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QUATERNIONIC CONTACT STRUCTURES IN
DIMENSION 7

by David DUCHEMIN

Abstract. — The conformal infinity of a quaternionic-Kähler metric on a 4n-
manifold with boundary is a codimension 3 distribution on the boundary called
quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact
structure is always the conformal infinity of a quaternionic-Kähler metric. On the
contrary, in dimension 7, we prove a criterion for quaternionic contact structures
to be the conformal infinity of a quaternionic-Kähler metric. This allows us to
find the quaternionic-contact structures on the 7-sphere close to the conformal
infinity of the quaternionic hyperbolic metric and which are the boundaries of
complete quaternionic-Kähler metrics on the 8-ball. Finally, we construct a 25-
parameter family of Sp(1)-invariant complete quaternionic-Kähler metrics on the
8-ball together with the 25-parameter family of their boundaries.

Résumé. — L’infini conforme d’une métrique quaternion-kählérienne complète
sur une variété de dimension 4n est une distribution de contact quaternionienne
de codimension 3. En dimension 4n − 1 > 7, une telle structure de contact qua-
ternionienne est toujours l’infini conforme d’une métrique quaternion-kählérienne.
Cependant, nous décrivons dans cet article une condition nécessaire et suffisante
pour qu’une telle distribution sur une variété de dimension 7 soit l’infini conforme
d’une métrique quaternion-kälérienne. Ceci nous permet de trouver les structures
de contact quaternioniennes sur la sphère de dimension 7, proches de la structure
standard et qui sont les infinis conformes de métriques quaternion-kählériennes
complètes sur la boule de dimension 8. Nous construisons ensuite une famille à 25
paramètres de métriques quaternion-kählériennes Sp(1)-invariantes et complètes
sur la boule de dimension 8.

1. Introduction

In this paper we solve a boundary problem for quaternionic-Kähler met-
rics. This problem is a degenerate version of a problem initially posed for
Einstein metrics. If g is a metric on a manifold M with boundary N , and

Keywords: contact structures, quaternionic-kähler metrics, twistor spaces.
Math. classification: 53C25, 53C26, 53C28, 53D10, 58A10, 58J10.



852 David DUCHEMIN

[b] is a conformal class of metrics on N , [b] is the conformal infinity of g if
there exists a function ρ positive in M and vanishing to first order on N

such that ρ2g extends continuously on N with ρ2g|TS3 ∈ [b]. The standard
example is the hyperbolic metric ghyp on the ball Bn+1 given by

ghyp = 4
euc

ρ2
,

where euc is the Euclidean metric on Rn+1 and ρ(x) = 1 − |x|2. The con-
formal infinity of ghyp is the conformal class of the round metric on Sn.

The problem of finding complete Einstein metrics with prescribed con-
formal infinity on the ball was solved by Graham and Lee in [5]. In di-
mension 4, one can search for selfdual Einstein metrics. LeBrun [7] shows
using twistor theoretic arguments that a conformal metric on a 3-manifold
N is the conformal infinity of a selfdual Einstein metric defined near N .
However, a conformal metric on the sphere S3 is not always the conformal
infinity of a complete selfdual Einstein metric on the ball B4, see [3].

In the same way, the degenerate version is modeled on the quaternionic
hyperbolic metric. Let H be the skew field of quaternions and Hn the n-
dimensional H-vector space. The action of the standard basis (i, j, k) of
imaginary quaternions gives endomorphisms (I1, I2, I3) of Hn ' R4n. Each
Ii is an almost complex structure on Hn and one has the commutations rules
I1I2 = −I2I1 = I3. A such triple of endomorphisms on a real vector space
V is called a quaternionic structure on V . The quaternionic hyperbolic
metric on the ball B4n ⊂ Hn is given by

gH =
4euc
ρ

+
1
ρ2

((dρ)2 + (I1dρ)2 + (I2dρ)2 + (I3dρ)2),

where ρ = (1−|x|2) and euc is the Euclidean metric. In this case, the func-
tion ρ is positive in B4n, vanishes to first order on S4n−1, and [ρ2gH|TS4n−1 ]
is a conformal class of degenerate metrics on S4n−1 with kernel

Hcan = ∩3
i=1Iidρ|TS4n−1 .

The distribution Hcan is a so called quaternionic contact structure ([2] and
[10, p. 115]) whose definition in dimension 7 is:

Definition 1.1. — Let H be an oriented distribution of codimension 3
on a 7-dimensional manifold N and let I be the set of one forms vanishing
on H. The distribution H is called a quaternionic contact structure if

Λ2
+H

∗
x = {dη|Hx , η ∈ I}

ANNALES DE L’INSTITUT FOURIER



QUATERNIONIC CONTACT STRUCTURES IN DIMENSION 7 853

is a rank three subbundle of Λ2H∗ such that the restriction to Λ2
+H

∗ of
the exterior product

Λ2H∗ ⊗ Λ2H∗ → Λ4H∗ '−→ R

gives a positive definite metric on Λ2
+H

∗.

If H is a quaternionic contact structure in dimension 7, a classical fact in
4-dimensional linear algebra gives the existence of a unique conformal class
[g] of metrics on H such that Λ2

+H
∗ coincides with the space of selfdual

2-forms with respect to [g]. Moreover, taking a local oriented orthonormal
basis ( 1√

2
wi = 1√

2
dηi|H) of Λ2

+H
∗ with respect to a particular choice of

metric g in this conformal class, one gets a quaternionic structure (Ii)i=1,2,3

on H satisfying wi(·, ·) = g(Ii·, ·) and defined up to a rotation by an element
of SO(3). A such metric g is said to be compatible with the quaternionic-
contact structure H.

This description shows the link with the following definition given by
Biquard in [2]: a quaternionic contact structure is a distribution H of codi-
mension 3 on a manifold N4n+3, locally given by three 1-forms (η1, η2, η3)
such that there exists a metric g on H and a quaternionic structure (Ii)
on H satisfying the conditions dηi|H = g(Ii·, ·). The conformal class [g] is
uniquely determined by H.

Our definition enlights the fact that in dimension 7, quaternionic contact
distributions form an open set in the set of codimension 3 distributions.
This fact is no more true in higher dimensions.

Let us now come back to quaternionic-Kähler geometry. First, using the
previous notations, we give the following definition:

Definition 1.2. — A metric g on a manifold M with boundary N is
asymptotically quaternionic hyperbolic (AQH) if one has a quaternionic
contact structure H on N with compatible metric gH on H and a function
ρ, positive in M vanishing to first order on N such that on a neighbourhood
]0, a]×N of N , the behaviour of g near N is given by

g ∼ 1
ρ2

(dρ2 + η2
1 + η2

2 + η2
3) +

1
ρ
gH when ρ→ 0.

The quaternionic contact structure H is called the conformal infinity of g. If
g is also quaternionic-Kähler, one says that g is asymptotically hyperbolic
quaternionic-Kähler (AHQK).

Biquard [2] has shown that any quaternionic contact structure of dimen-
sion 4n+3 > 11 is at least locally the conformal infinity of a unique AHQK
metric. Moreover, he showed in [3] that a quaternionic contact structure
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854 David DUCHEMIN

on S4n+3 with 4n + 3 > 11 and close to the canonical one is the confor-
mal infinity of a AHQK complete metric on the ball B4n+4. The question
remains open in dimension 7.

In this paper, we answer this last question. We show that the conformal
infinity of an AHQK 8-manifold must satisfy an additionnal integrability
property which is empty in higher dimensions. Conversely, we prove that
an integrable quaternionic contact 7-manifold is the conformal infinity of a
unique AHQK manifold.

Definition 1.3. — Let H be a quaternionic contact structure on a
manifold N of dimension 7 and choose a compatible metric g. The quater-
nionic contact structure H is called integrable if there exists a local oriented
orthonormal basis (dηi|H) of Λ2

+H
∗ and vector fields (R1, R2, R3) satisfying

• ıRiηj = δij ,
• ıRidηj |H = −ıRjdηi|H .

This property does not depend on the choice of metric g inside the confor-
mal class.

We can now give the statements of the main results.

Theorem 1.4. — Let H be a real analytic quaternionic contact struc-
ture on a manifoldN7. ThenH is the conformal infinity of an AHQK metric
g defined on a neighbourhood of N and admitting a real analytic extension
on the boundary with pole of order 2 iff H is integrable. Moreover, the
germ of g along N is uniquely determined by H.

Using [3] and this theorem, we can fill in the 8-ball by globally de-
fined complete AHQK metrics whose boundaries are close to the canonical
quaternionic contact structure Hcan:

Corollary 1.5. — Let H be an integrable quaternionic contact struc-
ture on S7, close to the canonical distribution Hcan. Then H is the confor-
mal infinity of a complete AHQK metric on the ball B8.

Among the integrable quaternionic contact structures on S7, we show the
existence of an interesting family of Sp(1)-invariant integrable quaternionic
contact structures on the 7-sphere:

Theorem 1.6. — Let Hcan be the canonical quaternionic contact struc-
ture of S7. Let H be the set of integrable Sp(1)-invariant quaternionic
contact structures and G be the group of diffeomorphisms of S7 commut-
ing with the Sp(1)-action. There is a neighbourhood V of [Hcan] in H/G
which is homeomorphic to the quotient of a 35-dimensional ball B35 by

ANNALES DE L’INSTITUT FOURIER
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the isotropy group Sp(2) of Hcan. One obtains a 25-parameter family of
integrable quaternionic contact structures.

