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RELATIVE AMPLENESS IN RIGID GEOMETRY

by Brian CONRAD (*)

Abstract. — We develop a rigid-analytic theory of relative ampleness for line
bundles and record some applications to faithfully flat descent for morphisms and
proper geometric objects. The basic definition is fibral, but pointwise arguments
from the algebraic and complex-analytic cases do not apply, so we use cohomologi-
cal properties of formal schemes over completions of local rings on rigid spaces. An
analytic notion of quasi-coherence is introduced so that we can recover a proper
object from sections of an ample bundle via suitable Proj construction. The locus
of relative ampleness in the base is studied, as is the behavior of relative ampleness
with respect to analytification and arbitrary extension of the base field. In partic-
ular, we obtain a quick new proof of the relative GAGA theorem over affinoids.

Résumé. — Nous développons une théorie analytique rigide de l’amplitude re-
lative pour les fibrés en droites et notons quelques applications à la descente fi-
dèlement plate de morphismes et d’objets géométriques propres. Nous utilisons la
définition fibrée, mais nous ne pouvons pas appliquer les arguments ponctuels des
cas algébrique et analytique complexe. Nous devons donc utiliser des propriétés
cohomologiques des schémas formels sur les anneaux locaux complétés des espaces
rigides. Nous introduisons une notion analytique de quasi-cohérence pour retrou-
ver un objet à partir des sections d’un fibré ample par une construction Proj
convenable. Nous étudions le lien d’amplitude relative et le comportement de l’am-
plitude relative par rapport à l’analytification et à l’extension du corps de base
arbitraire. En particulier, nous obtenons une démonstration nouvelle rapide du
théorème GAGA relatif sur les affinoïdes.

1. Introduction

1.1. Motivation

The aim of this paper is to develop a rigid-analytic theory of relative am-
pleness for line bundles, and to record some applications to rigid-analytic
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1050 Brian CONRAD

faithfully flat descent for morphisms and for proper geometric objects
equipped with a relatively ample line bundle. (For coherent sheaves on
rigid spaces, the theory of faithfully flat descent is established in [5] via
Raynaud’s theory of formal models [7].) Such a theory could have been
worked out decades ago, as the tools we use have been known for a long
time. Our primary motivation for working out the theory now is for appli-
cations in the context of p-adic modular forms on more general groups; as
a first step in this direction, in [12] and [13] the theory in the present paper
is used to develop a relative theory of arbitrary-level canonical subgroups
in rather general rigid-analytic families of generalized elliptic curves and
abelian varieties over p-adic fields. (The key point in this application is to
have results not depending on the specification of discrete parameters such
as the degree of a polarization.)

For a proper rigid space X over a non-archimedean field k, an invert-
ible sheaf L on X is ample if some high tensor power L⊗N is the pullback
of OPn

k
(1) under some closed immersion j : X ↪→ Pn

k into a rigid-analytic
projective space. The cohomological criterion for ampleness works, though
the proof of the criterion in the algebraic and complex-analytic cases uses
pointwise arguments and so some modifications are required in the rigid-
analytic case. In [16, §4] a few aspects of a theory of ampleness are devel-
oped for quasi-compact separated rigid spaces X, taking the cohomological
criterion as the starting point, but we develop what we need for k-proper X

ab ovo because our intention is to develop a relative theory (for applica-
tions in [12] and [13]) and so we prefer to set up the absolute case in a way
that best prepares us for relativization.

If f : X → S is a proper morphism between rigid spaces over k, and L is
a line bundle on X, analogy with the case of proper schemes [15, IV3, 9.6.4]
motivates the following definition: L is S-ample (or relatively ample over S)
if Ls is ample on the rigid space Xs over k(s) for all s ∈ S. We adopt this as
the initial definition because it is a property that can be checked in abstract
situations. Does this definition satisfy all of the properties one desires? For
example, is relative ampleness preserved by arbitrary extension on k (for
quasi-separated S)? This would hold if the relationship between ampleness
and projective embeddings relativizes, but even this relationship is not
obvious:

1) Does there exist an admissible covering {Sα} of S such that each
Xα = f−1(Sα) admits a closed Sα-immersion into some projective space Pnα

Sα

such that some positive tensor power L⊗Nα
Xα is isomorphic to the pull-

back of O(1)?
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RELATIVE AMPLENESS IN RIGID GEOMETRY 1051

2) Is the graded OS-algebra A =
⊕

n>0 f∗L⊗n locally finitely generated?
3) Can we recover X from A (as we can in the case of schemes, by using

relative Proj)?
These properties of A are a trivial consequence of an affirmative answer

to the question on relative projective embeddings (due to Köpf’s relative
GAGA theorems over affinoids [33, §5]), but in fact we have to argue in
reverse: relative projective embeddings (given an S-ample L) will be con-
structed by using the finiteness properties of A and the reconstruction of X

from A (via an analytic Proj operation). Hence, we must study A in the
absence of relative projective embeddings.

