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AN EXPLICIT FORMULA FOR
PERIOD DETERMINANT

by Alexey A. GLUTSYUK

Abstract. — We consider a generic complex polynomial in two variables and
a basis in the first homology group of a nonsingular level curve. We take an ar-
bitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that
their integrals over the basic cycles form a square matrix (of multivalued analytic
functions of the level value). We give an explicit formula for the determinant of
this matrix.

Résumé. — Nous considérons un polynôme générique à deux variables com-
plexes et une base de cycles dans le premier groupe d’homologie d’une courbe de
niveau non singulière. Nous prenons une collection arbitraire de 1-formes polyno-
miales homogènes de degrés appropriés, de sorte que leurs intégrales le long des
cycles de la base forment une matrice carrée (de fonctions multivaluées en la valeur
du niveau). Nous calculons le déterminant de cette matrice.

1. Introduction and main results

Consider a complex polynomial H(x, y) of degree n + 1 > 2 in two
variables. We assume it generic (see the next definition) and for each t

denote
St = {H = t} ⊂ C2.

Then for any noncritical value t the homology group H1(St, Z) is isomorphic
to Zµ, µ = n2 (see [1]). Let δ1(t), . . . , δµ(t) be its generators.

Fix a set of µ complex polynomial 1-forms

Ω = (ω1, . . . , ωµ), ωi = Pi(x, y)dx + Qi(x, y)dy.

Keywords: Complex polynomial in two variables, homology of nonsingular level curve,
monodromy, abelian integral, gradient ideal, period determinant.
Math. classification: 14D05, 32S10, 32S20.
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The period matrix associated to the polynomial H and the form set Ω is
the (multivalued) matrix function

(1.1) I(t) =
(
Iij(t)

)
, Iij(t) =

∫
δj(t)

ωi.

Its determinant is called the period determinant:

(1.2) ∆(t) = ∆H,Ω(t) = det I(t).

Remark 1.1. — The definition of the period determinant does not de-
pend (up to sign) on the choice of the homology basis in the level curves,
since the transition between two different bases is given by a matrix with
determinant ±1.

Remark 1.2. — The functions Iij(t) are holomorphic multivalued with
branching points at the critical values of H. At the same time, as it will
be shown, the period determinant is a single-valued function, and even
polynomial.

In the present paper we give an explicit formula (see (1.18)) for the pe-
riod determinant through the coefficients of the polynomial and the forms,
provided that the latter forms are homogeneous and of appropriate degrees,
see (1.4) below.

A lower bound of the period determinant was used in [7] (joint paper
with Yu. S. Ilyashenko), where we have obtained an explicit upper bound
of the number of zeros for a wide class of Abelian integrals. This lower
bound is proved in a separate author’s paper [6] by using formula (1.18).

Definition 1.3. — We say that a homogeneous polynomial is generic,
if has only simple zero lines. A (not necessarily homogeneous) polynomial
H is said to be generic, if so is its highest homogeneous part.

First we give (in the next subsection) an explicit formula for ∆(t) de-
fined by arbitrary generic polynomial H and the following special form set.
Namely, let (`(i),m(i)), i = 1, . . . , µ = n2 be the lexicographic ordered set
of integer pairs (`,m), 0 6 `,m 6 n− 1. Put

(1.3) ei(x, y) = x`(i)ym(i), ωi = yei(x, y)dx, d(i) = `(i) + m(i).

Afterwards, in Subsection 1.2 we extend the above-mentioned formula
for ∆(t) to the case of arbitrary form set of the type

(1.4) Ω = (ω1, . . . , ωn2), ωi are homogeneous of degrees d(i) + 1.

The proof of the extended formula takes the rest of the paper.

ANNALES DE L’INSTITUT FOURIER



FORMULA FOR PERIOD DETERMINANT 889

1.1. Formula for the period determinant:
case of special form set (1.3)

Let H(x, y) be a generic polynomial of degree n+1 > 2, h be its highest
homogeneous part. Let ai, i = 1, . . . , n2, be the critical values of H. Let ei,
ωi be the monomials and the forms from (1.3), ∆(t) be the corresponding
determinant (1.2).

As it will be shown below,

(1.5) ∆(t) = C(h)
n2∏
i=1

(t− ai),

C(h) depends only on h so that:
• C(h) is a meromorphic function on the double cover over the space of

generic homogeneous polynomials h with branching at the “discriminant”
hypersurface of the nongeneric polynomials (this hypersurface, which con-
sists of the polynomials with multiple zero lines, will be denoted by S),
• C(h) tends to infinity, as the discriminant of h tends to zero,
• C(h) = 0 if and only if there exists a d = n, . . . , 2n − 2 such that a

nontrivial linear combination

(1.6)
∑

d(i)=d

ciei

belongs to the gradient ideal of h, which is generated by its partial deriva-
tives.

In particular, this implies the following

Corollary 1.4. — Let H(x, y) be a polynomial with the highest ho-
mogeneous part

h(x, y) = xn+1 + yn+1.

Then the corresponding constant C(h) from (1.5) does not vanish.

The corollary follows from the statement that the monomials ei form a
basis in the quotient ring of all the polynomials in two variables modulo
the gradient ideal of the polynomial xn+1 + yn+1.

To state the formula for C(h), let us recall the definition of the dis-
criminant Σ(h) of a homogeneous polynomial h, which vanishes on the
nongeneric polynomials. Consider the decomposition

h(x, y) = h0

n∏
i=0

(y − cix)

TOME 56 (2006), FASCICULE 4



890 Alexey A. GLUTSYUK

of h into a product of linear factors. Put

(1.7) Σ(h) = h2n
0

∏
06j<i6n

(ci − cj)2.

Remark 1.5. — The discriminant Σ(h) is a degree 2n homogeneous ir-
reducible polynomial in the coefficients of h:

(1.8) h(x, y) =
n+1∑
i=0

hix
iyn+1−i.

Theorem 1.6. — Let n > 1. There exists a homogeneous polynomial
P (h) of degree n(n− 1) in the coefficients (1.8) of the homogeneous poly-
nomial h that satisfies the following statements:

1) for a generic h P (h) = 0, if and only if condition (1.6) holds;
2) let H, h, ai, ωi, ∆(t) be as at the beginning of the subsection.

Then formula (1.5) holds with

(1.9) C(h) = Cn

(
Σ(h)

) 1
2−n

P (h), Cn ∈ C depends only on n.

The theorem is proved at the end of 1.2. The formulas for the corre-
sponding polynomial P (h) and the constant Cn are given below.

The polynomial P (h) from the theorem is the product

(1.10) P (h) =
2n−2∏
d=n

Pd(h),

where Pd(h) are the polynomials defined as follows.

Definition 1.7. — Let n > 1, d ∈ {n, . . . , 2n−2}, h be a homogeneous
polynomial of degree n + 1. Consider the following ordered 2(d − n + 1)
polynomials of degree d:

x`yd−n−` ∂h

∂y
, (` = 0, . . . , d− n), x`yd−n−` ∂h

∂x
, (` = 0, . . . , d− n).

Let Ad(h) be the matrix whose columns are numerated by the monomials
of degree d distinct from all the e′i s (with d(i) = d); the lines are numerated
by the previous 2(d−n+1) polynomials and consists of their corresponding
coefficients.

In the case, when d = n, all the monomials of degree d are ei except
for xn and yn (see Fig. 1 in the case, when n = d = 3: the monomials ei of
degree 3 are xy2 and x2y), so, we take the coefficients at xn and yn only.

Put

(1.11) Pd(h) = det Ad(h) if n > 2, Pd(h) ≡ 1 if n = 1.

ANNALES DE L’INSTITUT FOURIER



FORMULA FOR PERIOD DETERMINANT 891

Figure 1.1. Case n = 3; the monomials ei

Remark 1.8. — The matrix Ad(h) is square of the size 2(d− n + 1):
the number of the monomials of degree d distinct from ei is equal to
2(d− n + 1). Therefore, the polynomials Pd(h) are well defined. Let P (h)
be their product (1.10). As it will be shown in 2.1 (Proposition 2.4), for
generic h, P (h) = 0 if and only if condition (1.6) holds.

