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HAMILTONIAN STABILITY AND
SUBANALYTIC GEOMETRY

by Laurent NIEDERMAN

Abstract. — In the 70’s, Nekhorochev proved that for an analytic nearly in-
tegrable Hamiltonian system, the action variables of the unperturbed Hamiltonian
remain nearly constant over an exponentially long time with respect to the size of
the perturbation, provided that the unperturbed Hamiltonian satisfies some generic
transversality condition known as steepness. Using theorems of real subanalytic ge-
ometry, we derive a geometric criterion for steepness: a numerical function h which
is real analytic around a compact set in Rn is steep if and only if its restriction
to any affine subspace of Rn admits only isolated critical points. We also state a
necessary condition for exponential stability, which is close to steepness.

Finally, we give methods to compute lower bounds for the steepness indices of
an arbitrary steep function.

Résumé. — La notion de raideur a été introduite pour étudier la stabilité effec-
tive des systèmes Hamiltoniens quasi-intégrables. À l’aide de théorèmes de géomé-
trie sous-analytique, on donne une condition géométrique simple qui est équivalente
à la raideur pour une fonction réelle analytique.

1. Introduction

1.1. Set-up

One of the main problem in Hamiltonian dynamic is the stability of
motions in nearly-integrable systems (for example: the n-body planetary
problem). The main tool of investigation is the construction of normal forms
(see Giorgilli [7] for an introduction and a survey about these topics).

This yields two kinds of theorems:

Keywords: Hamiltonian systems, stability, subanalytic geometry, curve selection lemma,
Lojasiewicz’s inequalities.
Math. classification: 14P15, 32B20, 32S05, 37J40, 70H08, 70H09, 70H14.



796 Laurent NIEDERMAN

(i) Results of stability over infinite times provided by KAM theory which
are valid for solutions with initial conditions in a Cantor set of large measure
but no information is given on the other trajectories.

(ii) On the other hand, global results of stability over open sets which
are valid only over exponentially long times with respect to the size of the
perturbation.

Here, we focus our attention on the integrable Hamiltonians which satisfy
the following property:

Definition 1.1 (exponential stability). — Consider an open set P⊂Rn,
an analytic integrable Hamiltonian h : P → R and action-angle variables
(I, ϕ) ∈ P × Tn with T = R/Z.

For an arbitrary ρ > 0, let Oρ be the space of analytic functions over a
complex neighborhood Pρ ⊂ C2n of size ρ around P × Tn equipped with
the supremum norm ‖.‖ρ over Pρ.

We say that the Hamiltonian h is exponentially stable if there exists an
open set P̃ ⊂ P and positive constants ρ, C1, C2, a, b and ε0 which depend
only on h and P̃ such that:

(i) h ∈ Oρ;
(ii) for any function H ∈ Oρ such that ‖H − h‖ρ = ε < ε0, an arbitrary

solution (I(t), ϕ(t)) of the Hamiltonian system associated to H with an
initial action I(t0) ∈ P̃ is defined over a time exp(C2/εa) and satisfies:∥∥I(t)− I(t0)

∥∥ 6 C1ε
b for |t− t0| 6 exp(C2/εa);

a and b are called stability exponents.

Remark 1.2. — Along the same lines, the previous definition can be
extended to an integrable Hamiltonian in the Gevrey class.

In the seventies, Nekhorochev [18], [19] introduced the class of steep
functions in order to get a sufficient condition for exponential stability.

Definition 1.3 (steepness). — Consider an open set P in Rn. A real
analytic function h : P → R is said to be steep at a point I ∈ P along
an affine subspace Λ which contains I if there are constants C > 0, δ > 0
and p > 0 such that along any continuous curve γ in Λ connecting I and a
point at a distance d < δ, the norm of the projection of the gradient ∇h(x)
onto the direction of Λ is greater than Cdp at some point γ(t∗); (C, δ) and p

are respectively called the steepness coefficients and the steepness index.
Under the previous assumptions, the function h is said to be steep

at the point I ∈ P if I is not a critical point for h and if, for every
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HAMILTONIAN STABILITY AND SUBANALYTIC GEOMETRY 797

k ∈ {1, . . . , n− 1}, there exists positive constants Ck, δk and pk such that
h is steep at I along any affine subspace of dimension k containing I uni-
formly with respect to the coefficients (Ck, δk) and the index pk.

Finally, a real analytic function h is steep over a domain Σ ⊂ P ⊆ Rn

with the steepness coefficients (C1, . . . , Cn−1, δ1, . . . , δn−1) and the steep-
ness indices (p1, . . . , pn−1) if there are no critical points for h in Σ and h is
steep at any point I ∈ Σ uniformly with respect to these coefficients and
indices.

For instance, convex functions are steep with all the steepness indices
equal to one. On the other hand,

h(x, y) = x2 − y2

is a typical non steep function but by adding a third order term (e.g. y3) we
recover steepness. Moreover, this definition is minimal since a function can
be steep along all subspaces of dimension lower than or equal to k < n− 1
and not steep for a subspace of dimension ` greater than k (consider the
function h(x, y, z) = (x2 − y)2 + z at (0, 0, 0) along all the lines and along
the plane z = 0).

