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SETS OF k-RECURRENCE BUT NOT
(k + 1)-RECURRENCE

by Nikos FRANTZIKINAKIS,
Emmanuel LESIGNE & Máté WIERDL

We dedicate this paper to Y. Katznelson. Our work began at the conference organized
for his 70th birthday, and we wish to honor him for his fundamental contribution to

ergodic theory.

Abstract. — For every k ∈ N, we produce a set of integers which is k-recurrent
but not (k + 1)-recurrent. This extends a result of Furstenberg who produced a
1-recurrent set which is not 2-recurrent. We discuss a similar result for convergence
of multiple ergodic averages. We also point out a combinatorial consequence related
to Szemerédi’s theorem.

Résumé. — Pour tout nombre entier k > 0, nous construisons un ensemble
d’entiers qui est un ensemble de récurrence multiple à l’ordre k mais pas à l’ordre
k + 1. Cela étend une construction de Furstenberg qui a construit un ensemble de
récurrence qui n’est pas un ensemble de 2-récurrence. Nous obtenons un résultat
similaire pour la convergence des moyennes ergodiques multiples. Comme consé-
quence de notre construction, nous exhibons aussi un résultat combinatoire relié
au théorème de Szemerédi.

1. Introduction and main results

In his seminal paper [3], Furstenberg gave an ergodic theoretic proof of
the famous theorem of Szemerédi claiming that every integer subset with
positive density contains arbitrarily long arithmetic progressions. Fursten-
berg proved this by showing the following multiple recurrence property for
measure preserving systems:

Theorem 1.1 (Furstenberg). — Let (X,X , µ, T ) be a finite measure
preserving dynamical system and A ∈ X be a set with µ(A) > 0. Then for

Keywords: Ergodic theory, recurrence, multiple recurrence, combinatorial additive num-
ber theory.
Math. classification: 38A, 11B.



840 Nikos FRANTZIKINAKIS, Emmanuel LESIGNE & Máté WIERDL

every k ∈ N, there exists n ∈ N such that

µ(A ∩ T−nA ∩ · · · ∩ T−nkA) > 0.

This motivated the following definition:

Definition 1.2. — Let (X,X , µ, T ) be a probability preserving dynam-
ical system. We say that S ⊂ N is a set of k-recurrence for the system
(X,X , µ, T ) if for every A ∈ X with µ(A) > 0, there exists n ∈ S such that

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

We say that S ⊂ N is a set of k-recurrence if it is a set of k-recurrence for
every probability preserving dynamical system.

The corresponding definition in topological dynamics is:

Definition 1.3. — We say that S ⊂ N is a set of k-topological recur-
rence if for every homeomorphism T of a compact metric space X such
that the topological dynamical system (X, T ) is minimal and for every
nonempty open subset U of X, there exists n ∈ S such that

U ∩ T−nU ∩ · · · ∩ T−knU 6= ∅.

If S is infinite then the difference set S − S = {s1 − s2 : s1, s2 ∈ S}
is easily shown to be a set of 1-recurrence. By appropriately choosing S,
Furstenberg constructed, in [4, pages 177-178], a set of 1-recurrence that is
not a set of 2-recurrence. Constructing sets of 2-recurrence is much harder,
in fact all the examples known turned out to be sets of k-recurrence for
every k. This raised the question, first stated explicitly by Bergelson in [2]:

Question. — Let k > 2 be an integer. Does there exist a set of (k−1)-
recurrence that is not a set of k-recurrence?

The main objective of this article is to show that the answer is affirmative.
The examples that we construct are very explicit:

Theorem 1.4. — Let k > 2 be an integer and α ∈ R be irrational. We
define

Sk =
{
n ∈ N : {nkα} ∈ [1/4, 3/4]

}
,

where {a} denotes the fractional part of a. Then Sk is a set of (k − 1)-
recurrence but not a set of k-recurrence.

It will appear in the proof that not only the set Sk is a set of (k − 1)-
recurrence for powers of a single transformation, but that it is a set of
(k−1)-recurrence for families of commuting transformations (see definition
in Section 4). Moreover, the set Sk is not a set of k-topological recurrence

ANNALES DE L’INSTITUT FOURIER



MULTIPLE RECURRENCE 841

(but it is a set of (k − 1)-topological recurrence since it is a set of (k − 1)-
recurrence).