Then, we can construct a family of Sp(1)-invariant complete quaternio-
nic-Kähler metrics on the 8-ball:

Corollary 1.7. — Let gH be the quaternionic hyperbolic metric on
the 8-ball. There exists a 25-parameter family of Sp(1)-invariant AHQK
metrics with boundaries close to the boundary Hcan of gH.

This examples generalize a 3-parameter family constructed by Galicki in
[4]. These metrics are obtained by quaternionic quotient of the hyperbolic
quaternionic space HH3 and all have isometry group strictly greater than
Sp(1).

The paper is organized as follows. In section 2, we construct a connection
associated to each compatible metric. A part TW of its torsion gives a con-
formal invariant named vertical torsion. The vanishing of TW is equivalent
to the integrability of H.

In the third section, we study the boundaries of AHQK manifolds and
we show that they are integrable. This gives the motivation to study more
carefully the torsion and the curvature of this case. In particular, the cur-
vature on H looks like that of anti-selfdual Riemannian 4-manifolds except
for an additional term coming from the Bianchi identity. The computation
is done in section 4.

Still assuming the integrability condition, we construct an integrable CR-
manifold, the twistor space of the quaternionic contact structure. This is
done in section 5 and gives the converse statement to the third section,
namely that a quaternionic contact structure with vanishing vertical torsion
is the boundary of a unique AQH manifold of dimension 8.

Section 6 is devoted to the study of deformations of Hcan. Then, we de-
scribe in detail the case of Sp(1)-invariant deformations of the 7-sphere and
show the existence of a 25-parameter family of integrable Sp(1)-invariant
deformations of Hcan.

Acknowledgments. This paper is a part of the author’s doctoral thesis;
in this connection thanks are due to O. Biquard for his extremely helpful
comments.

2. Construction of the connection

From now on, the distribution H is a quaternionic-contact structure on
a smooth manifold N7 and g is a compatible metric on H. We fixe local
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contact forms (η1, η2, η3) and a local quaternionic structure (Ii) on H such
that dηi(·, ·) = g(Ii·, ·) on H.

In the first three parts of this section, we construct an adapted connec-
tion associated to g. This connection will be used in the twistorial con-
struction of section 5. In order to prove the conformal invariance of this
twistorial construction, we will need to know how a conformal change of
metric changes the connection. This is done in part 5 of this section.

2.1. Partial connection

Let N be a manifold, E a vector bundle and D a distribution on N . A
D-connection, or partial connection, on E is a differential operator

∇ : Γ(E) → Γ(D∗ ⊗ E),

satisfying the Leibniz rule ∇(f s) = (df)|D ⊗ s+ f∇s for every function f

and section s of E. The torsion of a D-connection ∇ on D is the operator
T : Γ(D)× Γ(D) → Γ(TM) defined by

TXY = ∇XY −∇YX − [X,Y ].

Lemma 2.1. — Assume that W is a distribution on N giving a splitting
TN = H ⊕W . There exists a unique H-connection ∇ on H preserving the
metric g and such that the torsion satisfies

∀X,Y ∈ H, (TXY )H = 0,

where the subscript H indicates the projection on H in the direction of W .

Proof. — If ∇ is such a connection, we must have for every sections X,
Y and Z of H the Koszul formula

2g(∇XY, Z) = X.g(Y, Z) + Y.g(Z,X)− Z.g(X,Y )
+g([X,Y ]H , Z)− g([X,Z]H , Y )− g([Y, Z]H , X).

It gives both uniqueness and existence. �

From now on, we will denote the vector fields in H by X, Y and Z.
If W is a complement to H, we write (R1, R2, R3) for the dual basis of
(η1|W , η2|W , η3|W ) and R or R′ denote sections of W .

Remark 2.2. — If W is a complement to H, the torsion of the H-
connection associated to W on H satisfies

TXY = −[X,Y ]W =
3∑
i=1

dηi(X,Y )Ri.

ANNALES DE L’INSTITUT FOURIER
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2.2. Extension of the connection

Lemma 2.3. — Let W be a complement of H in TN . One can find a
unique connection ∇W on N such that:

(i) ∇W preserves the splitting TN = H ⊕W and the metrics on H

and W ,
(ii) if X, Y ∈ H and R, R′ ∈W , then (TXY )H = 0 and (TRR′)W = 0,
(iii) the torsion T satisfies

∀X ∈ H , TWX := (R 7→ (TXR)W ) ∈ so(W )⊥ ,(2.1)

∀R ∈W , THR := (X 7→ (TRX)H) ∈ so(H)⊥.(2.2)

Proof. — Let∇ be the partial connection onH defined by lemma 2.1. We
extend it to a true connection which preserves the metric on H and is still
denoted by ∇. We define the torsion of this connection to be the operator
T : Γ(TN) × Γ(H) → Γ(TN) such that TXY = ∇XY − ∇YX − [X,Y ]
and TRX = ∇RX − ([R,X])H .

If a ∈ Γ(T ∗N ⊗ so(H)) and vanishes on H, the connection ∇′ = ∇ + a

is metric and its torsion T ′ satisfies

T ′RX = ∇′RX − [R,X]H = TRX + aR(X) ,

so that there exists a unique aR which annihilates the so(H)-part of TR,·.
We obtain a connection ∇′ on H and a connection ∇′′ on W is constructed
in the same way. The connection ∇W = ∇′ ⊕ ∇′′ on TN = H ⊕W gives
the lemma. �

We put αij(X) = dηj(Ri, X). One has

TWX (Ri) = ∇W
X Ri − [X,Ri]W = ∇W

X Ri −
3∑
j=1

αij(X)Rj ,

from which we obtain

∇W
X Ri = −1

2

3∑
j=1

(αji(X)− αij(X))Rj

and

(2.3) TWX (Ri) = −1
2

3∑
j=1

(αji(X) + αij(X))Rj .

TOME 56 (2006), FASCICULE 4



858 David DUCHEMIN

2.3. Reducing torsion

We search now a particular choice of W giving the simplest torsion. To
fix the notations, we recall some basic facts about representations of SO(4).

The universal covering of SO(4) is Spin(4) = Sp(1)× Sp(1) where Sp(1)
is the group of unitary quaternions. Let S+ and S− be the representations
of the first and the second factor respectively on H ' C2. The irreducible
representations of Spin(4) are the Sm+ ⊗ Sn− where Sm+ and Sn− are the
symmetric power of order m and n of S+ and S− respectively. The following
Clebsch-Gordan formula gives the decomposition of tensorial products in
irreducible components:

Sn+ ⊗ Sp+ ' Sn+p
+ ⊕ Sn+p−2

+ ⊕ · · · ⊕ Sn−p+ , p 6 n.

The real irreducible representations of SO(4) are the real parts of Sn+ ⊗
Sm− with n+m even. We will denote them by Sn,m. In particular, we have

R4 ' S1,1 , Λ2
+ ' S2,0 , Λ2

− ' S0,2.

We now give the explicit isomorphism R4 ⊗ Sym2(Λ2
+) ' S5,1 ⊕ S3,1 ⊕

S1,1. Let (I1, I2, I3) be a quaternionic structure on R4 giving a SO(3)-
trivialization of Λ2

+. One has the isomorphisms

S5,1 '
{∑

i,j aij ⊗ Ii ⊗ Ij , aij = aji ∈ R4 and ∀j ,
∑
i Iiaij = 0

}
,

S1,1 '
{∑

i r ⊗ Ii ⊗ Ii , r ∈ R4
}
,

S3,1 '
{∑

i,j(Iirj + Ijri)⊗ Ii ⊗ Ij , ri ∈ R4 ,
∑
i Iiri = 0

}
.

In our case we have the natural identification

W ' Λ2
+H

∗ , Ri 7→ dηi|H
so that TW becomes a section of H∗ ⊗ End(Λ2

+H
∗). We put wi = dηi|H

and w∗i the dual basis.

Remark 2.4. — The metric g allows us to identify H∗ and H and we use
it throughout the text. In particular Λ2

+H
∗ can be considered as a subspace

of the space of 2-forms or that of skew-symmetric endomorphisms.

Proposition 2.5. — For each choice of compatible metric g onH, there
is a unique complement W g of H such that TW

g ∈ Γ(S5,1).

Proof. — Let W be transverse to H and (R1, R2, R3) be the dual basis
of (η1, η2, η3) on W . In (2.3), we have obtained

TW = −1
2

3∑
j=1

(αij + αji)⊗ w∗i ⊗ wj .
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If W ′ is another complementary to H spanned by the vectors R′i =
Ri + ri with ri ∈ H, then α′ij = ıR′

i
dηj |H = αij + (Ijri)[ ([ and ] are

the usual musical isomorphisms). With the explicit decomposition of H∗⊗
Sym2(Λ2

+H) we wrote down, the existence and the uniqueness of W follow.
�

Definition 2.6. — The vector fields R1, R2, R3 which give a dual basis
to η1, η2, η3 in W g are called the Reeb vector fields of the triple (η1, η2, η3).

Remark 2.7. — Another choice of complementary does not change the
S5,1 part of the torsion.

2.4. Derivation of the quaternionic structure

We fix W = W g and note ∇ the corresponding connection. This connec-
tion is metric and so preserves the bundle Λ2

+H
∗, so that

∇Ij |H =
3∑
i=1

γij ⊗ Ii with γij = −γji.