Example 1.9. — Let us calculate the polynomial P (h) in the case,
when h is a general homogeneous cubic polynomial

h(x, y) = a0x
3 + a1x

2y + a2xy2 + a3y
3.

Then n = 2. The corresponding set of the values of d from the previous
definition consists of the unique value d = 2, since n = 2n − 2 = 2. The
corresponding matrix A2(h) is the 2 × 2- matrix whose lines consist of
the coefficients of the partial derivatives of h at the monomials x2 and y2

(these are the only quadratic monomials distinct from the ei’s, see the same
definition). Hence,

(1.12) A2(h) =
( 3a0 a2

a1 3a3

)
, thus, P2(h) = P (h) = 9a0a3 − a1a2.

The latter equality P2(h) = P (h) holds true since there are no other values
d 6= 2 for which the matrices Ad are well defined.

Theorem 1.10. — Let Pd(h) be the polynomials defined by (1.11),
P (h) be their product (1.10). Then (1.9) holds for

(1.13) Cn = (−1)
1
4 n(3n−1) (2π)

1
2 n(n+1)(n + 1)

1
2 (n2+n−4)((n + 1)!)n∏n−1

m=1(m + n + 1)!
·

Theorem 1.10 is proved in Section 3.
Theorem 1.6 will follow from its generalization (Theorem 1.17 stated

in 1.2), which deals with a generalized form set (1.4). Extending the form

TOME 56 (2006), FASCICULE 4



892 Alexey A. GLUTSYUK

set has also the following independent motivation. A direct proof of The-
orem 1.6 is done via the study of the divisor of C(h). The first step is to
prove that the divisor of zeros is exactly the zero locus of P (h).

This divisor is simple. To prove that we need to generalize the problem
and to extend the set of forms ωi used in the definition of the period
determinant.

In this way we get that C(h) = S̃P (h), where S̃ is a “polar” term. It
appears that S̃ = ∞ if and only if Σ = 0. Hence, S̃ = CnΣs for some
negative s. The homogeneity arguments imply that s = 1

2 − n. Thus, The-
orem 1.6 holds.

In order to find the factor Cn, and to prove Theorem 1.10, it is sufficient
to find the period determinant for some specific h, as well as Σ(h) and P (h)
via a straightforward calculation. This is done for h(x, y) = xn+1 + yn+1

in Section 3.

Example 1.11. — Let us check the statement of Theorem 1.10 in the
simplest case, when n = 1, h(x, y) = H(x, y) = x2 + y2. Then

∆(t) =
∫

x2+y2=t

ydx = πt.

On the other hand, Theorem 1.6 claims that

∆(t) = C(h)t, C(h) = C1ΣsP (h), s =
1
2
− n = −1

2
·

For our H(x, y) = (x− iy)(x + iy) one has

Σ = (2i)2 = −4, Σ− 1
2 = ±(2i)−1, P (h) =

2n−2∏
d=n

Pd(h) = 1,

since Pd ≡ 1, see (1.11). Therefore,

C1 = ±∆(t)2i/t = ±2πi.

The substitution of n = 1 to (1.13) gives the same result up to sign (the
sign of the first factor (−1)

1
4 n(3n−1) = (−1)

1
2 = ±i in (1.13) is not uniquely

defined). This deduces Theorem 1.10 from Theorem 1.6 for n = 1.

Example 1.12. — Let us calculate the period determinant in the sim-
plest nontrivial case of a general cubic polynomial:

(1.14) h(x, y) = a0x
3 + a1x

2y + a2xy2 + a3y
3, n = 2.

ANNALES DE L’INSTITUT FOURIER
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To do this, we calculate the terms in formula (1.9) for C(h). The polyno-
mial P (h) was already calculated in (1.12). The formula for the discrimi-
nant Σ(h) is given in [10, p. 141, Exercise 11]:

Σ(h) = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3.

Let us calculate the constant Cn = C2. By (1.13), one has

C2 = (−1)
1
2
(2π)33

1
2 (22+2−4)(3!)2

4!
= ±i

(2π)3 × 3× 36
24

= ±36π3i.

Substituting the two latter formulas and (1.12) to (1.9) yields

C(h) = ±36π3i(a2
1a

2
2−4a0a

3
2−4a3

1a3−27a2
0a

2
3+18a0a1a2a3)−

3
2 (9a0a3−a1a2).

Thus, for any cubic polynomial with highest homogeneous part (1.14) and
critical values a1, . . . , a4 one has

∆(t) = C(h)
4∏

j=1

(t− aj), C(h) is as above.

1.2. Formula for the period determinant: general case.

Everywhere below in the present subsection we consider that ωi are ar-
bitrary 1-forms of the type (1.4). Let H(x, y) be a generic polynomial of
degree n + 1 > 2, h be its highest homogeneous part. Let ai, i = 1, . . . , n2,
be the critical values of H. Let ∆(t) be the corresponding period determi-
nant (1.2).

We state and prove a generalization of formulas (1.5), (1.9) for ∆(t) given
by Theorem 1.6 to the case of arbitrary forms ωi as in (1.4). The gener-
alized formulas (1.5), (1.9) coincide with their previous versions, but now
the constant C(h) = C(h, Ω) from (1.5) depends on Ω, and the polyno-
mial P (h) in (1.9) should be replaced by its appropriate extension up to
a polynomial P (h, Ω) with variable Ω. To define the extension of P , let us
introduce some notations.

For a polynomial 1-form ω by Dω denote the polynomial defined by the
equality

(1.15) dω = Dωdy ∧ dx.

Example 1.13. — Let ej , m(j), ωj be as in (1.3). Then

(1.16) Dωj =
(
m(j) + 1

)
ej .

TOME 56 (2006), FASCICULE 4



894 Alexey A. GLUTSYUK

Definition 1.14. — Let h be a generic homogeneous polynomial of
degree n+1, D be the operator defined by (1.15). A set Ω of forms (1.4) is
said to be h-degenerate, if either the polynomials (Dωi)d(i)<n are linearly
dependent, or condition (1.6) holds with ei replaced by Dωi, for some d,
n 6 d 6 2n− 2. Otherwise Ω is said to be h-nondegenerate.

The extended polynomial P (h, Ω) we are looking for is constructed as
follows. As it will be shown in 2.1 (Proposition 2.4), it vanishes, if and only
if Ω is h-degenerate.

Definition 1.15. — Let n > 2, d ∈ N, 0 6 d 6 2n − 2, h be a homo-
geneous polynomial of degree n + 1. Let Ω(d) = (ω′1, . . . , ω

′
s) be an ordered

tuple of homogeneous 1-forms of degree d + 1, the number s of the forms
being equal to s = d + 1 in the case, when d 6 n − 1, and s = 2n − d − 1
otherwise. The matrix Ad(h, Ω(d)) associated to the form tuple Ω(d) is the
(d + 1)× (d + 1) matrix whose columns are numerated by all the monomi-
als yd, yd−1x, . . . , xd of degree d and the lines consist of the corresponding
coefficients of the following polynomials:
• Case d 6 n− 1. — Take the d + 1 polynomials Dω′r/(d− r + 2).
• Case d > n. — Take the d − n + 1 polynomials xjyd−n−j ∂h/∂y, 0 6

j 6 d − n; the 2n − d − 1 polynomials Dω′r/(n− r + 1); the d − n + 1
polynomials xjyd−n−j ∂h/∂x, 0 6 j 6 d− n.

Let Ω be as in (1.4), n 6 d 6 2n − 2, Ω(d) be the tuple of the forms
in Ω of degree d+1 (numerated in the same order, as in Ω). The number s

of forms in Ω(d) is equal to 2d− n− 1. Indeed, by definition, it is equal
to the number of monomials ei of degree d; the latter number is equal
to 2d− n− 1 by Remark 1.8. Put

Ad(h, Ω) = Ad

(
h, Ω(d)

)
, Pd(h, Ω) = det Ad(h, Ω),

P (h, Ω) =
2n−2∏
d=0

Pd(h, Ω).
(1.17)

Proposition 1.16. — Let Ω = (ω1, . . . , ωn2), ωi be the same, as in (1.3).
Let Ad(h), Ad(h, Ω) be the matrix functions from Definition 1.7 and (1.17)
respectively, Pd(h), Pd(h, Ω) be their determinants. Then for any d < n

Pd(h, Ω) ≡ 1. For any d > n Pd(h, Ω) = Pd(h) (thus, P (h) = P (h, Ω)).

