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COHOMOLOGY OF DRINFELD SYMMETRIC SPACES
AND HARMONIC COCHAINS

by Yacine AIT AMRANE

ABSTRACT. — Let K be a non-archimedean local field. This article gives an ex-
plicit isomorphism between the dual of the special representation of GL,,+1(K) and
the space of harmonic cochains defined on the Bruhat-Tits building of GLy41(K),
in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of
P. Schneider and U. Stuhler [9], that there exists a G Ly, +1(K)-equivariant isomor-
phism between the cohomology group of the Drinfeld symmetric space and the
space of harmonic cochains.

RESUME. Soit K un corps local non-archimédien. Ce papier donne un isomor-
phisme explicite entre le dual de la représentation spéciale de GL,,+1(K) et espace
des cocycles harmoniques définis sur I'immeuble de Bruhat-Tits de GLn+41(K), au
sens de E. de Shalit [11]. Nous déduisons, en appliquant les résultats d’un papier de
P. Schneider et U. Stuhler [9], qu’il existe un isomorphisme G Ly 11 (K)-équivariant
entre le groupe de cohomologie de 'espace symétrique de Drinfeld et I’espace des
cocycles harmoniques.

Introduction

Let K be a non-archimedean local field, i.e. a finite extension of Q, or
F,((t)). Let n be a fixed natural number. Let G denote GL,;1(K), let
P be its upper triangular Borel subgroup, and let S denote the set of
fundamental reflexions s;, 1 < i < n, in the linear Weyl group W of G. Let
A ={1,...,n}. For each subset I of A, let P; be the parabolic subgroup
of G generated by P and the reflexions Si, 1 € 1.

Let M be a commutative ring on which G acts trivially. For any I C A,
we denote by C’oo(é/]sl,M ) the space of locally constant functions on
G/P; with values in M. The action of G on C~ (G/P;, M) comes from

Keywords: Drinfeld symmetric spaces, cohomology, Bruhat-Tits buildings, harmonic
cochains, special representations.
Math. classification: 22E50, 20E42.



562 Yacine AIT AMRANE

left translations on G / ﬁj. For any integer k, 0 < k < n, if {k denotes the
subset {1, = k} of A, the k-special representation of G is defined to
be the M[G]-module:

C™(G/Py,, M)
Y jmn—k1 CT(G/ Py o4y, M)
In case k = n, we get the ordinary Steinberg representation Sp™(M) =
St™(M).
The n-dimensional Drinfeld symmetric space over K is the complemenj
QM+ in P of the union of all the K-rational hyperplanes. The group G

acts on Q+1)

The symmetric space Q("*1) has been introduced by Drinfeld, [6], who

Sp* (M) =

showed that it is endowed with a structure of a rigid analytic variety. In the
one dimensional case (n = 1) when K is of positive characteristic p > 0,
Drinfeld computed the first étale cohomology group of (2 and proved that
there are é—isomorphisms:

0.1)  HL(Q? @k C,L) = Hom(St (Z), L) = Harm " (Z, L)

where C is the completion of an algebraic closure of K, L a finite abelian
group whose order is prime to p, and $Harm (Z, L) is the space of L-
valued harmonic cochains defined on the oriented (or pointed) edges of the
Bruhat-Tits tree. ([6], see also [8]).

In their paper [9], P. Schneider and U. Stuhler generalized the first iso-
morphism in (0.1) to the case of any characteristic of the base field and to
any dimension. Indeed, they studied the cohomology groups of Q("+1) for
any cohomology theory satisfying certain natural axioms. They proved the
existence of a canonical G-equivariant isomorphism, cf. [9, §4, Cor.17]):

(0.2) 5S: H* Q"D F) = Homy(Sp*(Z), L)

where F is a complex of sheaves on the category of smooth separated rigid
analytic varieties over K equipped with a suitable Grothendieck topology,
and L is the cohomology of the point H%(Spec(K), F).

If K is of characteristic zero, the isomorphism of Schneider and Stuhler
above, applied to rigid De-Rham cohomology, gives a G-isomorphism

(0.3) SSar : Hip(Q" V) = Homy(Sp®(Z), K).

Let M be a commutative ring as above. Let L be an M-module on
which G acts linearly. For each k, 0 < k < n, denote by $arm*(M, L)
the space of L-valued harmonic cochains defined over the free M-module
generated by the pointed k-cells of the Bruhat-Tits building associated
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COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 563

to é, see def. 2.1. In zero characteristic, E. de Shalit, who introduced in
[11] the notion of harmonic cochains we use here, proved that there is a

G-equivariant isomorphism:
(0.4) dS: HiR(Q" D) = garm *(Z, K).

This isomorphism, together with the isomorphism (0.3), gives a G-equiva-
riant isomorphism in characteristic zero:

(0.5) SSqro0dS™!: Harm*(Z, K) = Homy(Sp®(Z), K).

In this paper, we shall construct explicitly, for K of arbitrary charac-
teristic, the isomorphism (0.5) above between the harmonic cochain spaces
and the K-dual spaces of the special representations.

The main result in this paper is the following theorem which generalizes
also the isomorphism of Drinfeld mentioned above, to arbitrary n:

THEOREM 0.1. — 3.3 Let K be a non-archimedean local field of arbi-
trary characteristic. Let M and L be as above. Then, for each k, 0 < k < n,
there is an explicit G-equivariant isomorphism:

ﬁarmk(M, L) HomM(Spk(M), L).

As a corollary, together with the isomorphism (0.2) above we obtain the
following:

COROLLARY 0.2. — Let K be a non-archimedean local field of arbitrary
characteristic. Let F and L be as in the situation of the isomorphism (0.2),
and as in [9]. For any k, 0 < k < n, we have the following G-equivariant
isomorphism:

H* QD F) = garm ¥ (Z, L).

In particular, in the case of étale cohomology, this isomorphism allows us
to express the étale cohomology groups of Q") in terms of harmonic
cochains which are of combinatorial nature.

TOME 56 (2006), FASCICULE 3



564 Yacine AIT AMRANE

Let us summarize the G-isomorphisms we have seen so far by the follow-
ing commutative diagrams:

K of any characteristic char(K) =0
Homz(Sp*(Z), L) Homgz(Sp*(Z), K)
/ \m
HE(QM+D) F) Th.3.3 $S4p0dS™1 HE (D)
Cor. das
$9Harm¥(Z, L) $Harm *(Z, K)
where L = H°(Spec(K), F) we have K = H{p (Spec(K)).

The results of this paper were announced without proofs in [2]. The
reader will find more detailed proofs in [1].

Here is the plan of this article. We use the notations introduced above.

In the first section we give some preliminaries about the Bruhat-Tits
building associated to G. For each I C A, let B be the standard parahoric
subgroup of G generated by the upper Iwahori subgroup of G and the
fundamental reflexions s;, ¢ € I. By the Bruhat decomposition, there is
a correspondence between the double classes in the affine Weyl group W
of G and the Bruhat cells in G. By the Iwasawa decomposition and with
techniques inspired from Bourbaki [4], we prove that there is a canonical
one-to-one correspondence between the double classes in the linear Weyl
group W and the Iwasawa cells in G. By these correspondences and by
using decompositions in the Weyl group W into double classes modulo
special subgroups, we deduce decompositions of certain subsets of G into
a disjoint union of Bruhat and Iwasawa cells respectively.

In the second section, we recall the definition of harmonic cochains given
by E. de Shalit. We also recall the relationship, given by P. Schneider and
U. Stuhler, in [9], between the special representations and the parahoric
subgroups. Next, we define, for each I C A, a subset C} of G which is a
product of standard parahoric subgroups. Finally, by using the Iwasawa de-
composition, we prove that the characteristic functions of the open compact
subsets C[.ﬁ]k/.ﬁjk of é/ﬁ]k, I C A, viewed in Sp*(M), have properties
that are close to those of harmonic cochains.

In section 3, we prove the main theorem which gives an explicit isomor-
phism between duals of the special representations and harmonic cochain
spaces. In this isomorphism, the characteristic functions of the subsets
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COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 565

6’115 e/ P 7, correspond to the standard cells o7 pointed at the fundamen-
tal vertex, stabilized by the standard parahoric subgroups B; (under the
action of G on its Bruhat-Tits building).

1. Bruhat-Tits building and decompositions in G
1.1. Bruhat-Tits building

>From now on, K will be a non-archimedean local field, O its valuation
ring, 7 a uniformizing parameter and  the residue field of K. We denote
by G the K-valued points of the connected reductive linear algebraic group
GLTL—H-

For general properties of buildings, see [5] and [7]. An introduction to
the Bruhat-Tits building of G with pointed cells is given in [11].

The Bruhat-Tits building (pointed cells). Let V be the standard
vector space K11, A lattice in V is a free O-submodule A of V of rank n+1.
The Bruhat-Tits building of G may be described as a simplicial complex
J whose vertices are the dilation classes of lattices. More precisely, two
lattices A and A’ are in the same class if A’ = AA for some A € K . The
class of A is a vertex v and is denoted v = [A]. For k, 0 < k < n, a k-cell o
in J is a set of k + 1 vertices {[A¢], [A1],.. ., [Ax]} such that:

(1.1) DA 2A D DA DA D

Notice that there is an obvious cyclic ordering (mod. (k+1)) on the vertices
of .

