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OVERPARTITION PAIRS

by Jeremy LOVEJOY (*)

Abstract. — An overpartition pair is a combinatorial object associated with
the q-Gauss identity and the 1ψ1 summation. In this paper, we prove identities
for certain restricted overpartition pairs using Andrews’ theory of recurrences for
well-poised basic hypergeometric series and the theory of Bailey chains.

Résumé. — Une paire de surpartitions est un objet combinatoire lié à l’identité
q-Gauss et la somme 1ψ1. Nous prouvons ici des identités pour certaines paires
de surpartitions en utilisant la théorie des récurrences pour les séries basiques
hypergéométriques (d’après Andrews) ainsi que la théorie des chaînes de Bailey.

1. Introduction

An overpartition of n is a partition of n in which the first occurrence of
a number can be overlined. For example, there are 14 overpartitions of 4,

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2), (2, 1, 1),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

An overpartition pair of n is a pair of overpartitions (µ, λ) where the sum
of all the parts is n. For example, there are 12 overpartition pairs of 2,

((2), ∅), ((2), ∅), ((1, 1), ∅), ((1, 1), ∅), ((1), 1), ((1), (1)), ((1), (1)), ((1), (1)),

(∅, (2)), (∅, (2)), (∅, (1, 1)), (∅, (1, 1)).

Since the overlined parts of an overpartition form a partition into distinct
parts and the non-overlined parts of an overpartition form an unrestricted

Keywords: Partitions, overpartitions, basic hypergeometric series, Bailey chains.
Math. classification: 11P81, 33D15.
(*) The author was partially supported by an ACI “Jeunes Chercheurs et Jeunes
Chercheuses".



782 Jeremy LOVEJOY

partition, we have the generating functions

(1.1)
∑
n>0

p(n)qn =
∏
n>1

(1 + qn)
(1− qn)

= 1 + 2q + 4q2 + 8q3 + 14q4 + · · ·

and

(1.2)
∑
n>0

pp(n)qn =
∏
n>1

(1 + qn)2

(1− qn)2
= 1 + 4q + 12q2 + 32q3 + 76q4 + · · · ,

where p(n) and pp(n) denote the number of overpartitions of n and the
number of overpartition pairs of n, respectively.

Overpartition pairs are naturally associated with q-series identities like
the q-Gauss summation [16, p. 236, (II.8)],

(1.3)
∑
n>0

(−1/a,−1/b)n(abcq)n

(q, cq)n
=

(−acq,−bcq)∞
(cq, abcq)∞

,

and Ramanujan’s 1ψ1 summation [16, p. 239, (II.29)],

(1.4)
∑
n∈Z

(−1/a)n(azq)n

(−bq)n
=

(−zq,−1/z, abq, q)∞
(azq, b/z,−aq,−bq)∞

·

Here we have employed the standard q-series notation,

(1.5) (a1, . . . , ak)∞ := (a1, . . . , ak; q)∞ :=
∞∏

j=0

(1− a1q
j) · · · (1− akq

j)

and

(1.6) (a1, . . . , ak)n :=
(a1, . . . , ak)∞

(a1qn, . . . , akqn)∞
·

Specifically, let pO,O(n), denote the number of generalized Frobenius par-
titions,

(1.7)
(a1 a2 · · · ak

b1 b2 · · · bk

)
,

having an overpartition in the top row, an overpartition into non-negative
parts in the bottom row, and satisfying

∑
ai + bi = n. Then the q-Gauss

identity and the 1ψ1 summation are consequences of the fact that pO,O(n)
is equal to the number overpartition pairs of n [9], [11], [23].

Overpartitions arise in many areas where ordinary partitions play an im-
portant role, most notably q-series and combinatorics (e.g. [5], [10], [12],
[20], [19], [21]), but also in mathematical physics (e.g. [14], [15]), symmet-
ric functions (e.g. [6], [13], and representation theory (e.g. [17]). In these
subjects overpartitions are variously called standard MacMahon diagrams,
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OVERPARTITION PAIRS 783

joint partitions, superpartitions, jagged partitions, dotted partitions, and
probably many other things.

