∈ X \K where K is some compact subset
of X.

The results that we need from the theory of pseudoconcave spaces can
be summarized in the following

TOME 56 (2006), FASCICULE 2



378 Ionuţ CHIOSE

Theorem 1.4 (Andreotti [1], Andreotti and Tomassini [2]). — Let X
be a connected p-concave manifold of dimension n, p 6 n − 1. Then the
field of meromorphic functions K(X) on X has tr.degCK(X) 6 n. If F is
a line bundle on X, then dimHj(X,F ) < ∞ for j 6 n − p − 1. If X is
embedded as a locally closed subset in some projective space PN , then X

is included into an algebraic variety Z in PN , which is irreducible and of
the same dimension n. There is a unique maximal analytic subset of Z of
pure codimension 1 with support in Z \X.

1.1.3. For the proof of the fact that the birational embedding in Theo-
rem 0.1 is quasi-projective we will use the following result of Dingoyan [6].

Definition 1.5. — Let V be a projective variety and U an open subset
of V . Then U is said to be locally pseudoconvex in V if there exists a
covering W of V by open Stein sets such that for every W ∈ W, the
connected components of U ∩W are Stein.

Theorem 1.6 (Dingoyan [6]). — Let V be a projective manifold and
X an open pseudoconcave, locally pseudoconvex subset of V . Then the
topological boundary of X consists of a finite union of hypersurfaces.

For the proof of Theorem 1.6 one uses the fact that X is locally pseudo-
convex in V to construct a section s of an ample line bundle on V such that
X is the domain of existence for s, and then the pseudoconcavity condition
on X implies that s is algebraic on V , therefore the boundary of X consists
of the polar set of s.

1.1.4. In order to prove that the birational embedding in Theorem 0.1
can be “resolved” in a finite number of steps, we will use the following
proposition of Demailly [5]

Proposition 1.7. — Let X be a complex manifold of dimension n and
let Y be a subvariety of dimension p in X and d = n−p = codimXY . Then

Hq(X,X \ Y ; C) = 0 if q < 2d

and

H2d(X,X \ Y ; C) ' CJ

where (Yj)j∈J is the family of irreducible components of dimension p in Y .
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1.2. The necessity of the conditions

We show that all the conditions in Theorem 0.1 except (iv) are necessary
conditions and that (iv) is a “generically” necessary condition.

On PN fix homogeneous conditions [z0 : z1 : · · · : zN ] and assume that
PN−q = {z0 = z1 = · · · = zq−1 = 0}. Let π : PN \ PN−q → Pq−1 be the
projection away from PN−q given by

π([z0 : · · · : zN ]) = [z0 : · · · : zq−1].

On PN \ PN−q consider the exhaustion function ϕ : PN \ PN−q → R,

ϕ([z0 : · · · : zN ]) = ln
(
|z0|2 + · · ·+ |zN |2

|z0|2 + · · ·+ |zq−1|2

)
.

Since

iΘ(OPq−1(1)) = i∂∂̄ ln(|z0|2 + · · ·+ |zq−1|2)

is the curvature of OPq−1(1) on Pq−1, we have

i∂∂̄ϕ+ π∗iΘ(OPq−1(1)) = iΘ(OPN (1))|PN\PN−q > 0

Therefore any manifold X that can be properly embedded into PN \PN−q
comes equipped with a projection π : X → Pq−1 and an exhaustion function
ϕ : X → [0,∞) such that

(∗) i∂∂̄ϕ+ π∗iΘ(OPq−1(1)) > 0

Condition (∗) implies in particular that E = π∗OPq−1(1) is positive and
that X is q-complete with respect to ϕ.

If moreover the manifold X can be compactified in PN then X is a quasi-
projective variety, therefore it is of finite topological type.

If X denotes the compactification of X, then OPN (1)|X is ample on X,
and since the dualizing sheaf ωX is coherent, it follows that there exists
k0 ∈ N such that OPN (k0)|X ⊗ ω∗

X
is globally generated. Restricting to X,

we obtain that Ek0 ⊗ K∗
X is globally generated, in particular it is semi-

positive (i.e., there exists a Hermitian metric such that its curvature is
semi-positive definite).

For a given projective variety X of dimension n in PN , its intersection
with a general linear subspace of of PN of dimension N − q has dimension
n− q. Therefore if X ∩PN−q is of pure dimension n− q, then by Ohsawa’s
theorem [11] it follows that X is (n− q + 1)-concave.

TOME 56 (2006), FASCICULE 2
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1.3. Andreotti’s theory on pseudoconcave spaces

Let X be a manifold as in Theorem 0.1 with q = 2. In this section we use
Andreotti’s results on pseudoconcave manifolds to construct a birational
embedding of X. Then in Section 1.4 we show that the embedding is quasi-
projective. Next in 1.5 we prove that the birational embedding can be
resolved in a finite number of steps. Finally we use Mok’s method [9] to
show that the embedding that we get has the form X \ (X ∩ PN−2).

In order to use Lemma 1.2, we have to show that X carries a complete
Kähler metric:

Lemma 1.8. — Let X be a manifold as above above. We can assume
that ϕ > 1. Let f(t) = t− 1

2 ln t and η = f ◦ ϕ. Set

ω̃ = i∂∂̄η + π∗iΘ(OP1(1)).

Then ω̃ is a complete Kähler metric on X.

Proof. — Clearly ω̃ is closed. We have i∂∂̄η = f ′◦ϕ i∂∂̄ϕ+f ′′◦ϕ i∂ϕ∧∂̄ϕ
and f ′(t) = 1− 1

2t , f
′′(t) = 1

2t2 . Hence

ω̃ =
(

1− 1
2ϕ

)
ω +

1
2ϕ
π∗iΘ(OP1(1)) +

1
2ϕ2

i∂ϕ ∧ ∂̄ϕ

so ω̃ is positive and ω̃ > 1
2ϕ2 i∂ϕ ∧ ∂̄ϕ = 1

2 i∂(lnϕ) ∧ ∂̄(lnϕ). Therefore
|∂(lnϕ)|2

ω̃
< 2 and since lnϕ is an exhaustion function, it follows that ω̃ is

complete. �

Now X has a complete Kähler metric, E = π∗OP1(1) is positive and
Ek0 ⊗K∗

X is semi-positive, therefore we can use Lemma 1.2 to show that
A(X,E) separates the points of X and gives local coordinates on X.