In the complex-analytic case, Grauert and Remmert [20] provided af-
firmative answers to the preceding questions in important special cases.
Their method of proof cannot be used in the rigid-analytic case for two
reasons: the pointwise nature of our fibral definition of S-ampleness pro-
vides no obvious link with admissibility properties for covers of S, and the
arguments in [20] require the existence of a relative projective embedding
(unrelated to L). We therefore need a different approach. Grothendieck’s
existence theorem for proper formal schemes, applied over the adic noether-
ian rings ÔS,s for s ∈ S, turns out to be the right tool for our needs. Our
rigid-analytic arguments with formal schemes provide affirmative answers
to all of the above questions concerning ampleness in the rigid-analytic
case and they work verbatim in the complex-analytic case, giving new and
shorter proofs of generalizations of the theorems of Grauert and Remmert.
(The theory of formal schemes did not exist at the time that [20] was
written.) See Theorem 3.2.4, Theorem 3.2.7, and Corollary 3.2.8 for these
results.

There are more questions that naturally arise. If f : X → S is proper
and L is an invertible sheaf on X, what can be said about properties of
the locus UL of s ∈ S such that Ls is ample on Xs? For example, is UL an
admissible open (perhaps even Zariski-open)? If so, for quasi-separated S

does the formation of UL commute with any extension of the base field?
As with the above questions, we give affirmative answers via the method
of formal schemes and algebraization over the adic rings ÔS,s, except we
prove that the ampleness locus UL in S is merely a Zariski-open locus in
a (canonical) Zariski-open subset of S rather than that it is a Zariski-open
in S (Zariski-openness is not a transitive condition in analytic settings);
see Theorem 3.2.9. This structure for UL appears to be a new result even
in the complex-analytic case.

TOME 56 (2006), FASCICULE 4



1052 Brian CONRAD

1.2. Overview

Let us now briefly summarize the contents of this paper. In §2 we discuss
quasi-coherent sheaves on rigid spaces and we construct rigid-analytic ver-
sions of the relative Spec and Proj operations on locally finitely generated
quasi-coherent sheaves of algebras. (This is an extension of the techniques
in [30, II].) These operations are used in §3 to develop the theory of rel-
atively ample line bundles on rigid spaces that are proper over a base.
As a simple application, in Example 3.2.6 we obtain quick proofs of Köpf’s
relative GAGA theorem over affinoids via the theory of relative ample-
ness and the GAGA theorems over a field. Applications to representability
and faithfully flat descent are provided in §4, with close attention given
to behavior with respect to analytification and change in the ground field.
Further applications to a theory of analytification for locally separated al-
gebraic spaces over non-archimedean fields will be given in [14].

1.3. Notation and terminology

A non-archimedean field is a field k equipped with a non-trivial non-archi-
medean absolute value with respect to which k is complete. An analytic
extension field k′/k is an extension k′ of k endowed with a structure of
non-archimedean field such that its absolute value extends the one on k.
When we work with rigid spaces, they will tacitly be assumed to be rigid
spaces over a fixed non-archimedean ground field k unless we say otherwise.

Rigid-analytic projective n-space over k is denoted Pn
k ; the scheme-

theoretic counterpart is denoted Pn
Spec(k) when it arises. An analogous

convention applies to affine n-space. An algebraic k-scheme is a scheme
locally of finite type over k. (We do not require finite type, since when
working with algebraic spaces over k it is more natural to use k-schemes
that are locally of finite type.) We refer the reader to [11, §5] for a discus-
sion of properties of the analytification functor X  Xan (resp. F  Fan)
from algebraic k-schemes (resp. OX -modules) to rigid spaces over k (resp.
OXan-modules).

For a rigid space S, we use the phrase “locally on S” to mean “over
the constituents in an admissible open covering of S”. We refer the reader
to [6, 9.3.6] for a discussion of change of the analytic base field, and we
note that this construction requires the rigid space to be quasi-separated
(e.g., separated). Although non-separated algebraic k-schemes are quasi-
separated in the sense of schemes, their analytifications are never quasi-
separated in the sense of rigid geometry. Thus, in §A.2 we introduce the

ANNALES DE L’INSTITUT FOURIER
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property of pseudo-separatedness that is satisfied by analytifications of ar-
bitrary algebraic k-schemes and we prove that this property is sufficient for
the construction of reasonable change of base field functors. Thus, when-
ever discussing change of the base field for rigid spaces we assume the
spaces are either quasi-separated or pseudo-separated. (In the context of
Berkovich spaces, no such restrictions are required [3, §1.4].) A rigid space
is pseudo-separated and quasi-separated if and only if it is separated.