Proof. — Let us prove the statement of the Proposition for d < n. Then
the matrix Ad(h, Ω) is unit. Indeed, by definition, its lines consist of the
coefficients of the monomials Dωi/(m(i) + 1) = ei, d(i) = d, see (1.16).
The columns are numerated by all the monomials of degree d. The latters

ANNALES DE L’INSTITUT FOURIER
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coincide with ei and are ordered lexicographically, so, Ad(h, Ω) is unit.
Hence, Pd(h, Ω) ≡ 1. Now let us prove the statement of the proposition in
the case, when d > n. In this case the matrix Ad(h) is obtained from the
matrix Ad(h, Ω) by deleting its central 2n−d−1 lines (which consist of the
coefficients of the monomials ei) and the central 2n−d− 1 columns, which
are numerated by ei. The matrix formed by the deleted lines and columns
is identity: its lines correspond to the monomials Dωi/(m(i) + 1) = ei,
as before. The elements of the deleted lines outside the deleted columns
are zeros. Therefore, Pd(h, Ω) = det Ad(h) = Pd(h). Proposition 1.16 is
proved. �

Theorem 1.17. — Let ωi, Ω = (ω1, . . . , ωn2), H, h, ai, ∆(t) be as at
the beginning of the Subsection, P (h, Ω) be as in (1.17). Then

∆(t) = C(h, Ω)
n2∏
i=1

(t− ai),(1.18)

C(h, Ω) = Cn

(
Σ(h)

) 1
2−n

P (h, Ω),(1.19)

Cn is the same, as in (1.13).

Theorem 1.17 is proved in Section 2 (modulo the calculation of the con-
stant Cn). The latter constant will be calculated in Section 3. Together
with the previous proposition, Theorem 1.17 implies Theorem 1.6.

Definition 1.18 (see [5]). — Let w = (w1, w2)∈N2, d∈N, w1, w2 6 1
2d.

A polynomial P (x, y) is said to be weighted homogeneous of type w and
weighted degree d, if

P (τw1x, τw2y) = τdP (x, y) for any τ, x, y ∈ C.

A polynomial H is said to be semiweighted homogeneous of type w and
weighted degree d, if

H =
d∑

i=0

Hi,Hi are weighted homogeneous of type w and degrees i,

and the highest weighted homogeneous part Hd has an isolated critical
point at 0.

Remark 1.19. — As it was shown in [5], formula (1.18) holds true (with
a certain (unknown) constant C(h, Ω)), if the polynomial H under consid-
eration is semiweighted homogeneous, and Ω is a collection of monomial
1-forms of appropriate weighted homogeneous degrees. The correspond-
ing constant C(h, Ω) is nonzero, if no nontrivial linear combination of the

TOME 56 (2006), FASCICULE 4
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monomials Dωj belongs to the gradient ideal of the highest weighted ho-
mogeneous part of H. The converse is also true (see Lemma 2.3 below: its
statement and proof extend (with minor modifications) to the case, when H

is a semiweighted homogeneous polynomial).

Question. — Find an explicit formula for the period determinant in the
case, when H is a semiweighted homogeneous polynomial. In other words,
find an explicit formula for the constant C(h, Ω) from (1.18) in the case,
when h is a weighted homogeneous polynomial with isolated critical point
at 0.

The author thinks that the method of calculation of C(h, Ω) presented
below can be extended to the above-mentioned weighted homogeneous case.

1.3. Historical remarks

An explicit formula for the period determinant up to a constant factor
depending on n was obtained by A.N. Varchenko [14]. In the present paper
the constant factor is calculated.

2. Proof of formula for the period determinant up to
constant Cn

Here we prove the formula from Theorem 1.17 for the period determinant,
without calculation of the constant Cn.

2.1. The plan of the proof of Theorem 1.17

Definition 2.1. — A generic complex polynomial H is said to be ultra-
Morse, if it has distinct critical values (then their number is equal to µ = n2,
n = deg H − 1).

It suffices to prove Theorem 1.17 for any ultra-Morse polynomial H (pass-
ing to a non ultra-Morse limit while the highest form h remains unchanged
does not change the right-hand side of (1.18)). Everywhere below we con-
sider that H is ultra-Morse (whenever the contrary is not specified). We
denote

H1(t) = H1(St, Z), B = C \ {a1, . . . , an2}.

ANNALES DE L’INSTITUT FOURIER



FORMULA FOR PERIOD DETERMINANT 897

We consider the period determinant as defined for a special basis in H1(t)
called marked basis of vanishing cycles, see [1] (whenever the contrary is
not specified). The definitions and some basic properties of vanishing cycles
are recalled in 2.2.

Given a noncritical value t ∈ C and a loop γ : [0, 1] → B with a base
point t = γ(0) = γ(1). Any cycle δ ∈ H1(t) extends continuously along γ up
to a family of cycles δ(τ) ∈ H1(γ(τ)), τ ∈ [0, 1]. The result δ(1) ∈ H1(t) of
extension is different from δ = δ(0) in general. The mapping Mγ : H1(t) →
H1(t) sending δ to δ(1) (which is a linear operator) is called the monodromy
operator along γ.

Proposition 2.2 (see [5]). — Let H be an ultra-Morse polynomial of
degree n + 1 > 2, ωi, i = 1, . . . , µ = n2 be arbitrary polynomial 1-forms,
∆(t) be the corresponding period determinant (1.2). The function ∆(t) is
always polynomial.

Proof. — The Picard-Lefschetz theorem [1] implies that the monodromy
operator along a circuit around one critical value is always unipotent.
Hence, the function ∆(t) does not change after the extension along the
previous circuit. This implies that it is a single-valued function. It follows
from definition that it is bounded in the neighborhood of the critical val-
ues. Hence, it is an entire function C → C (singularity erasing theorem).
Simple estimates whose improved version is checked in 2.4 imply that ∆
has at most polynomial growth at infinity. Hence, ∆(t) is a polynomial (its
degree is calculated at the same place). �

On the first step of the proof we prove formula (1.18) with a C(h, Ω)
depending only on h and Ω (Lemma 2.3) and we show (in Proposition 2.4
and Lemma 2.3) that for any fixed generic h the functions C(h, Ω) and
P (h, Ω) have the same zeros: they vanish exactly on those pairs (h, Ω)
where Ω is h-degenerate. On the second step we show that

(2.1) C(h, Ω) = Cn

(
Σ(h)

)s
P (h, Ω)

with some s ∈ R, Cn ∈ C. To do this, we prove that for any fixed generic h

the functions P (h, Ω) and C(h, Ω) in Ω have simple zero at the hypersurface
of h-degenerate tuples Ω (Lemma 2.5). After this the power s will be found
by straightforward calculation of the homogeneity degrees in h of C and P

(at the end of the present subsection).

Lemma 2.3. — Let H(x, y) be an ultra-Morse polynomial of degree
n + 1 > 2, h be its highest homogeneous part. Let ai, i = 1, . . . , n2, be the
critical values of H. Let Ω be as in (1.4), ∆(t) be the corresponding period
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898 Alexey A. GLUTSYUK

determinant (1.2). Let Dωj be the polynomials from (1.15) corresponding
to the forms ωj . Then formula (1.18) holds with C(h, Ω) depending only
on h and Ω such that C(h, Ω) = 0, if and only if Ω is h-degenerate (see
Definition 1.14).

Lemma 2.3 is proved in 2.3–2.4. The statements of the Lemma saying that
∆(t) is a polynomial (1.18) and h-nondegeneracy implies C(h, Ω) 6= 0) were
proved in [5]. Elementary proofs of (1.18) and of the latter implication were
obtained separately by Yu. S. Ilyashenko (his proof is represented in 2.4)
and D. Novikov [12].

The theorem on determinant [1] implies that ∆ is a polynomial nonzero
for “typical” H and Ω. It does not specify concrete H and Ω with this
property. Lemma 2.3 provides this specification.