A pointed k-cell of J is a pair (o, v) consisting of a k-cell o together with
a distinguished vertex v of 0. Notice, therefore, that in the case of a pointed
cell (o,v) there is a precise ordering on the vertices. If v = [Ag] we write:

(1.2) (0,v) = (Ao 2 A1 2 -+ 2 Ay 2 mAy).

For each k, 0 < k < n, let 3* be the set of pointed k-cells of J.
The action of G. For a fixed basis of the vector space V', the action of

L where u € V is considered as

GonV is given by the matrix product ug™
a line matrix with respect to the basis of V. This action induces an action
of G on the vertex set of the building J by g.v = [Ag~!]. Thus, G acts on
the cells by acting on their vertices.

The type of a pointed cell. (cf. [11,§1.1].) Let o = (Ag 2 A1 2 --- 2

A D 7hAo) € 3% be a pointed k-cell. The type of o is defined as follows:
t(a) == (dl, ey dk+1)

TOME 56 (2006), FASCICULE 3



566 Yacine AIT AMRANE

where d; = dim,, A;_1/A; foreach i =1,...,k+1 (here, we suppose Ay =
mAp). The type of a pointed k-cell is preserved by the action of G. Indeed,
the action of G preserves the dimension of the x-vector spaces A;_1/A;.

The standard cells. Let {uq,...,u,t1} be the standard basis of V' =
K"+1. Consider, for each i = 0...n, the vertex v¢ = [A]] represented by
the lattice:

A(v) =7m0u; §--- B 70u; B Ouir1 B -+ B Oupyg.

Since the A;, 0 < i < n, satisfy (1.1), we have an n-cell oy ={vg, v¢,...,v2}
called the fundamental chamber of J.

Now, once and for all, fix A = {1,...,n}. For each I C A such that
A—T={ip <--- <ig}, we have a k-cell

(1.3) or = {vg, v ,...,v7 }.

The o7, I C A, are called the standard cells of the Bruhat-Tits building
J. These cells are the faces of the fundamental chamber oy having v§ as
vertex, called the fundamental vertex of J.

We denote by T the standard maximal torus of G of diagonal matrices
and by N its normalizer in G. Since the Weyl group W = N / T of G with
respect to T is isomorphic to the permutation group S, 11, W is generated
by the set S = {s;,i € A} of the reflexions s; which correspond to the
transpositions (i,i + 1) € S, +1. We have the following lemma:

LEMMA 1.1. — Let y;, 0 < ¢ < n, be the diagonal matrix
i times
A ——
y; = diag(1,..., 1,7, ..., m)
and let w; = (5i8i41 - 5n)(8i-18i " Sn_1) - (5182 Sp_is1) € W. We
have:

(09,v7) = yiwi(op, vg)-

If (o, 07) = (v, ... 05, 05,08, ..., vf ) Is a face of the pointed chamber
(a@,vfj), WhereO zo<i1<~-~<ik<nand0 < k, then

(J? ,U?j) = y17 wij (07\1] ) Ug)

where A — I, = {ijp1 —ij < - < iy —ij <n+1ldig—i; < - <
n+1+ij71*ij}.

o

Proof. — The vertices of the fundamental chamber are vY = [A;]. We
can easily check that the representants A; of these vertices satisfy:

o A Cif 0<IK<i—1
A Jw; = (7)1+1+l71 NV
1y {Alﬂr if i<li<n

ANNALES DE L’INSTITUT FOURIER
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Therefore, by taking into account the way in which G acts on the vertices
of J, it follows that:

1 _17110:{ Vpigp—; i 0<I<i—1

w; " Y; . .
i Yi vy, if i<l<n,

hence w; y; ! (0g,v9) = (09, v) and, if (o, v¢ ') and EJ are as in the lemma,
we have wilyij (0,07) = (07 ,20)- O

Since the action of G is transitive on the chambers of J, the lemma
above shows that G acts transitively on the pointed k-cells of a given type.
Furthermore, if we denote by ¢; the type of the pointed standard k-cell
(o1,v8) and by Jk:tr the set of all pointed k-cells of type t;, we have gk =
]_[ICA :J"\k*t’, where the disjoint union is taken over the subsets I C A such
that A — I is of cardinal k. Notice, therefore, that for k fixed, there are
exactly () types of pointed k-cells.

_ Remark 1.2. — For each I C A, let By be the pointwise stabilizer in
G of the standard cell oy, or equivalentely the stabilizer of the pointed
standard cell (o7, v]). The first assertion of the lemma 1.1 shows that, for
every i, 0 < ¢ < n, we have

(1.4) yiw; B = Byw;,

where B = By.

1.2. Bruhat and Iwasawa decomposition in G
1.2.1. The Bruhat decomposition

The parabolic subgroups of G. Let P be the upper triangular Borel
subgroup of G. A parabolic subgroup of G is a closed subgroup which
contains a Borel subgroup. The subgroups which contain P are said to be
special; these subgroups are completely determined by the subsets I of A.
Indeed, if for each I C A, we let W; be the subgroup of W generated by
the s;, i € I, it has been shown that the subset

]31 = IBWI]5 (:= ]51%13 where NI C N is such that NI/JN“ =Wy)

is a subgroup of G containing P and that every subgroup of G containing
P is a certain P; for I C A. Note that P = P@

The parahoric subgroups of G. For each I C A, we denote by B;
the open compact subgroup of C?’(O) which is the inverse image of the

TOME 56 (2006), FASCICULE 3



568 Yacine AIT AMRANE

standard parabolic subgroup P;(k) of G(k) by the map “reduction mod.
7: G(0) — G(k). The parahoric subgroups of G are the conjugates in G
of the B;, I C A. Note that we have By = B, K*.

The Bruhat decomposition. Let us recall, for each I C A, the follow-
ing Bruhat decomposition (cf. [5, ch. V], [4] or [7]):
(1.5)

Br=BWB= [] BwB resp. P =PW,P= [] PuwP.

weWr weWy

As a consequence of the Bruhat decomposition, we obtain the following
proposition:

PropoSITION 1.3. — Let I,Is C A. The map which to Wr,wWi, as-
sociates By, wBy, for w € W is a one-to-one correspondence:

Wi \W/Wr, = Br,\G(O)K" /By,.
Proof. — cf. [4, ch. IV, §2.5, rem. 2]. O

1.2.2. The Iwasawa decomposition

In the following, we shall use the same techniques as in [4, ch. IV, §2,2]
and use the generalized Iwasawa decomposition (see for example [7, th.
17.6)):

(1.6) G= H BwP

weW
to prove theorem 1.7 below, which gives an analogous result to the propo-
sition 1.3.

LEMMA 1.4. — Letw € W and j € A. We have the following inclusions:
1. is] C BwPUBws]P
2. s;Bw C BwPUBstP

Proof. — Indeed by putting B’ = w~!Bw in the first inclusion (resp.
P’ = wPw™? in the second inclusion) we have to show:

Ps; C B PUB's;P  (resp.s;B C BP' U Bs,P").

The canonical basis of K"t being {u1,...,uni1}, let éj be the subgroup
of G consisting of the elements which fix the u; for ¢ # j,7 + 1 and which
fix the plane spanned by u; and u;11. Put G, ;(0) = é NG(0). So (cf. [4,

ch.IV, §2.2]), we have G (k )P(k) = P(k:)G (k) for any base field k, hence,
for k = K (resp. k = k) we get G P= PG (resp. G, ;i(0)B = BG,; ;(0), by

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 569

lifting the equality éj(/f)ﬁ(ff) = ?(Ks)éj(ﬂ) to G(O) and multiplying then
by K*). Therefore, it’s enough to prove:
G; C(B'NG,;)(PNG;)U (B NG;)s;(PNG,)
(resp. G; C(BNG,)(P'NG;)U(BNG,)s;(P'NG,)).
By identifying G; with GL, the proof may be completed as in [loc. cit.],

except that we use the Iwasawa decomposition instead of the Bruhat de-
composition. O

COROLLARY 1.5. — Let uy,...,uq € S and w € W. We have:
1. w]3u1 ooug C U Bwuy, ...ulplg
(I1,eslp)
2. uy...ugBw C U Buy, ...ulpwﬁ

where (l1,...,l,) runs through the increasing sequenses (including the
empty sequence) in [1,d].

Proof. — Induct on d and use the lemma 1.4 above (see also [4, ch. IV,
§2, lem. 1]). O

COROLLARY 1.6. — Let I, I, C A. For each we W, we have Bhw]s]2 =
BW]lwW]QP.

Proof. — Let I, I and w be as above. Let w’ = u] - -ufil € Wy, and

w’ =y - uy € Wi,. We have:

Bw'B.BwP.Puw"P = Bu, - 'uéleﬁu'll - u&;f’,

therefore, the corollary 1.5 gives Bw'B.BwP.Pw" P C BW;,wWi, P, and
if we take the union as w’ and w” run through Wy, and Wi, respectively,
one obtains:

Bhwﬁb Q BW[IU}W[Zﬁ.