Here we just look at the derivation in the direction of H, i.e. γij ∈ H∗.
Let X,Y, Z ∈ Γ(H), and a be skew-symmetrisation in X Y and Z. One

has the identity

d(dηj)(X,Y, Z) = a(∇dηj)(X,Y, Z) + dηj(TXY, Z)(2.4)

+dηj(TZX,Y ) + dηj(TY Z,X),

which can be rewritten in the following form:∑
i

(g(γ]ij + α]ij , X)Ii + IiX ∧ (γ]ij + α]ij)) = 0.

Projecting on Λ2
+H and Λ2

−H gives the equivalent condition

∀j ∈ {1, 2, 3} ,
3∑
i=1

(αij + γij) ◦ Ii = 0.

But our particular choice of complementary vector bundle ensures that∑
i(αij + αji) ◦ Ii = 0, hence we get

γij = −1
2
(αij − αji)

from the skew-symmetry γij = −γji.

TOME 56 (2006), FASCICULE 4
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2.5. Conformal change

Let η′ = f2η be such a conformal change, and (R1, R2, R3) be the
dual basis of (η1, η2, η3) on W g. We put (R′1, R

′
2, R

′
3) the dual basis of

(f2η1, f
2η2, f

2η3) on W f2g.

Proposition 2.8. — The conformal change of metric gives the follow-
ing change of Reeb vector fields:

R′i = f−2(Ri + ri),

where r[i = 2f−1df |H ◦ Ii (the musical isomorphisms ] and [ are taken with
respect to g on H, after restriction if necessary for 1-forms). Moreover, we
get

ıR′
i
dη′j |H + ıR′

j
dη′i|H = ıRidηj |H + ıRjdηi|H .

Proof. — We put α′ij = ıR′
i
dη′j |H . We have η′i(R′j) = f2ηi(R′j) = δij so

that R′i = f−2(Ri + ri) with ri ∈ H and finally

α′ij + α′ji = αij + αji − (r[i ◦ Ij + r[j ◦ Ii)− 4δijf−1df |H .(2.5)

The conformal change leaves S5,1, S3,1 and S1,1 globally invariant and∑
i,j

(r[i ◦ Ij + r[j ◦ Ii + 4δijf−1df |H)⊗ wi ⊗ wj ∈ S3,1 ⊕ S1,1

therefore the conditions
∑
i,j(α

′
ij + α′ji) ⊗ wi ⊗ wj ∈ S5,1 and

∑
i,j(αij +

αji) ⊗ wi ⊗ wj ∈ S5,1 imply (r[i ◦ Ij + r[j ◦ Ii) + 4δijf−1df |H = 0 and the
lemma follows. �

Corollary 2.9. — The torsion TW
g

associated to the Carnot-Cara-
théodory metric is conformally invariant. We call it the vertical torsion
and denote it by TW

g

or TW .

Proof. — If we change the metric in the conformal class, the 2-forms wi
are multiplied by the conformal factor and elements of the dual basis are
multiplied by the inverse of the conformal factor. So the only thing we must
look at is the invariance of (αij + αji)i,j which follows from 2.8. �

Let us summarize the results we have obtained in the following proposi-
tion.

Proposition 2.10. — Let (N,H) be a quaternionic contact structure.
The integrability of H does not depend on the choice of an adapted metric
on H. Moreover, if g is particular a choice of compatible metric on H, the
following conditions are equivalent:

• The distribution H is integrable.

ANNALES DE L’INSTITUT FOURIER
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• The torsion TW
g

vanishes.
• For any choice of complementary distribution W , the S5,1 part of

the torsion vanishes.
• For any choice of oriented orthonormal basis ( 1√

2
dηi|H) of H+ and

any choice of vector fields (R1, R2, R3) such that

ηj(Ri) = δij ,

the S5,1 part of (ıRidηj |H + ıRjdηi|H)i,j vanishes.

In the study of the twistor space, we will need to know how the connection
is changed when the metric is multiplied by a conformal factor. We put
θ = f−1df . Recall that we write θ] for (θ|H)] and that the change of
complementary distribution is parametrized by R′i = f−2(Ri − 2Iiθ]). The
following lemma will be useful in the twistorial construction.

Lemma 2.11. — The connection ∇′ adapted to f2g is given by

∇′X = ∇X + θ(X) + θ] ∧X +
∑
i Iiθ

] ∧ IiX +
∑
i〈Iiθ], X〉Ii

∇′Ri
= ∇Ri + θ(Ri) + 2|θ]|2Ii + 2θ] ∧ Iiθ] − 1

2

∑
j(α

]
ij + α]ji) ∧ Ijθ]

+2(Ii∇θ])so(H)

where (Ii∇θ])so(H) means that we take the so(H) part of the endomorphism
X 7→ Ii∇Xθ

].

Proof. — We put ∇′ = ∇ + θ + a and ∇1 = ∇ + θ. The connection ∇1

preserves f2g and its torsion is

T 1
XY =

∑
i dηi(X,Y )Ri + θ(X)Y − θ(Y )X

= T ′XY −
∑
i dηi(X,Y, )ri + θ(X)Y − θ(Y )X

so that aXY − aYX =
∑
i dηi(X,Y )ri− θ(X)Y + θ(Y )X. The connections

∇′ and ∇1 both preserve f2g hence a is a 1-form with values in so(H).
The skew-symmetrisation in the two first variables gives an isomorphism
H∗ ⊗ so(H) → Λ2H∗ ⊗H, with inverse b

〈b(c)XY, Z〉 =
1
2

(〈c(X,Y ), Z〉+ 〈c(Z,X), Y 〉 − 〈c(Y, Z), X〉)

from which we deduce the first part of the lemma.
We now look at the change of the connection in the direction of W g. If

U ∈ TN , UV/W is its projection on V in the direction of W = W g. We
have

aRiX = ∇′Ri
X −∇Ri

X − θ(Ri)X,
= ∇′Ri+ri

X −∇RiX − θ(Ri)X −∇′ri
X.
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Introducing the torsion, we obtain

aRi
X = (TRi+ri

X)V/W ′ − (TRiX)V/W + [Ri, X]V/W ′ − [Ri, X]V/W
−θ(Ri)X −∇′ri

X + [ri, X]V/W ′ ,

= (TRi+ri
X)V/W ′ − (TRiX)V/W +

∑
j dηj(Ri, X)rj

−θ(Ri)X −∇′Xri.

But aRi
∈ so(H), so that it suffices to compute the skew-symmetric part

of the right hand term in the previous equality. The contributions of the
torsions vanish by definition, that of

∑
j dηj(Ri, X)rj is

1
2

∑
j

α]ij ∧ rj = −
∑
j

α]ij ∧ Ijθ
],

and that of ∇′ri is

−2θ] ∧ Iiθ] − 2|θ]|2Ii + (∇ri)so(H).

Using the expression of ∇Ii obtained in 2.4, we get

∇ri = −2∇(Iiθ]) = −2(∇Ii)θ] − 2Ii∇θ]
=

∑
j(αji − αij)⊗ Ijθ

] − 2Ii∇θ].

Mixing all this together gives the lemma. �

2.6. Higher dimensional case

We describe now what is going on in higher dimensions. Let H be a
quaternionic contact structure on a manifold N4n+3 with n > 1 and g be
a compatible metric on H. One can apply lemma 2.1 in order to obtain a
metric H-connection ∇ on H associated to a splitting TN = W ⊕H. There
exists still a choice of complementary W g such that∑

i

(αij + αji) ◦ Ii = 0

for all j and from (4), one gets

∀j ∈ {1, 2, 3} , a(∇wj) = −
∑
i

αij ∧ wi.

Let [σ2] be the vector bundle spanned by w1, w2 and w3. The covariant
derivative of triples (w1, w2, w3) is a section of a subbundle E of H∗ ⊗
Λ2H∗⊗ [σ2]. It turns out that if the rank of H is greater or equal to 8, the
skew-symmetrisation with respect to the first three variables

φ : Γ(E) → Γ(Λ3H∗ ⊗ [σ2])
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is injective (see [2] for details on E and φ) so that one obtains

∇wj = −
∑
i

αij ⊗ wj

and finally αij = −αji. Therefore, the integrability condition is empty and
one remarks that the partial connection is a Sp(n) Sp(1)-connection on H.
This is the first step in the proof that a quaternionic contact structure in
dimension greater than 7 is the boundary of an AHQK metric.

3. Conformal infinity of AHQK manifolds

In this section, we will study the conformal infinity of an AQH quaternio-
nic-Kähler manifold. We find a particular trivialization of the quaternionic
structure admitting an analytic extension to the boundary with pole of
order 2. Then, we use it to show that the quaternionic contact structure
on the boundary is integrable.

3.1. Twistor space and asymptotic development

The following is essentially the work of [2, III.2] and [9]. Let (M, g) be an
AHQK manifold of dimension 8 and suppose that the metric g admits an
analytic extension to the boundary N . We will apply the twistor machin-
ery to obtain a particular choice of local trivialization of the quaternionic
structure in a neighbourhood of the boundary. The twistor space [11] of M
is a 5-dimensional holomorphic manifold with the following data:

• a holomorphic contact structure η with values in a line bundle L;
• a family of dimension 8 of compact genus zero curves (Cm)m∈MC

with normal bundle O(1)⊗ C4;
• an hypersurface NC ⊂ MC of curves tangent to the contact distri-

bution;
• a compatible real structure τ , without fixed points.

Remark 3.1. — The manifold M is the real slice of MC −NC and N is
the real slice of NC.