Actually, these definitions look slightly less restrictive than the initial
one given by Nekhorochev. But they retain the key property needed to
derive estimates of stability. We will actually prove in Section 3 that they
are equivalent to the original one.

In this setting, Nekhorochev proved the following:

Theorem 1.4 (see [19], [20]). — If h is real analytic, non-degenerate
(|∇2h(I)| 6= 0 for any I ∈ P) and steep then h is exponentially stable.

If h is quasi-convex, Lochak-Neishtadt [14], [15] and Pöschel [25] have
improved the previous estimates with the exponents a = b = (2n)−1. This
result has been generalized to the steep case by Niederman [22] with the
values a = b = (2np1 · · · pn−1)−1 (= 1/2n if h is convex).

Recently, Marco and Sauzin [17], following an idea of Herman showed
that if h is quasi-convex and the total Hamiltonian H is Gevrey of order α

(i.e. H is infinitely differentiable and |∂kH| 6 Ck(k!)α) then the previ-
ous estimates are valid with a = b = (2nα)−1. Indeed these exponential
bounds come from the Gevrey character of the normalizing transforma-
tions involved in the proof. Moreover, in the same setting (h quasi-convex
and H Gevrey of order α > 1, i.e. H non analytic), Marco and Sauzin [17]
build examples of nearly integrable systems where an important instability
of the actionvariables occurs for arbitrary small perturbations over times
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798 Laurent NIEDERMAN

of order exp(1/εa∗) with a∗ = (2(n − 2)α)−1. Hence, the times of stabil-
ity in these estimates are nearly optimal (they are actually optimal in the
neighborhood of resonances, see [17]) and the Gevrey character of the per-
turbation is a close to minimal regularity condition for exponential stability.

1.2. Statements of the results

Here, we study a minimal non-degeneracy condition on the unperturbed
Hamiltonian needed to derive exponential stability results and give a geo-
metric criterion equivalent to steepness.

Firstly, the absence of critical points and the nondegeneracy condition on
the unperturbed Hamiltonian are not necessary to ensure exponential sta-
bility results (see [23]). The presence of critical points is overcomed along
the lines of Nekhorochev’s reasonings (see [19, Section 1.9]) by assuming
that our integrable Hamiltonian is steep not only along the proper affine
subspaces but also on the whole space Rn with the coefficients (Cn, δn)
and the index pn, the stability exponents are modified accordingly with
a = (1 + 2np1 · · · pn−1)−1 and b = a/pn. Following Nekhorochev’s termi-
nology, we will say that a function steep along any affine subspaces includ-
ing Rn is symmetrically steep (or S-steep).

Using tools of real subanalytic geometry (see [3], [4], [16]): the curve se-
lection lemma and the Lojasiewicz’s inequalities for continuous subanalytic
functions, we prove the following:

Theorem 1.5. — Let h be a numerical function which is real analytic
on the open set P ⊂ Rn. Then h is S-steep (resp. steep) on any compact set
Σ ⊂ P if and only if its restriction h Λ to any affine subspace Λ ⊆ Rn admits
only isolated critical points (resp. if f has no critical points, ∇h(x) 6= 0 for
all x ∈ P, and if its restriction h Λ to any proper affine subspace Λ ⊂ Rn

admits only isolated critical points).

Actually, a similar geometric criterion which ensures steepness has al-
ready been obtained by Ilyashenko [13]. He showed that a complex-valued
holomorphic function on a domain of Cn whose restriction to any (complex)
affine subspace admits only C-isolated critical points is steep on Cn (with a
generalization of our Definition 1.3 in the complex field). Hence, Ilyashenko
considers a stronger property than steepness in the real case, moreover our
estimates on the steepness indices are sharper (see Section 5).

We also prove the following necessary condition for exponential stability:

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.6. — Consider an integrable Hamiltonian h which is real
analytic on the open ball P ⊂ Rn (here it is the action space). If h is ex-
ponentially stable then its restriction to any proper affine subspace whose
direction is generated by vectors with integer components admits only iso-
lated critical points.

This last statement is proved thanks to a result of Nekhorochev [20]
about sufficient conditions on an integrable Hamiltonian which ensure the
existence of arbitrary small perturbations giving rise to solutions with a
drift of the action variables over linear times with respect to the size of
the perturbation (“systems with fast drift”). The same problem has been
studied in the realm of KAM theory by Michael Herman [11] who exhibited
nearly integrable Hamiltonian systems with a dense Cantor set of invariant
tori together with orbits which drift away to infinity.

We see that a gap subsists between the sufficient geometric condition
for exponential stability given in Theorem 1.5 and the necessary condition
derived in Theorem 1.6.