In the proof of Lemma 2.3 we use a criterium (due to Yu. S. Ilyashenko
[8], [9] and L. Gavrilov [5]) for identical vanishing of an Abelian integral
over vanishing cycle (Theorem 2.14 and Corollary 2.16). We represent the
statement and the proof of this criterium in 2.3.

Proposition 2.4. — Let n > 2, h be a generic homogeneous polyno-
mial of degree n+1 (see Definition 1.3), P (h, Ω) be the polynomial defined
by (1.17). Then P (h, Ω) = 0, if and only if Ω is h-degenerate.

Proof. — If Ω is h-degenerate, then there is a d such that a nontrivial
linear combination

∑
d(i)=d ciDωi either vanishes, or belongs to the gra-

dient ideal. Then this combination (which is homogeneous of degree d) is
equal to a linear combination of the partial derivatives of h with (may be
zero) homogeneous polynomial coefficients of degree d− n. This statement
is equivalent to vanishing of the polynomial Pd(h, Ω) = det Ad(h, Ω) by def-
inition, so, P (h, Ω) = 0. Conversely, let h be generic and P (h, Ω) = 0. Let
us prove that Ω is h-degenerate. There exists a d such that Pd(h, Ω) = 0
(fix such a d). By definition, this means that a nontrivial linear combi-
nation of the lines of the matrix Ad(h, Ω) (or equivalently, that of the
corresponding polynomials) is zero. In the case, when d < n, these lines
are nonzero-proportional to the coefficients strings of the polynomials Dωi,
d(i) = d, thus, the latters are linearly dependent and Ω is h-degenerate.
Let d > n. Let us show that there exists a nontrivial linear combina-
tion of Dωi, d(i) = d, that belongs to the gradient ideal. In this case the
lines of Ad(h, Ω), which are linearly dependent, are nonzero-proportional
to the coefficients strings of the polynomials Dωi, and x`yd−n−` ∂h/∂y,
x`yd−n−` ∂h/∂x, ` = 0, . . . , d − n, so, a nontrivial linear combination of
these polynomials vanishes. The last 2(d − n + 1) multiples of the partial
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derivatives are linearly independent, which follows from the statement that
the partial derivatives of a generic homogeneous polynomial h are rela-
tively prime. Therefore, a vanishing nontrivial linear combination of them
and the polynomials Dωi contains a nontrivial linear combination of Dωi.
The latter linear combination is a one we are looking for. Proposition 2.4
is proved. �

Thus, the functions P (h, Ω) and C(h, Ω) have common zero set outside
the discriminant hypersurface S = {Σ(h) = 0}: this set is the hypersurface
of pairs (h, Ω) such that Ω is h-degenerate.

As it is shown below, equality (2.1) is implied by the following:

Lemma 2.5. — For any fixed generic homogeneous polynomial h of de-
gree n + 1 > 2 the functions P (h, Ω), C(h, Ω) have nonzero gradients in Ω
on a Zariski open subset of the set of h-degenerate tuples Ω.

The lemma is proved in 2.5. The function C(h, Ω) is (at most) double-
valued (its different branches are obtained from each other by multiplica-
tion by ±1). This follows from Remark 1.1. The previous Lemma implies
that each one of the functions C(h, Ω), P (h, Ω) has simple zero at each irre-
ducible component of their common zero hypersurface outside S. Hence, the
ratio C(h, Ω)/P (h, Ω) is a nowhere vanishing (at most) double-valued func-
tion holomorphic outside the hypersurface S. It has at most a polynomial
growth, as (h, Ω) tends to S or to infinity by definition and a theorem of
P. Deligne [2, thm., III.1.8]. Recall that the polynomial Σ(h) is irreducible.
Hence, the previous ratio is a power s of Σ(h) up to multiplication by
constant. This proves (2.1). To find s, we use the following

Proposition 2.6. — The function C(h, Ω) is homogeneous in h of the
degree −n2.

Proof. — Let b ∈ C \ 0. Let us compare C(h, Ω) and C(bh, Ω). By def-
inition, for any t ∈ C the value at t of the function ∆(t) corresponding
to a polynomial H = h is equal to the value at bt of that correspond-
ing to bh, i.e., ∆(t) = C(h, Ω)tn

2
= C(bh, Ω)(bt)n2

. Therefore, C(bh, Ω) =
b−n2

C(h, Ω). This proves Proposition 2.6. �

By definition, a polynomial Pd(h, Ω) is independent on h for d < n

and is homogeneous in h of degree 2(d − n + 1) for d > n. Therefore,
the polynomial P is homogeneous in h of degree n(n − 1). Recall that
deg Σ(h) = 2n. Therefore, by Proposition 2.6, the power s in (2.1) is equal
to 1

2n (−n2−n2 + n) = 1
2 −n. This proves (1.19) modulo the calculation of

the constant Cn, which will be done in Section 3.
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2.2. Marked basis of vanishing cycles

All the definitions and the statements of the present Subsection are con-
tained in [1].

Firstly we recall the definition of a local vanishing cycle.

Lemma 2.7 (Morse lemma). — A holomorphic function having a Morse
critical point may be transformed to a sum of a nondegenerate quadratic
form and a constant term by an analytic change of coordinates near this
point.

Corollary 2.8. — Consider a holomorphic function in C2 having a
Morse critical point with a critical value a. There exists a ball centered at
the critical point whose intersection with each level curve corresponding to
a value close to a of the function is diffeomorphic to an annulus.

Definition 2.9. — A generator of the first homology group of the latter
intersection annulus (considered as a cycle in the homology of the global
level curve) is called a local vanishing cycle corresponding to a.

A local vanishing cycle is well defined up to change of orientation.

Definition 2.10. — Let H be an ultra-Morse polynomial of degree
n + 1 > 2, aj , j = 1, . . . , n2, be its critical values, a be one of them.
Let t0 ∈ B = C \ {a1, . . . , an2}, α : [0, 1] → C be a path from t0 to a such
that

(2.2) α[0, 1) ⊂ B.

For any s ∈ [0, 1] close to 1 let δ(t), t = α(s), be a local vanishing cycle
on St corresponding to a. Consider the extension of δ along the path α up
to a continuous family of cycles δ(s) in complex level curves H = α(s). The
homology class δ = δ(0) ∈ H1(t0) is called a cycle vanishing along α.

Definition 2.11. — Let H, aj , t0 be as in the previous definition. Con-
sider a set of paths αj , j = 1, . . . , µ, from t0 to aj that satisfy (2.2). Suppose
these paths are neither pairwise nor self intersected. Then the set of cy-
cles δj ∈ H1(t0) vanishing along αj , j = 1. . . . , µ, is called a marked set of
vanishing cycles on the level curve H = t0.

Lemma 2.12. — Any marked set of vanishing cycles is a basis in the
first integer homology group of the level curve.

Lemma 2.13. — The images of any vanishing cycle under monodromy
operators along all the loops generate the previous homology group.
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2.3. A vanishing criterium for Abelian integral

Denote Ω0 the space of polynomials in two complex variables (x, y).
By Ω1 denote the space of polynomial 1-forms. By Ω1

n ⊂ Ω1 denote the
subspace of forms of degrees at most n.

Let H(x, y) be a complex polynomial. Define

KH = dΩ0 + Ω0dH =
{
df + gdH | f, g ∈ Ω0

}
.

In the proof of Lemma 2.3 we use the following

Theorem 2.14 (see [5], [8], [9]). — Let H be an arbitrary ultra-Morse
polynomial of degree n + 1 > 2. Let ω ∈ Ω1 be a 1-form such that for
any t ∈ C and any cycle γ ∈ H1(t)∫

γ

ω = 0.

If deg ω 6 n, then dω = 0.(1) In general case, if there are no restriction on
degree, then ω ∈ KH .

Addendum to Theorem 2.14. — Theorem 2.14 holds if H is replaced
by generic homogeneous polynomial.

Remark 2.15. — As it was shown in [5], the last statement of Theo-
rem 2.14 (general case) holds for arbitrary complex polynomial in two vari-
ables with isolated critical points, provided that all the fibers H−1(t) are
connected. A generalization of this fact to arbitrary dimension was proved
in [3] (and also in [13] but under additional conditions on the polynomial).