The other inclusion is obvious. O

THEOREM 1.7. — Let Iy, I, C A. The map W — By, \G/P;, which to
w associates Br, wPr,, induces a one-to-one map:

Wi \W /Wi, = Bi,\G/Pr,.
Proof. — The generalized Iwasawa decomposition (1.6) shows that the
map w — BwP is bijective from W on the set B\G/P, so, by the corollary
1.6, the surjective map W — B\G/P — B, \G/Pr, induces the following

surjective map: o
WII \W/WI2 - Bh\G/PIZ'

TOME 56 (2006), FASCICULE 3
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In order to prove that this map is injective, it is enough to prove the
following property:

for any w,w'€W, By, wP;,=By,w'Py,,if and only if, W, wW, =W w'Wi,.
Indeed, suppose BIIT,Uﬁ]z ﬁBIlw’ﬁjz # (), so there exist b € B;I and p € ﬁh
with bwp = w’. This implies p = w= b~ w’ € G(O) N Py, C By, and hence
Br,wB, N Br,w' By, # 0 which, by Proposition 1.3, gives Wy wWp, =
W]l U}/W12 . O

Remark 1.8. — Let I1, I C A. Recall (see [4, ch. IV, §2.5, prop. 2]),
that for Bruhat cells, we have a similar formula to the formula in the
corollary 1.6, that is:

(17) B[le]2 :BW]lwW]2B.

Now, let I, I> C A such that for each i € I, j € I5, we have |[i — j| > 2
(which gives s;s; = s;s;). Then, since every element in W;, commutes with
every element in Wy,, we get:

Wi, =W, Wi, = Wi, Wi,
The equality (1.7), for w = 1, gives then:
(1.8) Br,u1, = Br,.Br, = By, .By,.
Notice also that, for each I C A, one gets (see also [9, lem. 14 (ii), §4]):
(1.9) B;P; = BP; = B;P.

1.2.3. Decomposition in the Weyl group W

For each r,7’ € A = {1,...,n} such that r < 7/ + 1, we set wf/ =

{
SpSpgl -« Sply (w::H ). Using the Coxeter relations in the Weyl group W:

552:1 for 1=1,...,n
(1.10) S1, 81, = Si,51, for 1<h<la—-1<n—-1
51814181 = Si+1815141 for 1=1,...,n—1,

it is easy to show that we have:
(1.11)
slw;l = w:/sl_l for every r,r’ and [ such that r+1<I< 7 <n.

In all what follows, for any integers a and b such that a < b+ 1, we
denote by [a, b] the set of all integers j such that a < j < b. It is the empty
set in the case a = b+ 1.

ANNALES DE L’INSTITUT FOURIER
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ProPOSITION 1.9. — Let k be an integer such that 1 < k < n. Let
w € W. Then:

(1) (1.] For each integer j such that n — k 4+ 2 < j < m, we have the
decompositions:

BwBj, 5y = BwBy, 11 Bus; By, and BwPy,(;; = BwPy, 11 Bws; Py, .

2. For j =n —k + 1, we have the following decompositions:

BwBj, uin—k+1y = H Bww! "B,
re[l,n—k+2]
and
BwPj, n-ki1y = 11 Buww? *1p; .
rell,n—k+2]

Proof. — We use proposition 1.7 and theorem 1.3 to conclude respec-
tively the first and the second decomposition in 1., and also in 2., from the
decomposition into left cosets in W.

1. It is easy to check that the sets W, and s; W, are the only different
left cosets in W r.ug5) modulo W, since we have n —k +2 < j < n.

2. To prove that the only left cosets in Wy, y—p41y modulo Wy, are
the wf‘k+1WJk, with 1 <r < n—k+2, it suffices to prove more generally
that for any a; such that 1 < a; <n — k + 2 we have the property:

A; : For each w € Wi, n_k41], there is an r € [a1,n — k + 2] so that

U}WJk = U)nikJerJk .

T

We do this by induction on the length I(w) of w in Wi4, »—g41], Where
the length is defined with respect to the generators S. If I(w) = 0 then
w = 1, so the equality in Aj holds trivially with » = n — k + 2. Now let
w € Wia, n—g+1] be such that I[(w) = d+ 1. Therefore, if v € [ay,n —k+1]
is such that I(s,w) = d, by induction, there is an r € [a1,n — k + 2] so
that: wWy, = s,s,wW;, = s,w? *T1W; . To complete the proof of Ay,
we study several cases depending on ¢ and r:

n—k+1

o . < r — 2: the elements s, and w;

Therefore,

commute and s, € Wy, .

n—k+1 _ - n—k+1 _ . n—k+1
s, W, Wy, = w, s Wy, = w, Wy,.
e 1 =71 —1 (resp. ¢ = r): we have:

sy T Wy = wlFHW o (resp. sawp TP = wi ).

TOME 56 (2006), FASCICULE 3
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e 7+ 1< < n—k+1: by (1.11) we have s,wP~F+l = n-k+lg |
and since r < ¢ — 1 < n — k then s,_; € Wy, . Therefore,

swt P, = w R s, W = wl TR

To prove that the left cosets w? *T1W; 1 <r < n —k+ 2, are different

will be done more generally in the proof of the next proposition. g

ProPOSITION 1.10. — Let k, 1 < k < n. Let ay,...,a; be such that
1 <ay <+ < ag. Assume, furthermore, that a, < n —k + 1+ 1 for any
t=1,..., k. We have the decompositions:

Blaynd Bl Br = [ Bup, ---wi "By,
(r15e57k)
and
Bﬂak,n]] T B[[al,n—k—&-l}]PJk = H Bwrk :ll k+1p
(r1sesTk)

where (rq,...,r) runs through the set Hf:l[[ch7 n—k+c+1].

Proof. — As above, by Proposition 1.7 and Theorem 1.3, it’s enough to
prove that one has the following decomposition:

(1.12) Wiarml = Wiayn—kt Wi, = H wy e wyp ’“+1WJ

with (r1,...,7) running through the set HI,:l ﬂab, n—k+.+1].
To prove the equality, it suffices to prove by induction on m that, for
m =1,...,k, the following holds:
A for each w € Wig,, n—kym]
m—1
and each (71,...,7m—_1) € H las,n —k+ ¢+ 1],
=1

m
there is an (r,...,7,,) € H a,,n—k+t+1] so that we have an equality:
=1
ww;rf;lc;rm 1. wh™ k+1ka _ wn k+m 'w:fi—k-i_lWJk'

The proof of Ay is above. Assume that Am holds for m < k — 1 and let
us show Ap, 1. We have to prove that for any w € Wiq,,. | n—k+m+1] and
any (r1,...,rm) € [[/2 la,,n — k + ¢+ 1], there exists (r],...,7,41) €
17 a,m — k 4 ¢+ 1] so that:

(1.13) wwn—k+m A n k+1WJk w™™ k+m+1 n k+1WJk

'm 7"m+1 Ty
We prove (1.13) by induction on the length I(w) of w € W4, .\ n—ktm41]-
If /(w) = 0 then w = 1 and (1.13) holds trivially. Assume that (1.13) is
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true when I(w) = d. Let w € Wiq, .., n—k+m+1] be such that [(w) = d + 1.
Therefore, if j € [am+1,n —k+m+1] is such that I(s;w) = d, there exists
(s g in H?:{l [a,,n — k 4+ ¢+ 1], by the induction hypothesis, so
that:

n—k+m n—k+1
s (Y

n—k+m+41 n—k+1
sjww, =w,, cw,y W,
m+1
and hence
- 1 k 1 —k+1
(1.14) wwl R = sjw":Hjm+ Sw 9 Hwy,.

There are several cases depending on j and 7y, ;:

® i1 < J < 1y — 2 < n—k+m: we have sjw), fj'm"'l

wh ML s Since sl M€ Wia n—ktm], by induction (Ap,),

Tm41
there exists (r{,...,r) in [/~ [a,,n — k4 ¢+ 1] such that:
n—k+m n—k+1 _ .. n—k+m —k+1
Wy W Wy, = Wyrr ceew v Wy,
e j=r,.1 — 1: we have sjw), f;rmﬂ whkEmEL

e j=r1 <n—k+m+1: wehave sjw,” Ftm+l — ”7]”’”“.

m+1 :n+1+1
. n— k+m+1
® 1 +1<r, 1 +1<j<n—k+m+1: wehave s;w,

m+1
W™ Frmtls. . Since am < amy1 < j—1 < n— k4 m, we have
m—+1

S5— 1w" k+m € Wla,.n—k+m] and in the same way as in the first

case, one gets:
sj—rw)y M T = ) R,
Thus, together with (1.14), there exists (7,...,r}, 1) in Hfjl [a,,n—k+
¢+ 1] such that:

ww:;:ker . n k+1WJk - wn// k+m+1w:}//_k+m . '(U // k+1WJk
) 7n+1 m

This completes the proof of (1.13) and also the proof of Ay, 1 < m < k.

Let us prove now that the union in (1.12) is a disjoint union. Deny and
assume that there are two different elements (r1,...,rg) and (r1,...,7})
in Hle [a,,n — k + ¢ + 1] such that:

n n k+1 —k+1
Wy, Wi, = wT;C coew”, v Wr,.