Actually, steepness is only a sufficient condition for exponential stability
but the converse is not true. On one hand,

h(I1, I2) = I2
1 − I2

2

is not steep and the perturbed Hamiltonian

H(I1, I2, ϕ1, ϕ2) = h(I1, I2) + εf(ϕ1, ϕ2)

with f(ϕ1, ϕ2) = sin(ϕ1 + ϕ2) admits the special solution

I(t) = (εt, εt), ϕ(t) = (−εt2, εt2)

hence ‖I(t) − I(0)‖ =
√

2 εt and we have a drift over polynomial times
(even linear times). On the other hand, Guzzo [8] have proved that for a
Diophantine number δ, the integrable Hamiltonian

h(I1, I2) = I2
1 − (δI2)2

is not steep but is exponentially stable (its isotropic directions are the lines
directed by (1,±δ) and not generated by integer vectors). More generally,
the Hamiltonian

h(I1, I2) = I2
1 − κI2

2

for κ > 0 is not steep but it is difficult to determine if it is exponentially
stable (for instance when κ is the square of a Liouville number). This
problem of stability under a relaxed assumption of steepness have been
accurately studied in a recent paper ([23]).

TOME 56 (2006), FASCICULE 3



800 Laurent NIEDERMAN

In the context of KAM theory, the usual non-degeneracy condition is the
invertibility of the gradient map associated to the unperturbed Hamilton-
ian. But the minimal condition needed for the existence of invariant tori in
the perturbed system is the Rüssmann condition (see [5] or [26]): the im-
age of the gradient map should not be included in a hyperplane. This last
property is much easier to check for an arbitrary integrable Hamiltonian.
Especially in the n-body problem, the unperturbed system given by un-
coupled Kepler problems is strongly degenerate and Herman showed that
the use of Rüssman’s condition is crucial to prove the existence of quasi-
periodic planetary motions. A complete proof of this latter result has been
given recently by Féjoz [6]. Over exponentially long times, our condition
should be useful to prove stability results in the secular planetary problem
(see also [21]). In the same way, Benettin, Fasso, Guzzo [2] and Guzzo,
Morbidelli [9] have also studied stability properties of problems in celestial
mechanics by reducing them to a perturbed steep, non-convex, integrable
Hamiltonian system.

2. Subanalytic geometry and subanalytic functions

2.1. Essential results of subanalytic geometry

In order to get a self-consistent paper, we introduce the theorems which
will be used in our proof. The definitions come from [3]:

Definition 2.1. — Let M be a real analytic manifold. If U is an open
set in M , let O(U) denote the ring of real analytic functions on U . A subset
X ⊂ M is semianalytic if each a ∈ M has a neighborhood U such that

X ∩ U =
p⋃

i=1

q⋂
j=1

Xij

where each Xij is either a set defined as {fij = 0} or {fij > 0} for some
fij ∈ O(U) (we say that X is described by {fij}).

Definition 2.2. — A subset X of a real analytic manifold M is sub-
analytic if each point of M admits a neighborhood U such that X ∩ U is
a projection of a relatively compact semianalytic set A (i.e., there is a real
analytic manifold N and a relatively compact semianalytic set A ⊂ M ×N

such that X ∩ U = Π(A) with the canonical projection Π from M × N

to N).

ANNALES DE L’INSTITUT FOURIER
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Definition 2.3. — Let X ⊂ M and let N be a real analytic manifold.
A mapping f : X → N is subanalytic if its graph is subanalytic in M ×N

Theorem 2.4. — (i) The intersection or the union of a finite collection
of subanalytic sets is subanalytic.

(ii) The closure of a subanalytic set remains subanalytic.
(iii) The complement of a subanalytic set is subanalytic.
(iv) The image of a relatively compact subanalytic set by a subanalytic

mapping remains subanalytic.
(v) For a numerical function f continuous subanalytic over a real an-

alytic manifold M , the set X = {x ∈ M | f(x) > 0} is a subanalytic
set (indeed, X is the projection of the intersection of the graph of f with
{(x, y) ∈ M × R | y > 0

}
).

Two examples of subanalytic functions (see [3, p. 19]):
a) Let X be a subanalytic set of Rn, the distance function

δX(x) = Minx′∈X

(
‖x− x′‖

)
is continuous subanalytic (while δX is not analytic even if X is analytic).
For instance, the norm is subanalytic.

b) Let M and N be real analytic manifolds and X (resp. K) be suban-
alytic subsets of M (resp. N), where K is compact. If f : X ×K → R is a
continuous subanalytic function, then

m(x) = Minu∈K

(
f(x, u)

)
and M(x) = Maxu∈K

(
f(x, u)

)
are continuous subanalytic.

The continuity of m and M are proved by abstract nonsense. Moreover,
the set

A =
{
(x, u, v) ∈ M ×K ×K such that f(x, u) > f(x, v)

}
is subanalytic since A = {(x, u, v) ∈ M ×K ×K such that g(x, u, v) > 0}
with the continuous subanalytic function g(x, u, v) = f(x, u)− f(x, v). Let
Π be the projection Π : M×K×K → M×K defined by Π(x, u, v) = (x, u),
then the set Π(A) is subanalytic and also its complement B = M×K\Π(A).
Finally, (x, u) ∈ B implies that f(x, u) = m(x) and the graph of m is
subanalytic as the image of B by the mapping F (x, u) = (x, f(x, u)) which
admits subanalytic components.