On each Cm, the line bundle L is isomorphic to O(2) so that Lm =
H0(Cm,Hom(TCm, L)) is a line bundle on MC. By restriction, the 1-form η

gives a section Θ of L and SC is the null set of Θ. We choose a local square
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root L1/2 of L, but the conclusions do not depend on this choice. Let us
define

Em = H0(Cm, L−1/2 ⊗Nm),
Hm = H0(Cm, L1/2),

so that
TmM

C = Em ⊗Hm.

For m /∈ NC and u, v ∈ Hm, the Wronskian w(u ∧ v) = udv − vdu defines
a two form

(3.1) wH : Λ2H0(Cm, L1/2) w→ Lm
Θ−1

→ C ,

and therefore a SO3(C)-structure wH ⊗ wH on H0(Cm, L) ' Sym2(Hm).
The normal bundle Nm of a curve Cm has a natural identification with

ker η if m /∈ NC so that we get a well defined 2-form

Λ2H0(Cm, Nm)
dη→ Sym2(Hm).

The choice of a SO3(C)-trivialization on Sym2(Hm) exhibits three 2-forms
w1, w2, w3 giving the Sp2(C) Sp1(C) structure. The complexified quater-
nionic-Kähler metric is

(3.2) g = wE ⊗ wH on Em ⊗Hm

where
wE : Em

dη→ C.

We now look at the contact structure on the boundary. Let l : L → C be a
local choice of trivialization of L in a neighbourhood of s ∈ NC and extend
it on MC. In the same way, we obtain a symplectic form

ŵH : Λ2H0(Cm, L1/2) w→ Lm
l→ C,

and thus a SO3(C)-metric ŵH ⊗ ŵH = l2Θ2wH ⊗ wH . We choose a local
SO3(C) -trivialization Sym2(Hm) → C3.

If s ∈ NC, one has TCs ⊂ ker η hence η gives three 1-forms (η1, η2, η3)
along NC

H0(Cs, Ns)
η→ H0(Cs, L) ' Sym2(Hs) → C3.

On the other hand, on MC −NC we obtain three 2-forms

∧2H0(Cm, Nm)
dη→ Sym2(Hm) → C3,

which can be written as l2Θ2wi with wi defining the quaternionic structure
of MC −NC.

We put ρ = lΘ : MC → C.
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Lemma 3.2. — The forms wi have pole of order 2 along NC. More
precisely, the 2-forms l2Θ2wi are defined on NC and satisfy

l2Θ2wi = −dρ ∧ ηi +
1
2

∑
r,s

εrsiηr ∧ ηs

on NC where εrsi is the signature of the permutation (r, s, i) of (1, 2, 3).

Proof. — Because the wi define a quaternionic structure, we need only
show that ı∂/∂ρl2Θ2wi = −ηi to obtain the lemma. We take s ∈ NC.

There exists a section φ of Ns along Cs such that η(φ) = 0 and ıφdη|TCs
6=

0, cf. [2, lemma III.2.5]. We normalize φ in order to have l(ıφdη|TCs) = 1. It
is a vector in TsM

C with the properties dρ(φ) = 1 and ηi(φ) = 0. Remark
that whereas the symplectic form dη is not defined along NC, the 3-form
η ∧ dη admits an extension to NC. By restriction, we have

Θdη = η∧dη ∈ H0(Cm, T ∗Cm⊗Λ2N∗
m⊗L2) = Lm⊗Λ2T ∗MC⊗H0(Cm, L).

If u is tangent to Cs and σ ∈ H0(Cs, Ns), then

η ∧ dη(u, φ, σ) = η(σ)dη(u, φ),

i.e., ıφlΘdη = −η and finally

ıφl
2Θ2wi = −ηi.

�

The intersection of the kernels of ρ2w1, ρ2w2, and ρ2w3 on NC is

HC = H0(Cs, Ns ∩ ker η ∩ TC⊥dηs )

and coincides with the contact structure of the boundary. The symplectic
form wi has well defined terms of order −1 on HC and one can show [2,
Lemma III.2.6] that

wi =
1
ρ2
wi,−2 +

1
ρ
wi,−1 + · · · ,

with

wi,−2 = −dρ ∧ ηi +
1
2

∑
r,s

εrsiηr ∧ ηs , wi,−1|HC = dηi|HC .

If we put
Êm = H0(Cs, (Ns ∩ ker η ∩ TC⊥dηs )⊗ L−1/2),

we obtain by restriction a complex metric on HC

gHC = dη|Em ⊗ ŵH .
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The quaternionic metric on MC has the asymptotic development

g =
1
ρ2
g−2 +

1
ρ
g−1 + · · ·

with

g−2 = dρ2 + η2
1 + η2

2 + η2
3 and g−1|HC = gHC .

Finally, we put wi,−1 = dηi + γi where γi|HC = 0.

3.2. Boundary conditions

We follow the notations of the previous section and restrict ourselves
to the real slice. We choose an arbitrary complementary W to H. Let
(R1, R2, R3) be the dual basis of (η1, η2, η3) on W and let Ĩi be the almost
complex structures on H.

The symplectic forms wi and the metric define almost complex structures
Ii. Because of the form of the wi, we have the analytic development

Ii∂ρ = Ii,0∂ρ + ρIi,1∂ρ + · · · = Ri + ψi + · · ·

where ψi ∈ H is independent of ρ and if X ∈ H,

IiX = Ii,0X + ρIi,1X + · · · = ĨiX + · · ·

We are now in position to show the following

Proposition 3.3. — The boundary of an AHQK manifold admitting
an analytic extension to the boundary is an integrable quaternionic contact
structure.

Proof. — If X ∈ H, one has

wi(Ij∂ρ, X) + wj(Ii∂ρ, X) = −2δijg(∂ρ, X).

The order −2 terms do not give anything but from the order −1 terms we
deduce the equation

wi,−1(Rj , X)+wj,−1(Ri, X)+wi,−1(ψj , X)+wj,−1(ψi, X)=−2δijg−1(∂ρ, X)

so that

dηi(Rj , X) + dηj(Ri, X) = −γi(Rj , X)− γj(Ri, X)− 2δijg−1(∂ρ, X)

+g−1(ψj , ĨiX) + g−1(ψi, ĨjX).
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The second line gives an element in S3,1 ⊕ S1,1 therefore we need only to
look at γi. We will now use the fact that the metric is quaternionic-Kähler.
Indeed, there exists one forms βij such that the 2-forms (wi) satisfy

dwi =
∑
j

βji ∧ wj , βji = −βij .

The application (Λ1)3 → Λ3

(ai)i=1,2,3 7→
∑
i

ai ∧ wi

is an injection so that the βij are unique.
We have

dwi = − 1
ρ3

∑
r,s ε

rsidρ ∧ ηr ∧ ηs
+ 1
ρ2

(
dρ ∧ dηi + 1

2

∑
r,s ε

rsi(dηr ∧ ηs − ηr ∧ dηs)
)

− 1
ρ2 dρ ∧ (dηi + γi) + · · ·

and then

dwi = − 1
ρ3

∑
r,s

εrsidρ ∧ ηr ∧ ηs +
1
ρ2

(∑
r,s

εrsidηr ∧ ηs − dρ ∧ γi

)
+ · · · .

We have
∑
r,s,p,q ε

irsεpqrηs ∧ ηp ∧ ηq = 0 so

dwi =
∑
r

(
1
ρ

∑
s

εirsηs

)
∧ wr,−2

ρ2
+

1
ρ2

(∑
r,s

εrsidηr ∧ ηs − dρ ∧ γi

)
+ · · ·

The exterior product of 1-forms with wr,−2 is an injection, so βri is of the
form

βri =
1
ρ
βri,−1 + βri,0 + · · · and βri,−1 =

∑
s

εirsηs.

Looking at the order −2 terms with respect to ρ, one obtains the equa-
tions∑

r

βri,0 ∧ wr,−2 +
∑
r

βri,−1 ∧ wr,−1 =
∑
r,s

εrsidηr ∧ ηs − dρ ∧ γi.

We put βri,0 = λridρ+βNri,0 and γr = dρ∧γρr +γNr where βNri,0 ∈ T ∗N and
γNr ∈ Λ2T ∗N .

Taking the dρ component in the previous equation, one gets

γNi =
∑
r

ηr ∧ βNri,0 −
1
2

∑
r,k,s

λriε
ksiηk ∧ ηs +

∑
r,s

εirsηs ∧ γρr .

But then γi(Rj , X) + γj(Ri, X) = 0 and the lemma follows. �
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In the two next sections, we will look at integrable quaternionic contact
structures in order to show that they are the boundaries of AHQK metrics.

4. Integrable quaternionic contact structures

Let (N,H) be a quaternionic contact structure.
In section 2, we computed the covariante derivative of the quaternionic

structure in the direction of H. On the other hand, from the identity
d(dηj)(Ri, X, Y ) = 0, we obtain

(∇Ri
dηj)(X,Y )(4.1)

= a(∇αij)(X,Y )−
∑
k

αik ∧ αkj(X,Y )

+
∑
k

dηj(Ri, Rk)dηk(X,Y )− g(IjTRi,X + TRi,IjX , Y )

where a(∇αij)(X,Y ) = (∇Xαij)(Y )− (∇Y αij)(X).
From now on, we suppose that the quaternionic contact structure is inte-

grable. We choose a compatible metric g on H and W = W g the associated
complementary vector bundle defining the adapted connection ∇.

4.1. Torsion

The computations of section 2.4 give for any X ∈ H,

(4.2) ∇XIj = −
3∑
i=1

αij(X)Ii.