Corollary 2.16. — Theorem 2.14 holds true, if the assumption on the
integral is replaced by ∫

δt

ω = 0,

where δt is a family of cycles vanishing to some critical value.

Proof. — The monodromy images of a vanishing cycle generate H1(t)
(Lemma 2.13). This together with Theorem 2.14 implies the corollary. �

Proof. — of Theorem 2.14(2) For t ∈ C denote St = {H(x, y) = t}.
Let us firstly consider that ω ∈ Ω1

n. Let us prove the first statement of
Theorem 2.14. We give a sketch of the proof here: a more detailed proof
may be found in [8], [9]. Consider a straight line L which is generic with

(1) This first statement of Theorem 2.14 was firstly proved by Yu. S. Ilyashenko [8], [9].
General Theorem 2.14 (including the second statement) was proved by L. Gavrilov [5].
(2) From unpublished paper by Yu. S. Ilyashenko
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respect to H. This means that H|L is a polynomial of degree n + 1, with
exactly n critical points; denote them q1, . . . , qn. For any s ∈ C2 lying on
a noncritical level curve of H, denote by b1(s), . . . , bn+1(s) the intersection
points of the level curve SH(s) : H = H(s) with L. Let γj(s) be a real
curve in SH(s) with the beginning at bj(s) and the endpoint s. Consider
the function

(2.3) Q(s) =
1

n + 1

n+1∑
1

∫
γj(s)

ω.

This function is well defined on any noncritical level curve St for t 6=
H(qj), j = 1, . . . , n. Indeed, it depends on s only, not on the choice of the
curves γj(s): replacing γj(s) by another curve λj(s) ⊂ St with the same
endpoints adds to Q(s) an integral of ω over the cycle [γj(s) ◦ λ−1

j (s)] ∈
H1(SH(s)); this integral is zero by assumption.

Formula (2.3) implies that

(2.4) d(Q |SH(s)) = ω |SH(s)

When the above chosen s ranges over a small disc transversal to the level
curves of H, the arcs γj(s) may be chosen to depend analytically on s.
Hence, Q is a holomorphic function in its domain. This function is bounded
in any compact set and well defined outside a finite union of algebraic
curves. By the theorem on removable singularities, Q may be holomorphi-
cally extended to all of C2.

The coefficients of the form ω are polynomials of degree less than n + 1,
and level curves of H near infinity ressemble those of the homogeneous
polynomial h, which is the highest homogeneous part of H. Hence, the
function Q grows no faster than a polynomial of degree no greater than
n + 1. By the Liouville theorem, Q itself is such a polynomial.

In the assumptions of Theorem 2.14 we constructed a polynomial Q of
degree less than n + 2 whose differential restricted to level curves of H

coincides with ω, see (2.4).
Let ω = F dx+Gdy, dQ = Qxdx+Qydy. The difference between these

forms vanishes on the Hamiltonian vector field (Hy,−Hx). Hence

(2.5) (Qx − F )Hy − (Qy −G)Hx = 0.

The polynomials Hy,Hx are relatively prime and their degrees equal n be-
cause H is ultra-Morse. The degrees of the polynomials in the parenthesis
are less than n + 1. Hence, Qx − F = cHx, Qy −G = cHy for some c ∈ C.
Therefore, the form ω = dQ− cdH is exact. The first statement of Theo-
rem 2.14 is proved.
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Let us now consider that ω is a 1-form of arbitrary degree satisfying the
conditions of Theorem 2.14. Let us prove the second statement of Theo-
rem 2.14.

Formula (2.5) was obtained without any restriction to degrees of the
coefficients of the form ω. Without these restrictions, it implies:

Qx − F = gHx, Qy −G = gHy

for some polynomial g. Hence ω = dQ − gdH ∈ KH . Theorem 2.14 is
proved �

Proof of Addendum to Theorem 2.14 (Yu. S. Ilyashenko). — The previ-
ous proof works for any polynomial H with relatively prime first derivatives.
In particular, it works for generic homogeneous polynomial h taken instead
of H and proves the Addendum. �

2.4. Nonvanishing and h-nondegeneracy. Proof of Lemma 2.3

We have already shown (Proposition 2.2) that ∆(t) is a polynomial. Let
us prove (1.18). For t = aj(H), the j’th column of I(t;H) vanishes. Hence

∆
(
aj(H)

)
= 0.

Therefore, ∆ is divisible by t − aj(H) for any j = 1, . . . , µ = n2. Proposi-
tion 2.19 below shows that, in the assumptions of Lemma 2.3 deg ∆ = µ.
(This together with the previous statement implies that ∆(t) is

∏
(t− aj)

up to constant factor.)
The last degree equality is proved by comparison between H and its

highest form h. The following proposition is the first step of this proof. It
is stated in more general setting than needed for the proof of Lemma 2.3.

Proposition(3) 2.17. — Let ω1, . . . , ωµ be a collection of polynomial 1-
forms, µ = n2, di be the maximal degree of the polynomial coefficients of ωi.
Let βi be the form obtained from ωi by dropping all the terms of degree
lower than di. Let H be an ultra-Morse polynomial, deg H = n+1, and h its
highest homogeneous part. Let γj(t, H), γj(t, h) be bases in H1({H = t}, Z)
and H1({h = t}, Z) respectively,

J =
( ∫

γj(t;H)

ωi

)
, K =

( ∫
γj(t,h)

βi

)
.

(3) From unpublished paper by Yu. S. Ilyashenko.
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Suppose that the ratio

(2.6) σ =
∑

di + µ

n + 1
is integer. Then the determinant det J is a polynomial of degree no greater
than σ. Moreover,

det K = qtσ, q ∈ C; deg(det J− det K) < σ.

Remark 2.18. — Proposition 2.17 holds true if the ultra-Morse poly-
nomial H is replaced by its highest homogeneous part h in the definition
of J. This follows from the statement of the proposition in the case of
homogeneous 1-forms ωi.

Proof. — The determinants under consideration are polynomials (For
the ultra-Morse polynomial H this follows from Proposition 2.2; for the
homogeneous polynomial h this follows from the same Proposition applied
to its ultra-Morse deformation). Let us first consider the polynomial det K.
The ith string Ki of the matrix K is a homogeneous vector function of the
form

Ki = tνiqi, νi =
di + 1
n + 1

, qi ∈ Cµ.

Let Q be the matrix with the strings qi. Then

(2.7) det K = tσ det Q.

Simple rescaling arguments imply that the i’th string of J is tνi(qi + o(1)),
as t →∞. Hence,

det J = tσ
(
det Q + o(1)

)
.

This implies the proposition. �

Proposition 2.17 reduces Lemma 2.3 to the homogeneous case, which is
discussed below.

Recall that vanishing cycles of a generic homogeneous polynomial h are
defined as the limits of vanishing cycles for an ultra-Morse perturbation H

of h by lower terms, as these terms tend to zero.

Proposition 2.19. — Let ωi be homogeneous polynomial 1-forms as
in (1.4), h be a generic homogeneous polynomial of degree n + 1, t ∈ C \ 0,
δj(t;h) ∈ H1(t) be a basis of cycles in its level curve h = t, j = 1, . . . , n2.
Let µ = n2,

K =
( ∫

δj(t;h)

ωi

)
Then

(2.8) det K = C(h, Ω) tµ,
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C(h, Ω) 6= 0 if and only if Ω is h-nondegenerate

Proof. — Firstly we prove that the determinant (2.8) is a degree n2

monomial. Then we prove the last nonvanishing criterium for C(h, Ω).
Proof of formula (2.8)(4) . — Let us calculate det K using Proposition 2.17

applied to forms (1.4). For these forms the number σ from (2.6) is equal
to µ. Indeed, di = `(i) + m(i) + 1, νi = (di + 1)/(n + 1). Hence,

σ =
1

n + 1

∑
06k16n−1
06k26n−1

(k1 + k2 + 2) =
n2(n + 1)

n + 1
= n2 = µ.