In the same way, M is a continuous subanalytic function over M . �

The first key ingredient for our proofs is the following:

TOME 56 (2006), FASCICULE 3



802 Laurent NIEDERMAN

Theorem 2.5 (Curve selection Lemma, see [12], [16]). — Consider a
subanalytic set X of a real analytic manifold M and let x be an accumu-
lation point of X, then there exists a non-constant analytic arc

γ : ]− 1,+1[ −→ M

with γ(0) = x and γ(]0, 1[) ⊂ X.

The second point is that, under the assumptions of Theorem 1.5, the
steepness indices can be seen as the Lojasiewicz’s exponents of two func-
tions according to the following:

Definition 2.6 (Lojasiewicz’s exponent [3], [4], [16]). — (i) Let M be a
real analytic manifold, K a compact subset of M and f , g two vector-valued
functions continuous over K, we set:

EK(f, g) =
{
α ∈ R+ such that there exists a constant C

with ‖f(u)‖α 6 C‖g(u)‖, ∀u ∈ K
}
,

αK(f, g) = Inf{EK(f, g)} with Inf{∅} defined as +∞;

αK(f, g) is called the Lojasiewicz’s exponent of f with respect to g over K.

(ii) We will also consider the case where f is defined on a compact subset
of Rn and admits an isolated zero at x, then we set:

αx(f) = Inf
{
α ∈ R+ such that ∃ C > 0, r > 0

with ‖u− x‖α 6 C‖f(u)‖if ‖u− x‖ 6 r
}

hence αx(f) = αK(f,dist(. , x)).

With these definitions, we have the important theorem:

Theorem 2.7 (Lojasiewicz’s inequalities, see [3], [4]). — Let f and g be
two vector-valued continuous subanalytic functions over a compact set K

in a real analytic manifold M such that their zero sets satisfy Zg ⊂ Zf ,
then EK(f, g) is non-empty, αK(f, g) ∈ Q and αK(f, g) ∈ EK(f, g).

Remark 2.8. — Specifically, if g is a vector-valued continuous subana-
lytic function over a compact set K ⊂ Rn, if X = Zg and f(x) = dist(x,Zg)
then for all x ∈ K we get(

dist(x,Zg)
)α

6 C
∥∥g(y)

∥∥.

ANNALES DE L’INSTITUT FOURIER
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2.2. Uniform lower estimates for a family of subanalytic germs

Let 0 < R and BR be the closed ball of radius R centered at the origin
in Rk.

With a real-analytic compact manifold K, we consider a family of suban-
alytic germs near the origin given by a positive function F : BR×K → R+

continuous subanalytic over BR × K such that, for a given y ∈ K, ei-
ther F(0, y) > 0 or the origin in BR is an isolated zero of Fy = F(. , y).

We look for lower estimates on the growth of the function Fy which
are uniform with respect to y. In most cases, one cannot expect the ex-
istence of constants C > 0 and α > 0 such that Fy(x) > C‖x‖α for all
(x, y) ∈ BR ×K. For instance, the function F(x, y) = |x(x − y)| defined
over [−R,+R]× [0, 1] satisfies our assumptions but the latter inequality is
obviously false. On the other hand, one can prove that

Max06ξ6r

(
Min|x|=ξ

(
F(x, y)

))
> (3− 2

√
2 )r2

for all (r, y) ∈ [0, R] × [0, 1] and we want to generalize this kind of esti-
mates for an arbitrary subanalytic function which satisfy our assumption
of isolated zero for a fixed parameter.

Proposition 2.9. — With the previous notations:
(i) The function m(r, y) = Min‖x‖=r(F(x, y)) for 0 6 r 6 R and y ∈ K

is continuous subanalytic over [0, R]×K.
(ii) The function M(r, y) = Maxt∈[0,r](m(t, y)) is also continuous suban-

alytic.

Proof. — Consider the continuous subanalytic function f(r, y, θ) =
F(rθ, y) defined over [0, R] × K × Sn where Sn is the unit sphere in Rn

then

m(r, y) = Minθ∈Sn

(
f(r, y, θ)

)
is continuous subanalytic over [0, R] ×K as it was proved in the previous
section.

Now, we consider the function g(r, y, t) = m(tr, y) defined over [0, R] ×
K × [0, 1] and

M(r, y) = Max06t61

(
g(r, y, t)

)
= Max06u6r

(
m(u, y)

)
is also continuous subanalytic. This proves the desired claims. �

Gathering all the results of the previous section, we obtain the following:
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804 Laurent NIEDERMAN

Definition and Theorem 2.10. — Let F be a positive numerical
function continuous subanalytic over BR×K, we will say that F is arc-steep
if it satisfies one of the following equivalent properties:

(i) For any fixed value of the parameter y ∈ K, the function Fy = F(. , y)
admits an isolated zero at the origin in BR or Fy(0) > 0.

(ii) There exists two constants C > 0 and α > 0 such that the inequality
Max06t6r(Min‖x‖=t F(x, y)) > Crα is valid for all (r, y) ∈ [0, R]×K.