Lemma 4.1. — Let (M,H) be an integrable quaternionic contact struc-
ture. The tensor TH defined in lemma 2.3 lives in the component S2,2 of
W ∗ ⊗ so(H)⊥.

Proof. — By construction, TH is a section of

Λ2
+H ⊗ so(H)⊥ = S2,0 ⊕ S4,2 ⊕ S2,2 ⊕ S0,2,

so we can put
TRi = λi Id+

∑
p

IpApi

with Api ∈ Γ(Λ2
−H) (seen as skew-symmetric endomorphisms). We apply

(4.2) with i = j and obtain λi = 0 and Aii = 0. Applying one more time
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(4.2), we see that Api is equal to the Λ2
− part of a(αpi) −

∑
k αpk ∧ αik

which is skew-symmetric in p and i.
Writting Ai = 1

2

∑
r,s ε

rsiArs, we obtain that TH is the image of
∑
i Ii⊗

Ai ∈ Λ2
+H ⊗ Λ2

−H by the SO(4)-equivariant map Ii ⊗ B 7→ 1
2

∑
j ηj ⊗

[Ii, Ij ]B. �

We are now able to calculate more precisely the vertical derivatives of
the quaternionic structure.

Lemma 4.2. — There exists a function λ on N such that

∇Ri
Ij =

1
2

3∑
k=1

(dηj(Ri, Rk) + dηi(Rj , Rk)− dηk(Ri, Rj)) Ik + λ[Ii, Ij ].

Proof. — Symmetrizing (4.2) gives

(4.3) ∇Ri
Ij +∇Rj

Ii =
3∑
k=1

(dηj(Ri, Rk) + dηi(Rj , Rk))Ik.

In particular,

〈∇RjIj , Ii〉 = −〈∇RjIi, Ij〉 = −2dηj(Ri, Rj),

so that we know ∇Rj
Ii except for its component on [Ii, Ij ]. We can put

∇RiIj =
1
2

3∑
k=1

(dηj(Ri, Rk) + dηi(Rj , Rk)− dηk(Ri, Rj)) Ik + λij [Ii, Ij ],

with λii = 0. From (4.3), we have λij = λji. Moreover, taking for instance
i = 1, j = 2 and using the skew-symmetry 〈∇R1I2, I3〉 = −〈∇R1I3, I2〉, we
get λ12 = λ13. The other equalities are obtained in the same way. �

4.2. The curvature tensor

We give now some properties of the curvature tensor in the integrable
case which will be useful for the twistorial construction.

We are now interested in the curvature R of ∇, and more precisely in
its horizontal part. This is a section R ∈ Γ(Λ2H∗ ⊗ so(H)). The splitting
Λ2 = Λ2

+⊕Λ2
− allows us to decompose the curvature in Λ2

+⊗Λ2
+, Λ2

−⊗Λ2
+

and Λ2
− ⊗ Λ2

− parts. Looking at its action on Λ2
+H, we have

RX,Y Ii = ∇X∇Y Ii −∇Y∇XIi −∇[X,Y ]H Ii +
∑
j dηj(X,Y )∇RjIi

=
∑
j

(
−a(∇αji) +

∑3
k=1 αjk ∧ αki

)
(X,Y )Ij

+
∑
j dηj(X,Y )∇RjIi
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Proposition 4.3. — The Λ2
+H ⊗Λ2

+H part of the curvature is scalar.
More precisely, if we denote it by S ∈ Γ(End(Λ2

+H)), we obtain with the
notations of lemma 4.2:

S = 2λ IdΛ2
+
.

Proof. — Using Lemma 4.2 and (4.2), one sees that(
− a(∇αji) +

∑
k

αjk ∧ αki
)

+

=
1
2

∑
k

(dηi(Rj , Rk)− dηj(Ri, Rk)− dηk(Ri, Rj)) Ik + λ[Ii, Ij ],

where the subscript + means the selfdual part. Injecting this in the curva-
ture formula, one easily deduces the proposition. �

We can define a Ricci tensor and a scalar curvature for the partial cur-
vature R. As usual, we put

Ric(X,Y ) = trH(Z 7→ RZ,XY )
s = trH(Ric),

where the subscript H means that the trace is taken only on H and Where
Ric0 is the trace-free part of the Ricci tensor. In order to obtain the exact
form of the curvature, we use the first Bianchi identity

RX,Y Z +RY,ZX +RZ,XY = (d∇T )X,Y Z

Let X, Y , Z and Ri be parallel at the point p. Since the horizontal
covariant derivatives of Ri and Ii are identical,

(∇T |H)p =
(
∇
∑
i

wi ⊗Ri

)
p

= 0,

so that at p, we have

RX,Y Z +RY,ZX +RZ,XY = −T[X,Y ]Z − T[Y,Z]X − T[Z,X]Y,

=
∑3
i=1(dηi ∧ THRi

)(X,Y, Z).

The image by the Bianchi map b of the curvature R lives in the compo-
nent S2,2 ' Λ2

+H ⊗ Λ2
−H of Λ3H∗ ⊗H ' S2,0 ⊕ S0,2 ⊕ S0,0 ⊕ S2,2.

Proposition 4.4. — The horizontal part R ∈ Γ(Λ2H∗ ⊗ so(H)) of the
curvature tensor seen as an endomorphism of Λ2H = Λ2

+H ⊕ Λ2
−H has

matrix

R =
(

s
12 Id Ric0 +B

t Ric0−tB s
12 Id+W−

)
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Proof. — Recall that the kernel of b is exactly the Riemannian curvature
tensors. We have

S2(Λ2H∗) = ker b⊕ Λ4H∗

Λ2(Λ2H∗) = Λ2
+H

∗ ⊕ Λ2
−H

∗ ⊕ Λ2
+H

∗ ⊗ Λ2
−H

∗

We have shown that b(R) ∈ S2,2 so that R is the sum of a Riemannian
tensor and an element in the unique irreducible S2,2 component which ap-
pears in Λ2(Λ2H∗) ⊂ End(Λ2(H∗)). Moreover, Ric(B) = 0 if B ∈ S2,2 ⊂
Λ2(Λ2H∗) so that the Ricci tensor behaves like the Riemannian Ricci ten-
sor, hence is symmetric. �

Lemma 4.5. — If the vertical torsion vanishes, the curvature R of the
adapted connection satisfies the following equality

[RX,Y + IRX,IY + IRX,IY −RIX,IY , I] = 0,

for all X,Y ∈ H and I ∈ Λ2
+H.

Proof. — This lemma is well known in the case of anti-selfdual Riemann-
ian curvature in dimension 4. In our case, it is similar except for the Bianchi
part B of the curvature tensor, hence we need only to show that B satisfies
the previous equality. We take for instance

B : w ∈ so(H) 7→ tr(wK)J − tr(wJ)K ∈ End(so(H)),

where J ∈ Λ2
−H and K ∈ Λ2

+H. We must show that

C = [B(w) + IB(Iw)− IB(wI) +B(IwI), I] = 0.

One has [J,K] = 0, so that we get

C = [− tr(wJ)K − tr(IwJ)IK + tr(wIJ)IK − tr(IwIJ)K, I] .

The result follows then from the two equalities{ tr(IwJ) = tr(JIw) = tr(IJw) = tr(wIJ),
tr(IwIJ) = tr(IwJI) = − tr(wJ).

�

5. Twistor space

In this section, we will end the proof of theorem 1.4.
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5.1. Definitions

Let N7 be a smooth manifold and H be an integrable quaternionic con-
tact structure on N . Let g be a compatible metric on H, W the adapted
complementary distribution and ∇ the connection associated to g.

Let T be the set of 2-forms w ∈ Λ2
+H

∗ of norm
√

2. This is a 2-sphere
bundle on M called the twistor space of (N,H). It can be identified with
the set of almost complex structures compatible with g and the orientation.
Let π be the projection T → N and choose a local quaternionic structure
(I1, I2, I3) associated to the 1-forms (η1, η2, η3). At a point I = x1I1 +
x2I2 + x3I3, we put

ηr = x1π
∗η1 + x2π

∗η2 + x3π
∗η3.

It is a well defined 1-form on T not depending on the choice of SO3-
trivialization (I1, I2, I3).

Using the connection ∇, we split the tangent bundle of T at I ∈ π−1(s)
for s ∈ N :

TIT = TITs ⊕ π∗TsN.

Here Ts is the fiber above s of the fibration π. We call HorI T ' TsN = Ws⊕
Hs the horizontal space. Let (R1, R2, R3) be the dual basis of (η1, η2, η3) on
W . At I1, we have an almost complex structure J on ker ηr ' ker η1⊕TITs
satisfying

• on ker η1, the almost complex structure is J = I1 after extending
I1 to all ker η1 by I1R2 = R3 and I1R3 = −R2;

• on TI1Ts J is the natural complex structure given by the metric and
the orientation on the sphere Ts.

Proposition 5.1. — LetH be an integrable quaternionic contact struc-
ture on a 7-dimensional manifold N . The almost complex structure J de-
fined on the kernel of ηr is independent of the choice of compatible metric
g on H.

Proof. — Let η′ = f2η be a conformal change, we follow the notations of
2.5. The distribution ker ηr on the twistor space is left unchanged. The con-
formal change gives a new complementary W f2g spanned by (R′1, R

′
2, R

′
3)

and a new connection ∇′ = ∇+ a. The distribution Hor′I T is the horizon-
tal subspace on T corresponding to ∇′, and J ′ is the corresponding almost
complex structure.