We also answer the corresponding question for sets of k-convergence:

Definition 1.5. — A set S = {a1 < a2 < . . .} ⊂ N is called a
set of k-convergence if for every probability preserving dynamical system
(X,X , µ, T ) and functions f1, . . . , fk ∈ L∞(µ), the averages

1
N

N∑
n=1

T anf1 · T 2anf2 · . . . · T kanfk

converge in L2(µ) as N →∞.

Host and Kra in [7] (see also Ziegler’s work in [9] for an alternate proof)
showed that S = N is a set of k-convergence for every k. We show:

Theorem 1.6. — Let k > 2 be an integer and α ∈ R be irrational. Let

Ij =

{
n ∈ [2j , 2j+1] : {nka} ∈ [1/10, 2/10] if j is even
n ∈ [2j , 2j+1] : {nka} ∈ [5/10, 6/10] if j is odd

and define

S′k =
∞⋃

j=1

Ij .

Then S′k is a set of (k − 1)-convergence but not a set of k-convergence.

It will be clear from the proof that S′k is also a set of (k − 1)-recurrence
but not a set of k-recurrence.

The strategy of the proof of the theorems is as follows. In Section 3 we
use some elementary considerations in order to show that Sk is not a set of
k-recurrence and S′k is not a set of k-convergence. The basic observation is
that if S is a set of k-recurrence/convergence then the set consisting of the
k-th powers of elements of S has good 1-recurrence/convergence properties.
In Section 4 we prove a multiple ergodic theorem (Proposition 4.2) that
enables us to show that Sk is a set of (k − 1)-recurrence and S′k is a set of
(k − 1)-convergence.

Note that, as we already did in this introduction, we denote by N the set
of positive integers.

TOME 56 (2006), FASCICULE 4
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2. A combinatorial consequence

A set S ⊂ N is called intersective if for every integer subset Λ with
positive density we have Λ ∩ (Λ + n) 6= ∅ for some n ∈ S. More generally
we define:

Definition 2.1. — A set S ⊂ N is k-intersective if every integer subset
with positive density contains at least one arithmetic progression of length
k + 1 and common difference in S.

In [6, pages 528-529] it is shown that:

Proposition 2.2. — A set S ⊂ N is k-intersective if and only if it is a
set of k-recurrence.

We conclude from Theorem 1.4 that:

Corollary 2.3. — Let k > 2. There exists a set that is (k − 1)-
intersective but not k-intersective.

3. Bad sets for k-recurrence and k-convergence

We will use the following elementary fact:

Lemma 3.1. — For every k, n ∈ N we have

k∑
i=1

(−1)i+1

(
k

i

)(
in

l

)
=


1 if l = 0,

0 if 1 6 l < k,

(−1)k+1nk if l = k.

Proof. — Consider the function

f(x) = (1− xn)k =
k∑

i=0

(−1)i

(
k

i

)
xin.

Using the first representation for f(x) and differentiating using the chain
and product rule it is easy to check that

f (l)(x) =

{
(1− xn)Pl(x) if 0 6 l < k,

(1− xn)Pl(x) + (−1)lnl l!xl(n−1) if l = k,

for some polynomials Pl(x), l = 0, . . . , k − 1. Setting x = 1 gives

(3.1) f (l)(1) =

{
0 if 0 6 l < k,

(−1)lnl l! if l = k.
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Using the second representation for f(x) and differentiating we find

f (l)(x) =
k∑

i=0

(−1)i

(
k

i

)(
in

l

)
l!xin−l.

Setting x = 1 gives

(3.2) f (l)(1) =
k∑

i=0

(−1)i

(
k

i

)(
in

l

)
l!,

for every nonnegative integer l. Comparing equations (3.1) and (3.2) we
get the advertised result. �

The following result will enable us to show that the set Sk is bad for
k-recurrence and S′k is bad for k-convergence. To better illustrate the idea,
after proving the proposition, we explain how the argument works for k = 2.