In this paper we shall prove identities for overpartition pairs using An-
drews’ theory of q-difference equations for well-poised basic hypergeometric
series [1] and the theory of Bailey pairs [4].

To state the first theorem, we require some definitions. In an overparti-
tion λ, we say that an overlined part k is accompanied if there is also at
least one occurrence of k non-overlined. In an overpartition pair (µ, λ), we
say that a non-overlined part k of µ is attached if k or k also appears in
the overpartition λ. Finally, we define the valuation of a natural number k
with respect to an overpartition pair (µ, λ) by

(1.8) v(µ,λ)(k) =


1, if k occurs unattached in µ,

the number of occurrences of k and k in λ,
otherwise.

For k > 1 and 1 6 r 6 2k, let us define a2k,r(n) to be the number of
overpartition pairs (µ, λ) of n such that

(i) µ has no overlined parts;
(ii) v(µ,λ)(1) 6 r − 1;
(iii) all parts of λ occur at most 2k − 1 times;
(iv) v(µ,λ)(j) + v(µ,λ)(j + 1) is at most 2k − 1, and at most 2k + 1 if j

occurs overlined in λ;
(v) if v(µ,λ)(j)+v(µ,λ)(j+1) attains the maximum allowed above, then

jv(µ,λ)(j) + (j + 1)v(µ,λ)(j + 1) ≡ r − 1 (mod 2);

(vi) only numbers congruent to r− 1 modulo 2 can occur unattached in
µ;

(vii) if k ≡ r − 1 (mod 2) occurs in λ, then it must be accompanied.

Notice that a2,1(n) is the number of overpartitions of n into even parts,
while a2,2(n) is the number of overpartitions into odd parts. Also, if µ
is empty and there are no overlined parts in λ, then we have a type of
partition studied by Bressoud [7, p. 64, B2k,r,0(n)] in his extension of the
Rogers-Ramanujan identities to all moduli. We shall prove the following:

Theorem 1.1. — One has∑
n>0

a2k,2k−1(n)qn =
(−q)∞(−q2; q2)∞(q2k−1; q2k−1)∞
(q)∞(q2; q2)∞(−q2k−1; q2k−1)∞

.
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784 Jeremy LOVEJOY

In other words, a2k,2k−1(n) is equal to the number of overpartition pairs
(µ, λ) of n where the parts of µ are even and the parts of λ are not divisible
by 2k − 1.

The second main theorem corresponds to the family of q-series identities

∑
nk>nk−1>···>n1>0

(−1; q2)nk
qnk+n2

k−1+···+n2
2+χ(k 6=1)n2

1+n1

(qn1+1)nk−n1(q2; q2)n1

[
nk

nk−1

]
· · ·

[
n2

n1

](1.9)

=
(−q)∞(−q2; q2)∞(qk; qk)∞
(q)∞(q2; q2)∞(−qk; qk)∞

·

Here χ(x) is the usual characteristic function, equal to 1 if x is true and 0
if x is false. Also, we have employed the q-binomial coefficient

(1.10)
[
n

k

]
=

{
(qk+1)n−k/(q)n−k, 0 6 k 6 n,

0, otherwise.

To state the second theorem, we need some more definitions. For k = 1,
let fk(n) denote the number of generalized Frobenius partitions (1.7) counted
by pO,O(n) where if we add 2 to each part on the bottom row then we obtain
the top row. For k > 2, we will appeal to the “Durfee dissection” introduced
by Andrews [2] and commonly associated with identities like (1.9). Recall
that the Ferrers diagram of a partition π contains a largest upper-left jus-
tified square called the Durfee square. Similarly, a partition has a largest
upper-left justified k× k+ 1 rectangle, called the Durfee rectangle. To the
right of the Durfee square is another partition, which itself has a Durfee
square, called the second Durfee square of π. Continuing in this way, we
obtain a sequence of Durfee squares, and this sequence can be of any length
we choose if we allow squares of size 0.