In order to have proofs that translate verbatim into the complex-analytic
case (up to replacing “admissible affinoid open” with “compact Stein set”),
we now review some convenient terminology related to complex-analytic
spaces. Let X be a complex-analytic space and let K ⊆ X be a compact
subset admitting a Hausdorff neighborhood. By [19, II, 3.3.1], if G is a
sheaf of sets on a Hausdorff neighborhood of K in X then the natural map
lim−→G(W )→ (G K)(K) is bĳective, where W runs over a base of opens con-
taining K. Consequently, if F and F ′ are two coherent sheaves on an open
neighborhood U of K in X then coherence of Hom(F ,F ′) over U implies
that the natural map lim−→HomOW

(F W ,F ′ W ) → HomOK
(F K ,F ′ K) is

bĳective, where W ranges over open subsets of U containing K and OK

denotes OX K . An OK-module G is coherent if G ' F K for a coherent
sheaf F on an open neighborhood of K; as F is functorial and unique
near K, a simple induction shows that if G is an OK-module and G Ki

is coherent for compact subsets K1, . . . ,Kn ⊆ K that cover K then G is
coherent. In the category of OK-modules, the full subcategory of coher-
ent sheaves is stable under the formation of kernels, cokernels, images, and
tensor products.

A compact Stein set in X is a compact subset K such that K admits a
Hausdorff neighborhood and Hi(K,G) = 0 for all i > 0 and all coherent G
on K. For such K, G(K) is a finite OK(K)-module for every coherent
sheaf G on K. Any x ∈ X has a base of neighborhoods that are compact
Stein sets [21, Ch. III, 3.2], so for any compact subset K ⊆ X admitting
a Hausdorff neighborhood, the category of coherent OK-modules is stable
under extensions in the category of OK-modules.

Contents

1. Introduction 1049
1.1. Motivation 1049
1.2. Overview 1052
1.3. Notation and terminology 1052
2. Spec and Proj 1054
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2. Spec and Proj

A basic tool in the rigid-analytic theory of ampleness is a rigid-analytic
version of the Proj construction in the theory of schemes [15, II]. A minor
nuisance in the global theory of Proj for schemes is that it does not have a
convenient universal property, so the construction must be globally canon-
ical. The construction of Proj for rigid spaces is similar to the construction
used in the case of schemes, resting on representability of Spec functors as-
sociated to certain sheaves of algebras. Thus, as a prelude to Proj, in §2.1–
§2.2 we develop quasi-coherence and Spec in the rigid-analytic setting.
Beware that (as we explain in Remark 2.1.5) the rigid-analytic notion of
quasi-coherence has some deficiencies, fortunately not relevant to our ap-
plications. Since most of the arguments prior to §2.3 are of a predictable
nature (once the right definitions are set forth), the reader is advised to
skip ahead to §2.3 and then read backwards into §2.1–§2.2 as the need
arises.

The only serious issue in §2.1–§2.3 is to get analogues of all of the basic
results as in the scheme-theoretic theories of relative Spec and Proj, even
though rigid spaces do not arise from rings in quite the same way as do
schemes in algebraic geometry. The same basic principle guides many of the
proofs: we reduce relative problems to the fibral situation, in which case
it is often possible to use analytification arguments to reduce ourselves to
algebraic problems that have been solved for schemes. It is very important

ANNALES DE L’INSTITUT FOURIER
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in some of our later proofs with ample bundles on proper rigid spaces that
Proj is linked to Spec much as in the case of schemes; using Köpf’s work [33]
as an alternative foundation to the theory of relative rigid geometry would
lead to rather unpleasant proofs.

When contemplating functors on the rigid-analytic category and aiming
to prove “algebraic representability” of such functors, one may be reminded
of the work of Hakim [29] on “relative schemes”. In [29, VIII] there is a gen-
eral analytic-algebraic comparison discussion, and a comparison theorem
concerning analytic Hilbert (and related) functors is proved. Our prelimi-
nary constructions with relative Spec and Proj are similar in spirit to those
in [29], but otherwise Hakim’s work has little overlap with what we do and
seems to not be helpful for the problems that we need to solve.

2.1. Quasi-coherent sheaves

Let S be a rigid space. An OS-algebra A is locally finitely generated if
there exists an admissible covering {Ui} of S such that A Ui

is is a quotient
of a sheaf of polynomial algebras overOUi

in finitely many variables. If these
presentations can be chosen to have kernel ideals that are locally generated
by finitely many sections, then A is locally finitely presented. (We shall
see in Theorem 2.1.11 that in such cases any local presentation of A as
a quotient of a polynomial algebra in finitely many variables has ideal of
relations that is locally generated by finitely many sections.) The theory of
locally finitely presented sheaves of algebras on analytic spaces is studied
in [30, II] for complex-analytic spaces and for non-archimedean analytic
spaces in a pre-Tate sense (e.g., without non-rational points and without
the Tate topology).