This together with the statement of Proposition 2.17 on det K implies (2.8).
�

Proof of the statement that h-nondegeneracy implies C(h, Ω) 6= 0(5) . —
Let no linear combination of Dωi belong to the gradient ideal of h. Let
us show that C(h, Ω) 6= 0. We prove this by contradiction. Suppose that
C(h, Ω) = 0. Then (det K)(t) ≡ 0. Hence, the determinant of the corre-
sponding matrix Q = K(1) from (2.7) vanishes, so its strings are linearly
dependent. The linear dependence for the strings of K(1) with coefficients σi∑

σiq
i = 0,

implies linear dependence for the strings of K(t) with the t-depending co-
efficients σit

−νi .
Consider the following 1-form with algebraic coefficients:

α =
∑

h−νiσiωi.

This form has zero integrals over all 1-cycles of the Riemann surfaces h = t,
t ∈ C∗, i.e., is exact on the nonsingular level curves of h. The form α has
branching points at the lines h = 0. A circuit around any one of these lines,
which adds 2π to arg h, transforms α into

∆α =
∑

e−2πiνih−νiσiωi.

For any ν ∈ Z/(n+1) denote by χν the character of the additive group Zn+1

determined by χν(1) = e−2πiν . Then k circuits produce

∆kα =
∑

χνi(k)h−νiσiωi.

Let
A(ν) =

{
i | νi = ν, σi 6= 0

}
, αν =

∑
i∈A(ν)

σiωi.

(4) From unpublished paper by Yu. S. Ilyashenko.
(5) From unpublished paper by Yu. S. Ilyashenko
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Note that νi range over the set {2/(n + 1), . . . , (2n− 1)/(n + 1), 2n/(n + 1)}.
Hence, for any ν only one of the two sets, A(ν + 1) or A(ν − 1), may be
nonempty. In what follows, fix an arbitrary ν in such a way that A(ν) 6= ∅,
A(ν + 1) = ∅; no assumption about A(ν − 1). The form

βν =
1

n + 1

n∑
k=0

χ−1
ν (k)∆kα

is exact when restricted to the nonsingular level curves of h and β polyno-
mial. On the other hand, the sum of all the values of the character χ−1

ν χνi

is zero provided that the character is not identically 1. Hence,

βν =
∑

i∈A(ν)

h−νσiωi +
∑

i∈A(ν−1)

h−(ν−1)σiωi.

The form

β = hνβν =
∑

i∈A(ν)

σiωi + h
∑

i∈A(ν−1)

σiωi

is exact on the level curves of h and is polynomial. By Addendum to The-
orem 2.14, β ∈ Kh, that is

(2.9) β = df + gdh

for some polynomials f and g. Suppose that A(ν − 1) 6= ∅. Otherwise, the
form

∑
i∈A(ν) σiωi belongs to Kh, which is brought to contradiction even

simpler, than it is done below for (2.9).
Taking the differential of both sides of (2.9) we get:( ∑

i∈A(ν)

σiDωi)dy ∧ dx = −hd
( ∑

i∈A(ν−1)

σiωi

)
− dh ∧

∑
i∈A(ν−1)

σiωi + dg ∧ dh;

σi 6= 0 for i ∈ A(ν) by definition.

Together with the Euler identity (n+1)h = zhz +whw, this implies that
a nontrivial linear combination of the polynomials Dωi, namely,∑

i∈A(ν)

σiDωi

belongs to the gradient ideal of h — a contradiction. �

Proof of the statement that h-degeneracy implies C(h, Ω) = 0. — Now
let a nontrivial linear combination

(2.10)
∑

d(i)=d

ciDωi
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vanish (in the case, when d < n) or belong to the gradient ideal of h (in
the case, when d > n). Let us show that C(h, Ω) = 0, or equivalently,
determinant (2.8) vanishes.

In the first case, when d < n,

(2.11)
∑

ciDωi = Dω′ = 0; ω′ =
∑

ciωi,

so the form ω′ is closed (thus, exact). Hence, its integral over any cycle in
H1(t) vanishes. The string consisting of its integrals along basic cycles is a
linear combination of strings of the Abelian integral matrix K. Therefore,
the determinant of the latter vanishes, and thus, C(h, Ω) = 0.

Now let us consider the case, when n 6 d 6 2n− 2 and

(2.12)
{

for any d′ 6 n−1 the polynomials (Dωj)d(j)=d′

are linearly independent.

(If condition (2.12) is not satisfied, then the previous case takes place.) Let
us show that det K = 0. To do this, let us introduce the following notations.

For k ∈ N denote Ω̃0
k (Ω̃1

k) the space of homogeneous polynomials (re-
spectively, 1-forms) of degree k in two complex variables. For k < 0 we
put Ω̃0

k = 0.

To show that det K = 0, we use the following properties of the opera-
tor D.

Remark 2.20. — For any k ∈ N ∪ 0 the operator D defined by (1.15)
induces an isomorphism between the factor-space Ω̃1

k/dΩ̃0
k+1 and the

space Ω̃0
k−1. This follows from the definition of D and the statement that

each polynomial 2-form on C2 is exact.

Corollary 2.21. — The dimension of the factor-space Ω̃1
k/dΩ̃0

k+1 is
equal to k.

Proposition 2.22. — Let h be a generic homogeneous polynomial of
degree n + 1 > 2, D be the operator defined by (1.15). Let n 6 d 6 2n− 1,
∇d be the intersection of the space Ω̃0

d with the gradient ideal of h. The
dimension of the linear space ∇d is equal to 2(d− n + 1). The operator D

induces an isomorphism D : hΩ̃1
d−n → ∇d.

Proof. — The image D(hΩ̃1
k) is contained in ∇d by definition and Eu-

ler identity. The dimensions of the both spaces hΩ̃1
d−n and ∇d are equal

to 2(d − n + 1). For the former space this statement follows from def-
inition. The latter space has the basis of the 2(d − n + 1) polynomi-
als x`yd−n−` ∂h/∂y, x`yd−n−` ∂h/∂x, 0 6 ` 6 d − n, cf. the proof of
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Proposition 2.4. Now for the proof of Proposition 2.22 it suffices to show
that the restriction of D to hΩ̃1

d−n has zero kernel. We prove this state-
ment by contradiction. Suppose the contrary, i.e., there exists a nonzero
ω ∈ Ω̃1

d−n such that d(hω) = 0. Then hω is a closed polynomal homo-
geneous form, and hence, hω = dQ, Q is a homogeneous polynomial of
degree d + 2 < 2n + 2 = 2deg h. It follows from definition and genericity
of h that Q vanishes on the n+1 zero lines of h and has order 2 zero on each
of them. Therefore, deg Q > 2 deg h — a contradiction. Proposition 2.22
is proved. �

For a 1-form ω̃ by Iω̃ denote the string of the integrals of ω̃ over the basic
cycles in H1(t).

Let ci be the coefficients of linear combination (2.10), ω′ be the corre-
sponding 1-form defined in (2.11) (recall that n 6 d 6 2n−2). To show that
det K = 0, we construct a vanishing t-depending nontrivial linear combina-
tion of the strings of K. To do this, we prove that there exists an ω′′ ∈ Ω̃1

d−n

such that

(2.13) ω = ω′ + hω′′ ∈ dΩ0.

Then the string Iω of the integrals of the form ω vanishes. On the other
hand, Iω is a nontrivial t-depending linear combination of strings of the
matrix K. Indeed, by definition,

Iω = Iω′ + Ihω′′ = Iω′ + tIω′′ .

The string Iω′ is the linear combination of strings of K with the coeffi-
cients ci from (2.10); this combination is nontrivial by assumption. Now
for the proof of the previous statement on Iω it suffices to show that the
string Iω′′ is a linear combination of strings of K with constant coefficients.
The d− n forms (ωj)d(j)=d−n−1 form a basis in the factor-space of Ω1

d−n

modulo closed forms (by Corollary 2.21 and assumption (2.12)). Therefore,
ω′′ is equal (modulo closed forms) to a linear combination

ω′′ =
∑

d(j)=d−n−1

c′jωj .

Hence, Iω′′ is the linear combination of strings of K with the coefficients c′j .
Therefore, (2.13) implies that det K = 0.

Inclusion (2.13) is equivalent to the equation

−Dω′ = D(hω′′).