Put jo = max{j, 1 < j < k | r; # r}}, without loss of generality

we can even assume r; > 7. . Therefore, since w? *tjo—1.. . yn-k+tl o
Jo Jo ’ Tjo—1 Wy,
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n—k+jo )71
Tjo

Wt n—k+jo—1], by multiplying the formula above by (wy ---w
on the left and by Wy ,,_p4j,—1] on the right, we get:

— n—k+jo\—1, n—k+jo
Wi n—k+jo—1] = (w% ) Wyr Wi n—k+jo—1]

hence (w;}];k+jo)*1w?[k+j0 € Wi n—k+4jo—1]- As we assumed rj, > 7’;-0, it
follows by (1.11):

n—k+jo\—1, n—k+jo __ , n—k+jo—1 . n—k+jo—1y—1
(wTjO ) W, =W, Sn—k+jo (wrjofl ) .
Jo Jo
n—k+jo—1 n—k+jo—1y—1 - .
As w% ,(wTjO_l )" € Wi n—k4jo—1], this implies that s, x4,
lies in Wy g4 j,—1], @ contradiction. O

2. Harmonic cochains and special representations

Through all this section, we fix a commutative ring M and an M-module
L. Assume that G acts trivially on M and that L is endowed with an M-
linear G-action.

2.1. Harmonic cochains

This paragraph concerns some technical lemmas which will be useful to
prove the main theorem below (Theorem 3.3). Recall that 3% denotes the
set of pointed k-cells of the Bruhat-Tits building, see §1.1. From now on,
we sometimes denote by o a pointed cell (o,v) when it is clear that it is
pointed and which vertex is distinguished.

Let us recall the definition of harmonic cochains given by E. de Shalit
([11, def. 3.1]).

DEFINITION 2.1. — Let k be an integer such that 0 < k < n. A k-
harmonic cochain with values in the M-module L is a homomorphism § €
Hom, (M[3%], L) which satisfies the following conditions:

(HC1) Ifo =(vg,v1, ... ,0) €k isa k-pointed cell and if ¢’ = (v, . . . ,vg, Vo)
is the same cell but pointed at vy, see §1.1, then

h(o) = (—1)*n(o").
(HC2) Fix a pointed (k — 1)-cell n € 3’“*1, fix a type t of pointed k-cells,
and consider the set B(n,t) = {o € 3*; n < o and t(o) = t}. Then

> blo)=0.

o€B(n,t)
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(HC3) Let k > 1. Fix 0 = (Ag 2 Ay D -+ 2 Ay 2 wAg) € 3% and fix
an index 0 < j < k. Let C(o,j) be the collection of all o' = (Aj 2 A} 2
- 2 A} 2 wAy) € IF for which Aj = A; ifi # j, Aj 2 A} 2 Ajyy and
dim, A’ /Aj41 = 1. Then

bo)= > b(o).

o'€C(a,j)
/(\HC4) Let o = (Uo,ﬂl, ce ,Q)k+1) S Sk+1. Let 05 = (Uo, N ,f)j, N 7’Uk+1) S
3. Then
k
> _(=1)7b(o;) =0.
7=0

For any k, 0 < k < n, we denote by $arm”*(M, L) the space of k-
harmonic cochains with values in the M-module L. In case k = 0, the
condition (HC4) shows that

(2.1) Harm (M, L) = L.

The action of G. The action of G on $arm ¥(M, L) is induced from its
natural action on HomM(M[Ek'], L), namely (g.h)(c) = g.h(g o) for any
h € Harm*(M, L), any g € G, and any o € 3k,

To shorten notation, for I € A, ' € A and r € I U {r'}, set I =

(LU{r}) —{r}.

LEMMA 2.2. — Let I C A such that A — I = {iy < --- < iy} and let
j such that 1 < j < k. Let h € Homy,(M[J*], L) satisfy the condition
(HC3). Then:
1. If ] is such that j +1 <1 < k, then for each o € €(ory(,3,l — 1)
there is gf € C~¥, so that we have the following:

Yo=Y > (g7 o)

o€B(orugi,yitr) o€Corugijyl=1) \ o'€B(o i it iy )

. u{i;} I.
i1 =170 Ty -1

2. For j =1, there is an integer m such that

Y. blo)=m > h(o")

o€B(o1ugi;y:tn) a'eB(oy | i )

. _ Iv]
R e
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Proof. — First, let [ be such that j < [ < k. Since h satisfies the condition
(HC3), it follows

(2.2) Y. b= > b))

oc€B(orugiyyitr) oce€B(orugiyitr) o' €C(al)

Now, let us prove the two assertions of the corollary:
1. Assume that j + 1 <[ < k. It is not difficult to show that we have:

(2.3) 11 Clo,l) = 11 Bot,n ).

ip1—1
oceB(orugi,yitr) o€C(orugijyi—1)

Combining this with (2.2) we get

(2.4) Y. )= > > b(o").

O’EB(O’IU{ij}7t1) O'EC(O'IU{i].}Jfl) O'IEB(O'7t11',l )
ip1—1
The action of G being transitive on the set of pointed cells of a given type,

for each o €C(ouy,y,1—1) there is ngCN}’ so that o=g7 (04 U{i‘},vg)7
i iy -1

which implies B(o, tliil _1) = gl".B(crIiil _1U{ij},t1iil _1). Consequently
1+1 1+1 I+1
(2.4) can be written as follows

> blo)= > > h(g7 ')

oc€B(orugi,yitr) o€C(oruqi;y,l=1) \ o'€B(o )

t B
.oty
ML

iy —1

2. Assume that [ = j. This assertion being trivial if 4,4, = i; + 1 we can
suppose i;41 —%; = 2. It is not difficult to show that we have the following
equality by using the definition of the different sets involved:

(25) U C(Ja]) = B(Jlu{ij}at i )

o —1
oeB(orugiyytr) it

Note that for each o’ € B(orug,y,t L ), there is exactly m distinct cells
iiiq—1

+1
o € B(oruygi,y,tr) so that o € C(o, j]). In total, with (2.2), we get

Y. blo)=m > h(o")

o'EB(o’IU{ij},tI) O’lEB(UIU{,;j},tIij )
ij41—1

Now, to complete the proof notice that we have the obvious equality I U
{ij} =17, 1 Ui — 1} O
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LEMMA 2.3. — Let I C A with A—1T ={i; <--- <ir} and let j be an
integer such that 1 < j < k. Then

L. B(oug,y,tr) = Brugiyy-(o1,98)-

2. C(O’[,j):B[.(Jli- ,1}8).
FAR I

Proof. — In both equalities, we prove that the left hand side set is con-
tained in the right hand side set. The inverse inclusions are obvious.

L. Let 0 € B(ojugi,y,tr)- Since t(o) = t; and since the action of G is
transitive on the pointed cells of a given type, there exists b € G such
that o = b.(o7,vg). Therefore, (o7uyi;y,v5) and b(orug,y,v3) are pointed
faces of the same cell o. Being also of the same type, we necessarily have
(o10gi;3>v8) = b-(or0gs,1,v8)- Hence b € Bryg,y-

2. Let o € C(oy,j), then, o = (v§,.. SV Vi =1 Ve ,vf) is the
pointed cell obtained from (o, v§) by replacing the vertex vy, = [A?j] by an-
Jwith A;. 1 QA% and dim, (A JAY )

other vertex vy, , —1=[A f

= 1. We have:

ij41—1 i1 i1 =1,

tj41—1

On the other hand, the pointed (k + 1)-cell

! _ o o o . o o
o = (v07 s vvij_lavi_,»avlj+1flvvij+1a oo avik)

lies in B(oz,tr\{i,,,—1}), thus, by (1) above, there exists b € By such that
o' =b.(01\{i,s1-1},v0). Acting b~! on the following obvious relation:
(oru1i;3,v0) <o <0’ =b.(0nfi,0 -1} 70)
we obtain
(UIU{ij}v 08) < b lo < (U[\{in_l}, 1)8).

Since t(b~'o) = t(0) =t,; , this clearly forces b™'o = (0,  ,vf).

411 tj41 -1

2.2. Special representations

Let X be a locally compact space. We denote by C (X, M) (resp.
C." (X, M)) the set of locally constant functions on X with values in M
(resp. those which, moreover, are compactly supported). Notice that if X
is compact then we have:

Co(X,M)=C"(X,M).
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The sets C~ (X, M) and C., (X, M) are naturally endowed with M-module
structures. Recall, cf. [3, lemma 4], that if X is locally compact, metrizable
and totally discontinuous space then:

(2.6) CT(X,M)=C. (X,Z) &z M.

The group Gis a locally compact topological group with topological
structure induced from the topology of the non-archimedean field K. We
know, that for any I C A, the homogeneous space G / ﬁ; is compact with
respect to the quotient topology.

The action of G. For any I C A, the action of G on C™ (G/Pr, M) and
cr (é /Br, M) is induced by its action by left translations on respectively
G/P; and G/By.