Now let fk(n) denote the number of generalized Frobenius partitions
(1.7) counted by pO,O(n) such that when we decompose the top (bottom)
row into a partition into distinct parts ν1 (ν2) and an ordinary partition
π1 (π2) into nk parts (parts less than or equal to nk), then

(i) ν1 = ν2;
(ii) if we subtract one from each part of π1 then, in the resulting par-

tition, to the right of the (k− 2)nd Durfee square is either nothing
or a partition with Durfee rectangle of size n1;

(iii) exactly n1 parts to the right of the (k − 2)nd Durfee square have
size at least n1 + 1;

ANNALES DE L’INSTITUT FOURIER



OVERPARTITION PAIRS 785

(iv) the columns to the right of this Durfee rectangle of size n1 are
identical to the parts at most n1 in π2.

Then we have:

Theorem 1.2. — For all k > 1,

(1.11)
∑
n>0

fk(n)qn =
(−q)∞(−q2; q2)∞(qk; qk)∞
(q)∞(q2; q2)∞(−qk; qk)∞

·

We should remark that the decomposition referred to in the definition
of fk(n), that of an overpartition with n parts into a partition with n parts
and a partition into distinct non-negative parts less than n, is the standard
Joichi-Stanton algorithm [12, Prop. 2.1].

Andrews [4, Chap. 9] has promoted in a precise way the philosophy that
whenever a q-series can be written as an infinite product, then related q-
series should also be “interesting”. In the case of overpartitions, it seems
that there are frequently connections to the arithmetic of real quadratic
fields [8], [20], in the spirit of [3]. In the present case, we’ll discover a
connection between a2,2(n), whose generating function is the infinite prod-
uct (−q; q2)∞/(q; q2)∞, and the arithmetic of Q(

√
2 ). This connection man-

ifests itself in the following theorem:

Theorem 1.3. — Let a±2,2(n) denote the number of overpartitions of n
counted by a2,2(n) where the largest part minus one divided by two is
even/odd. If n has the prime factorization n = 2ape1

1 · · · p
ej

j q
f1
1 · · · qfk

k ,
where the pi are congruent to ±1 modulo 8 and the qi are congruent
to ±3 modulo 8, then a+

2,2(n) − a−2,2(n) is equal to 0, if some fi is odd,
and −2in

2+n(e1 + 1) · · · (ej + 1) otherwise.

The organization of this paper is straightforward. We prove Theorem 1.1
in Section 2, Theorem 1.2 in Section 3, and Theorem 1.3 in Section 4. Some
concluding remarks are offered in Section 5.

2. Proof of Theorem 1.1

Following Andrews [1], we define for any real numbers k and i,

Jk,i(a;x; q) =
(xq/a)∞
(xq)∞

∑
n>0

xknqkn2+kn−in+n(xq, 1/a)n

an(q, xq/a)n
(2.1)

×
(
1 +

xiq(2n+1)i−n(1− aqn)
a(1− xqn+1/a)

)
.

TOME 56 (2006), FASCICULE 3



786 Jeremy LOVEJOY

We shall be concerned with

(2.2) Lk,r(x) =
(−xq)∞
(xq)∞

J 1
2 (k−1), 1

2 r(−1;x2; q2).

From [1, (2.1)–(2.4)], it may be deduced that

Lk,1(x) = Lk,k(xq),(2.3)

Lk,2(x) =
(1 + xq)
(1− xq)

Lk,k−1(xq),(2.4)

and, for k > 3,

Lk,r(x)− Lk,r−2(x) =
(1 + xq)
(1− xq)

(xq)r−2Lk,k−r+1(xq)(2.5)

+
(1 + xq)
(1− xq)

(xq)r−2Lk,k−r+3(xq).