Let s0, s1 be a basis of H0(P1,OP1(1)) and denote by the same symbols
s0 and s1 their pull-back to X. They are sections in E with Z(s0, s1) =
{x ∈ X|s0(x) = s1(x) = 0} = ∅. They play a role analogue to the constant
function 1 for Stein manifolds.

Since X is connected, the ring A(X,E) is an integral domain. We con-
sider the field

Q(X,E) =
{
s

t

∣∣∣∣∃k ∈ N s.t. s, t ∈ H0(X,Ek), t 6= 0
}
⊂ K(X).

The transcendence degree tr.degCQ(X,E) > n since A(X,E) gives local
coordinates on X, and tr.degCK(X) 6 n since X is (n−1)-concave. There-
fore Q(X,E) ⊂ K(X) is a finite extension. Moreover, since X is smooth (in
particular it is normal), Q(X,E) is algebraically closed in the field K(X)
of all meromorphic functions on X. This implies that Q(X,E) = K(X).
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EMBEDDING q-COMPLETE MANIFOLDS 381

Let sk0 , sk1 , s2, . . . , sn ∈ H0(X,Ek) (where s0 and s1 are as above) such
that sk0(x) 6= 0 and

d

(
sk1
sk0

)
∧ · · · ∧ d

(
sn
sk0

)
(x) 6= 0

for some x ∈ X. Then

tr.deg C
(
sk1
sk0
, . . . ,

sn
sk0

)
= n

so

C
(
sk1
sk0
, . . . ,

sn
sk0

)
⊂ K(X)

is a finite extension. Therefore there is a g ∈ K(X) = Q(X,E) such that

K(X) = C
(
sk1
sk0
, . . . ,

sn
sk0

)
(g)

so by taking k sufficiently large we can assume that

(1.1) K(X) = C
(
sk1
sk0
, . . . ,

sNk

sk0

)
where sk0 , sk1 , s2, . . . , sNk

is a basis of H0(X,Ek).
Let ψ : X → [a, b) be a C∞ function that gives the (n − 1)-concavity of

X and let K ⊂ X be a compact subset of X such that i∂∂̄ψ has 2 negative
eigenvalues on X \ K. Let c ∈ (supK ψ, b) and Xc = {x ∈ X|ψ(x) < c}
which is relatively compact in X. Then there exists k ∈ N such that τk =
[sk0 : sk1 : · · · : sNk

] : X → PNk is an embedding of Xc. Note that τk is
well-defined on X since Z(s0, s1) = ∅. We can assume that (1.1) is true
for k.

Since τk(Xc) is pseudoconcave and locally closed in PNk , there exists a
projective compactification Zk of τk(Xc) of the same dimension n. Obvi-
ously τk(X) ⊂ Zk.

Let νk : Zνk → Zk be the normalization of Zk. Since νk is finite, it follows
that ν∗kOPNk (1) is ample on Zνk . Denote by τνk : X → Zνk the lifting of
τk : X → Zk.

Put
Ak = {x ∈ X| rank dτνk (x) < n}

which is an analytic subset of X. Since τνk |Xc is an embedding, it follows
that Ak ⊂ X \ Xc. Since i∂∂̄ψ has 2 negative eigenvalues on X \ Xc, it
follows that dimAk 6 n− 2.

Lemma 1.9. — τνk is injective on X \Ak.

TOME 56 (2006), FASCICULE 2



382 Ionuţ CHIOSE

Proof. — Let x, y ∈ X \ Ak, x 6= y. If s0(x) = 0 and s0(y) 6= 0 then
clearly τνk (x) 6= τνk (y). If s0(x) 6= 0, s0(y) 6= 0, then let t ∈ H0(X,El) such
that t(x) = 0, t(y) 6= 0. Let g = t

sl
0
∈ K(X); then g is defined at x and y

and g(x) 6= g(y). Condition (1) implies that there exist two homogeneous
polynomials P and Q of the same degree such that

g =
P (sk0 , . . . , sNk

)
Q(sk0 , . . . , sNk

)
.

Then
ĝ =

P (z0, . . . , zNk
)

Q(z0, . . . , zNk
)

is a rational function on Zk and set g̃ = ν∗k ĝ the pull-back of ĝ to Zνk .
Then (τνk )∗g̃ = g and since g is defined at x and y and τνk is an isomor-
phism around x and y, it follows that g̃ is defined at τνk (x) and τνk (y) and
g̃(τνk (x)) = g(x) 6= g(y) = g̃(τνk (y)), hence τνk (x) 6= τνk (y). �

Lemma 1.10. — τνk (Ak) = τνk (X) ∩ Sing(Zνk ).

Proof. — Let x ∈ Ak and suppose that τνk (x) ∈ Reg(Zνk ). Pick local
coordinates (w1, . . . , wn) on Zνk centered at τνk (x) and (z1, . . . , zn) local
coordinates on X centered at x. Then on a neighborhood of x, Ak is given
by det

(
∂(wj◦τν

k )
∂zl

)
j,l=1,n

= 0 which is an analytic subset of dimension n−1.

This contradicts dimAk 6 n− 2. Conversely, let x ∈ X such that τνk (x) ∈
Sing(Zνk ); if x ∈ X \Ak, then τνk (U) is a germ of a manifold at τνk (x) for a
sufficiently small neighborhood U of x, and since Zνk is normal, it follows
that τνk is a local isomorphism around τνk (x), therefore τνk (x) ∈ Reg(Zνk ).
Contradiction. �

Since τk(Xc) is (n − 1)-concave, it follows that there exists a unique
maximal analytic subset Hk of pure dimension n− 1 in Zk with support in
Zk \ τk(Xc). Put Hν

k = ν−1
k (Hk).