Let I C A. For any subset H of G, we denote by Xup, eC™(G/P;, M)
(resp. xup, € Co (G/By, M)) the characteristic function of HP; /Py (resp.
HB;/By).

PROPOSITION 2.4. — (P. Schneider and U. Stuhler) The M|[G]-module
C™(G/P;, M) is generated by the characteristic function x BB

Proof. — See [9, §4, prop. 8 and cor. 9] and use (2.6) above. O

Remark 2.5. — For any Iy C I, C A, we have natural commutative

diagrams of M[G]-monomorphisms

™ (G/P, M) C(G/B, M)
o/ N and _ / N
CT(G/Pr,,M) — C~(G/Pr,, M) C. (G/Br,, M) — C, (G/By,,M).

DEFINITION 2.6. — Let k be an integer with 0 < kNS n and Ief Ji. be the
subset [1,n —k] of A. A k-special representation of G is the M [G]-module:

C~(G/P;,, M)
Z?:n—k-u c= (G/PJkU{j}7 M)

In case k = n, this is the ordinary Steinberg representation. Notice also
that, in case k = 0, this is the trivial representation:

Sp*(M) =

(2.7) Sp° (M) = M.

Relation to the parahoric groups. In order to interpret the special
representation Sp* (M) in terms of parahoric subgroups, we recall, following
[9, §4], that we have a surjective map:

H: CJ(G/B,M) — C~(G/P, M)

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 579

defined by H(p) = Z ©(9)9-X - Recall also that this map induces,
gea/B
for any I C A, a surjective map:

H;: CJ(G/B;, M) — C~(G/P;, M)

whose kernel is the M[G]-submodule of C.° (G/B;, M) generated by the
functions xpy;B; — XB;, 0 < ¢ < n, and where y; is the diagonal matrix
introduced in lemma 1.1. This leads to the following proposition:

ProprosITION 2.7. — For any k, 0 < k < n, we have a canonical iso-

morphism of M|[G]-modules
Ce (G/By, M)
Hy, » 2o 212000
R,
where R, is the M[G]-submodule of C°(G/B;,, M) generated by the
functions XBy, s;Bs, TXBy, s n—k+1 < j < n, and the functions XBy; B, —
XB,, 0 i< n.

= SpF (M),

2.3. Harmonic cochains and special representations
2.3.1. Definition of new sets C of G.

For each I C A, for each r{,...,r, € A and each ry,...,1, € T U
{ri,...,7,}, we set:

Iflly’ffffx ={u{ry,...;r. ) —{ri,...,rm}
Let us fix an integer k such that 1 < k < n and denote again Jj the

subset [1,n — k] of A.
Let I C A be such that A —T = {i; < --- <iy}. Forevery m =1,...,k,

we necessarily have i,, < n — k 4+ m, therefore the integers i1, ..., i, lie in
the subset Jy,U{n—k+1,....n—k+m} =[1,n—k+ m] of A. Hence,
for any m =1,... k, if we put ig = 0, one can see easily that we have:

seeny U

(2.8) Jkn—?1+1,...,n—k+m — (H[[z;_l +1,4, — 1]]) IO [iy, + 1,n — k + m].
=1

: . —kt 1,
Moreover, if we put m = k in this formula, we can see that J;" "5 " =T

Now, if I C A is such that A — I = {i; < --- < i} }, we write:

(2.9)
) o o o
CI:BJk"—’?+1 _____ W,---BJkn_;Z.l_'.lBJk and CI:BJknfl‘c+1 ..... n"'B]kwlfl?+lBJk.

i i, i in T
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The set C’; is compact open in G and we clearly have C; = C’OK *
§1.2.1. Hence, the set O]PJk/PJk = O, Py, /Py, is compact open in the
homogeneous space G /Py, .

THEOREM 2.8. — If for each I C A such that A — I = {i; < --- <y},
we define €; = Hle[[iL +1,n — k + ¢+ 1], then we have the following
decompositions:

Cr — E : XBw;‘k~~wf;k+1BJk and XCI;;J Z XBw" »~~wffk+1§Jk’
rely re¢r

where r denote the k-tuple (r1,...,rg).

Proof. — For any m = 1,...,k, the expression (2. 8) above shows that

the hypothesw of the assertion (1.8) given in Remark 1.8. Thus, an easy
induction on m by using assertion (1.8) proves that we have:

(2.10) Cr = Bliy+1,n] " Blis+1,n—k+11 B, -

Next, since we have By, Py, = BP;, which is given by the assertion (1.9)
of the same remark, we conclude from (2.10) that we also have:

(2.11) C1Pjs, = Bliyt1n] Bl s1mks11P, -

Finally, by Proposition 1.10, we deduce from (2.10) and (2.11) the following

respective decompositions

C; = H Bl - w™ F1B,  and C;Pj;, = H Buw!' - wl” Ly

W, W
rec; red;

and the theorem follows. O

For convenience, we will call €; the index set associated to the decom-
position of Cj.

2.3.2. About vanishing in Sp*(M).

The propositions below give a method which allows us to know whether
certain elements vanish in Sp*(M).

PROPOSITION 2.9. — Let w € W and w' € Win—k+2,n] (In case k = n,
consider w' € W). We have:

XBuws, — (=" XBuwwp,, € Z C.(G/Byugy. M)
j=n—k+1
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and
I(w’ 0o~ =~
XBwEJk B (_1) ( )Xwa’EJk € Z C (G/PJkU{j}7 M)
j=n—k+1
Proof. — We prove the second assertion. Let ui,...,uq € S such that

w' =wuy - -ug is a reduced expression (d = I(w’)). We have:

d

. _(_1\d o _1\yr—1 . -
XBwPJk ( 1) Xwa’PJ,c - Z( 1) (XBwulmur,lPJk + XB'IUUl"'UTPJk)'
r=1

The expression w’ = u;g - - - ug being reduced and since w’ € Win—k+2,n], We
deduce that for each r = 1,...,d, there is an integer j such that n—k+2 <
Jj < n (in case k = n, j is such that 1 < j < n) and w, = s;. Thus, by
Proposition 1.9, we have:

Ecw(é/ﬁjku{j}v M).

XBwulu-uT_l;;Jk +XB’LU’IJ,1-“’U.T§]}€ = XBwulmuT_l;Jku{j}
The proof of the first assertion is similar. a

PROPOSITION 2.10. — Let w,w’ € W and let a,b be two integers such
that 1 < a < b < n. Suppose furthermore that we have syw’ = w’sy, where
b’ is an integer such that n — k + 2 < b < n. Then

b—a b—1
E Xwaszw,b,Il'w/BJk: § : § :Xwaﬁwg:llw’B‘,kU{b/}ecc (G/BJkU{b/}V M)v
(r1,r2) =0 r=a
and also
b—a b—1

Z Xwa22w£1_1/LUI;;‘Ik:Z Z Xwa:ng:llw/j;Jku{b'}e C (G/PJkU{b’}vM)

(T17T2) =0 r=a
where the pair (r1,r2) runs through the set [a,b] x [a,b+ 1].

Proof. — First, if we put b = a + m, by induction on m > 0 we prove
easily that the set [a,b] X [a,b + 1] decomposes into a disjoint union as
follows:

b—a

la,0] x [a,b+ 1] = [] ([a,b— 1] x {b—1+ 1} 11{b—1} x [a,b—1I]).
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Now, let us prove the second formula of the proposition. Since (r1,r2) runs
through [a,b] x [a,b+ 1], from the decomposition above we get:

b—a —
Z Xwab wb 7DIPJk - Z ( Z Xwa Z+171)?;1U)/;Jk
(r1,r2) r1=a
b—1
+ Z Xwaf’va:llw’Ejk)'

To=a
On the other hand, by using the formula (1.11) together with the hypothesis
of the proposition, we obtain:

b b—1, 1 b b b b, b—1
wy_ o ww = wy_w) spw’ = w) wb lsbw = w) wy_ w sy
By replacing in the first sum the right hand side of the equality above, we
obtain:
b—a bl
Z Xwaszwf,Ilw/lzJ ZZ Xwa wb ,w ‘?b/PJ + Xwa w: llw’PJk)

(r1,r2) =0 r=a

Finally, since n — k + 2 < b’ < n, by Proposition 1.9, we have

X bt lws., P +X bapb—1oy B, — X b—=1,,7
Buwwlw,—;w'sy Py, Bwwlw,~, w' Py, Bww? PWy l PJku{b’}

The proof of the first formula is similar. O

2.3.3. Harmonicity in Sp*(M)

The following proposition and its corollary below show that the charac-

teristic functions x ¢, and x B, have properties that are somehow similar
k

to those of harmonic cochains. First, we will need the following technical

lemma:

LEMMA 2.11. — Let i be an integer such that 0 < i < n. Let r1,--- ,rg
be integers such that foreachj =1,--- ,k, we havel < r; < n—k+j+1—i.
Then
(2'12) wzw:‘k T w?17k+1 - wTk+l T w:‘l_—‘rki—‘rlw?_k w? . k?

where w; = wiw! - wPT T (cf lemma 1.1).