Lemma 2.1. — For k > 2 we have

(2.6) Lk,k−1(1) =
(−q)∞(−q2; q2)∞(qk−1; qk−1)∞
(q)∞(q2; q2)∞(−qk−1; qk−1)∞

·

Proof. —

Lk,k−1(1) =
(−q)∞
(q)∞

(−q2; q2)∞
(q2; q2)∞

∑
n>0

2q(k−1)n2+2n(−1)n

(1 + q2n)

×
(
1− q(2n+1)(k−1)−2n(1 + q2n)

(1 + q2n+2)

)
=

(−q)∞(−q2; q2)∞
(q)∞(q2; q2)∞

( ∑
n>0

2q(k−1)n2+2n(−1)n

(1 + q2n)

−
∑
n>0

2q(k−1)n2+(2n+1)(k−1)(−1)n

(1 + q2n+2)

)
=

(−q)∞(−q2; q2)∞
(q)∞(q2; q2)∞

(
1 +

∑
n>1

2q(k−1)n2+2n(−1)n

(1 + q2n)

+
∑
n>1

2q(k−1)n2
(−1)n

(1 + q2n)

)
=

(−q)∞(−q2; q2)∞
(q)∞(q2; q2)∞

(
1 +

∑
n>1

2q(k−1)n2
(−1)n(1 + q2n)

(1 + q2n)

)
=

(−q)∞(−q2; q2)∞
(q)∞(q2; q2)∞

∑
n∈Z

(−1)nq(k−1)n2

ANNALES DE L’INSTITUT FOURIER



OVERPARTITION PAIRS 787

=
(−q)∞(−q2; q2)∞(qk−1; qk−1)∞
(q)∞(q2; q2)∞(−qk−1; qk−1)∞

,

by the triple product identity [16, p. 239, Eq. II.28],

(2.7)
∑
n∈Z

znq
1
2 n(n+1) = (−zq,−1/z, q)∞.

�

We remark that the Lk,r(1) seem to be expressible as infinite products
only in the case r = k − 1 (or r = k = 2). Such a one-parameter family of
products is what we have come to expect when dealing with overpartitions
[18], [19].

Now write
L2k,r(x) =

∑
m,n>0

b2k,r(m,n)xmqn.

Then, the three equations (2.3)–(2.5) above imply that

(2.8) b2k,1(m,n) = b2k,2k(m,n−m),

(2.9) b2k,2(m,n) = b2k,2k−1(m,n−m) + 2
∑
t>1

b2k,2k−1(m− t, n−m),

and

b2k,r(m,n)− b2k,r−2(m,n) =
∑
t>0

b2k,2k−r+1(m− r + 2− t, n−m)(2.10)

+
∑
t>0

b2k,2k−r+1(m− r + 1− t, n−m)

+
∑
t>0

b2k,2k−r+3(m− r + 2− t, n−m)

+
∑
t>0

b2k,2k−r+3(m− r + 1− t, n−m).

These three facts, together with

(2.11) b2k,r(m,n) =
{

1, (m,n) = (0, 0),
0, m 6 0 or n 6 0, but (m,n) 6= (0, 0),

uniquely define the b2k,r(m,n).
Now let a2k,r(m,n) denote the number of pairs of overpartitions counted

by a2k,r(n) having exactlym parts. We shall demonstrate that the a2k,r(m,n)
satisfy the same defining recurrences as the b2k,r(m,n). We first treat con-
dition (2.8).

TOME 56 (2006), FASCICULE 3



788 Jeremy LOVEJOY

If (µ, λ) is an overpartition pair counted by a2k,1(m,n), then there are
no ones whatsoever, so we may subtract 1 from each part. According to the
definition of a2k,1(m,n), the valuation v(µ,λ)(2) could have been as much
as 2k − 1, so the result of subtracting one from each part is an overpartition
pair counted by a2k,2k(m,n −m). This operation is reversible and there-
fore establishes a one-to-one correspondence between overpartition pairs
counted by a2k,1(m,n) and overpartition pairs counted by a2k,2k(m,n−m).
Notice here that the the second subscript has changed in parity (from 1
to 2k). Since we have subtracted 1 from each part, this change in parity
is compatible with conditions (v)–(vii) in the definition of the a2k,r(n).
This will happen throughout the proof, although we shall not emphasize it
again.