Proposition 3.2. — If S = {a1 < a2 < . . .} ⊂ N is a set of k-recurrence
then Sk = {ak

1 < ak
2 < · · · } is a set of 1-recurrence for all circle rotations,

and if S is a set of k-convergence then Sk is a set of 1-convergence.

Remarks. — Note that in the above proposition we only claim that
Sk is a set of 1-recurrence for rotations of the circle. It is clear that the
argument we give in the proof below can be extended to show that if S is
a set of k-recurrence, then Sk is a set of 1-recurrence for all translations of
multidimensional tori. In fact, it is an unsolved problem whether a set S

being of k-recurrence implies that Sk is a set of 1-recurrence.
Here is a related unsolved problem of Katznelson from [8]: is it true that

a set of 1-recurrence for all translations of multidimensional tori is, in fact,
a set of 1-topological recurrence ?

Proof of Proposition 3.2. — (i) Let S be a set of k-recurrence. It suffices
to show that for every α ∈ [0, 1) and ε > 0 there exists n ∈ N such that∥∥ak

nα
∥∥ 6 ε, where ‖a‖ is the distance of a to the closest integer. To do this

we use the k-recurrence property for some appropriately chosen system.
Given α ∈ [0, 1), we define the measure preserving transformation R acting
on Tk with the Haar measure λ as follows:

R(t1, . . . , tk) = (t1 + α, t2 + t1, . . . , tk + tk−1).

Then for j = 1, . . . , k the k-th coordinate of Rjn(t1, . . . , tk) is

(3.3) cj,n,k = tk +
(

jn

1

)
tk−1 +

(
jn

2

)
tk−2 + · · ·+

(
jn

k − 1

)
t1 +

(
jn

k

)
α.

TOME 56 (2006), FASCICULE 4
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By Lemma 3.1 we have

(3.4)
k∑

j=1

(−1)j+1

(
k

j

)
cj,n,k = tk + (−1)k+1nkα

for all n ∈ N. Let Uε = B(0, ε/2k). If S is a set of k-recurrence then there
exists an n0 ∈ S such that

Uε ∩R−n0Uε ∩ · · · ∩R−kn0Uε 6= ∅.

Let (t1, . . . , tk) be an element of the intersection and cj,n, j = 1, . . . , k, be
given by (3.3). We have ‖cj,n0,k‖ 6 ε/2k, j = 1, . . . , k, and ‖tk‖ 6 ε/2k.
Using (3.4) we get that

∥∥nk
0α

∥∥ 6 ε, completing the proof.
(ii) Suppose that S = {a1 < a2 < · · · } is a set of k-convergence. Let

R be the transformation defined in the proof of part (i). For j = 1, . . . , k

define the functions

fj(t1, . . . , tk) = e
(
(−1)j+1

(
k

j

)
tk

)
,

where e(t) = e2int. Since S is a set of k-convergence the averages

1
N

N∑
n=1

Ranf1 · . . . ·Rkanfk = e
(
tk

)
· 1
N

N∑
n=1

e((−1)k+1ak
nα)

converge in L2(λ) as N →∞. Hence, for every α ∈ [0, 1) the averages

1
N

N∑
n=1

e(ak
nα)

converge as N → ∞. The spectral theorem gives that for every measure
preserving system (X,X , µ, T ) and f ∈ L2(µ) the averages

1
N

N∑
n=1

T ak
nf

converge in L2(µ) as N →∞, completing the proof. �

We now give an example illustrating how the argument of Proposition 3.2
works for k = 2:

Example 3.3. — (i) Suppose that S is a set of 2-recurrence. Let α ∈ [0, 1)
and ε > 0. The transformation R : T2 → T2 is defined by

R(t1, t2) = (t1 + α, t2 + t1).

Then

Rn(t1, t2) =
(
t1 + nα, t2 + nt1 +

(
n

2

)
α
)
.

ANNALES DE L’INSTITUT FOURIER
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Since S is a set of 2-recurrence there exists an n0 ∈ S such that

Uε ∩R−n0Uε ∩R−2n0Uε 6= ∅,

where Uε = B(0, ε/4). If (t1, t2) is an element of the intersection then

(3.5) ‖t2‖ 6 ε/4, ‖c1‖ 6 ε/4, ‖c2‖ 6 ε/4,

where

c1 = t2 + n0t1 +
(

n0

2

)
α, c2 = t2 + 2n0t1 +

(
2n0

2

)
α.