Proof. — Let us first prove that, if a,a’,b, b’ are integers satisfying 1 <

/

a < ad <b<V <n, we have the equality:

’ ’
(2.13) wiw?, = wl, jwh
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Indeed, we can write w® = w? w?, 1 On the other hand, by using the
formula (1.11), we get w?, Hwb, =uw’ ,w 7. Thus, the left hand side of the
equality (2.13) can be written as follows.

’ ’
(2.14) wbwl, = w? wg,w
’
Since we have w{ wg, = w? b,_H Z/ng and wy ’1wZ, =wl™ Y

substituting these into (2.14) we get (2.13).

Now, in order to establish the formula (2.12) in the lemma, apply the
identity (2.13) with w? = w?~"* and w?, = w?j‘k“‘j foreach j =k,...,1,
and in that order. Next, proceed in the same way with w? = w"~*** for
L =2,...,1 respectively. O

PROPOSITION 2.12. — Let I C A with A =T = {i; < --- < ix}. Let
ix+1 be such that iy < ip41 < n+1 and let 11 C A be such that

A — ,[1 = {ig—il <<= < ik+1—i1}.

In Sp*(M), we have the equalities (the first equality is seen in Sp*(M)
through the isomorphism Hj, given by Proposition 2.7):

k—1
1. x¢;, = Z XBw?kmw:l—kﬂBJk + Z(,l)kftﬂ Z

KGQ? t=1 TECtk t—1
n n—k+1 + n n—k-+1 .
XBuwp, wi "By, E : XBuwy wi "By,
TGQ’“
k t—1
2. XCI;J Z XBU)"’ . wn k+1 + Z Z
ree? 1e¢?k7‘71

XBwf - wn k+1P] + Z XBw” . wf’;kJrlﬁfk'

reek

3. inUJilXCA E]k = Z XBw" "'w:i_k-#lﬁ’k
1 ree?

k k—1
where we have set €0=H[[iL +1,i,41] , €= (H[[ZL +1ln—k+:+ 1]D
=1 =1

X [ik+1 + 1,n + 1], and for each t such that 1 <t < k — 1 we have set

t—1
gkl _ (H[[z; Fln—k+i+ 1]])

-1
[Tl +1n—k+o+ 1ﬂ> X [ig + 1, ip41].
=t

X
~ > =
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Proof. — The proofs of (1) and (2) are similar, we will prove (1) and (3).
1. In fact, it’s enough to prove that the equality holds in C. (G/By,, M)

modulo the M|G]-submodule 77 ., cr (é/BJkU{j},M). Recall that

for any I C A, to the subset C; of G we have associated a set €; so that
we have the following decomposition (cf. Theorem 2.8):

Xc; = E Xngk.i,wfl—kﬂBJk.
redy

On the other hand, if €2 and €% are as in the statement of this proposition
and if for each t =1,...,k — 1, we put

t—1
¢t — (Hﬂib-i-l,n—k—i-b-i-l]]) X g1 +1,n—k+t+1]

1=1 .
X ( 11 [[iL+1,iL+1]]> :

1=t+1

then it is not difficult to show that &€; is a disjoint union of the 63, 0<t<Ek.
Hence:

k
(2.15) Xc; = Z Z XBug, i 4By,

t=0 ﬁGCtI

Now, let ¢ be such that 1 <t < k—1. Foreacht =0,...,k—t— 2, put:

t—1 t+t’
¢t = <H[[z¢+1,n—k+b+1]]> < | [ Grs +1n =k +0+1]

=1 =t

k
X[trrer41+1,m—k+t+t +2] x ( H [iL—i—l,z'LH]]) ,
t=t+t'+2

and for ' =n—k —1, let C’}’"_k_l as in the statement of the proposition.
Also, for each t' =0,...,k—t — 1, put:

t—1 t+t’
ot = <H[[Z'L+1,n—k‘—|—b+1]]> < | [l +1,n—k+0+1]

=1 =t

k
x( II [[ib+1,ib+1]]>,

v=t+t'+1
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and for ¢ = k—t, let %" " = . Notice that the interval which corresponds

tor=t+t +1in @}’t/ can be decomposed as follows:

licior+1Ln—k+t+t +2] = [igzra1 + 1, dp0012]
Hﬂit+t/+2+1,n*k+t+t/+2]],

therefore, for each ¢/, 0 <t/ < k-1t — 1, we have Q:?t, = ’D?t/ I Qﬁ’t,ﬂ.
Consider the alternating sum over ' as follows:

k—t—1

Z (_1)75/ Z Xngk...w;szJrlBJk

=0 ree?

k—t—1
— } : 1\ } :
- +=0 = XBw:“Lk"'w:l_k+lBJk ’

tt! t,t/ 41
re® " IO

In the right hand side of this equality, we see that all the sums over the

!
i)tf’t ,t'=1,...,k—t—1, cancel each other. What remains is the sum over
949 = ¢! and the sum over 4%~ = . Therefore we get:
k—t—1
E : - E : t’ Z
(2.16) XBwﬁk ---wf{’HlB,]k = (—1) XBwﬁk_ ~~-w?fk+1BJk .
KGCE t'=0 [EC?“

Notice that in @tl’t/, for each t' = 0,...k —t — 2, the two intervals which
correspond to the indices ¢t + ¢ and ¢t + ¢’ + 1 are of the form of those in
Proposition 2.10 with @ = 444py1 +1and b=n—k+t+t' + 1, and if

’ . .
we put w’ = wn k=1 yn=k+l it is clear that we have syw’ = w'sy.
Tt,+t,’71 T1 )

Therefore, in Sp*(M), we have (for each t =1,... .k —1):

_(_1)k—t—1
Z Xngk...wfl—’““BJk =(=1) Z XBw;Lk...w;"l_k‘*'lB,;k'

ree reey st
Finally, substituting this into (2.15) establishes the formula.

3. Set @% = Hle [i, —i1+1,i,41 —i1], and for each ¢ such that 1 <t < k,

t—1
¢k = <H[[Z¢+1 i1+17nk+L+1]]> x [ig —iy+1,n — k4t +1]
1

=1
k
X ( IT B =i+ 1 — il]])

t=t+1
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and
t—1 k
oL = [Tl —in+ 1n =k o+ 1] x [ Jli = i1 + Ldugs —ia].
=1 =t

We proceed as in the proof of the formula (2.16) above. Notice that for
eacht =1,...,k, we have QtI = @% 11 @%\H. Therefore by considering the
1 1 1

following alternating sum:

k
k—t
E (-1) E XBw:z,k___w?l—k-f—lP‘]ka

t=1 rech
rees

all the sums over the @t? cancel each other, except the sum over @}A = C%
1 1 1

and the sum over @]}C\H = €. The alternating sum above gives then:
1 1
k-1
(-1) E XBwn wr—k+15, T E XBwn pn—k+15, -
Tl 1 Jk n Tk 1 Jk
recd ree~

I, Iy

Next, the two expressions above being equal, by taking the sum over Cﬂ;\
1

to the other side of the equality, we get:

k

> ey =) (CDFTY ey
XBw?k,"'wfl P, (=1 XB“);L;C'"“’% kP,

rec~ t=0 rect,
Iy - Ip
By Theorem 2.8, the left hand side of this equality corresponds to the
decomposition of the characteristic function x B, Therefore, by acting
1, Uk

with the element y;, w;, , we get:

k

(2'17) yi1wi1xc,\ ﬁ‘fk = Z<_1)k_t Z yilwilew“k-~w"fk+lﬁjk'
I T "

t=0 ree¢t
rees

In this equality (2.17), for each t = 1,...,k, the sum over @I\ is trivial

1

in Sp¥(M). Indeed, when ¢ = 1 this follows from Proposition 1.9.(2) and
when ¢ is such that 2 < ¢ < k this follows from Proposition 2.10. Thus, in
Sp* (M), we have the equality:

_ k
(2.18) YaWinXe B, = (-1 g Yir Wis X gy .opn— 15, -
no ok reel e g
T
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Finally, by (1.4) and since T is a normal subgroup of N (hence, for cach
w € W, there is y € T C Py, such that y;, w = wy), we have:

—k+1p k+1
Yi, wi, Bwy! - wy! Pj, = Bwy,w,! - w,!” Py,.
Therefore, by Lemma 2.11, for any r € @% we have:
1

n n—k+1p n n—k+1p
Yi, Wiy Bwy, - -w Py, = Bw, ;- --w. Py,

1

We conclude:

E y’Llw’LlXBwn .. ,LU;L k+1PJ E XB’UJ" . w:}*k+lﬁJk~

1

recd ree?
Iy
This, with (2.18), completes the proof. |
COROLLARY 2.13. — Let I, ix41 and I, as in the proposition above.