We now treat condition (2.9). If (µ, λ) is an overpartition pair counted
by a2k,2(m,n), then v(µ,α)(1) is 0 or 1. We consider the two cases separately:
• If v(µ,α)(1) = 0, then there are again no ones whatsoever, so we may

subtract 1 from each part. Here, since r = 2, the valuation v(µ,α)(2) could
not have been 2k− 1, but it could have been as much as 2k− 2. Hence, we
have an overpartition pair counted by a2k,2k−1(m,n−m).
• If v(µ,α)(1) = 1, then this may be for two reasons. First, it may be

that 1 occurs unattached in µ, and if so, it may occur any number of
times t > 1. In this case, we remove all of the ones and then subtract
one from all of the remaining parts. The result is an overpartition pair
counted by a2k,2k−1(m− t, n−m). Second, it could be that the valuation
is 1 because 1 occurs in λ (note that 1 cannot occur because it would
have to be accompanied!). In this case, we remove this one as well as
any of the t > 0 ones that may occur in µ, and then subtract one from
each of the remaining parts. The result is an overpartition pair counted
by a2k,2k−1(m− t− 1, n−m). These operations are again reversible, es-
tablishing condition (2.9).

Finally, we tackle condition (2.10). We observe that

a2k,r(m,n)− a2k,r−2(m,n)

counts those overpartition pairs (µ, λ) that are counted by a2k,r(m,n) and
have either r− 1 ones or r− 2 ones. The possible overlining of one of these
ones leads to four cases:
• If there are r − 1 ones and there is not an overlined one, then the

valuation of 2 could be as much as 2k − r. Removing the r − 1 ones and
the t > 0 ones occurring in µ and then subtracting one from each part
leaves an overpartition pair counted by a2k,2k−r+1(m− t− r + 1, n−m).

ANNALES DE L’INSTITUT FOURIER
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• If there are r − 1 ones, one of which is overlined, then the valuation
of 2 could be as much as 2k− r+2. Removing the r− 1 ones and the t > 0
ones occurring in µ and then subtracting one from each part leaves an
overpartition pair counted by a2k,2k−r+3(m− t− r + 1, n−m).
• If there are r− 2 ones, all non-overlined, then the valuation of 2 could

be 2k − r. Removing the r − 2 ones and the t > 0 ones occurring in µ and
then subtracting one from each part leaves an overpartition pair counted
by a2k,2k−r+1(m− t− r + 2, n−m).
• If there are r−2 ones, one of which is overlined, then the valuation of 2

could be 2k− r+ 2. Removing the r− 2 ones and the t > 0 ones occurring
in µ and then subtracting one from each part leaves an overpartition pair
counted by a2k,2k−r+3(m− t− r + 2, n−m).

Since all of these operations are reversible, we have established (2.10).
For overpartition pairs the condition (2.11) is immediate, and so we may
now deduce the equality of b2k,r(m,n) and a2k,r(m,n) for all m,n > 0. To
finish the proof, we have∑

n>0

a2k,2k−1(n)qn =
∑
n>0

b2k,2k−1(n)qn = L2k,2k−1(1)

=
(−q)∞(−q2; q2)∞(q2k−1; q2k−1)∞
(q)∞(q2; q2)∞(−q2k−1; q2k−1)∞

,

and the proof of Theorem 1.1 is complete. �

3. Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2, beginning with the establish-
ment of (1.9). We say that two sequences (αn, βn) form a Bailey pair with
respect to a if

(3.1) βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r
·

The following is known as Bailey’s Lemma, which shows how each Bailey
pair generates new Bailey pairs.