Since
2c1 − c2 = t2 − n2

0α

we get from (3.5) that
∥∥n2

0α
∥∥ 6 ε. This implies that S2 is a set of recurrence

for circle rotations.
(ii) Suppose that S = {a1 < a2 < · · · } is a set of 2-convergence. We

define the transformation R : T2 → T2 as in part (i) and the functions

f1(t1, t2) = e(2t2), f2(t1, t2) = e(−t2).

Then
1
N

N∑
n=1

Ranf1 ·R2anf2 = e(t2) ·
1
N

N∑
n=1

e(−a2
nα).

Since S is a set of 2-convergence it follows that the averages

1
N

N∑
n=1

e(a2
nα)

converge as N → ∞ for every α ∈ [0, 1). The spectral theorem gives that
S2 is a set of 2-convergence.

Corollary 3.4. — The set Sk of Theorem 1.4 is not a set of k-recurren-
ce and the set S′k of Theorem 1.6 is not a set of k-convergence.

Proof. — By definition, Sk
k is not a set of recurrence for the rotation by

α, so by Proposition 3.2 we have that Sk is not a set of k-recurrence.
Let S′k = {a1 < a2 < · · · } and

AN =
1
N

N∑
n=1

e(ak
nα), BN =

1
N

2N∑
n=N+1

e(ak
nα).

By the definition of S′k we have that for j even the real part of B2j is
positive and bounded away from zero, and for j odd the real part of B2j

is negative. Hence, the sequence BN does not converge as N → ∞. Since
BN = 2A2N − AN it follows that the sequence AN does not converge as
N →∞. By Proposition 3.2, S′k is not a set of k-convergence. �

TOME 56 (2006), FASCICULE 4
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4. Good sets for k-recurrence and k-convergence

We will use the following elementary lemma ([1]):

Lemma 4.1 (Van der Corput). — Let {an}n∈N be a bounded sequence
of vectors in a Hilbert space. For each m we set

bm = lim sup
N−M→∞

∣∣∣ 1
N −M

N∑
n=M+1

< an+m, an >
∣∣∣.

If

lim sup
N−M→∞

1
N −M

N∑
m=M+1

bm = 0

then

lim
N−M→∞

1
N −M

N∑
n=M+1

an = 0

in norm.

Proposition 4.2. — Let k ∈ N, T1, . . . , Tk−1 be commuting measure
preserving transformations acting on the probability space (X,X , µ), and
p ∈ R[t] be a polynomial of degree > k with irrational leading coefficient.
If g : T → C is Riemann integrable and f1, . . . , fk−1 ∈ L∞(µ), then the
difference

1
N −M

N∑
n=M+1

Tn
1 f1 · . . . · Tn

k−1fk−1 · g(p(n))−

1
N −M

N∑
n=M+1

Tn
1 f1 · . . . · Tn

k−1fk−1 ·
∫

T
g dλ

converges to 0 in L2(µ) as N −M →∞.

Proof. — Using the standard estimation by continuous functions from
above and below, it suffices to check the result when g is a continuous
function. By Weierstrass approximation theorem of continuous functions
by trigonometric polynomials, and using linearity, it suffices to check the
result when g(t) = e2πilt for some l ∈ Z. The case l = 0 is trivial. If l 6= 0
the polynomial q(n) = lp(n) satisfies the assumptions of our theorem, so it
suffices to verify the result when g(t) = e(t), where e(t) = e2πit.

We proceed by induction on the number of functions k. If k = 1 (empty
product is 1) then

lim
N−M→∞

1
N −M

N∑
n=M+1

e(p(n)) = 0

ANNALES DE L’INSTITUT FOURIER
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follows from Weyl’s uniform distribution theorem. Assume that the result
is true for k− 1 functions. We will verify the result for k functions. We can
assume that ‖fk‖∞ 6 1. We apply Van der Corput’s Lemma on the Hilbert
space L2(µ) for the sequence of functions

an(x) = f1(Tn
1 x) · . . . · fk(Tn

k x) · e(p(n)).