Lemma 1.11. — Let s ∈ H0(X,Ekl); then there exists a meromorphic
section s̃ of ν∗kOPN (l) on Zνk with polar set in Hν

k such that s̃ ◦ τνk |X\Ak
=

s|X\Ak
.

Proof. — s
skl
0
∈ K(X) so there exist two homogeneous polynomials P

and Q of the same degree such that

s

skl0
=
P (sk0 , . . . , sNk

)
Q(sk0 , . . . , sNk

)
.

Set
s̃ = ν∗k

(
zl0
P (z0, . . . , zNk

)
Q(z0, . . . , zNk

)

)
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where [z0 : · · · : zNk
] are homogeneous coordinates on PNk . Then s̃◦τνk |Xc =

s|Xc
is holomorphic so the polar set of s̃ in Zνk does not intersect τνk (Xc).

Since Zνk is normal, the polar set of s̃ is of pure dimension n−1 and therefore
it has to be included in Hν

k . �

Lemma 1.12. — τνk (Ak) = τνk (X) ∩Hν
k .

Proof. — Let z = τνk (x) ∈ Hν
k . If x ∈ X \ Ak, then (τνk )−1(Hν

k ) has a
component of dimension n− 1 included in X \Xc. This is a contradiction,
so x ∈ Ak, i.e., τνk (X) ∩ Hν

k ⊂ τνk (Ak). Conversely, suppose x ∈ Ak and
τνk (x) /∈ Hν

k . Let U be a neighborhood of x such that τνk (U) ∩Hν
k = ∅. Let

x1, x2 ∈ U, x1 6= x2 and s ∈ H0(X,Ekl) such that s(x1) 6= s(x2). Then
s̃ the corresponding section on Zνk is well-defined at τνk (x1) and τνk (x2)
and s̃(τνk (x1)) 6= s̃(τνk (x2)) so τνk (x1) 6= τνk (x2). Therefore τνk |U is injective.
Since Zνk is normal, τνk |U is open. Therefore τνk |U : U → τνk (U) is a homeo-
morphism and τνk (U) is an open neighborhood of τνk (x). Then, since Zνk is
normal, τνk (U) is also normal, and τνk |U : U → τνk (U) is the normalization
of τνk (U) so τνk |U is an analytic isomorphism. Therefore τνk (x) ∈ Reg(Zνk ),
contradiction with Lemma 1.10. �

1.4. Quasi-projectivity of the embedding

So far we have a morphism τνk : X → Zνk which is an embedding outside
an analytic subset Ak of codimension > 2. In this section we will show that
τνk (X \Ak) is a Zariski open set in Zνk .

Let x0 ∈ P1 such that s0(x0) = 0 and X0 = X \ π−1(x0). Let

ϕ0 = ϕ+ ln
(
|s0|2 + |s1|2

|s0|2

)
which is an exhaustion function on X0. Moreover, i∂∂̄ϕ0 = ω|X0 > 0,
therefore X0 is a Stein manifold.

Let πk : X → P1, πk = [sk0 : sk1 ] and ϕk ∈ C∞(X,R),

(1.2) ϕk = ϕ+ ln
(

(|s0|2 + |s1|2)k

|s0|2k + |s1|2k

)
Then ϕk is an exhaustion function and i∂∂̄ϕk + π∗kiΘ(OP1(1)) = i∂∂̄ϕ +
kπ∗iΘ(OP1(1)) > 0.

By Hironaka’s theorem on the resolution of singularities, there exists a
projective manifold Zk and a proper morphism λk : Zk → Zνk such that
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λ−1
k (Sing(Zνk ) ∪Hν

k ∪ ν
−1
k (Z(z0, z1))) is a hypersurface Hk having normal

crossings and

λk|Zk\Hk
: Zk \Hk → Zνk \ (Sing(Zνk ) ∪Hν

k ∪ ν−1
k (Z(z0, z1)))

is an isomorphism, where [z0 : · · · : zNk
] are homogeneous coordinates on

PNk . Set τk : X \ Ak → Zk, τk = (λk|Zk\Hk
)−1 ◦ τνk . Then we have the

following diagram:

(1.3) X \Ak
τk //

� _

��

Zk

λk

��
X

τν
k //

τk

##GGGGGGGGG Zνk

νk

��
Zk

� � // PNk

The following lemma is well-known, but we give its proof since a similar
method will be used in Lemma 1.14:

Lemma 1.13. — Let X be a Stein manifold and f : X → Y a holomor-
phic map to a complex manifold Y . Let U ⊂ Y be a connected open Stein
subset of Y . Then f−1(U) ⊂ X is Stein.

Proof. — Let ϕ be an exhaustion strictly plurisubharmonic function on
X and ψ an exhaustion strictly plurisubharmonic function on U . Set µ =
ϕ|f−1(U) + ψ ◦ f |f−1(U) on f−1(U). Then µ is clearly strictly plurisub-
harmonic and an exhaustion function on U , therefore f−1(U) is a Stein
manifold. �

Lemma 1.14. — τk(X \Ak) = Zk \Hk

Proof. — First we are going to show that Zk \ τk(X \ Ak) is a hyper-
surface. In order to use Theorem 1.6, we have to show that τk(X \ Ak) is
locally pseudoconvex in Zk, i.e., that any z ∈ Zk has a Stein neighborhood
Uz such that Uz ∩ τk(X \Ak) is Stein. Let z ∈ Zk. If νk(λk(z)) /∈ Z(z0, z1),
assume νk(λk(z)) /∈ Z(z0) and let Uz be a small ball centered at z such that
νk(λk(Uz))∩Z(z0) = ∅. Then Uz\Hk is Stein, therefore λk(Uz\Hk) is Stein
(because λk is an isomorphism on Zk \ Hk), therefore from Lemma 1.13
(τνk )−1(λk(Uz \ Hk)) is Stein in X0 and is included in X0 \ Ak. Hence
τk(X \Ak) ∩ Uz is Stein.