(iii) There exists constants C > 0 and α > 0 such that along any con-
tinuous curve γ in BR connecting the origin to a point at a distance d 6 R

and for any parameter y ∈ K, the modulus of the function Fy = F(. , y) is
greater than Cdα at some point γ(t∗)

Proof. — The latter proposition implies that

M(r, y) = Max06t6r

(
Min‖x‖=t F(x, y)

)
is continuous subanalytic over [0, R] × K. Moreover, the zero set ZM is
included in {0} ×K.

Indeed,M(. , y) is a nondecreasing function with respect to r andM(0, y)
> 0 implies M(r, y) > 0 for all r ∈ [0, R]. Conversely, M(0, y) = 0 im-
plies that F(0, y) = 0 and, under our assumptions, such a zero is isolated;
hence F(x, y) > 0 for any x close to 0 and, by monotonicity, we can ensure
that M(r, y) > 0 for any r ∈]0, R].

Now, the function N (r, y) = r is continuous subanalytic over [0, R]×K

and the zero sets of M and N satisfy ZM ⊆ {0} × K = ZN . Finally,
the existence of the Lojasiewicz’s exponent (Theorem 2.7) on the compact
real analytic manifold [0, R] × K yields the constants C > 0 and α =
α[0,R]×K(M,N ) > 0 such that M(r, y) > Crα for all (r, y) ∈ [0, R] ×K,
hence (i) implies (ii).

If (ii) is satisfied then, for any parameter y ∈ K, an arbitrary continuous
curve γ in BR connecting the origin to a point at a distance d 6 R cross
a sphere of radius 0 6 t 6 d centered at γ(0) where F(x, y) is greater
than Cdα at any point and the last property (iii) is ensured.

Finally, if the function Fy = F(. , y) admits an accumulation of zeros
at the origin for a certain value of the parameter y ∈ K then the zero
set Zy = {x ∈ BR such that Fy(x) = 0} is a real analytic set, hence a
subanalytic set, and the curve selection lemma (Theorem 2.5) allows to
find a non-constant continuous arc starting at the origin included in Zy.

Consequently, the property (iii) cannot be satisfied and, by abstract non-
sense, (iii) implies (i). �
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HAMILTONIAN STABILITY AND SUBANALYTIC GEOMETRY 805

3. Proof of the geometric criterion for steepness
(Theorem 1.5)

Going back to the initial Definition 1.3 of steepness, we consider a nu-
merical function h real analytic over an open set P ⊂ Rn.

For any k ∈ {1, . . . , n}, the k-dimensional Grassmannian in Rn will be
denoted by Gk(Rn) and we introduce the numerical function

hk(X, X0,Λk) =
∥∥ProjΛk

(∇h(X + X0))
∥∥

defined over the set{
(X, X0,Λk) ∈ Rn × P ×Gk(Rn) such that X ∈ Λk and X + X0 ∈ P

}
.

With the previous notations, for k ∈ {1, . . . , n} a point (X, X0,Λk) ∈
Rn × P × Gk(Rn) is a zero of hk if and only if X + X0 is a critical point
for the restriction of h on the affine subspace X0 + Λk as it can be seen by
choosing an orthonormal basis in Λk.

Now, we consider a numerical function h whose restriction to any affine
subspace admits only isolated critical points. This property is insured if
and only if, for any (k, X0,Λk) ∈ {1, . . . , n} × P × Gk(Rn), the function
hk(. , X0,Λk) admits an isolated zero at the origin or hk(0, X0,Λk) 6= 0.

Let Σ be an arbitrary compact set in P, since P is open, the function
hk(X, X0,Λk) is defined over the set{

(X, X0,Λk) ∈ Rn × Σ×Gk(Rn) such that X ∈ B(n)
R ∩ Λk

}
where B(n)

R is the closed ball of radius R = dist(Σ, Rn\P) in Rn centered
at the origin.

Following [28], we consider the Stiefel manifold V 0
k (Rn) composed of all

orthonormal families in Rn of cardinality k and the k-dimensional Grass-
manian Gk(Rn).

Gk(Rn) is isomorphic to the quotient V 0
k (Rn)/(O(k)×O(n− k)) where

the latter component is the stabilizer of a subspace of dimension k under
the action of the orthonormal group O(n).

Hence, around any subspace in Rn, there exists a local section of V 0
k (Rn)

over Gk(Rn). Moreover, since all the previous manifolds are real ana-
lytic, these sections can be real analytic. Actually, around any subspace
Λk ∈ Gk(Rn), we can choose a compact neighborhood Λk ∈ Ωk ⊂ Gk(Rn)
and a real analytic map T : Ωk → Rnk such that T (Λ) = (T1(Λ), . . . , Tk(Λ))
is an orthonormal basis of Λ for any Λ ∈ Ωk.
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806 Laurent NIEDERMAN

Consequently, we can introduce the function

Hk(x,X0,Λk) = hk

( n∑
j=1

xjTj(Λk), X0,Λk

)
and

Hk(x,X0,Λk) =
( k∑

`=1

〈
∇h

(
X0 +

k∑
j=1

xjTj(Λk)
) ∣∣∣ T`(Λk)

〉2) 1
2

is continuous subanalytic over BR ×Σ×Ωk where BR is the closed ball of
radius R in Rk centered at the origin.