The vertical part of J is left unchanged.
At I1 ∈ Ts, we take U ∈ ker ηr, horizontal for the connection ∇, and X

its projection on N . We assume here that X ∈ H. In the decomposition
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TI1T = HorI1 T ⊕ TI1Ts, we have U = (X, 0) and JU = (I1X, 0). On
the other hand, in the decomposition TI1T = Hor′I1 T ⊕ TI1Ts, we have
U = (X,−aXI1), JU = (I1X,−aI1XI1) and J ′U = (I1X,− 1

2 [I1, aXI1])
thus J and J ′ coincide iff aI1XI1 = 1

2 [I1, aXI1] for all X ∈ ker η1.
One has a ∈ Ω1(R⊕so(H)), and we decompose the so(H)-part in selfdual

and anti-selfdual part that we write respectively a+ and a−. From 2.11, one
gets for X ∈ H

a+
X =

∑
j

〈Ijθ], X〉Ij .

and the equality aI1XI1 = 1
2 [I1, aXI1].

We must now verify the same kind of identity for X = R2. It works
in the same way, only that we must pay attention to the fact that the
complementary spaces adapted to the choice of metric changes with the
conformal change. We have the decompositions TI1T = W g ⊕ H ⊕ TI1Ts
and TI1T = W f2g ⊕ H ⊕ TI1Ts where W g and H are in HorI1 T for the
first case, and in Hor′I1 T for the second case. Taking U = R2, horizon-
tal for ∇ and writing the vectors in the second décomposition, we ob-
tain U = (f2R′2,−r2,−aR2I1), JU = (f2R′3,−r3,−aR3I1) and J ′U =
(f2R′3,−I1r2,− 1

2 [I1, aR2I1]). But we have ri = −2Iiθ], hence it suffices
to verify that aR3I1 = 1

2 [I1, aR2I1] which is a straightforward computation,
remarking that with the vanishing of the torsion, we get from lemma 2.11

aRi
= θ(Ri) + 2|θ]|2Ii + 2θ] ∧ Iiθ] + 2(Ii∇θ])so(H),

so that the selfdual part is

a+
Ri

= 3|θ]|2Ii −
1
2

∑
k

tr(IkIi∇θ])Ik.

�

5.2. Integrability of the twistor space

This section is devoted to the proof of the following theorem:

Theorem 5.2. — Let H be a quaternionic contact structure with van-
ishing vertical torsion and J be the almost complex structure on the kernel
of ηr on the twistor space. Then

• J is adapted to the symplectic form dηr on ker ηr and gives a metric
of signature (6, 2).

• J is integrable.
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Proof. — The first point is similar to [2] and

dηr(·, J ·) = gH + dη1(R2, R3)(η2
2 + η2

3) + η3 � dx2 − η2 � dx3,

where α � β = 1
2 (α ⊗ β + β ⊗ α) is the symmetric product. This is the

metric of signature (6, 2).
We must now verify the integrability of J . This is given by the vanishing

of the Nĳenhuis tensor

N(X,Y ) = [X,Y ] + J [X, JY ] + J [JX, Y ]− [JX, JY ].

If X and Y are vertical, it follows from the fact that J is the complex
structure of the 2-sphere which is integrable, and if X is horizontal and Y

vertical this is similar to the proof of 14.68 in [1].
Assume now that X and Y are horizontal. In this case the vertical part

and the horizontal part of N(X,Y ) at I ∈ T are given by

(N(X,Y ))Hor = TXY + ITXIY + ITIXY − TIXIY

(N(X,Y ))Ver = [RX,Y + IRX,IY + IRIX,Y −RIX,IY , I]

We look first at the horizontal part. If X,Y ∈ H, then TX,Y =
∑
i dηi

(X,Y )Ri and we deduce easily that (N(X,Y ))Hor = 0. If X = R2 and
Y = R3 at I = I1, then (N(X,Y ))Hor = TR2,R3 − TR3,−R2 = 0 so that the
only no-trivial case at I1 is X ∈ H and Y = R2. Following the notations
of 4.1, the W -part of the torsion TRX vanishes and the H-part is TRiX =∑
p IpApiX where Api = −Aip ∈ Λ2

−H. Therefore, we have

(N(X,R2))Hor

= −
∑
p

IpAp2X − I1
∑
p

IpAp3X − I1
∑
p

IpAp2I1X +
∑
p

IpAp3I1X

= −I3A32X − I3A23X − I1I3A32I1X + I2A23I1.

The Aij and Ik commute and the skew-symmetry A23 = −A32 gives the
vanishing of (NX,R2)Hor.

We show now the vanishing of the vertical part. If X,Y ∈ H, this is just
lemma 4.5. It remains to show that for X ∈ H,

cR2,X,Y = [RR2,X + I1RR3,X + I1RR2,I1X −RR3,I1X , I1]Y = 0.

We put I1R1 = 0 and I1R2 = R3, in order to have cX,Y,Z defined for
all X, Y and Z. Because we have the same identities on the torsion, the
computation is very similar to [2, Lemma II.5.3] and one gets

cR2,X,Y + cY,R2,X = 0 , ∀X,Y ∈ H.

The vector cR2,X,Y is in the subspace spanned by I2Y and I3Y therefore
if the C-subspaces spanned by Y and X for the almost complex structure
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I1 are transverses, then cR2,X,Y = 0. We deduce that cR2,X,Y = in all
cases. �

5.3. Proof of theorem 1.1

We have shown that any integrable quaternionic contact structure H

admits a twistor space T which is CR-integrable. This is sufficient to apply
the results of Biquard [2] which give the theorem 1.4 (see part III for the
twistorial construction). With the notations of 3.1, the AHQK metric is
g = wE ⊗ wH and is quaternionic-Kähler, [8].

The corollary 1.5 follows immediately from our theorem 5.2 and the
theorem 0.4 of [3].

6. Deformations of the 7-sphere

Hereafter, we assume that N = S7 is the 7-sphere in H2 where H2 is an
H-vector space with H acting on right. Let 〈·, ·〉 be the canonical metric
on H2 ' R8. Recall that we have a quaternionic contact structure on S7

given by Hc
x = (xH)⊥ for x ∈ S7. The restriction to Hcan of the round

metric on S7 defines an adapted metric g0. The adapted complementary is
Wx = x Im H and is spanned by R1(x) = xi, R2(x) = xj and R3(x) = xk.

The distribution Hcan is a connection on the principal Sp(1)-bundle S7 →
S4 (Hopf-bundle). We call η ∈ Ω1(S7)⊗sp(1) ' Ω1(W ) its connection form.
Let us write it η =

∑
i ηi or

∑
i ηi ⊗Ri. One has dηi(W,Hcan) = 0 so that

the the torsions TW = − 1
2

∑
i,j(αij + αji)⊗ w∗i ⊗ wj and TH vanish.

Let ν be the canonical volume form of S7 that we decompose as ν =
νc ∧ η1 ∧ η2 ∧ η3 so that νc|H is a volume form on Hcan.

In this section, we compute the complex of integrable infinitesimal de-
formations of Hcan.

6.1. Deformation of the integrability condition

A deformation of Hcan is given by a 1-form θ with values in W which
vanishes on W , or equivalently by a section of End(Hcan,W ). The link
between the new distribution and θ is given by

Hθ = {X − θ(X), X ∈ Hcan} = ker(η + θ).
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Assume now that θt is a 1-parameter family of such 1-forms, each giving
a vertical torsion free distribution denoted by Ht = ker(η + θt). For small
t, the forms d(ηi + θti)|Ht

∈ Γ(Λ2H∗
t ) span a space of selfdual 2-forms on

Ht with respect to a metric gt on Ht. We choose gt such that g0 is the
restriction of the round metric on Hcan.

In order to write the condition on the torsion, one has to take an or-
thonormal basis of Λ2

+H
∗
t . We identify the functions and the 4-forms on

Hcan using νc. We search at : S7 → GL(3,R) such that a0 = Id and[
at · d(η + θt)

]
i
∧
[
at · d(η + θt)

]
j

∧
[
at · (η + θt)

]
1
∧
[
at · (η + θt)

]
2
∧
[
at · (η + θt)

]
3

= 2δijν.

Setting ψ̇ = dψt

dt |t=0, we obtain

(6.1) ȧij + ȧji + (dθ̇i ∧ dηj + dθ̇j ∧ dηi)|Hcan + tr(ȧ) = 0.

Remark 6.1. — We used the fact that αij = 0. In general, one has

ȧij + ȧji + (dθ̇i ∧ dηj + dθ̇j ∧ dηi)|H
+
∑
k

(αki ∧ θ̇k ∧ dηj) + αkj ∧ θ̇k ∧ dηi)|Hcan + tr(ȧ) = 0.

We put βt = at · (η + θt) with dual basis (Rt1, R
t
2, R

t
3) on W . Our choice

of at ensures that we obtain an orthonormal direct basis in Λ2
+Ht for the

metric gt. Let Iti be the associated quaternionic structure. By 2.10, the
deformation preserves the integrability iff there exist γti such that for X ∈
Hcan,

ıRt
i
βtj(X−θt(X))+ıRt

j
βti (X−θt(X)) = γti◦Itj(X−θt(X))+γtj◦Iti (X−θt(X)).

The γ0
i vanish so that one obtains the following lemma.

Lemma 6.2. — If θt is a 1-parameter smooth deformation of the quater-
nionic contact structure on S7 which preserves the integrability, we have

A0(θ̇) = −d(ȧij + ȧji)|Hcan + (ıRi
dθ̇j + ıRj

dθ̇i)|Hcan ∈ S3,1 ⊕ S1,1,

where
ȧij + ȧji + (dθ̇i ∧ dηj + dθ̇j ∧ dηi)|Hcan + tr(ȧ) = 0.