Locally finitely presented sheaves of algebras are the ones of most inter-
est to us, but the finite presentation condition is sometimes inconvenient
to check in abstract situations such as for sheaves A =

⊕
n>0 f∗L⊗n as

in §1.1. Hence, we need an alternative viewpoint on the theory of locally
finitely presented sheaves of algebras so that the theory is applicable on
rigid-analytic spaces and moreover is well-suited to our later work with
analytic Proj. The starting point is:

Definition 2.1.1. — AnOS-module F is quasi-coherent if, locally on S,
F is a direct limit of coherent sheaves. That is, S has an admissible cov-
ering {Si} such that F Si

is a direct limit of a directed system {Fi,α} of
coherent OSi

-modules.

TOME 56 (2006), FASCICULE 4



1056 Brian CONRAD

In Corollary 2.1.12 we will record the equivalence of quasi-coherence and
local finite presentation for locally finitely generated sheaves of algebras.
We emphasize (as will be convenient) that in Definition 2.1.1 we do not
require the auxiliary coherent sheaves Fi,α to be subsheaves of F Si . Lem-
mas 2.1.8 and 2.1.9 will ensure that imposing this stronger property on
the Fi,α’s does not affect the notion of quasi-coherence.

Example 2.1.2. — Let S0 be an algebraic k-scheme, and let San
0 → S0

be the analytification morphism. For any quasi-coherent sheaf F0 on S0,
the OSan

0
-module pullback Fan

0 is quasi-coherent on San
0 .

Example 2.1.3. — If {Ai}i∈I is an indexed set of coherent sheaves on
S then

⊕
i∈I Ai is quasi-coherent.

Example 2.1.4. — Let M be a module over a k-affinoid algebra A, and
let {Mi} be its directed system of A-finite submodules. The associated co-
herent sheaves M̃i on X = Sp(A) form a directed system and its direct limit
depends functorially on M so we may denote it M̃ . For any affinoid open
U = Sp(A′) in X, the natural map A′ ⊗A M → M̃(U) is an isomorphism.
By Lemma 2.1.8, any quasi-coherent sheaf on an arbitrary rigid space X

locally arises via this construction. As we explain in Remark 2.1.5, such
locality is a non-trivial condition when X is affinoid.

For any map of rigid spaces f : S′ → S over k and any OS-module F with
pullback F ′ = f∗F , if F is quasi-coherent (resp. a locally finitely generated
sheaf of algebras, resp. a locally finitely presented sheaf of algebras) on S

then so is F ′ on S′.

Remark 2.1.5. — We will soon prove that the concept of quasi-coherence
satisfies most of the reasonable properties one might expect, and in par-
ticular it will be adequate for our purposes. However, there are some de-
fects: it is not true in general that a quasi-coherent sheaf on an affinoid
space has vanishing higher cohomology (see Example 2.1.6, due to Gab-
ber), and such a counterexample on an affinoid cannot be expressed as
a direct limit of coherent sheaves (by Lemma 2.1.7 below). In particular,
the construction in Example 2.1.4 does not generally give rise to all quasi-
coherent sheaves on an affinoid space (thereby settling the “open question”
in [17, Exercise 4.6.7] in the negative). Moreover, quasi-coherence is gen-
erally not preserved under direct limits, nor even under countably infinite
direct sums (see Example 2.1.10). One may ask if there is a better definition
of quasi-coherence than we have given, but we do not know any potential
applications to motivate the search for a better definition.

ANNALES DE L’INSTITUT FOURIER
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Example 2.1.6. — We now give Gabber’s elegant construction of a
quasi-coherent sheaf F on an affinoid X such that H1(X,F) 6= 0. Let X be
the closed unit disc over k, and let x′, x′′ ∈ X(k) be two distinct rational
points. Let U ′ = X − {x′} and let U ′′ = X−{x′′}, and define U = U ′∩U ′′.
Let

F ′ =
⊕
n∈Z

OU ′e
′
n, F ′′ =

⊕
n∈Z

OU ′′e
′′
n

be two free sheaves with countably infinite rank on U ′ and U ′′ respectively.
We shall glue these to define an OX -module F that has no nonzero global
sections. Such an F is quasi-coherent because F U ′ and F U ′′ are direct
limits of coherent sheaves, and if t is the standard coordinate on X then
the cohomology sequence associated to

0→ F t−→ F −→ F/tF → 0

provides an injection H0(X,F/tF) ↪→ H1(X,F). Hence, H1(X,F) 6= 0
because F/tF is a nonzero skyscraper sheaf supported at the origin.