By assumption, the polynomial −Dω′ (which is the linear combination
(2.10) taken with the sign ‘−’) belongs to the gradient ideal. This together
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with Proposition 2.22 implies existence of a solution ω′′ ∈ Ω1
d−n to the

last equation. This solution is a form ω′′ we are looking for. The proof of
Lemma 2.3 is completed. �

2.5. Simplicity of zeros of P (h, Ω) and C(h, Ω).
Proof of Lemma 2.5

We have already shown (Lemma 2.3) that the zero set of C(h, Ω) consists
of those pairs (h, Ω) such that Ω is h-degenerate. Now let us prove that for
any fixed generic h the gradient in Ω of the function C(h, Ω) does not
vanish at the points (h, Ω) of its zero set satisfying the following genericity
conditions:

(2.14)


there exists a unique d > n such that a nontrivial linear
combination of Dωi, d(i) = d, belongs to the gradient ideal
of h; this linear combination is unique up to multiplication
by constant,

i.e., the rank (modulo the gradient ideal) of the system of the 2n − d − 1
polynomials Dωi is equal to 2n− d− 2.

For any fixed generic h the set of the form tuples Ω satisfying (2.14)
is Zariski open and dense in the zero set of C(h, Ω). This follows from
the statement that for each d, n 6 d 6 2n − 1, the intersection ∇d of
the gradient ideal of h with the space Ω̃0

d of homogeneous polynomials of
degree d has codimension 2n−d−1 in Ω̃0

d, which is equal to the number of
the forms ωi, d(i) = d: dim∇d = 2(d− n + 1) by the previous Proposition.
Fix a point (h, Ω) satisfying (2.14). Let us show that the gradient of C in
the variables Ω at (h, Ω) does not vanish. There is an index ` such that the
2n − d − 2 polynomials Dωi, i 6= l, are linearly independent modulo ∇d

(the last condition of (2.14)). Let us fix such an `. Then the gradient of the
function C along the space of forms ω` (with fixed ωi corresponding to i 6= `)
is nonzero. Indeed, let q` be a homogeneous 1-form of the degree d + 1. The
derivative of the function C in ω` in the direction q` is equal to its value

C(h, ω1, . . . , ω`−1, q`, ω`+1, . . . , ωn2)

at h, the forms ωj with j 6= ` and q`. This value is nonzero for a typical q`,
namely, when the 2n− d− 2 polynomials Dωi, i 6= `, and Dq` are linearly
independent modulo ∇d (recall that the latter has codimension 2n− d− 1
in Ω̃0

d). This proves the statement of Lemma 2.5 for C(h, Ω). The proof of
the analogous statement for P (h, Ω) repeats the previous one with obvious
changes. Lemma 2.5 is proved. The proof of Theorem 1.17 is completed.
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3. The constant Cn

Formula (1.13) for the constant Cn given by Theorem 1.10 is proved
in 3.1–3.4.

3.1. The plan of the proof of the formula for the constant Cn

Everywhere below we suppose that H(x, y) = h(x, y) = xn+1 + yn+1

and ωi are the forms from (1.3). To find the constant Cn, we calculate the
corresponding value C(h) from (1.5) explicitly for this concrete h(x, y) and
then find Cn from formula (1.9), which expresses the value C(h) via Cn (a
more explicit version (3.7) of this formula will be proved in 3.4).

Let us sketch the calculations.
Recall the notation: (`(j),m(j)), j = 1, . . . , n2, is the lexicographic se-

quence of the n2 pairs (`,m), 0 6 `,m 6 n− 1. For any j = 1, . . . , n2 put

Ij =
∫ 1

0

x`(j)
(
1− xn+1

)m(j)+1
n+1 dx,(3.1)

IP =
n2∏

j=1

Ij .(3.2)

σ =
∏

16`<k6n+1

(εk − ε`)2, ε = e
2πi
n+1 .(3.3)

In 3.2 we express C(h) via σ and IP : we show that

(3.4) C(h) = σnIP.

In 3.3 we calculate IP : we show that

(3.5) IP =
(2π)

1
2 n(n+1)(n + 1)−

1
2 (n2+4n+3)((n + 1)!)n∏n−1

m=1(m + n + 1)!
·

Remark 3.1. — The integrals Ij are expressed via appropriate values
of B(or Γ)-function. It appears that due to the fact that the product IP

contains all the integrals Ij , one can kill all the Γ-function values in the
expression for IP by using Gauss-Legendre formula (3.19) for product of
Γ-function values over appropriate arithmetic progression segment.

In 3.4 we calculate σ: we show that

(3.6) σ = (−1)
1
2 n(n−1)(n + 1)n+1.
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Then we prove using (1.9) that

(3.7) C(h) = Cn(−1)
1
4 n(n+1)(1−2n)(n + 1)

1
2 (1−3n).

Now formula (1.13) for Cn follows from the two latter formulas and (3.4),
(3.5).

3.2. Calculation of C(h). Proof of (3.4)

By definition, C(h) is equal to the value of the determinant ∆(t) at t = 1.
Let us calculate this value.

Let F = {H(x, y) = 1}. The fiber F admits the action of the group
Z = {(`,m) | `,m = 0, . . . , n} by multiplication by ε` and εm of the
coordinates x and y respectively.

Let (`(j),m(j)), j = 1, . . . , n2, be the lexicographic sequence of the pairs
(`,m), 0 6 `,m 6 n− 1. We calculate the value ∆(1) for appropriate basis
δ1, . . . , δn2 in H1(F, Z) (defined below) such that each δj with j > 1 is
obtained from δ1 by the action of the element (`(j),m(j)) ∈ Z. (This basis
is completely defined by choice of δ1. The basic cycles δj are not necessarily
vanishing.)

To define δ1, let us consider the fiber F as a covering over the x-axis
having the branching points with the x-coordinates εj , j = 0, . . . , n. It is
the Riemann surface defined by the equation y = (1− xn+1)1/(n+1).

Consider the radial segments [0, 1] and [0, ε] of the branching points 1
and ε respectively in the x-axis; the former being oriented from 0 to 1, and
the latter being oriented from ε to 0. Their union is an oriented piecewise-
linear curve (denote it by φ). Let φ0 and φ1 be its liftings to the covering F

such that φ0 contains the point (0, 1) and φ1 is obtained from φ0 by mul-
tiplication of the coordinate y by ε. The curves φi, i = 0, 1, are oriented
from their common origin (ε, 0) to their common end (1, 0).

Definition 3.2. — Let F , φ, φ0, φ1 be the same, as above. Define
δ1 ∈ H1(F, Z) to be the homology class represented by the union of the
oriented curve φ0 and the curve φ1 taken with the inverse orientation.

Proposition 3.3. — Let F , δ1, `(i), m(i) be as above, δj ∈ H1(F, Z),
j = 2, . . . , n2, be the homology classes obtained from δ1 by the actions of
the elements (`(j),m(j)) ∈ Z. The classes δj , j = 1, . . . , n2, generate the
homology group H1(F, Z).
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Remark 3.4. — The complete Zn+1 ⊕ Zn+1-orbit of the cycle δ1 has
(n + 1)2 elements. The discussion below shows that they are linearly de-
pending and the n2 cycles obtained from δ1 by the actions of the n2 elements
(`,m), 0 6 `,m 6 n− 1, form a basis in H1(F, Z).

Proof. — Let Γ =
⋃n

j=0[0, εj ] be the union of the radial segments of the
branching points of the fiber F in the x-axis. Let Γ̃ ⊂ F be the preim-
age of the set Γ under the projection of F to the x-axis. The set Γ̃ is a
deformation retract of the fiber F (hence, the inclusion Γ̃ → F is a homo-
topy equivalence). This follows from the statement that Γ is a deformation
retract of the x-axis that contains all the branching points and from the
covering homotopy theorem. The group H1(Γ̃, Z) is generated by δj by
construction. Hence, this remains valid for the whole fiber F . This proves
Proposition 3.3. �

Let us calculate the value ∆ = ∆(1) in the basis δj from Proposition 3.3.
To do this, we use the following

Remark 3.5. — Let ωj be the forms (1.3), δj be as in Proposition 3.3,
Ij,r = Ij,r(1) be the corresponding integrals from (1.1), (`(j),m(j)) be the
lexicographic integer pair sequence, 0 6 `,m 6 n−1. For any j, r = 1, . . . , n2

(3.8) Ij,r = εk(j,r)Ij,1, k(j, r) = `(r)
(
`(j) + 1

)
+ m(r)

(
m(j) + 1

)
.