Remark 6.3. — The statement has exactly the same form if one deforms
Einstein selfdual Levi-Civita connections with non-zero scalar curvature
(which give 3-Sasakian manifolds and so integrable quaternionic contact
structures, see [6]).
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The composition of A0 with the projection on S5,1 is a differential op-
erator A : Γ((Hcan)∗ ⊗ W ) → Γ(S5,1). Its kernel gives the infinitesimal
deformations of Hcan preserving the integrability. This kernel contains the
image of the infinitesimal diffeomorphisms through

D : Γ(TS7) → Γ((Hcan)∗ ⊗W )
ζ 7→ {X ∈ H 7→ X.η(ζ) + dη(ζ,X)}.

6.2. A Bianchi identity

Because of the dimensions of the different vector bundles, the previous
complex cannot be elliptic, even in the direction of Hcan. We will show now
a Bianchi identity.

Lemma 6.4. — Let (M7,H, g) be a quaternionic contact structure where
g is a particular choice of Carnot-Carathéodory metric. Let W be the
adapted complementary and ∇ be the corresponding adapted connection.
The vertical torsion TW of H is a section of S5,1 ⊂ H∗ ⊗ S4,0. Let BH be
the composition of d∇ : Γ(H∗⊗S4,0) → Γ(Λ2H∗⊗S4,0) with the projection
on S6,0. Then we have

BH(TW ) = 0.

Remark 6.5. — Here is a small abuse of notation. Indeed d∇ can be
applied only on true 1-forms with values in a vector bundle. Nevertheless we
can give the following meaning to d∇: a section σ of H∗⊗E is extended in a
true 1-form vanishing on W and we use then the vanishing (T (X,Y ))H = 0
in order to obtain

(d∇σ)(X,Y ) = ∇XσY −∇Y σX − σ[X,Y ]

= (∇Xσ)Y − (∇Y σ)X ,

for vector fields X,Y ∈ H. This kind of equalities will be used throughout
the proof for every elements of Γ(H∗ ⊗ E) and every vector bundle E.

Proof. — Let (I1, I2, I3) be a local direct orthonormal basis of Λ2
+H

∗

corresponding to local 1-forms (η1, η2, η3) defining the contact structure.
Let (R1, R2, R3) be the corresponding dual basis on W . The first Bianchi
identity is

SX,Y,Ri (RX,YRi − TTXYRi − (∇XT )YRi) = 0,

for vector fields X and Y in H. Taking the W -part, we obtain

RX,YRi = (T (T (Ri, X), Y ))W + (T (T (Y,Ri), X))W + ((∇XT )(Y,Ri))W
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+((∇RiT )(X,Y ))W + ((∇Y T )(Ri, X))W .

We calculate first

A1(X,Y,Ri) = (T (T (Ri, X), Y ))W + (T (T (Y,Ri), X))W .

One has

A1(X,Y,Ri) = −TWTW
X

(Ri)
(Y )

+
∑
j

〈IjTHRi
(X), Y 〉Rj + TWTW

X
(Ri)

(X)−
∑
j

〈IjTHRi
(Y ), X〉Rj .

Putting aij = 1
2 (αij + αji), one gets

(6.2)

A1(X,Y,Ri) = −
3∑

k,j=1

aji ∧ akj(X,Y )Rk +
3∑
k=1

〈(IkTHRi
+THRi

Ik)(X), Y 〉Rk.

Assume now that p ∈ M , and that X, Y and Ri are parallel at p. In
particular, at p, one has αij = αji and

((∇XT )YRi + (∇RiT )XY + (∇Y T )RiX)W

= −
∑
k

(d∇aki)(X,Y )Rk −
∑
k

(∇Ridηk)(X,Y )Rk,

so that we obtain

RX,YRi = −
3∑

k,j=1

aji ∧ akj(X,Y )Rk +
3∑
k=1

〈(IkTHRi
+ THRi

Ik)(X), Y 〉Rk

−
∑
k

(d∇aki)(X,Y )Rk −
∑
k

(∇Ridηk)(X,Y )Rk.

From the equation 〈RX,YRi, Rk〉+ 〈RX,YRk, Ri〉 = 0, we deduce that

2d∇aki(X,Y ) = 〈(IkTHRi
+ THRi

Ik)(X), Y 〉+ 〈(IiTHRk
+ THRk

Ii)(X), Y 〉
−∇Ri

dηk(X,Y )−∇Rk
dηi(X,Y ).

Remark that (4.2) is true even if TW does not vanish. At p, it gives

4d∇aki =
∑
j(dηk(Rj , Ri) + dηi(Rj , Rk))〈Ij ·, ·〉

+2〈(IkTHRi
+ THRi

Ik)·, ·〉+ 〈(IiTHRk
+ THRk

Ii)·, ·〉.

This is a 2-form whose selfdual part is

4(d∇aki)+ =
∑
j

(dηk(Rj , Ri) + dηi(Rj , Rk))〈Ij ·, ·〉

−2 tr(THRi
)〈Ik·, ·〉 − 2 tr(THRk

)〈Ii·, ·〉.
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This is an element of S2,0⊗(S4,0⊕S0,0) ⊂ (S2,0)3. We take the projection
in Sym3(S2,0) ' S6,0⊕S2,0 and then the S6,0-part to obtain the lemma. �

6.3. The complex of infinitesimal deformations

We take the infinitesimal part of the previous equation and obtain the
complex of infinitesimal deformations of the 7-sphere

(C0) Γ(TS7) D→ Γ(H∗ ⊗W ) A→ Γ(S5,1) Bc→ Γ(S6,0).

Here Bc means the Bianchi operator on Hcan.
We have the decomposition Γ(TS7) = Γ(W ) ⊕ Γ(Hcan) and on the

other hand Γ((Hcan)∗ ⊗W ) = Γ(S3,1) ⊕ Γ(S1,1) with the property that
A(Γ(S1,1)) = 0. The restriction of D to Γ(Hcan) is an isomorphism Γ(Hcan)
→ Γ(S1,1) so that if D̃ is the composition of D restricted to Γ(W ) with the
projection on Γ(S3,1), we obtain an isomorphism

kerA
D(Γ(TS7))

' kerA ∩ Γ(S3,1)
D̃(Γ(W ))

.

In other words, we can compute the first homology group of the complex

(C) Γ(W ) D̃→ Γ(S3,1) A→ Γ(S5,1) Bc→ Γ(S6,0).

Remark 6.6. — This complex is not elliptic. Nevertheless a straightfor-
ward computation shows that (C) is elliptic in the direction of Hcan. This
was not the case of (C0).

Lemma 6.7. — If ξ = ξHcan + ξW ∈ TxS7, the principal symbols σξ of
the previous differential operators satisfy:

• If ξHcan = 0, then kerσξ(D̃) = Wx, or else if ξHcan 6= 0, then
kerσξ(D̃) = {0}.

• If ξHcan = 0, then kerσξ(A) = S3,1
x , or else if ξHcan 6= 0, then

kerσξ(A) = Im σξ(D̃).
• If ξHcan = 0, then kerσξ(B) = S5,1

x , or else if ξHcan 6= 0, then
kerσξ(Bc) = Im σξ(A).

7. Sp(1)-invariant deformations of the 7-sphere

We have seen in the previous section that infinitesimal deformations of
the standard quaternionic contact structure on S7 are parametrized by the
first cohomology group of the complex (C). This complex is not elliptic and
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even not hypoelliptic. Indeed, [9] ensures the existence of an infinite dimen-
sional moduli space of integrable quaternionic contact structures on S7.

In order to obtain an elliptic complex, we will look at quaternionic con-
tact structures on S7 admitting a free Sp(1)-action. Here, Sp(1) is viewed
as the group of unitary quaternions. There is a canonical action of Sp(1)
on S7 given by the diagonal action of Sp(1) on S7 ⊂ H2. The quotient is
the 4-sphere and the projection S7 → S4 is the Hopf projection. Smooth
deformations of this Sp(1)-action on S7 are always diffeomorphic to the
canonical one. Therefore, we fix the Sp(1)-action to be the canonical one.

7.1. G-invariant structures

In this section, we give some generalities on quaternionic contact struc-
tures H invariant under a free smooth G-action, when G = SO(3) or
G = Sp(1). Let (N,H) be such a quaternionic contact structure. The action
must be transverse to the contact distribution so that H is a connection on
a G-principal bundle N π→ B. Let (η1, η2, η3) be the connection form of H
with values in sp(1). The symplectic forms dηi|H define a unique adapted
conformal class of metrics [g] on H. Because of the G-invariance, the con-
formal class [g] can be pushed down on B and gives a conformal class of
Riemannian metrics [g] on B. Let E = M×Ad g be the adjoint bundle. The
connection H gives a covariant derivative ∇E on E, with curvature RE .
By definition of [g], the curvature RE gives an isomorphism

RE : Λ2
+TB → E

ζ 7→ Rζ ∈ so(E) ' E

Let D be a linear connection, preserving the conformal class. One can
take any conformal connection, but in general one chooses a metric g in
the conformal class and the corresponding Levi-Civita connection.

The tensor (RE)−1∇D,ERE is a section of T ∗B ⊗ End(Λ2
+B). We sym-

metrize the End(Λ2
+B) part with respect to any choice of metric in the

conformal class [g] and obtain a tensor T in Γ(S1,1 ⊗ (S4,0 ⊕ S0,0)). The
S5,1 part Tor(H) of T is the vertical torsion of the quaternionic contact
structure H.