To construct the gluing F with no nonzero global sections, we choose
h ∈ OX(U) with essential singularities at x′ and x′′ (many such h exist).
We define F by identifying F ′ U and F ′′ U with the free sheaf

⊕
n∈ZOUen

via the conditions

e2m = e′2m U = e′′2m U + he′′2m+1 U ,

e2m+1 = e′′2m+1 U = e′2m+1 U + he′2m+2 U

for m ∈ Z. Let f ∈ F(X) be a global section, so on any open affinoid V

in U we may write f V =
∑

fn,V en V for sections fn,V ∈ OX(V ) that
vanish for all but finitely many n. Since U is connected and normal (even
smooth), the restriction map F(U) → F(V ) is injective because F U is a
direct sum of copies of OU . Thus, f =

∑
fnen for fn ∈ OX(U) that vanish

for all but finitely many n (that is, f is a finite OX(U)-linear combination
of en’s even though U is not quasi-compact).

Using the definition of F , the image of the injective restriction map
F(X)→ F(U) consists of those finite sums f =

∑
fnen with fn ∈ OX(U)

such that
• fn is analytic at x′ for even n and at x′′ for odd n,
• fn + hfn−1 is analytic at x′ for odd n and at x′′ for even n.

Hence, if f =
∑

fnen ∈ F(U) comes from a nonzero element of F(X) then
by choosing the maximal n0 such that fn0 6= 0 we see that fn0 and hfn0

are both analytic at a common point amongst x′ and x′′ (depending on the
parity of n0). The ratio h = hfn0/fn0 is therefore meromorphic at x′ or x′′,

TOME 56 (2006), FASCICULE 4
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a contradiction, so F(X) = 0. (This construction makes sense in complex-
analytic geometry as well, where it gives a “quasi-coherent” sheaf F on the
open unit disc ∆ in C such that F(∆) = 0 and H1(∆′,F) 6= 0 for all open
subdiscs ∆′ centered at the origin with radius near 1.)

Lemma 2.1.7. — If U ⊆ S is an admissible affinoid open and F is an
OS-module such that F U is a direct limit of coherent OU -modules, then
Hi(U,F) = 0 for all i > 0.

In the complex-analytic case, this lemma holds for compact Stein sets U

because direct limits commute with cohomology on any compact Hausdorff
space [19, II, 4.12.1].

Proof. — We may rename U as S. Since higher derived-functor coho-
mology vanishes for coherent sheaves on affinoids, it suffices to prove that
if S is a quasi-compact and quasi-separated rigid space then Hi(S, ·) com-
mutes with the formation of direct limits for all i > 0. Consider the Čech
to derived functor spectral sequence

Ep,q
2 = Ȟ

p(
S, Hq(F)

)
=⇒ Hp+q(S,F)

(where Hq(F) is the presheaf U 7→ Hq(U,F U )). Since E0,n
2 = 0 for all n > 0,

we can use induction and considerations with the cofinal system of finite
covers by quasi-compact admissible opens to reduce to proving Ȟ

n
(S, .)

commutes with the formation of direct limits for all n > 0. This follows
from the exactness of direct limits and the compatibility of direct limits and
global sections on a quasi-compact and quasi-separated rigid space. �

Lemma 2.1.8. — Let F be a quasi-coherentOS-module on a rigid space S.
1) The subsheaf of F generated by any two coherent subsheaves is again

coherent, and there exists an admissible cover {Sj} of S such that each
F Sj

is the direct limit of its directed system of coherent subsheaves.
2) If A is a quasi-coherent OS-algebra and F and G are two A-modules

that are quasi-coherent as OS-modules, then F ⊗A G is a quasi-coherent
OS-module.

3) If F = lim−→Fi for coherent Fi, then for any inclusion V ⊆ U of
open affinoids in S the natural map OS(V ) ⊗OS(U) F(U) → F(V ) is an
isomorphism.

In the complex-analytic case, part 3) holds for compact Stein sets U

and V , and parts 1) and 2) hold without change.
Proof. — Consider 1). Working locally, we may assume F = lim−→Fi

with each Fi coherent. If F i denotes the image of Fi in F then cer-
tainly lim−→F i = F . We claim that each F i is coherent. Fix i0, and consider

ANNALES DE L’INSTITUT FOURIER
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the kernels
Ki = ker(Fi0 → Fi)

for i > i0. These form a directed system of coherent subsheaves of the
coherent sheaf Fi0 , so {Ki} stabilizes locally on S (see [22, Ch. 5, §6] for
the analogous noetherian property in the complex-analytic case). IfK ⊆ Fi0

denotes the coherent direct limit of theKi’s, then we have F i0 ' Fi0/K and
hence F i0 is indeed coherent. It follows by similar methods that any map
from a coherent sheaf to F has coherent image, so the subsheaf generated
by any two coherent subsheaves of F is again coherent.