Assume that iy, = n+ 1. Then, in Sp¥ (M) we have the identity
k
XC[FJ = (71) Yir Wiy X o Py "
k I k

Proof. — Under the assumption ix11 = n+ 1, in the proposition 2.12 we
have ¢%¥ = () and for each t = 1,...,k — 1

t—1 k—1
Q?k_t_l:(H[[i“"l’ n—k—H—i—l]Dx(H [ir41+1, n—k+z,+1]D X[ig+L, nt1],

=1 =t
on the other hand, we can write:

Z XBuwp ol ¥R, T Z Z XBw” TR,

regykmit " ' (r1,-mk—2) (Th—1,7k)
where (r1,...,7k—2) runs through the set (Hf;i [i.+1,n—k+ ¢+ 1]) x
(Hic e L+1+1 n—k—+t+1]), and where the pair (rx_1, ) runs through the
Qé’k_t_l, i.e. [[Zk +1, n]] X [[ik +
1,n 4 1]. Thus, for each (r1,...,7,—2), by applying Proposition 2.10 to the
pair (ri—1,7)) (it is clear that, if w’ = w2 .. wr=k+?
we deduce that

Z XBw .A.w" k+1P COO (é/ﬁJkU{n}a M);

(Th—1,Tk)

cartesian product of the two last intervals of

, then s, w’ = w'sy,),

then for any t =1,...,k — 1, we have:

Z XBw?k"'w:1_k+1§Jk < Z ¢ (G/PJkU{j}’ M)

Tectk t—1 j=n—k+1
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Consequently, from the second formula in Proposition 2.12, it follows that
in Sp*(M) we have the equality:

XCIFJ;C = Z XBw;r}k...w:Ll—k-%—l;;Jk
ree?

which we have just proved when k > 1 and which is obvious for k = 1,
the sets Q?’k7t71 being empty. By combining this with the third formula in
Proposition 2.12, we obtain the equality in the corollary. O

3. Main theorem

The two propositions that follow are in preparation for the proof of The-
orem 3.3.

PROPOSITION 3.1. — Let 1 < k < n. Let ¢ € Hom(Sp*(M), L). The
map b, € Homy (M[3¥], L) defined by by (9(o1,08)) = ¢(9x, 5,

g € G and any I C A such that |A — I| = k, satisfies the harmonicity
conditions.

) for any

Proof. — Since G acts transitively on the pointed cells of a given type,
we only need to show that b, satisfies the conditions of harmonicity on the
standard pointed cells.

(HC1) Let I C A be such that A — I = {i; < --- < i }. Let I; be such
that A — I, = {ig — i) < --- < iy —i <n+1—i}. By Lemma 1.1 we
have (o7, v ) = yi, w;, (0?1,1)8), and by Corollary 2.13 we have:

(p(XCIE,k) = (_1)k§0(yi1wi1XCA ﬁ,k)
Iy
Therefore,
b«p(UI,Ug) = (—1)kh¢(01,vfl).
Since we will need (HC3) in order to prove (HC2), we will first prove
(HC3).

(HC3) First, notice that if (o,v0) = (vo, v1 . . .,v) € I*, since b, satisfies
(HC1), we have:

(3.1) by (o, v0) = (1) 0 (0, v111).

Notice also that for each integer j, 0 < j < k, we have a bijective corre-
spondence:

(32) C((J7 UO)vj) = C((U> Uj+1)7k)a
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which sends the pointed cell (¢, vp) (or (¢/,v() in case j = 0) to the pointed
cell (¢/,v;41). Thus, by (3.1) and (3.2), we have:

(3.3) Yo be(a)=(=DUTE YT (o).
o’'€C((o,v0),7) o' €C((o,v)41),k)
Now, because of this formula, we need only to prove that b, satisfies (HC3)
in case j = k. That is, if I C A is such that A — T = {iy < -+ < iy}, we
have to prove:
Do he(0) =by(or.09).
aeC((or,v8),k)

By the second point of Lemma 2.3 and by the definition of b, it suffices to
prove that we have:

(3.4) 11 bC'is P, = BiC s P; =CiPy.
bEBIBI'Lk /BI"k

Both equalities are obvious (for the second equality see the definition of Cy).
The union is disjoint. Indeed, take b € B such that bCIf,,C Py, ﬁCIik Py # 0.
By the formula (2.11) in the proof of Theorem 2.8, for each ¢ = 1,...k—1,
there exist b,,b] € B, +1,n—k+J € K G(O) and p € Py, such that
bbk_l PN b1 = b;e—l PO llp.

This implies p € K G(O)N P, = By, and hence b=bj_,...bipby . b
€ By, where I’ is the subset of A defined as follows:

k—1

I'=J,U U[[ib—l—l,’n—k-i-L]].

=0
But, since n ¢ I' then I N I" C I}¥. We therefore have b € Bi;. .
(HC2) Let I C A be such that A — T = {i; < --- < i}}. Since b,
satisfies the condition (HC3) proved above, we can apply lemma 2.2. By

this lemma, together with (HC1), we need only to consider the case i, = n.
Therefore we have to prove:
Z hy(o) =0.

a€B((orugny-v8)tr)

By the first point of Lemma 2.3 and by the definition of b, it suffices to
show that in Sp* (M) we have:

(3.5) > X, 7, =0

bEBru{n}/Bi1
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First, notice that we have the following obvious equality. Similar argu-
ments as in the proof of (3.4) show that the union in the right hand side is
disjoint:

(3.6) BruimCiPy, = 11 bC; Py, .
bEBU(ny/Br

On the other hand, if we proceed similarly as in the proof of Theorem 2.8
and by using Proposition 1.10, we show that we have the decomposition:

(37) B[U{n}c’]f{]k = H Bw;lkw:fl;l .. .wnilﬂklﬁg]k

1 1
rec?
- I

k—1

where €} = (H[[“ +1ln—k+:+ 1]) X [ik—1 + 1,n + 1]. Therefore,
=1

combining (3.6) with (3.7) we get:

Z XbCIng = Z XBw;Lkwfkill~~w?fk+1§]k'
bGBIU{n}/B[ ze@?

Finally since the pair (r;_1,7;) runs through the set [ix—1 + 1,n] x
lix—1 + 1,n + 1] it follows from Proposition 2.10 (or from Proposition 1.9
in case k = 1) that we have:

Z Xpo, B, © C (G/Prugmy, M).
beBIu{n}/BI

This finishes the proof of (3.5).
(HC4) Let I C A be such that A — T = {i3 < -+ < ix}. Assume i, < n
and let i1 be such that i < ix41 < n. We have to show that:

k+1
Z(fl)jhw(vg, V7, ,vfj,. .. ,vfkﬂ) =0.
=0

Let ./7\1 C A be such that A—:fl ={is—i) < -+ <igy1—11}, cf. Lemma 1.1.
By this lemma and by the definition of b, it suffices to prove that in
Sp* (M) we have:

k+1
(3.8) vawiXe 5, (DX L B, =0
n Jj=1 ikt
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Recall that, for each j = 1,..., k+1, the index set which corresponds to the

decomposition of the characteristic function x, is (c¢f. Theorem 2.8):
i

;Jk
41
j—1 k
¢ =l +tn—k+e+1]x[[lir+Ln—k+e+1]

“kt1 =1 L=j
By combining the identities (2) and (3) in Proposition 2.12, and since we
have ¢ = Q:II“ and Clikﬂ = ¢, we obtain:

k41 k41

i X - _1\k . _1\k+1 -
yllthC? ka + ( 1) XC . PJk + ( 1) XCIPJk
1

— _1)J ~
( 1) Z XBw;‘knﬂuffkarlPJk‘

i=1 Gok—j—1
J redy

Substituting this into (3.8) we conclude that:

k+1 k-1
s ~ E 1) ~ = E 1) E ~

y“w“XcIAR;k+ (=D"x¢ iy Py, (=1) e T

- I -

1 j=1 i1 j=1 ﬁe’)Djij
if41
jn—j—1 . .

where we have set © i; = €, II&€"7/7". Now, it remains to show

Tg41 ik41

that the right hand side in the equality above is trivial in Sp*(M). It is
easy to see that we have:

J
@I:£+1: ( LHl[[iLJFL n—k-i—L-l—l]D X ( H [,41+1, n—k-}—L-i—lD X [ig +1,n+1].
= L=y

Notice that the cartesian product of the two last intervals in ® pi 18
41

lix + 1,n] x [ir + 1,n + 1]. Thus, we can check easily that we can ap-

ply Proposition 2.10 (or Proposition 1.9 in case k& = 1) to conclude the

following:

D Xpup cuprns, €C(G/Prugmy, M),
oy
Tk+1

This completes the proof of the assertion (3.8). O

The proof of the following proposition has been inspired by case k = n
which was treated by P. Schneider and J. Teitelbaum, see [10, page 401,
Lemma 10]. The computations are much more complicated for general k,
1<k <n.
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PROPOSITION 3.2. — Let h € Harm * (M, L). The map vy, € Hom s (C,
(é/BJk7 M), L) defined by ¢y(9xB, ) = b(g(os,,v5)), for any g € G,
vanishes on the M|[G]-submodule R 5, of C" (G/Bj,, M) generated by the
functions XBy,s;Bs, T XBy, » 0= k41 < j < n, and the functions XBy By, —

XBJk,0<z<n

Proof. — Let j be such that n — k41 < j < n. Since b is harmonic and
then satisfies the condition (HC2), we conclude that:

1/’h(XBJku{j}) = Z wb(bXBJk) = Z b(b(Ukav(()))) =0.

bEB U3/ By, bEB L5}/ By,

Therefore 1)y is trivial on the M [G]-submodule > ien 11O (G/BJku{]} M)

of C;°(G/Bj,, M). Let us show that ¢, vanishes on the functions XBy: B, —
XB,,» 0 <i < n. Since b satisfies (HC3), for any I C A such that [A—I| =
k, we have:

(3.9) Yy(g9-xc;) = blglor,vp)).