If νk(λk(z)) ∈ Z(z0, z1), then let Uz be a small ball centered at z such
that (νk ◦ λk)∗OPN (1)|Uz

is trivial. Let sk0 and sk1 be the pull-backs of
z0 and z1 to Zk and H1k = Z(sk0 , s

k
1) ⊂ Hk and H2k the rest of the
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components of Hk. On Uz the two sections sk0 and sk1 give two holomorphic
functions h0 and h1 such that Z(h0, h1) = Uz ∩H1k. Since Hk has normal
crossings, we can assume that H1k ∩ Uz = {w1w2 · · ·wl = 0} and H2k ∩
Uz = {wl+1 · · ·wl+p = 0} where (w1, . . . , wn) are local coordinates on Uz
centered at z. Since Z(h0, h1) = Z(h) where h = w1 · · ·wl, from Hilbert’s
Nullstellensatz it follows that there exist m ∈ N and g0, g1 holomorphic
functions on Uz such that g0h0 + g1h1 = hm. In particular there exists a
constant C such that |h|2m 6 C(|h0|2 + |h1|2). Let

µ = ln
(
|h0|2 + |h1|2

|h|2m

)
on Uz \H1k which is a function bounded from below. Let

η = ln
(

1
|wl+1 · · ·wl+p|2

)
on Uz \ H2k and θ = 1

1−|w|2 . Denote by µ, η and θ the pull-back of µ, η
and θ to τ−1

k (Uz) ⊂ X \ Ak. Let ϕk be the function given in (1.2) and on
τ−1
k (Uz) consider the function γ = ϕk + µ + η + θ. Then it follows that
i∂∂̄(ϕk + µ) = ω|τ−1

k
(Uz) > 0 and therefore γ is strictly plurisubharmonic

on τ−1
k (Uz). It is easy to check that γ is an exhaustion function on τ−1

k (Uz),
therefore τ−1

k (Uz) is Stein so Uz ∩ τk(X \Ak) is Stein. >From Theorem 1.6
it follows that Zk \ τk(X \ Ak) = H

′
k is a hypersurface which is included

in Hk.
If Hk 6= H

′
k then one component of Hk intersects τk(X \ Ak), so we

obtain a subvariety in X of dimension n− 1 which is properly included in
{ψ > c}, which is a contradiction. Therefore Zk \ τk(X \Ak) = Hk. �

1.5. Holomorphically convex spaces and
the algebra of algebraic functions

In this section we show first that the birational embedding can be re-
solved in a finite number of steps, and then that the embedding that we
get can be adjusted to have the desired form.

We have that τk : X \ Ak → Zk \ Hk is an isomorphism, in particular
X \Ak is of finite topological type.

Condition (∗) implies that X is a 2-complete manifold; this implies that

Hn+2(X; C) = Hn+3(X; C) = . . . = H2n(X; C) = 0.

Together with condition (v) we get that dimH2p(X; C) <∞, for 2 6 p 6 n.
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Let (Yj)j∈J be the irreducible components of Ak of codimension 2 in X.
We have the exact sequence of the pair (X,X \Ak):

H3(X \Ak; C) → H4(X,X \Ak; C) → H4(X; C)

>From Proposition 1.7 we have that H4(X,X \ Ak; C) ' CJ . Since
dimH4(X,C) < ∞ and dimH3(X \ Ak; C) < ∞, it follows that |J | < ∞,
i.e., Ak has finitely many irreducible components of dimension n− 2. Pick
xj ∈ Yj and then we can find k′ sufficiently large such that Ek

′
“resolves”

the points xj , i.e., xj /∈ Ak′ . Therefore all the irreducible components of
Ak′ have dimension 6 n− 3. It is clear now that we can repeat the above
procedure to get that for k sufficiently large the “bad” set Ak = ∅.

Our whole discussion so far can be summarized in the following

Proposition 1.15. — Let X be a manifold as in Theorem 0.1. Then
there exists a k ∈ N such that τνk : X → Zνk is an embedding and τνk (X) =
Zνk \ (Hν

k ∪ Sing(Zνk ) ∪ ν−1
k (Z(z0, z1))).

In order to complete the proof of Theorem 0.1, we have to show that
the complement of τνk (X) can be realized as the intersection between Zνk
and a linear subspace of codimension 2. We will use Mok’s method [9] (see
also [5]); first we will show that a certain Stein manifold is holomorphically
convex with respect to the algebraic functions, and then we show that the
Stein manifold is actually affine.

On X0 = X \ π−1(x0) = {x ∈ X|s0(x) 6= 0} consider the algebra

H0 =
{
f ∈ H0(X0,OX0)

∣∣∣∃l ∈ N,∃s ∈ H0(X,El) s. t. f =
s

sl0

}
⊂ H0(X0,OX0)

It obviously separates the points of X0 and gives local coordinates on X0

and we are going to prove that X0 is holomorphically convex with respect to
H0, i.e., for any compact K ⊂ X0, K̂H0 = {x ∈ X0||f(x)| 6 supK |f |,∀f ∈
H0} is also compact.

On X0 we have the strictly plurisubharmonic exhaustion function

ϕ0 = ϕ|X0 + ln
(
|s0|2 + |s1|2

|s0|2

)
.

Set
ω0 = i∂∂̄

(
ϕ0 −

1
2

lnϕ0

)
which is a complete Kähler metric on X0 (proof as in Lemma 1.8) and

ω0 =
(

1− 1
2ϕ0

)
ω|X0 +

1
2ϕ2

0

i∂ϕ0 ∧ ∂̄ϕ0
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so

ωn0 >

(
1− 1

2ϕ0

)n
ωn|X0 >

1
2n
ωn|X0 .

Let µ be the function that appears in Theorem 0.1 in condition (iii).
Denote by dVω0 = ωn0 the volume form of ω0.

Lemma 1.16. — Let f ∈ H0(X0,OX0) such that∫
X0

|f |2e−µ−lϕ0dVω0 <∞

for some l ∈ N. Then f ∈ H0.