Formula (3.8) implies the following

Corollary 3.6. — Let ωj be the forms (1.3), F , δj be as in Propo-
sition 3.3, I = (Ij,r) = (Ij,r(1)) be the corresponding matrix of the inte-
grals (1.1), ∆ be its determinant. Put

Π =
n2∏

j=1

Ij,1.

Let (`(j),m(j)) be the above lexicographic sequence, k(j, r) be the same,
as in (3.8), G = (gjr) be the n2 × n2-matrix with the elements

(3.9) gjr = εk(j,r).

Then

(3.10) ∆ = Πdet G.

Thus, to find ∆, which is equal to C(h), it suffices to calculate the ex-
pressions Π and det G from (3.10). Firstly we calculate det G explicitly. We
show that

(3.11) det G = (n + 1)−2nσn.
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Then we express Π via IP . We show that

(3.12) Π = (n + 1)2nIP.

This will prove (3.4).

Proof of formula (3.11) for det G. — In the proof of (3.11) we use the
formula

(3.13)
n∏

`=1

(1− ε`) = n + 1,

which follows from the fact that its left-hand side is equal to the value at
x = 1 of the polynomial (xn+1 − 1)/(x− 1) =

∑n
j=0 xj . The matrix G is

the tensor square of the matrix

Q = (qjr) =


1 ε · · · εn−1

1 ε2 · · · ε2(n−1)

...
...

...
...

1 εn · · · εn(n−1)

 .

This follows from definition. Therefore, det G is the 2n-th power of det Q,
which is van der Monde:

(3.14) det G = (det Q)2n =
( ∏

16`<k6n

(εk − ε`)
)2n

=
( ∏

16`<k6n

(εk − ε`)2
)n

.

The product in the right-hand side of (3.14) is equal to (n+1)−2σ: the defin-
ing expression (3.3) for σ is obtained by multiplying the previous product
by ∏

16`6n

(1− ε`)2 = (n + 1)2

(see (3.13)). This together with (3.14) proves (3.11). �

Proof of formula (3.12) for Π. — Let us express Ij,1 via the integral Ij

from (3.1). We show that

(3.15) Ij,1 = (1− εm(j)+1)(1− ε`(j)+1)Ij .

This together with the definition of Π (in Corollary 3.6) and (3.13) will
imply (3.12).

Let φ0, φ1 be the oriented curves from Definition 3.2. Then

Ij,1 =
∫

δ1

x`(j)ym(j)+1dx(3.16)

=
∫

φ0

x`(j)ym(j)+1dx−
∫

φ1

x`(j)ym(j)+1dx.
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The second integral in the right-hand side of (3.16) is equal to the first one
times εm(j)+1 (by definition). Analogously, the first integral in its turn is the
integral along the segment [0, 1] (which is equal to Ij) minus the one along
the segment [0, ε] oriented from 0 to ε. The integral along the last segment
is equal to ε`(j)+1Ij . This together with the two previous statements implies
(3.15). Formula (3.12) is proved. The proof of formula (3.4) is completed.

�

3.3. Calculation of IP . Proof of (3.5)

To calculate IP =
∏n2

j=1 Ij , we firstly express it via appropriate values
of B- and Γ-functions. Recall their definitions:

B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx, Γ(a) =
∫ +∞

0

xa−1e−xdx.

The variable change u = xn+1 transforms integral (3.1) to

1
n + 1

∫ 1

0

u
`(j)+1
n+1 − 1(1−u)

m(j)+1
n+1 du =

1
n + 1

B
(`(j) + 1

n + 1
, m(j) + 1

n + 1
+1

)
.

Therefore,

(3.17) IP = (n + 1)−n2 ∏
06`,m6n−1

B
( ` + 1

n + 1
, m + 1

n + 1
+ 1

)
.

To calculate the product in the right-hand side of (3.17), we use the
following expression of B-function via Γ-function:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

·

Therefore, by (3.17),

(3.18) IP = (n + 1)−n2

(∏n−1
`=0 Γ( `+1

n+1 )
)n (∏n−1

m=0 Γ(m+1
n+1 + 1)

)n

∏n−1
`,m=0 Γ( `+m+2

n+1 + 1)
·

To calculate the products in (3.18), we use the following identities for Γ-
function [3]:

Γ(n) = (n− 1)! for any n ∈ N,

(3.19)
n∏

`=0

Γ
(
z +

`

n + 1

)
= (2π)

1
2 n(n + 1)

1
2−(n+1)zΓ

(
(n + 1)z

)

ANNALES DE L’INSTITUT FOURIER



FORMULA FOR PERIOD DETERMINANT 915

(Gauss-Legendre formula). One gets

(3.20)
n−1∏
`=0

Γ
( ` + 1

n + 1

)
= (2π)

1
2 n(n + 1)−

1
2 ,

(3.21)
n−1∏
m=0

Γ
(m + 1

n + 1
+ 1

)
= (2π)

1
2 n(n + 1)

1
2−(n+2)(n + 1)!

by applying (3.19) to z = 1/(n + 1) and z = (n + 2)/(n + 1) respectively
and subsequent substitutions Γ(1) = 1, Γ(n+2) = (n+1)!. Let us calculate
the double product in `,m in (3.18). For any fixed m = 0, . . . , n− 1

n−1∏
`=0

Γ
(` + m + 2

n + 1
+ 1

)
=

(
Γ
(m + 1

n + 1
+ 1)

)−1

(2π)
1
2 n(n + 1)

1
2−(m+n+2)(m + n + 1

)
!

by (3.19) applied to z = (m + 1)/(n + 1) + 1. Therefore,

n−1∏
`,m=0

Γ
(` + m + 2

n + 1
+ 1

)
=

( n−1∏
m=0

Γ
(m + 1

n + 1
+ 1

))−1

(2π)
1
2 n2

(n + 1)
1
2 n−

∑n−1

m=0
(m+n+2)

×
n−1∏
m=0

(m + n + 1)!

Substituting formula (3.21) for the first product in the right-hand side of
the last formula and summarizing the power of n + 1 yields

n−1∏
`,m=0

Γ
(` + m + 2

n + 1
+ 1

)
(3.22)

= (2π)
1
2 (n2−n)(n + 1)−

3
2 (n2−1)

n−1∏
m=1

(m + n + 1)!.

Substituting (3.20)–(3.22) to (3.18) yields (3.5).
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3.4. The constants σ and C(h). Proof of (3.6) and (3.7)

Proof of (3.6). — By definition, see (3.3), one has

σ = (−1)
1
2 n(n+1)

∏
16`<k6n+1

(
(εk − ε`)(ε` − εk)

)
= (−1)

1
2 n(n+1)

∏
16k6n+1

( ∏
16`6n+1

` 6=k

(εk − ε`)
)

= (−1)
1
2 n(n+1)

∏
16k6n+1

( n∏
`=1

εk(1− ε`)
)
.

The second (inner) product in the right-hand side of the last formula is
equal to (n + 1)εnk by (3.13), so,

σ = (−1)
1
2 n(n+1)ε

1
2 n(n+1)(n+2)(n + 1)n+1 = (−1)

1
2 n(n−1)(n + 1)n+1.

�

Proof of (3.7). — Let us calculate the corresponding values Σ(h) and P (h)
from formula (1.9) for C(h). By definition, in our case each matrix Ad(h) is
diagonal of the size 2(d−n + 1) with the diagonal elements equal to n + 1,
so, its determinant is equal to (n + 1)2(d−n+1). Therefore,

P (h) =
2n−2∏
d=n

det Ad(h) = (n + 1)n(n−1).

Let us calculate Σ(h). By (1.7), (3.3) and (3.6),

Σ(h) =
( ∏

16`<k6n+1

e
πi

n+1 (εk − ε`)
)2

= (−1)nσ = (−1)
1
2 n(n+1)(n + 1)n+1.

The two previous formulas together with (1.9) imply (3.7). The proof
of (1.13) is completed. �
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