Finally, the union of these neighborhoods Ωkaround each point of Gk(Rn)
recover the whole k-dimensional Grassmannian and the compactness of
Gk(Rn) implies the existence of a finite collection of compact sets Ω

(`)

k ⊂
Gk(Rn) for ` ∈ {1, . . . ,mk} such that Gk(Rn) is equal to the union

⋃mk

=̀1Ω
(`)

k .
The corresponding sections of V 0

k (Rn) over Ω
(`)

k ⊂ Gk(Rn) will be denoted
T (`) = (T (`)

1 , . . . , T (`)
k ) for ` ∈ {1, . . . ,mk}.

Now, h satisfies our assumption of isolated critical points if and only if,
for any k ∈ {1, . . . , n} and any ` ∈ {1, . . . ,mk}, the function

H(`)
k (x,X0,Λk) = hk

( n∑
j=1

xjT (`)
j (Λk), X0,Λk

)
is arc-steep over BR × Σ× Ω

(`)

k .

Indeed, H(`)
k (0, X0,Λk) 6= 0 if and only if the restriction of h on the affine

subspace X0 + Λk admits a critical point at X0. This is an isolated critical
point according to our assumption and H(`)

k (0, X0,Λk) 6= 0 for any x close
enough to the origin.

Conversely, if H(`)
k is arc-steep for any k ∈ {1, . . . , n} and any ` ∈

{1, . . . ,mk}, then we consider a point X0 ∈ Σ which is a critical point for
the restriction of h to the affine subspace of X0 + Λk where Λk ∈ Gk(Rn).
There exists ` ∈ {1, . . . ,mk} such that Λk ∈ Ω

(`)

k and H(`)
k (0, X0,Λk) = 0,

hence H(`)
k (0, X0,Λk) 6= 0 for any x close enough to the origin and X0 is an

isolated critical point for the restriction of h on the affine subspace X0+Λk.
With the Theorem 2.10, the function h satisfies our assumption of iso-

lated critical point if and only if, for any k ∈ {1, . . . , n} and any ` ∈
{1, . . . ,mk}, there exists constants C

(`)
k and α

(`)
k such that, along any con-

tinuous curve γ(t) in BR connecting the origin to a point at a distance
d 6 R = dist(Σ, Rn\P) and any (X0,Λk) ∈ Σ× Ω

(`)

k , one can find t∗ such
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that
H(`)

k

(
γ(t∗), X0,Λk

)
> C

(`)
k dα

(`)
k .

With Ck = Min`(C
(`)
k ) and pk = Max`(α

(`)
k ), for any curve Γ in B(n)

R ∩ Λk

where Γ(0) = 0 and ‖Γ(1)‖ = d 6 R, there exists t∗ such that∥∥ProjΛk
(∇h(X0 + Γ(t∗)))

∥∥
is bigger than Ckdpk . Since X0 +Λk for all (X0,Λk) ∈ Σ×Ω

(`)

k describes all
the affine subspaces which intersect Σ, we see that h is steep on Σ with the
steepness coefficients (C1, . . . , Cn) and the steepness indices (p1, . . . , pn)
for curves of length shorter than R = dist(Σ, Rn\P), which is exactly the
required equivalence. �

Actually, we have proved the following:

Theorem 3.1. — Let f be a numerical function real analytic over an
open set P ⊂ Rn. For a compact set Σ ⊂ P and k ∈ {1, . . . , n}, we
introduce the function M(Σ)

k which measure the steepness of f along the
set GraffΣ(k, n) of all affine subspaces of dimension k which intersect Σ.
For any Λ̃k ∈ GraffΣ(k, n) of direction Λk and any d 6 R = dist(Σ, Rn\P),
we define

M(Σ)
k (d, X0, Λ̃k) = Max06ξ6d

(
Min

X∈Sξ(X0)∩Λ̃k
‖ProjΛk

(∇h(X0 + X))‖
)

where Sξ(X0) is the sphere of radius ξ centered at X0 in Rn. Equivalently,
if Λk ∈ Ω

(`)

k for some ` ∈ {1, . . . ,mk}, we have

M(Σ)
k (d, X0, Λ̃k) = Max06ξ6d

(
Min‖x‖=ξ(H

(`)
k (x,X0,Λk)

)
.)

The function h is steep over Σ according to our Definition 1.3 if and
only if, for any k ∈ {1, . . . , n}, there exists constants Ck > 0 and pk > 0
such that

M(Σ)
k (d, X0, Λ̃k) > Ckdpk for all (d, X0, Λ̃k) ∈ [0, R]× Σ×GraffΣ(k, n).

This latter inequality corresponds to the original definition of steepness
in Nekhorochev’s work [19].