Proof. — We are going to show that sl0f (which is a section in El on X0)
can be extended to a holomorphic section in El over X. Let x ∈ π−1(x0)
and (z1, . . . , zn) local coordinates centered at x on U a small neighborhood
of x. Let g0 = s0

s1
on U ∩X0. Then

ϕ0|U\Z(g0) = ϕ|U\Z(g0) + ln
(

1 + |g0|2

|g0|2

)
.

The function µ is bounded on U , so we can assume that∫
U\Z(g0)

|f |2e−lϕ0dVω0 <∞.

Then the integrability condition for f implies∫
U\Z(g0)

|f |2|g0|2l|dz1 ∧ · · · ∧ dzn|2 <∞

This implies that fgl0 can be extended to U and therefore sl0f can be
extended to X so f = sl

0f

sl
0
∈ H0. �

Lemma 1.17. — X0 is holomorphically convex with respect to H0.

Proof. — Let K be a compact subset of X0 and c0 = supKϕ0. We are
going to show that K̂H0 ⊂ {ϕ0 6 c0}. Let x ∈ X, ϕ0(x) > c0 and ε > 0
such that ϕ0(x) > c0 +3ε. We want to construct f ∈ H0 such that |f(x)| >
supK |f |. Let (z1, . . . , zn) be local coordinates centered at x on U = {|z| <
2} ⊂ {ϕ0 > c0 + 2ε} and let V = {|z| < 1} and η ∈ C∞0 (X,R), 0 6 η 6 1,
supp η ⊂ U, η|V = 1 and γ = nη ln |z|2 defined to be 0 on X \ U . On X0

consider the trivial line bundle C with the metric e−µ−l(ϕ0−c0−2ε) and the
dual of the canonical line bundle K∗

X0
with the metric induced by ω|X0 .

Denote by hl the Hermitian metric induced on C⊗K∗
X0

' K∗
X0

; then

iΘ(K∗
X0
, hl) = i∂∂̄µ|X0 + lω|X0 + Ricci(ω)|X0 > 0
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for l sufficiently large. For l large enough we have iΘ(K∗
X0
, e−γhl) = i∂∂̄γ+

iΘ(K∗
X0
, hl) > ω|X0 so we can find a continuous function λ : X0 → (0, 1]

which does not depend on l such that iΘ(K∗
X0
, e−γhl) > λω0. Let v = ∂̄η.

Then ∂̄v = 0 and v|V = 0 so∫
X0

1
λ
|v|2e−γ−µ−l(ϕ0−c0−2ε)dVω0 <∞

and moreover the above integral is bounded from above by∫
X0

1
λ |v|

2e−γ−µdVω0 since ϕ0 − c0 − 2ε > 0 on U . Note that the above
integral does not depend on l. From Theorem 1.1 it follows that there
exists ul a C∞ function such that ∂̄ul = v = ∂̄η and∫

X0

|ul|2e−γ−µ−l(ϕ0−c0−2ε)dVω0 6
∫
X0

1
λ
|v|2e−γ−µdVω0 .

Set fl = η − ul. Then
∫
U
|ul|2e−γdVω0 <∞ implies ul(x) = 0 so fl(x) = 1.

On {ϕ0 < c0 + ε} we have ϕ0 − c0 − 2ε < −ε so∫
{ϕ0<c0+ε}

|ul|2e−µ+lεdVω0 6
∫
X0

1
λ
|v|2e−γ−µdVω0 .

Now ul is holomorphic on {ϕ0 < c0 + 2ε} because ∂̄ul = ∂̄η = 0 on
{ϕ0 < c0 + 2ε}. An application of the Cauchy’s inequalities shows that
||ul||{ϕ06c0} → 0 when l → ∞. Now it is clear that for l large enough the
function fl = η − ul has the property |fl(x)| > supK |fl|. Moreover the
functions fl satisfy the L2 condition

∫
X0
|fl|2e−µ−lϕ0dVω0 < ∞ and from

Lemma 1.16 it follows that fl ∈ H0. �

We can replace E by Ek and then besides the properties (i)−(v) we
also have: Let s0, s1, . . . , sN be a basis of H0(X,E). Set τ = [s0 : · · · :
sN ] : X → Z ⊂ PN ; then τν : X → Zν is an embedding such that
Zν \ τν(X) = ν−1(Z(z0, z1)) ∪Hν ∪ Sing(Zν).

Set Zν0 = Zν \ ν−1(Z(z0)). Any function f ∈ H0 can be written f = s
sl
0

where s ∈ H0(X,El). From Lemma 1.11 it follows that s can be extended
to a meromorphic section s̃ in ν∗OPN (l) with polar set in Hν . Then f̃ = s̃

sl
0

is a meromorphic function on Zν0 which extends f and the polar set of f̃ is
included in Hν ∩ Zν0 .

As an easy application of Lemma 1.17 we get that

Sing(Zν) ⊂ ν−1(Z(z0, z1)) ∪Hν .

The proof now proceeds along the lines of Mok [9]. Denote by H ′ the
union of the irreducible components of Hν which are not included in
ν−1(Z(z0, z1)). If H ′ is a Q-Cartier divisor (i.e., set-theoretically locally
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complete intersection) then let t be a section in some line bundle L such
that the support of the zero divisor of t is H ′. Then ν∗OPN (l)⊗ L is very
ample for some large l and then Zν \ τν(X) = Z(zl0 ⊗ t, zl1 ⊗ t). But in
general H ′ does not have to be a Q-Cartier divisor.

Actually one can prove the following

Lemma 1.18. — If H ′ ∩ (Zν \ ν−1(Z(z0, z1))) is locally complete inter-
section in Zν \ ν−1(Z(z0, z1)) then the conclusion of Theorem 0.1 is true.