Now we turn to 2). Working locally and using 1), we may suppose

F = lim−→Fi, G = lim−→Gj , A = lim−→Ah

as OS-modules, where {Fi}, {Gj}, and {Ah} are directed systems of coher-
ent subsheaves of F , G, and A respectively (note that Ah is not necessarily
a subsheaf of OS-subalgebras in A). The subsheaf

Ah · Fi = image(Ah ⊗OS
Fi → A ⊗OS

F → F)

inside of F is therefore coherent for all i and h, and likewise each Ah · Gj

inside of G is coherent. Thus, the fake tensor product

(Ah · Fi)⊗Ah
(Ah · Gj) def

== ((Ah · Fi)⊗OS
(Ah · Gj))/(ahfi⊗ gj − fi⊗ahgj)

is a coherentOS-module. These fake tensor products form a directed system
of coherent sheaves whose limit is isomorphic to F ⊗A G as an OS-module.

Finally, for 3) we note that the natural maps lim−→Fi(U) → F(U) and
lim−→Fi(V ) → F(V ) are isomorphisms because U and V are each quasi-
compact and quasi-separated, and so we are reduced to checking that
the natural map OS(V ) ⊗OS(U) F(U) → F(V ) is an isomorphism for
coherent F . Since F U admits a presentation as the cokernel of a map
O⊕m

U → O⊕n
U , we are reduced to the trivial case F = OX . �

Lemma 2.1.9. — As a full subcategory of the category of OS-modules
on a rigid space S, the category of quasi-coherent sheaves is stable under the
formation of kernels, cokernels, extensions, images, and tensor products. In
particular, a direct summand of a quasi-coherent sheaf is quasi-coherent.

Moreover, a quasi-coherent subsheaf of a coherent sheaf is coherent, and
hence a quasi-coherent sheaf is coherent if and only if it is locally finitely
generated as an OS-module.

As with the proof of Lemma 2.1.8, the proof of Lemma 2.1.9 works in
the complex-analytic case if we replace affinoid opens with compact Stein
sets in the proof.
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Proof. — A direct limit of coherent subsheaves of a coherent sheaf is lo-
cally stationary, so all of the assertions follow immediately from Lemma 2.1.8
except for the case of extensions (the case of direct summands follows from
the case of images). Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence
of OS-modules such that F ′ and F ′′ are quasi-coherent. To prove that F is
quasi-coherent, we may work locally on S. Thus, we may assume that S

is affinoid and that F ′ and F ′′ are each direct limits of their directed
systems of coherent subsheaves. We write F ′′ = lim−→F

′′
α with coherent sub-

sheaves F ′′α , and pulling back by F ′′α → F ′′ gives extensions

0→ F ′ −→ Fα −→ F ′′α → 0

with F equal to the direct limit of its subsheaves Fα. Hence, it suffices to
prove that each Fα is a direct limit of coherent sheaves on S; the point is
to avoid further shrinking on S (that may depend on α).

More generally, consider a short exact sequence of OS-modules

(2.1.1) 0→ F ′ −→ F −→ G0 → 0

with G0 coherent and F ′ equal to the direct limit of coherent subsheaves.
Assume that S is affinoid. Under these assumptions, we wish to prove
that F is a direct limit of coherent sheaves on S.

Since S is affinoid, there is a short exact sequence

(2.1.2) 0→ K −→ E −→ G0 → 0

where E is a locally free coherent sheaf. Applying HomOS
(. ,F ′) gives an

exact sequence

Hom(K,F ′) −→ Ext1(G0,F ′) −→ Ext1(E ,F ′),

with Ext1(E ,F ′) = H1(S, E∨⊗F ′) = 0 by Lemma 2.1.7 and the hypothesis
on F ′. Hence, the extension structure (2.1.1) is the pushout of (2.1.2) by
an OS-linear map K → F ′. Since we have assumed F ′ is a direct limit
of coherent subsheaves, say F ′ = lim−→F

′
i , the map K → F ′ uniquely fac-

tors through some map K → F ′i0 because S is quasi-compact. Thus, the
pushouts of (2.1.2) along K → F ′i for i > i0 provide coherent subsheaves
of F whose direct limit is F . �

Example 2.1.10. — If {Fα} is a directed system of quasi-coherent sheaves,
it is generally not true that lim−→Fα is quasi-coherent. The essential prob-
lem is that there may not exist an admissible cover {Si} of S such that
for each i the sheaf Fα Si on Si is a direct limit of coherent sheaves for
all α. To construct a counterexample, let S be the closed unit disc and
let {xn}n>1 be a sequence in S(k) − {0} with |xn| strictly decreasing
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to 0. Let Fn be the output of Gabber’s construction in Example 2.1.6
for the pair of points {0, xn}, so Fn cannot be expressed as a direct limit
of coherent sheaves on any closed disc centered at 0 with radius > |xn|.
Let F =

⊕
n>1 Fn. If F is quasi-coherent then for some admissible open U

containing the origin we can identify F U with a direct limit of coherent
subsheaves Gα on U . Thus, each subsheaf Fn,α = Fn U ∩ Gα makes sense
and is coherent by Lemma 2.1.9 (Fn U is quasi-coherent and Gα is coher-
ent). Since Fn U = lim−→Fn,α, we conclude that each Fn U is a direct limit
of coherent sheaves on U , and this is a contradiction for n so large that the
disc centered at 0 with radius |xn| is contained in U .

Theorem 2.1.11. — Let A be a quasi-coherent sheaf of OS-algebras
and suppose that A is an OS-algebra quotient of OS [T1, . . . , Tn] on S, with
kernel I. The sheaf A is the direct limit of its coherent subsheaves, and for
any open affinoid U ⊆ S the sequence

0→ I(U) −→ OS(U)[T1, . . . , Tn] −→ A(U)→ 0

is short exact with the finitely generated ideal I(U) generating I U as an
OU [T1, . . . , Tn]-module.

Proof. — Since A is quasi-coherent, the image Ad ⊆ A of the coher-
ent sheaf of polynomials of total degree 6 d is coherent (because it is a
quasi-coherent quotient of a coherent sheaf). Similarly, I = lim−→Id for the
coherent intersection Id of I with the sheaf of polynomials of total de-
gree 6 d, so Lemma 2.1.7 implies H1(U, I) = 0. This yields the asserted
short exact sequence of U -sections. To show that I(U) generates I U as an
OU [T1, . . . , Tn]-module it is equivalent to prove that I(U) generates I U as
an OU -module, and this follows from Lemma 2.1.8.(3) because I is a direct
limit of coherent sheaves. �

Corollary 2.1.12. — Let B be a quasi-coherent and locally finitely
generated sheaf of OS-algebras.
• IfN ⊆M is an inclusion of B-modules that are quasi-coherent over OS

with M a finite B-module then N is a finite B-module.
• Any finite B-module that is quasi-coherent over OS is finitely presented

over B.
• A locally finitely generated OS-algebra is locally finitely presented if

and only if it is quasi-coherent.
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Proof. — By Lemma 2.1.9, it suffices to prove that quasi-coherent ideal
sheaves in B are B-finite. This follows from Theorem 2.1.11 by locally ex-
pressing the quasi-coherent OS-algebra B as a quotient of a polynomial
algebra in finitely many variables. �

Remark 2.1.13. — By [18, I.10], any point in a complex-analytic space S

has a base of neighborhoods K that are compact Stein sets for whichOS(K)
is noetherian. (This may be also deduced from the necessary and sufficient
criterion in [41, Thm. 1] because any semi-analytic set in a real-analytic
manifold is locally connected [4, Cor. 2.7].) Hence, Theorem 2.1.11 and
Corollary 2.1.12 are valid in the complex-analytic case (with essentially
the same proof) provided that we take U in the theorem to be one of
these K’s.

We now consider how quasi-coherence behaves with respect to extension
of the base field. Let S be a rigid space over k that is either quasi-separated
or pseudo-separated (see §A.2 for the definition of pseudo-separatedness),
and let k′/k be an analytic extension field. Let S′ be the rigid space k′⊗̂kS

over k′. Although there is generally no natural map of ringed topoi S′ → S

when [k′ : k] is infinite, by working over affinoids there is an evident exact
“pullback” functor Coh(S) → Coh(S′) on categories of coherent sheaves,
and this functor is naturally compatible with tensor products, with base
change T → S for quasi-separated or pseudo-separated T , and with further
extension of the base field. We can naturally extend this to an exact functor
(maintaining the same compatibility properties) Qcoh(S) → Qcoh(S′) on
categories of quasi-coherent sheaves, as follows.