4. Proof of our necessary condition for exponential
stability (Theorem 1.6)

We prove this theorem by abstract nonsense; Nekhorochev [20, Section 4],
considered the following class of functions:
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Definition 4.1. — Let F be the class of functions f : P → R real
analytic over a domain P ⊆ Rn such that there exist an affine subspace Λ̃
whose direction Λ is generated by vectors with integer components and a
regular curve γf : [0, 1] → Λ̃ ∩ P where

ProjΛ
(
∇f

(
γf (t)

))
= 0 for all t ∈ [0, 1].

In this setting, we have:

Theorem 4.2 (Systems with fast drift [20]). — For any Hamiltonian
h ∈ F (defined above) and any ε > 0, there exists a nearly-integrable
Hamiltonian system deriving from H(I, ϕ) = h(I) + εf(I, ϕ) in the action-
angle variables (I, ϕ) ∈ P ×Tn which admits a solution (I(t), ϕ(t)) defined
over [0, 1/ε] such that I(0) = γh(0) and I(1/ε) = γh(1).

Hence, we have a drift along a curve with a length independent of ε over
a linear time 1/ε.

Remark 4.3. — This is the strongest possible drift with a perturbation
of magnitude ε.

Proof of Theorem 1.6. — Here, we consider an integrable Hamiltonian h

with an affine subspace Λ̃ whose direction Λ is generated by vectors with
integer components such that the zero set Zg ∩ Λ̃ of the real analytic func-
tion g = ProjΛ(∇h(x)) admits an accumulation point. As in the proof
of the Theorem 2.10, this zero set is real analytic and we can find a non
trivial analytic arc γh in Λ̃ composed of critical points. Hence, γh satisfies
Nekhorochev’s conditions for systems with fast drift (Definition 4.1). Con-
sequently, there exists an arbitrary small analytic perturbation of h where
the action variables drift over linear times along γh. �

5. Explicit computation of lower bounds for the steepness
indices

In the study of the dynamic of nearly-integrable Hamiltonian systems,
the most important result given by Nekhorochev’s estimates is the order of
magnitude of the stability time which depend almost only of the steepness
indices through the expression of the exponents a = (1 + 2np1 · · · pn−1)−1

and b = a/pn (see [23]).
We still consider a numerical function h real analytic over an open set

P ⊂ Rn whose restriction to any affine subspace admits only isolated criti-
cal points. Along the lines of the previous reasonings, h is steep on any com-
pact set Σ ⊂ P with the steepness indices given by pk =Max`∈{0,...,mk}(α

(`)
k )
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where α
(`)
k = αK(Σ)

k,`

(M(Σ)
k ,Nk) is the Lojasiewicz’s exponent of the function

M(Σ)
k defined in the Theorem 3.1 with respect to Nk(r, X0,Λk) = r defined

over the compact

K(Σ)
k,` = [0, R]× Σ× Ω

(`)

k ⊂ R+ × P ×Gk(Rn)

for R = dist(Σ, Rn\P).
The explicit computation of the Lojasiewicz’s exponent in a general set-

ting is a difficult question (see [27]). Indeed, we look for the sharpest lower
estimates on the growth of a real analytic function with respect to the
distance to the zero set Zf = {x such that f(x) = 0}.

In Ilyashenko’s study [13], the problem of steepness of holomorphic func-
tions is tackled with the following property. Consider an holomorphic func-
tion on an open set in Cn which admits a finite number of zeros, then
‖f(z)‖ > C dist(z, Zf )p where p is the number of zeros counted with their
multiplicity (or Milnor number, see [1]) which is the number of zeros ob-
tained by bifurcation (]{x such that ‖f(x)‖ = ε} for ε close to 0). For
instance, the function f(z1, z2) = (z2

1 , z3
2) admits only one zero over C2

with the multiplicity pf (0, 0) = 6 while the Lojasiewicz’s exponent is
αf (0, 0) = 3, hence the previous lemma gives only ‖f(z1, z2)‖>C‖(z1, z2)‖6
in the vicinity of (0, 0) instead of ‖f(z1, z2)‖ > C‖(z1, z2)‖3 which is
the best lower bound. The same phenomena occurs in a general setting
(see [24]), hence the use of multiplicity instead of Lojasiewicz’s exponents
yields only rough upper estimates on the steepness indices.

In the sequel, we give a method to compute sharp lower estimates on the
steepness indices based on the following

Theorem 5.1. — Consider an integrable Hamiltonian h which satisfies
the assumptions of our Main Theorem 1.5. For Λ an affine subspace in Rn,
we consider the zero set

ZΛ =
{
x ∈ Λ such that Proj~Λ

(
∇h(x)

)
= 0

}
where ~Λ is the direction of Λ, hence ZΛ is composed of isolated points.

Then, the steepness index of order k satisfies

pk > SupΛ∈GraffΣ(k,n)

(
Supx∈ZΛ

(
αx(fΛ)

))
where αx(fΛ) is the Lojasiewicz’s exponent at the isolated zero x ∈ ZΛ

of the restriction fΛ on the affine subspace Λ of the function f(u) =
‖Proj~Λ(∇h(u))‖.
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The point of this refinement lies in the fact that our estimates on the
steepness indices can be obtained as the maximum of a family of Lo-
jasiewicz’s exponents at an isolated zero of a real-analytic function and
the latter quantity can be computed along the lines of the following theo-
rem of Gwozdziewicz [10].