Proof. — Indeed, let x ∈ H ′ ∩ (Zν \ ν−1Z(z0, z1)) and let sx ∈ H0(Zν ,
ν∗OPN (l)) and Ux a Zariski open neighborhood of x such that H ′ ∩ (Zν \
ν−1Z(z0, z1)) ∩ Ux = Z(sx) ∩ Ux. Let W be the union of the irreducible
components of Z(sx) which are not contained in H ′. Let tx ∈ H0(Zν ,
ν∗OPN (m)) such that tx|W = 0, tx(x) 6= 0. Then for s sufficiently large tsx

sx

is a holomorphic section in ν∗OPN (sm − l) on Zν \ H ′. Since H ′ ∩ (Zν \
ν−1Z(z0, z1)) is quasi-compact, it follows that we can find k ∈ N such that
τνk is a proper embedding into Zνk \ ν∗kZ(z0, z1). �

We will construct subvarieties Yj in Zν , j = 1, n such that Yj is of pure
dimension j and Yj∩H ′ is a hypersurface in Yj for all j = 1, n. Put Yn = Zν .
Suppose Yj has been constructed. Then pick a section sj in ν∗OPN (l) for
some large l which vanishes on H ′ but does not vanish identically on any of
the irreducible components of Yj . Then Yj−1 is the union of the irreducible
components of Yj ∩ Z(sj) which are not contained in H ′.

We can complete now the proof of Theorem 0.1. We prove by induction
on j that there exist kj ∈ N such that the restriction of τνkj

: X → Zνkj
\

ν−1
kj

(Z(z0, z1)) to X ∩ Yj is a proper embedding in Zνkj
\ ν−1

kj
(Z(z0, z1)).

For j = n we get the proof of Theorem 0.1. If j = 1 then dimY1 = 1
and let x1, . . . , xm be the intersection points of Y1 and H ′ which are not
contained in ν−1(Z(z0, z1)). Suppose x1 ∈ Zν0 = Zν \ ν−1(Z(z0)); then
from Lemma 1.17 and the maximum principle it follows that there exists
a holomorphic function f1 in H0 whose restriction to Y1 has a pole at
x1. Similarly for the other points we get some functions f2, . . . , fm whose
restrictions to Y1 have poles at x2, . . . , xm respectively. These functions
induce some sections in some power k1 of E and then clearly the restriction
of τνk1 : X → Zνk1 \ ν

−1
k1

(Z(z0, z1)) to Y1 ∩X is a proper embedding.
Suppose kj has been constructed such that

τνkj
: X → Zνkj

\ ν−1
kj

(Z(z0, z1))

when restricted to Yj ∩ X is a proper embedding. We have a map φj :
Zνkj

\ ν−1
kj

(Z(z0, z1)) → Zν \ ν−1(Z(z0, z1)) such that φ−1
j (H ′) = H ′

kj
∩
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(Zνkj
\ ν−1

kj
(Z(z0, z1)). Set Y j = τνkj

(Yj ∩ X) and Y j+1 = τνkj
(Yj+1 ∩X) \

ν−1
kj

(Z(z0, z1)). By the induction hypothesis we have that Y j is a proper
subvariety of Y j+1. Since Y j+1 ∩ φ−1

j (Z(sj)) is the disjoint union (Y j+1 ∩
H ′
kj

) ∪ Y j , where sj is the section that appears in the construction of
Yj−1, it follows that Y j+1 ∩ H ′

kj
is locally complete intersection in Y j+1.

Let x ∈ Y j+1 ∩H ′
kj

. Then there exists a section t in ν∗kj
OPN (l) such that

t(x) 6= 0 and t = 0 on the irreducible components of φ−1
j (Z(sj)) which do

not intersect Y j+1 ∩H ′
kj

. Like in Lemma 1.18 we can find kj+1 such that
τνkj+1

|Yj+1∩X is a proper embedding in Zνkj+1
\ ν−1

kj+1
(Z(z0, z1)).

This completes the proof of Theorem 0.1 in the case q = 2.
For the proof of the general case q > 2, there is only one significant

change one has to make: instead of two sections s0 and s1, one considers q
sections s0, s1, . . . , sq−1 which form a basis of H0(Pq−1,OPq−1(1)).

2. The pseudoconvex case

In this section we prove Theorem 0.2.

2.1. The necessity of the conditions

In this section we show that conditions (i), (ii) and (iii) in Theorem 0.2
are necessary conditions.

Let X be a proper submanifold of P1 × CN . It is obviously holomorphi-
cally convex. Denote by p1 and p2 the projections on P1 and CN . Denote by
π the restriction of p1 to X. Let Z = p2(X) which is an analytic subspace
of CN by the proper mapping theorem. Let f : X → Y be the Remmert
reduction of X. There exists a holomorphic map h : Y → Z such that
h ◦ f = p2. Define ψ = λ ◦ h where λ is the C∞ function λ : CN → R,
λ(z) = |z|2. Then clearly λ is plurisubharmonic and if ϕ = ψ ◦ f then
i∂∂̄ϕ = i∂∂̄(λ ◦ h ◦ f) = i∂∂̄(λ ◦ p2) so i∂∂̄ϕ+ π∗iΘ(OP1(1)) > 0. We only
have to prove that ψ is C∞ on Y , i.e., locally on Y , ψ is the restriction of a
C∞ function. Obviously λ is a C∞ function. Our assertion will follow from
the following simple

Lemma 2.1. — Let h : Y → Z be a holomorphic map between analytic
spaces and let λ be a C∞ function on Z. Then ϕ = λ ◦ h is C∞ on Y .
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Proof. — It is a local problem, so we can assume that both Y and Z are
biholomorphic to analytic subsets of the unit balls BN (0, 1) and BM (0, 1) in
some affine spaces CN and CM . We can assume that λ is the restriction of a
C∞ function λ′. Consider the embedding Y ↪→ Y ×Z given by y → (y, h(y)).
Then Y ×Z is biholomorphic to an analytic subset of BN (0, 1)×BM (0, 1).
On BN (0, 1)×BM (0, 1) consider the C∞ function λ̃ given by λ̃(y, z) = λ′(z).
Then obviously ψ is the restriction of λ̃ through the above embedding
Y ↪→ Y × Z. �

2.2. The proof of the pseudoconvex case

Let X be a manifold as in Theorem 0.2. First we will show that any
compact subvariety of X is isomorphic to P1 through π, and then we will
use the Remmert reduction theorem to construct a proper embedding into
P1 × CN .