It suffices to verify that for every m ∈ N the averages

1
N −M

N∑
n=M+1

∫
an+m(x) · an(x) dµ =

1
N −M

N∑
n=M+1

∫
g1(Tn

1 x) · . . . · gk(Tn
k x) · e

(
p(n + m)− p(n)

)
dµ,

where gi(x) = fi(Tm
i x) · fi(x), i = 1, . . . , k, converge to 0 as N −M →∞.

Introducing the notation Si = TiT
−1
k , i = 1, . . . , k − 1, and using Cauchy-

Schwarz inequality, it suffices to prove that

1
N −M

N∑
n=M+1

g1(Sn
1 x) · · . . . · gk−1(Sn

k−1x) · e
(
p(n + m)− p(n)

)
converge to zero in L2(µ) as N − M → ∞. But this follows from the
induction hypothesis since the transformations Si commute, and for m ∈ N
the polynomial q(n) = p(n + m) − p(n) has degree > k − 1 and irrational
leading coefficient. �

We remark that the non-uniform version (M = 0) of the previous result
suffices for the proof of the next corollary(1) . The uniform version is only
used to simplify the proof.

Definition 4.3. — We say that S ⊂ N is a set of k-recurrence for
commuting transformations if whenever T1, . . . , Tk are commuting measure
preserving transformations acting on the probability space (X,X , µ) and
A ∈ X with µ(A) > 0, there exists n ∈ S such that

µ(A ∩ T−n
1 A ∩ · · · ∩ T−n

k A) > 0.

Corollary 4.4. — The set Sk of Theorem 1.4 is a set of (k − 1)-
recurrence for commuting transformations and the set S′k of Theorem 1.6
is a set of (k − 1)-convergence.

(1) See our note at http://www.csi.hu/mw/general_dyadic_construction_short.pdf.

TOME 56 (2006), FASCICULE 4
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Proof. — To show that Sk is a set of (k − 1)-recurrence for commut-
ing transformations we apply Proposition 4.2 for g(t) = 1[1/4,3/4](t) and
p(n) = nkα. We get that if T1, . . . , Tk−1 are commuting measure preserv-
ing transformations acting on the probability space (X,X , µ), and A ∈ B
with µ(A) > 0, then

lim sup
N→∞

1
N

N∑
n=1

1Sk
(n) · µ(A ∩ T−n

1 A ∩ · · · ∩ T−n
k−1A)

=
1
2
· lim sup

N→∞

1
N

N∑
n=1

µ(A ∩ T−n
1 A ∩ · · · ∩ T−n

k−1A) > 0,(4.1)

where positiveness of the limsup in equation (4.1) follows from the multiple
recurrence theorem of Furstenberg and Katznelson [5]. Hence, Sk is a set
of (k − 1)-recurrence.

To show that S′k is a set of (k− 1)-convergence we apply Proposition 4.2
for Ti = T i, i = 1, . . . , k−1, p(n) = nkα, and g = 1[1/10,2/10] on intervals of
the form [2j , 2j + N), for large N < 2j ,when j is even, and g = 1[5/10,6/10]

on intervals of the form [2j , 2j + N), for large N < 2j , when j is odd. We
get that for every f1, . . . , fk−1 ∈ L∞(µ) the difference

1
N

N∑
n=1

1S′
k
(n) ·Tnf1 · . . . ·T (k−1)nfk−1−

1
10
· 1
N

N∑
n=1

Tnf1 · . . . ·T (k−1)nfk−1

converges to zero in L2(µ) as N →∞. We know from [7] that the averages

1
N

N∑
n=1

Tnf1 · . . . · T (k−1)nfk−1

converge in L2(µ) as N →∞, so the set S′k is a set of (k− 1)-convergence.
This completes the proof. �

The reason we cannot prove that S′k is a set of (k − 1)-convergence
for commuting transformations is that we do not yet know the analogous
convergence result for the averages

1
N

N∑
n=1

Tn
1 f1 · . . . · Tn

k fk,

for commuting measure preserving transformations (Tj).
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