Let g be a numerical function real analytic on an open set P in Rk, with
(~e1, . . . , ~ek) the canonical basis of Rk, we consider the set (called polar
curve):

P(j) = ∇g−1(R~ej) =
{
u ∈ V such that ∇g(u) = λ~ej for λ ∈ R

}
.

For x ∈ P an isolated zero of g and j ∈ {1, . . . , k}, we define the partial
exponent:

α(j)
x (g) = Inf

{
α ∈ R+ such that ∃C > 0, R > 0

with ‖u− x‖α 6 C|g(u)| if ‖u− x‖ 6 R and u ∈ P(j)
}

then Gwozdziewicz’s Theorem asserts that the Lojasiewicz’s exponent at x

is given by αx(g) = Max16j6k(α(j)
x (g)).

Summarizing, in order to compute the Lojasiewicz’s exponent of a real
analytic function at an isolated zero, one has only to estimate the growth
of the function along one of the polar curves which is usually an analytic
set of dimension one.

Here, for an affine subspace Λ ⊂ Rn, we apply the previous result
to the real analytic function gΛ(u) = (fΛ(u))2 = ‖Proj~Λ(∇h(u))||2 and
αx(gΛ) = 2αx(fΛ) for any isolated zero x of fΛ, hence

pk > 1
2 SupΛ∈GraffΣ(k,n)

(
Supx∈ZΛ

(
αx(gΛ)

))
.

Proof of Theorem 5.1. — We first need the following:

Lemma 5.2 (Lojasiewicz’s exponent for a family of subanalytic func
tions). — Consider a numerical subanalytic function f defined on a prod-
uct set M = [0, R]×K for some R > 0 and a real analytic compact mani-
fold K with the zero set Zf ⊂ {0}×K, consequently if g(x, r) = r over M

then Zf ⊂ Zg.
We denote by fx and gx the restrictions of f and g on the fibers

Mx = [0, R]× {x}

for an arbitrary x ∈ K and α = αM (f, g), αx = αMx
(fx, gx) are the

Lojasiewicz’s exponents of these functions on their domain of definition,
then α > Supx∈K(αx).

Remark 5.3. — The equality α = Supx∈K(αx) seems natural and should
be true in many cases, this question is worthwhile considering.
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Proof. — Since each fiber Mx = [0, R]×{x} is included in M , by defini-
tion we have α > αx for any x ∈ K and α > α̃ = Supx∈K(αx). �

Consider a compact set Σ ⊂ P, we define the function M(Σ)
k as in the

Theorem 3.1 and the previous lemma allows to compute a lower bound
on the Lojasiewicz’s exponent α

(`)
k = αK(Σ)

k,`

(M(Σ)
k ,Nk) over the compact

K(Σ)
k,` = [0, R]× Σ× Ω

(`)

k . Hence

α
(`)
k > Sup

(X0,Λk)∈Σ×Ω
(`)
k

(α(`)
k,(X0,Λk))

where α
(`)
k,(X0,Λk) is the Lojasiewicz’s exponent of the functionM(Σ)

k (., X0,Λk)
with respect to Nk(. , X0,Λk) defined over the fiber [0, R]× {(X0,Λk)}.

Following the reasonings and the notations of Section 3, under our as-
sumption of isolated zero, the functionH(`)

k is arc-steep andM(Σ)
k (., X0,Λk)

admits at most one zero located at the origin.
If M(Σ)

k (0, X0,Λk) > 0 then α
(`)
k,(X0,Λk) 6 1 since M(Σ)

k (r, X0,Λk) > 0 for

0 6 r 6 R, otherwise M(Σ)
k (0, X0,Λk) = 0 if and only if H(`)

k (0, X0,Λk) = 0
which implies that H(`)

k (x,X0,Λk) 6= 0 for x close enough to 0.
In this latter case, m(Σ)

k (r, X0,Λk) = Min‖x‖=r(H
(`)
k (x,X0,Λk)) is a non-

decreasing function with respect to r andM(Σ)
k (r, X0,Λk)=m(Σ)

k (r, X0,Λk)
for r small enough and we easily see that the Lojasiewicz’s exponents
α0(m

(Σ)
k (., X0,Λk)) = αx(fΛ) > 1 if Λ = X0 + Λk and x = X0 ∈ ZΛ,

hence

pk > Sup`∈{1,...,mk}
(
Sup

Λk∈Ω
(`)
k

(
SupX0∈ZΛ

(
α0

(
m(Σ)

k (r, X0,Λk)
))))

and

GraffΣ(k, n) =
{
X0 + Λk for (X0,Λk) ∈ Σ×Gk(Rn)

}
=

mk⋃
`=1

{
X0 + Λk for (X0,Λk) ∈ Σ× Ω

(`)

k

}
implies our claim. �
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