Let f : X → Y be the Remmert reduction of X.
In general a Stein analytic space can not be properly embedded into an

affine space CN , the main obstruction being the dimension of the tangent
space at singular points. However, there is always a holomorphic homeo-
morphism of a Stein space onto a subvariety of some CN . Let g : Y → CN
be this map.

We can choose the function ψ in Theorem 0.2 , (iii) to be an exhaustion
function (replace ψ with ψ+λ◦g where λ is a suitable exhaustion function
on CN ), and then condition (∗) implies that ϕ is a 2-convex exhaustion
function, i.e., i∂∂̄ϕ(x) has at least n − 1 strictly positive eigenvalues for
any x ∈ X, so X is a 2-complete manifold.

Let Y ⊂ X be a compact irreducible analytic subset of X. Then ϕ|Y is
constant (since ϕ is plurisubharmonic) and because i∂∂̄ϕ(x) has at least
n− 1 strictly positive eigenvalues, it follows that dim Y 6 1.

The key result in proving Theorem 0.2 is the following Lemma, whose
proof can be found in Section 2.3:

Lemma 2.2. — Let C be a curve, C ⊂ ∆n = {z ∈ Cn||z| < 1} such that
Sing(C) = {0} and let ϕ ∈ C∞(∆n,R) be a plurisubharmonic function such
that ϕ|C = 0. Then (i∂∂̄ϕ(0))n−1 = 0.

Let C ⊂ X be a compact irreducible curve. Then ϕ|C is constant and
from Lemma 2.2 above it follows that Sing(C) = ∅. Indeed,
0 < ωn = (i∂∂̄ϕ+π∗iΘ(OP1(1)))n = (i∂∂̄ϕ)n−1(i∂∂̄ϕ+nπ∗iΘ(OP1(1))) so
(i∂∂̄ϕ)n−1 6= 0.
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Let C1, C2 ⊂ X be compact irreducible curves. If C1∩C2 6= ∅ then again
Lemma 2.2 applies to show that C1 = C2. In particular any connected
analytic subset of X is irreducible.

Let C ⊂ X be a compact irreducible curve and consider π|C : C → P1.
Since ϕ|C is constant, from (∗) it follows that d(π|C)(x) 6= 0 for any x ∈ C,
and therefore π|C : C → P1 is a covering map. Since P1 is simply connected,
π|C : C → P1 is an isomorphism.

Consider the map π × f : X → P1 × Y . Then f is injective. Indeed, the
fibres of f are connected and compact, therefore if f(x) = f(y) and x 6= y

then x, y ∈ f−1(f(x)) which is a compact irreducible curve in X; but then
π(x) 6= π(y).

Moreover, condition (∗) implies that π × f has maximal rank n every-
where on X. Indeed, the problem is local on X, so let x ∈ X such that
s0(x) 6= 0 where s0, s1 is a basis for H0(P1,OP1(1)). On (P1 \{s0 = 0})×Y
we have the C∞ function

γ = ln
(

1 +
|s1|2

|s0|2

)
+ ψ

and condition (∗) implies that i∂∂̄γ′ > 0 where γ′ is the pull back of the
above function γ through π × f . This easily implies that π × f has rank n
on X.

Now let Yc = {y ∈ Y |λ(g(y)) < c} where λ : CN → R, λ(z) = |z|2. Then
since Yc is relatively compact in Y it can be embedded into some affine
space through g1, . . . , gM ∈ H0(Yc,OYc

).
Put h1 = g1 ◦ f, . . . , hM = gM ◦ f . Then π × (h1, . . . , hM ) : Xc →

P1 × CM is an embedding, where Xc = {x ∈ X|f(x) ∈ Yc}. The functions
h1, . . . , hM on Xc can be uniformly approximated on compacts by global
functions h′1, . . . , h′M ∈ H0(X,OX). Therefore for any c ∈ R we can find
h′1, . . . , h

′
M ∈ H0(X,OX) such that π × (h′1, . . . , h

′
M ) : X → P1 × CM has

rank n on Xc.
By means of category arguments (as in for instance [8]) we will show

that the number of functions giving the embedding can be kept bounded
by 2n+1 and that there exists a map π×(h1, . . . , h2n+1) : X → P1×C2n+1

of rank n on X. First, we have the following lemma, whose proof is very
similar to Lemma 5.3.5 in [8], so we omit it:

Lemma 2.3. — If h ∈ H0(X,OX)M+1,M > 2n is such that π × h has
rank n on a compact subset of X, then one can find (a1, . . . , aM ) ∈ CM
arbitrarily close to 0 such that π × (h1 − a1hM+1, . . . , hM − aMhM+1) has
rank n on K. In fact this is true for all a ∈ CM outside a set of measure 0.
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>From this lemma it follows easily that the set of all h ∈ H0(X,OX)2n+1

for which π × h does not have rank n on X is of the first category (i.e.,
it is contained in the union of countably many closed sets with no interior
point). Therefore there exists h = (h1, . . . , h2n+1) ∈ H0(X,OX)2n+1 such
that π × h has rank n on X.

Now it is clear that π × (h1, . . . , h2n+1, g ◦ f) : X → P1 × C2n+1+N is a
proper embedding.

2.3. A technical lemma

In this section we prove the following

Lemma 2.4. — Let C be a curve, C ⊂ ∆n = {z ∈ Cn||z| < 1} such that
Sing(C) = {0} and let ϕ ∈ C∞(∆n,R) be a plurisubharmonic function such
that ϕ|C = 0. Then (i∂∂̄ϕ(0))n−1 = 0.