Lemma 3.1. — If (αn, βn) form a Bailey pair with respect to a, then so
do

(3.2) α′n =
(b, c; q)n(aq/bc)nαn

(aq/b, aq/c; q)n

TOME 56 (2006), FASCICULE 3
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and

(3.3) β′n =
1

(aq/b, aq/c; q)n

n∑
j=0

(b, c; q)j(aq/bc; q)n−j(aq/bc)jβj

(q; q)n−j
·

One may then indefinitely iterate Bailey’s Lemma to obtain a chain of
Bailey pairs, as specified below.

Theorem 3.2 (see Andrews [4]). — If (αn, βn) form a Bailey pair with
respect to a, then(

aq
bk

, aq
ck

; q
)
m(

aq, aq
bkck

; q)m

∑
r>0

(b1, c1, . . . , bk, ck, q−m; q
)
r(

aq
b1

, aq
c1

, · · · , aq
bk

, aq
ck

, aqm+1; q
)
r

( −akqk+m

b1c1 · · · bkck

)r

q
1
2 r(r−1)αr

=
∑

nk>nk−1>···>n1>0

(q−m; q)nk
(bk, ck; q)nk

· · · (b1, c1; q)n1(
bkckq−m

a

)
nk

(
aq

bk−1
, aq

ck−1
; q

)
nk
· · ·

(
aq
b1

, aq
c1

; q
)
n2

×

(
aq

bk−1ck−1
; q

)
nk−nk−1

· · ·
(

aq
b1c1

; q
)
n2−n1

(q; q)nk−nk−1· · · (q; q)n2−n1

( aq

bk−1ck−1

)nk−1

· · ·
( aq

b1c1

)n1

qnkβn1 .

Consider the Bailey pair [22, E(4)]

(3.4) αn =
{

0, if n = 0,
(−1)nqn2−n(1 + q2n), if n > 1

and βn =
qn

(q2; q2)n
·

Inserting this into the Bailey chain with bk =
√
−1, ck = −

√
−1,m→∞,

and bj , cj →∞ for j < k, we have∑
nk>nk−1>···>n1>0

(−1; q2)nk
qnk+n2

k−1+n2
k−2+···+n2

2+χ(k 6=1)n2
1+n1

(q)nk−nk−1 · · · (q)n2−n1(q2; q2)n1

(3.5)

=
(−q2; q2)∞(qk; qk)∞

(q)2∞(−qk; qk)∞
.

Multiplying the top and the bottom of the sum side by

(qn1+1)n2−n1(q
n2+1)n3−n2 · · · (qnk−1+1)nk−nk−1

and simplifying using (1.10) gives (1.9).
Having proven this family of identities, we are left with the task of in-

terpreting the sum side as the generating function for fk(n) detailed in the
introduction. For k = 1, we have the identity

(3.6)
∑
n1>0

(−1; q2)n1q
2n1

(q2; q2)n1

=
(−q2; q2)∞
(q2; q2)∞

·

The term (−1; q2)n1 generates two copies of a partition ν into distinct
non-negative parts less than n1, while the term 1/(q2; q2)n1 generates two
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copies of an ordinary partition π into n1 non-negative parts. Using the
Joichi-Stanton algorithm [12, Prop. 2.1], ν and π may be assembled into an
overpartition into exactly n1 non-negative parts. We have then two copies
of this overpartition, one for each row of (1.7). The term q2n1 adds two to
each part in the top row and the result is a generalized Frobenius partition
counted by the function f1(m), where m is 2n1 plus twice the number of
parts in ν plus twice the number of parts in π.

Now, on the sum side of (1.9) for k > 2, the term (−1; q2)nk
generates

two copies of a partition ν into distinct non-negative parts less than nk.
From [2] we know that∑

nk>···>n1

qn2
k−1+···+n2

2+n2
1+n1

[ nk

nk−1

]
· · ·

[n2

n1

]
is the generating function for partitions π1 into at most nk parts with k−2
successive Durfee squares of sizes nk−1, nk−2, . . . , n2, an n1×n1 +1 Durfee
rectangle to the right of the k − 2nd square (if n1 = 0 the rectangle is
empty), where there are exactly n1 parts to the right of the k− 2nd square
that are at least n1 + 1. The term qnk adds 1 to each part of π1.