On the other hand, if w; is as in Lemma 1.1, the assertion (1.4) given in
the following Remark 1.2 says that y;w; normalizes B, thus:

(310) XBya‘,BJk = XByiwiwng,/k = yifwi'XB'u)ng,zlC :
Now, there are two cases depending on :

e 0 <i<n—k+ 1:observe that w; 1 decomposes in two factors as follows:

- k —k j
w; ' = (wh_jpq W k+11+2) (wz—k—iﬂ wi)

k

/L' . . .
k—ir1 - wi lies in Wy, and hence in By, .

and that the second factor w,—
Thus, we have:

1 o n n—k+1
Bw; "By, = Bw, 11w, 0By,

So, if for each ¢, 1 <t < k+1, we consider i, =n—k—i+¢,and if ] C A
is such that A — I = {i; < -+ < iy}, we clearly have:

lBJk E XBw ...wfl—k'*'lBJka
ree?
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with €0 =TT;_, [i,+1,i,41]. Since vy vanisheson >27_ 1 Co (G /B,y
M), by the first assertion of Proposition 2.12, we conclude that 1y satisfies:
k—1

¥y (XBwileJk) = tby (XCI “XCip T Z(_l)k7t71

41 t=1

(3.11)
Z Xngk..,w:l—kHBJk).
KGQ},,k—t—l

On the other hand, since h satisfies (HC4), we have:

k+1 .

Z(—l)ﬂb(vé’, CHAP ,Ufj,. .. ,fol) =0.

§=0
Therefore, if fl C A is such that A — fl ={ia—d < - < py1 — i1}
we have (vf,...,v7 )= yilwil(az,v‘o’) and, by (3.9), the identity above
gives:

ket1
(3.12) Uy (Y wis xen ) + > (=1 (xc: )=0.
! t=1 k1

Combining (3.11) with (3.12) we conclude that:

¢h (XBwiilBJk) = 1/’%) ((_l)kthil XC/I\I

k—1
k—t
YIS x)

t=1 KGDI%
k41

where we have set © = Q:Iit I Qﬁ}:’kft*l, and where Q:Iit is the

It : ;
k41 k41 k41
index set associated to the decomposition of C}i,  (see Theorem 2.8). By

Proposition 2.10, for each t = 1,...,k — 1, 1, vanishes on the sum over

) . Therefore:

L
U (Xpurs,) = (<1 4 (s X )

and hence, by (3.10), we have:

Py (XBy,B,, ) = (—1)*1hy (yiwiyilthc?l)-

Recall that we have set i1 = n — k — i + 1, therefore yiwiyilwilCﬁ =

yn,kﬂwn,kHCﬁ , and hence:

(3.13) ¥y (XByiBJk )= (—1)k1/}h (ynfk+1wnfk+1XC;\1 )-
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Finally, since b satisfies (HC1), we have h(o,,v2_441) = (—1)*b(0,,v8).
Thus, by Lemma 1.1 and by (3.9) we get:
(3.14) WV (Yn—k+1Wn—bt1XC ~ ) = (=1)*y (x8,,),

Ji)1

Where (Jk) C A is such that A — (j;)l ={1 <2< --- < k}. Note that
(Jk)l7 therefore by combining (3.13) with (3.14) we get ¥y (XBy: B, ) =
¢h (XB Tk )

e n —k+ 2 < i< n:simple calculation shows that we have w; 1= wu
with

_ o 2n—k—i+1, n— k+2 n k+1 o .mn i+1 7
W= W, _;11 T Wq and w'=wy, _p_iio Wy sWy pio.

Notice that w' € Wi,_g12.,) and that I(w) = (n — i+ 1)(k — 1) (mod 2).
Thus, since 1, vanishes on Z?Zn#cH j(G/BJkU{]}, M), by Proposi-
tion 2.9 we have:

(3.15)

i k—
Uy (Xpu-tp,,) = (-1 TTVE Dy (X nekoiir porszyposiig, ).

Next, if we consider I C A such that A — T = {i; < -+ < iy} with the i,,
< k, defined as follows:

i - L st 1<e<n—1+4+1,
Tl n—k+: sin—i+2<c<n,

then, we have the identity:

(3.16)  Wy(xey) = (=1)" Ty (Xpy2iroi i, )

Indeed, since vy vanishes on Z?:n—k+1 cr (é/BJku{j}, M), by Proposi-
tion 1.9 we have:

2n—k—itl  n—k+2 n—k+1
%(ngn_m e w! BJk,)
n—k+2
= — E 2n—k—itl n—k+2, n—k+1
'@[}h XBwn—i+1 Wy Wry By, |7
ry=2

and by Proposition 2.10 with (71, r2) running through [2,n—k+2] x [2,n—
k + 3], we conclude that the right hand side in the equality above is equal
to:

n—k+3n—k+2
’Qbh E E XBwf;i;i;i+1_“wngk+3w7’r‘12fk+2w:}1—k+lBJk .

T2 =3 T1 =2
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Consequently, we have the identity:

2n—k—it+1 n—k+2, n—k+1
wh(XBwniprl it wy + wy + BJk)

n—k+3n—k+2
= (-1 2 E E 2n—k—i+1 n—k+3, n—k+2, n—k4+1 .
( ) wh XBwn7iJrl Wy Wi, Wiy By,

ro=3 r1=2
By repeating this process and using Proposition 2.10 successively with the
pairs (ro,r3), (r3,74), - -+, (Pn_i,Tn—i+1) running through the sets [3,n —
E+3]x[3,n—k+4], [4n—k+4] x[d,n—k+5], ..., [n—i+1,2n—
k—i+1] x [n—i+1,2n — k — i + 2] respectively, we get:

2n—k—itl  n—k+2 n—k+l
Q/Jh (XBwnﬂwA TWy wy BJk)

2n—k—i+42 n—k+3
= (_1)"*1'+1¢h § E (
Tn—it1=n—1+2 ro=3
n—k+2
2n—k—i+1 n—k42, n—k+1 .
Z XBu;,.n7i+1 Wiy Wy By,
ry=2

Notice that the expression in the right hand side above defined by the
sums over the r, is nothing else than the decomposition of x¢, given in
Theorem 2.8. This proves (3.16).

Finally, combining (3.15) with (3.16) we get

(o (XBw;lBJk) = (_1)(n_i+1)k¢b (xcr)s

therefore, by using (3.10), we deduce:

(3.17) Uy (XBy By, ) = (1) Ry (ywixe, ).

On the other hand, b being harmonic, by (HC1) we have:

(318) b(UJMUZQ) = (_1)(n7i+1)kb(0=]wv8)'

>From Lemma 1.1, we have (o;,,v¢) = yiwi(o(ﬂ)',v(‘)’) where (L/];)z is

nothing else than I. This, with (3.18), gives:
b(yiwi(or,v5)) = (=1)" =+ (0, 05),
and, by (3.9), we deduce:
(3.19) vy (yiwixe,) = (=) e (xs,, ).
Thus, combining (3.17) with (3.19) we get ¥4 (XBy: B, ) = ¥s(xB, ). O

THEOREM 3.3. — For any k, 0 < k < n, there is an M[G]-isomorphism
HOHl]VI(Spk(]\l)7 L) ~ ﬁarmk(M’ L)
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Proof. — For k = 0, by (2.7) and (2.1), both sides of the isomorphism
of this theorem are canonically isomorphic to L. Now, let k, 1 < k < n.
By Proposition 3.1, the map which to ¢ associates b, gives a well defined
M-homomorphism

H* : Hom (Sp*(M), L) — $Harm* (M, L).

This homomorphism is clearly é—equivariant. On the other hand, we have

a well defined M[G]-homomorphism:
% §arm*(M,L) — Homy(Sp"(M), L)

h(g(os,,vq)) for any g € G. Indeed, it is easy to check that ®F = H;: oWk,

which sends an harmonic cochain § to ¢ defined by ‘Pb(QXBJ
k

where the M[G]-homomorphism
Uk Garm¥(M,L) — Homy (C. (G/By,, M)/Ry,, L)

which to ) associates 1y is given by Proposition 3.2, and ﬁjk is the M[é]—
isomorphism

Hj, : Homy (Sp*(M), L) = Homy(C. (G/By,, M)/R,, L),

dual to the isomorphism Hj, given by Proposition 2.7.

Let us prove that ®* and H* are inverse to each other. Let h € Harm*
(M, L) and let b,, be its image by H* o ®*. We have oy (0,,08) =
@U(XBJ 7, ) = b(os,,v8). As we have b, € $arm*(M, L), this proves

k k
that b = b, , by the property (HC3).

On the other hand, if ¢ € Hom,(Sp*(M), L) and if vy, is its image by
®F o H* then we have (Phw(XBJkﬁJk) =b,(07,,08) = gp(XBJkE]k). We are
done. O
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