Proof. — The fact that (i∂∂̄ϕ(0))n−1 = 0 means that i∂∂̄ϕ(0) has two
zero eigenvalues. Since C is singular at 0, we have three cases:

a) Two of the irreducible components of C at 0 are non-singular and they
intersect transversally. Then we can assume that the two irreducible com-
ponents are given by {z2 = · · · = zn = 0} and {z1 = z3 = · · · = zn = 0}.
Then obviously ∂2ϕ

∂z1∂z̄1
(0) = ∂2ϕ

∂z2∂z̄2
(0) = 0 and since ϕ is plurisubharmonic,

∂2ϕ
∂z1∂z̄2

(0) = ∂2ϕ
∂z2∂z̄1

(0) = 0 which implies (i∂∂̄ϕ(0))n−1 = 0
b) Two of the irreducible components of C at 0 are non-singular and they

are tangent. Then we can assume that the two irreducible components are
given by {z2 = · · · = zn = 0} and {z2 = zp21 ζ2, . . . , zn = zpn

1 ζn} where
2 6 p2 = · · · = pm < pm+1 6 · · · 6 pn and ζ2, . . . , ζn are holomorphic
functions of z1 such that ζ2(0) · · · ζn(0) 6= 0. Set

ψ(z1, . . . , zn) = ϕ(z1, . . . , zn) + ϕ(z1, z
p2
1 ζ2 − z2, . . . , z

pn

1 ζn − zn).

Then ψ is a plurisubharmonic function and ψ(z1, 0, . . . , 0) = 0,

ψ(z1, z
p2
1 ζ2, . . . , z

pn

1 ζn) = 0.

An easy computation shows that i∂∂̄ψ(0) = 2i∂∂̄ϕ(0) and it is enough
to prove that (i∂∂̄ψ(0))n−1 = 0. Set

µ(t, s) = ϕ(z1, z2 − tz2 − s(z2 − zp21 ζ2), . . . , zn − tzn − s(zn − zpn

1 ζn)).
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Then one can show that

ψ(z1, . . . , zn) =
∫ 1

0

∫ 1

0

∂2µ

∂s∂t
dsdt

=
n∑

j,k=2

zj(zk − zpk

1 ζk)αjk + zj(z̄k − z̄pk

1 ζ̄k)βjk

+ z̄j(zk − zpk

1 ζk)β̄jk + z̄j(z̄k − z̄pk

1 ζ̄k)ᾱjk

where αjk, βjk are C∞ functions. Then for l > 2 and z2 = · · · = zn = 0 we
have

0 =
∂2ψ

∂zl∂z̄1
=

n∑
k=2

−zpk

1 ζk
∂αlk
∂z̄1

− pkz̄
pk−1
1 ζ̄kβlk − zpk

1

∂ζ̄k
∂z̄1

βlk − z̄pk

1 ζ̄k
∂βlk
∂z̄1

.

Set z1 = z̄1 in the above equation and then simplify it by zp2−1
1 . Then let

z1 approach 0. We get
∑m
k=2 pk ζ̄k(0)βlk(0) = 0,∀l > 2. On the other hand

∂2ψ
∂zj∂z̄k

(0) = βjk(0) + β̄kj(0) for j, k > 2 which implies

m∑
j,k=2

∂2ψ

∂zj∂z̄k
(0)pjζj(0)pk ζ̄k(0) = 0.

Since ζj(0) 6= 0, the above equality implies that i∂∂̄ψ(0) has at least
two zero eigenvalues: one corresponding to (1, 0, . . . , 0), the other one to
(0, p2ζ2(0), . . . , pmζm(0), 0, . . . , 0).

c) One of the irreducible components of C at 0 is singular at 0. Then we
can assume that C is locally irreducible at 0. Let Cν ν→ C be the normaliza-
tion of C and assume that ν is given locally by ν(t) = (tp1 , tp2ζ2, . . . , tpnζn)
where ζ2, . . . , ζn are holomorphic functions such that ζ2(0) · · · ζn(0) 6= 0.
Since C is singular at 0, we can assume that 2 6 p1 < p2 < p3 6 · · · 6
pn 6 ∞ and p2 = qp1 + r where 0 < r < p1

Set ψ0(t) = ϕ ◦ ν(t) = ϕ(tp1 , tp2ζ2, . . . , tpnζn) = 0. Then

ψ1 =
1

tp1−1t̄p1−1

∂2ψ0

∂t∂t̄
=

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
tpj−p1 t̄pk−p1ζ1

j ζ̄
1
k = 0

where ζ1
j = pjζj + t

dζj

dt . Notice that ζ1
j (0) = pjζj(0) 6= 0 for j = 1, 2. If we

let t approach 0 in ψ1 = 0 we get ∂2ϕ
∂z1∂z̄1

(0) = 0. We want to show that
∂2ϕ

∂z2∂z̄2
(0) = 0.

Let Γ(p) be the class of all C∞ functions which can be written as a sum
of functions of the form: λαβ ◦ ν(t)tαt̄βζαζ̄β where α, β ∈ {0, p, p+ 1, . . .},
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if α = β then α = β 6= p and ζ0 = 1. Then clearly

ψ1 =
∂2ϕ

∂z2∂z̄2
ζ1
2 ζ̄

1
2 + hp2−p1

where hp2−p1 ∈ Γ(p2 − p1).
If hp2−sp1 ∈ Γ(p2 − sp1), s < q, then one can show that

1
tp1−1t̄p1−1

∂2hp2−sp1
∂t∂t̄

∈ Γ(p2 − (s+ 1)p1)

By induction we get

ψq =
∂2ϕ

∂z2∂z̄2
tp1−qp1 t̄p2−qp1ζq2 ζ̄

q
2 + hp2−qp1 = 0

where hp2−qp1 ∈ Γ(p2 − qp1), ζ
q
2 (0) 6= 0 and p2 = qp1 + r, 0 < r < p1. In

∂2ψq

∂t∂t̄ = 0 take t = t̄ then divide the equation by t2(r−1) then let t → 0. It
follows that ∂2ϕ

∂z2∂z̄2
(0) = 0. �
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