Next, the term
1

(qn1+1)nk−n1

is the generating function for partitions π2 with parts greater than n1

and at most nk. Then, the term 1/(q2; q2)n1 contributes two copies of a
partition π3 into parts at most n1. One of these copies we place in columns
to the right of the n1×n1 + 1 Durfee rectangle in π1 and the other we put
with π2 to make π2 a partition into parts at most nk. Finally, we use the
Joichi-Stanton algorithm [12, Prop. 2.1] to combine π1 and one copy of ν
into the top row and π2 and the other copy of ν into the bottom row of
a generalized Frobenius partition (1.7) counted by fk(m), where m is the
sum of all the parts in π1, π2, ν, and ν. �

4. Proof of Theorem 1.3

As remarked in the introduction, a2,2(n) is just the number of overpar-
titions of n into odd parts. Hence we have the generating function

(4.1)
∑
n>0

a2,2(n)qn =
∑
n>0

(−1; q2)nq
n

(q2; q2)n
=

(−q; q2)∞
(q; q2)∞

·
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Using the elementary theory of overpartitions [12], we find that

(4.2)
∑
n>1

(
a+
2,2(n)− a−2,2(n)

)
qn = 2

∑
n>1

(q2; q2)n−1q
n

(−q2; q2)n
·

Using the theory of Bailey pairs, we shall prove an identity for the final
sum above. In [20], it was shown that if we change q to q2 in all of the
Bailey statements, then if α0 = β0 = 0 and if, for n > 1,

(4.3) αn =
(−1)nqn2−n(1− q4n+2)

(1− q2)

n∑
r=1

r∑
j=−r+1

(−1)r+jqr2−j2

and

(4.4) βn =
−1

(−q)2n(1− q2n)
,

then (αn, βn) is a Bailey pair with respect to q2. Substituting this pair into
Theorem 3.2 (remembering to change q to q2) with k = 1, b1 = q2, c1 = −q,
and m→∞, we have

2
∑
n>1

(q2; q2)n−1(−q)n

(−q2; q2)n
= −2

∑
n>1

n∑
r=1

r∑
j=−r+1

(−1)r+jqn2+r2−j2
(1− q2n+1)

= 2
∞∑

n=1

n∑
j=−n+1

(−1)n+j+1q2n2−j2
.

Now our work is considerably simplified by the fact that this last series is
precisely the series in [20, Eq. (2.11)]. Replacing q by −q, Theorem 1.1 of
[20] implies our Theorem 1.3. �

5. Discussion

Before concluding, we wish to make several comments. First, it may have
been observed that Theorem 1.2 is valid for all natural numbers k while in
Theorem 1.1 we required k even. Indeed, the evenness was essential given
the conditions (v)–(vii) in the definition of the a2k,r(n) and the combina-
torial mappings employed in the proof of Theorem 1.1. What is true is that
one can appropriately define a function ak,r(n) for k odd and develop an
argument similar to the one in Section 2 to obtain a companion to Theo-
rem 1.2 for odd k. However, it turns out that the resulting theorem follows
rather easily from Theorem 1.1 of [18]. It seems that only when 1

2 (k− 1) is
odd do we obtain something substantially new.
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Second, in Section 4 we focused on a q-series related to a2,2(n). It turns
out that series related to a2,1(n), i.e., series related to

(5.1)
∑
n>0

(−1; q2)nq
2n

(q2; q2)n
=

∑
n>0

a2,1(n)qn,

also have some interesting number theoretic connections, primarily to di-
visor functions. Such series were extensively studied in [12] (with q2 = q),
so we have not discussed them here.

Finally, we emphasize that Andrews’ work on recurrences for well-poised
basic hypergeometric series is still a gold mine of combinatorial information,
as is his work on Bailey chains. In [18] and [19], we discovered overpartitions
occurring naturally in these settings, and now we have found overpartition
pairs. A systematic study would surely uncover much more about these
objects, and probably about ordinary partitions as well.
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