7.2. Infinitesimal Sp(1)-invariant deformations of S7

We now come back to the deformations of the canonical quaternionic
contact structure on S7. Let H be the set of Sp(1)-invariant quaternionic
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contact structures on the Hopf bundle S7 → S4 and G be the group of
diffeomorphisms of S7 commuting with the Sp(1) action. Let ∇ be the
Levi-Civita connection of the round metric of S4. In the Sp(1)-invariant
case, the complex (C) can be written on the basis S4 in the following way:

Lemma 7.1. — The complex (C) applied to Sp(1)-invariant deforma-
tions on the Hopf bundle S7 → S4 can be written on the basis as

(C) Γ(S2,0) D̃→ Γ(S3,1) A→ Γ(S5,1) Bc→ Γ(S6,0)

where D̃ = p3,1∇, A = p5,1∇2 and Bc = p6,0∇. The homology groups H0,
H1, H2 and H3 of (C) have dimensions 10, 35, 0 and 0 respectively.

Proof. — The operator A is the composition of A1 = p4,0∇ and A2 =
p5,1∇ so that the previous complex splits into

(C1) Γ(S2,0) D̃→ Γ(S3,1) A1→ Γ(S4,0),

(C2) Γ(S4,0) A2→ Γ(S5,1) Bc→ Γ(S6,0).

One recognizes in (C1) the complex of deformations of anti-selfdual met-
rics. This complex is well-known and one can show that A1 gives an iso-
morphism between ker D̃∗ and Γ(S4,0) (see for instance the proof of [1,
theorem 13.30, p. 376] ). Therefore the kernel of A⊕D∗ can be identified
with the kernel of A2, and we are reduced to the study of (C2).

First we give some Weitzenböck formula. Let D∇ be the Dirac operator
on S⊗E where S = S1,0⊕S0,1 is the spinor bundle and E can be any Sn,m.
The Dirac operator is the composition of the connection and the Clifford
multiplication. The Clifford multiplication is a morphism of representation
on Spin(4)-modules so is the identity on each irreducible component of
S⊗E, up to a multiplicative constant. If E = S5,0, we see for instance that
D∇ = bBc ⊕ aA∗2 for some positive constants a and b. The Weitzenböck
formula is

D∇(φ⊗ s) = ∇∗∇(φ⊗ s) +
s

4
φ⊗ s+

∑
ei,ej

ei · ejφ⊗R∇ei,ej
s ,

and in our case, the curvature R∇ is scalar so that the last term in the
previous equality is a combination of Casimir operators (see [1, p. 376]).
One obtains finally

(D∇)2 = ∇∗∇+
s

4
,

and so ker(B ⊕ A∗2) = 0, that is to say the complex (C) has no second
homology group.
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In the same way, regarding B∗c : Γ(S6,0) → Γ(S5,1), it appears to be the
Dirac operator on S6,0 ⊂ S1,0⊗S5,0 (up to a multiplicative constant). One
can show that

((D∇)2 −∇∗∇)|S6,0 =
2s
3
,

which gives ker(B∗c ) = 0. We deduce that dim kerA2 is exactly the index
of (C2) which is the index of the Dirac operator

D∇ : Γ(S1,0 ⊗ S5,0) → Γ(S0,1 ⊗ S5,0).

By the Atiyah-Singer index theorem,

indexD∇ = {ch(S5,0)Â(S4)}[S4]
= (6 + 35ch2(S1,0))(1− p1/24)[S4]
= 35.

�

7.3. Moduli space

In this section, we will end the proof of theorem 1.6. Here we must be
more precise in our notations. If g is a conformal class of metric on S4,
there is a subbundle S5,1

g of T ∗S4 ⊗ Λ2T ∗S4 ⊗ Λ2TS4 associated to the
representation S5,1 and g. In the same way, one defines S6,0

g in Λ2T ∗S4 ⊗
Λ2T ∗S4 ⊗ Λ2TS4.

Remark 7.2. — We have seen that each H ∈ H defines a conformal class
of metrics on S4. In fact, the quaternionic contact structure H defines a
true metric on S4. Indeed, if we come back to section 7.1, the vector bundle
E is an oriented bundle which gives an volume form on Λ2

+TS4 such that
RE preserves the two orientations. Then, we can choose the metric on S4

which gives the same volume form on Λ2
+TS4. We obtain a well defined

map
G : H →M,

where M is the set of smooth metrics on S4. The round metric on S4 is
called g0 and is the metric G(Hcan).

With the help of the canonical structure Hcan, we identify H with an
open subset in Γ(T ∗S4 ⊗ S2,0

g0 ). Let pi,j be the orthogonal projection with
respect to g0 in Si,jg0 (Si,jg0 will appear at most one time in our vector bundles
so that the pi,j are well defined). We restrict ourselves to a neighbourhood
U of Hcan in H where p5,1 (resp. p6,0 ) gives by restriction an isomorphism
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from S5,1
G(H) onto S5,1

g0 (resp. from S6,0
G(H) onto S6,0

g0 ). With the identifications
given by the pi,j , one gets maps

T : U → Γ(S5,1
g0 ) , H 7→ p5,1(Tor(H)),

and
B : U ⊕ Γ(S5,1

g0 ) → (S6,0
g0 ) , (H,T ) 7→ p6,0(BH(T )).

Because of the Bianchi identity of lemma 6.4, we have B(H, T (H)) = 0
for H ∈ U . We want to apply an implicit function theorem so we must work
in Banach spaces. We assume now that our sections are Ck+2,α (Hölder-
spaces). We have seen in section 6.3 that we can search a slice in Γ(S3,1).
We put U1 = U ∩ Γ(S3,1). Let us define the smooth map

Ψ : U1 → Im D̃∗ ⊕ kerBc , a 7→ (D̃∗(a), p T (a)),

where p is the projection on kerBc in the direction of Im B∗c . Because of the
vanishing of the second homology group of (C), the differential dHcanψ is
surjective. Its kernel is ker(D̃∗⊕A) and is of finite dimension 35. Therefore,
there is a submanifoldX35 ⊂ ker D̃∗⊕Γ(S6,0) such that on a neighbourhood
of Hcan in U1, one has Ψ(a) = 0 iff a ∈ X35. Because of the vanishing of the
homology groups H2 and H3, we can apply the inverse function theorem
with the Bianchi operator B at (Hcan, 0) in order to obtain that if pT (a) = 0
then T (a) = 0 for a sufficiently small. We obtain a neighbourhood V of
Hcan such that

(D̃∗(a), T (a)) = 0 iff a ∈M = X35 ∩ V.

We have obtained a 35-dimensional family of integrable Ck+2,α quater-
nionic contact structures on S7. If a ∈ M , it satisfies a non-linear but
elliptic equation, hence a is smooth.

The isotropy group G of Hcan under the action of G is Sp(2). Because
ker D̃∗ is Sp(2)-invariant and Sp(2) is compact, we can assume that M is
stable under the action of Sp(2). Hence, the manifold M is not exactly the
moduli space of integrable quaternionic contact structures. Nevertheless,
the only diffeomorphisms acting on M are in Sp(2). It follows from the
properness of the action of G onH: an element φ ∈ G gives a diffeomorphism
ψ on S4 acting on the metrics G(H). The diffeomorphism φ is determined
up a gauge transformation by ψ. The both nice behaviours of the action
of diffeomorphisms on the metrics and of the gauge transformations on the
connections give the properness of the action of G.

Therefore there exists a neighbourhood of [Hcan] in H/G which is home-
omorphic to a neighbourhood of Hcan in M quotiented by Sp(2). It gives
the theorem 1.6, and using the theorem 0.4 of [3], one gets the corollary 1.7.
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Among these, there is a family obtained as the boundary of quaternionic
quotient constructed by Galicki in [4]. Let us describe these more precisely.
Choose D ∈ sp(2) and let SD be

SD = {x ∈ Hk, |x|2 +
|x∗Dx|2

4
= 1}.

Here x∗ means the adjoint of x with respect to the canonical quaternionic
hermitian metric of H2. SD is isomorphic to the 7-sphere and invariant
under the diagonal action of Sp(1) on right. One has the codimension 3-
distribution

HD
x = {v ∈ H2, x∗v − x∗Dx

4
(x∗Dv + v∗Dx) = 0} ⊂ TxS

D.

This is a quaternionic contact structure which is the conformal infinity of
an AQH quaternionic-Kähler metric on the interior BD of SD. Therefore
HD is an integrable quaternionic contact structure. Remark that HD

x is
different from the subspace of TxSD ⊂ H2 stable under the right-action of
H. The isotropy group of HD is a quotient of K × Sp(1) where K is the
subgroup of elements of Sp(2) which commute with D.

7.4. Concluding remarks

We have shown that an integrable quaternionic contact distribution on S7

close to the canonical one is the conformal infinity of a quaternionic-Kähler
metric on the ball B8.

A quaternionic Kähler manifold can be defined with the help of a parallel
4-form Ω with stabilizer Sp(n) Sp(1). Swann [13] showed that in dimension
greater than 8, if Ω is closed, then Ω is parallel. On the other hand, one can
construct an 8-manifold with closed Ω which is not parallel, [12]. So one
can ask if a quaternionic contact structure in dimension 7 is the conformal
infinity of an asymptotically hyperbolic metric associated to a closed 4-form
with stabilizer Sp(2) Sp(1).
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