First assume S is affinoid and F is a direct limit of coherent sheaves,
so by Lemma 2.1.8.(1) F is the direct limit of its coherent subsheaves Fi.
Define

k′⊗̂kF = lim−→ k′⊗̂kFi,

where k′⊗̂kFi is the coherent pullback of Fi to S′. This construction only
depends on a cofinal system of Fi’s, and so since the k′⊗̂kFi’s are a cofi-
nal system of coherent subsheaves of k′⊗̂kF it follows that the definition
of k′⊗̂kF in this special case satisfies all of the desired properties (in-
cluding transitivity with respect to a further extension of the base field
and compatibility with affinoid base change on S). By Lemma 2.1.8.(3)
and the isomorphism (A.2.4), for any admissible open U ′ ⊆ S′ the re-
striction (k′⊗̂kF) U ′ represents the functor G′  HomOS(S)(F(S),G′(U ′))
on the category of OU ′ -modules. Thus, for any quasi-separated or pseudo-
separated S it is straightforward to define the quasi-coherent sheaf k′⊗̂kF
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on S′ by using Lemma 2.1.8.(3) to glue over open affinoids k′⊗̂kV ⊆ S′

for open affinoids V ⊆ S on which F is a direct limit of coherent sheaves.
The resulting functor F  k′⊗̂kF is exact and is compatible with (i) tensor
products, (ii) base change T → S for quasi-separated or pseudo-separated T ,
and (iii) further extension of the base field.

Definition 2.1.14. — If F is a quasi-coherent sheaf on a quasi-separated
or pseudo-separated rigid space S over k, then for any analytic extension
field k′/k the quasi-coherent sheaf k′⊗̂kF on S′ = k′⊗̂kS is the pullback
of F to S′.

Example 2.1.15. — Let F be a quasi-coherent sheaf on a quasi-separated
rigid space S and let U ⊆ S be an admissible affinoid open. Let S′ = k′⊗̂kS

and U ′ = k′⊗̂kU ⊆ S′ be obtained by base change and let F ′ = k′⊗̂kF
on S′ be the pullback of F . The natural map OS′(U ′) ⊗OS(U) F(U) →
F ′(U ′) is an isomorphism. Indeed, since OS(U) is a k-affinoid algebra over
whichOS′(U ′) = k′⊗̂kOS(U) is flat [11, 1.1.5 (1)], we may work locally on U

to reduce to the case when S = U is affinoid with F = lim−→Fi for coherent
sheaves Fi. The problem thereby reduces to the case of coherent F , and
this case is trivial.

Example 2.1.16. — If A is a quasi-coherent sheaf of OS-algebras then
the quasi-coherent OS′ -module k′⊗̂kA has a natural structure of OS′ -
algebra, and it is locally finitely generated as an OS′ -algebra if A is lo-
cally finitely generated as an OS-algebra. Indeed, by exactness and tensor-
compatibility of F  k′⊗̂kF , it suffices to note that the natural map of
OS′ -algebras OS′ [T1, . . . , Tn]→ k′⊗̂k(OS [T1, . . . , Tn]) is an isomorphism.

2.2. Relative Spec

We need relative Proj, so we first require a theory of relative Spec. The
starting point is a generalization of an observation of Tate. In [15, II, Er-
rata, 1.8.1], it is proved that for any commutative ring A and any locally
ringed space X, the natural map

Hom(X, Spec A) −→ Hom
(
A,Γ(X,OX)

)
is a bĳection. Since a rigid-analytic space is not a locally ringed space in
the traditional sense (as it rests on a Grothendieck topology, albeit a mild
one), we require an easy generalization of this result. Let us first introduce
some convenient terminology.
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Definition 2.2.1. — A Grothendieck-topologized space is a site whose
underlying category consists of a collection of subsets (called “open subsets”)
in a set X such that
• the collection of open subsets is stable under finite intersections and

contains both ∅ and X,
• {U} is a covering of U for every open U ,
• a covering {Ui}i∈I of any U satisfies

⋃
Ui = U inside of X.

We usually write X to denote this data, with the choice of Grothendieck
topology understood from the context.

Definition 2.2.2. — A locally ringed Grothendieck-topologized space
is a Grothendieck-topologized space X endowed with a sheaf of rings O
such that
• the stalks Ox = lim−→x∈U

O(U) are local rings for all x ∈ X,
• for any U and s ∈ O(U), the set Us = {x ∈ U | sx ∈ O×x } is open,
• for any U and subset Σ ⊆ O(U) the union ∪s∈ΣUs is open and ad-

mits {Us}s∈Σ as a covering.

A morphism (X,O) → (X ′,O′) between locally ringed Grothendieck-
topologized spaces is a pair (f, f ]) where f : X → X ′ is a continuous map
of sites (that is, formation of preimages carries opens to opens and coverings
to coverings) and f ] : O′ → f∗O is a map of sheaves of rings such that f ]

x :
O′f(x) → Ox is a map of local rings for all x ∈ X. (By the usual argument, f∗

has a left-exact adjoint on the categories of sheaves of sets, so (f, f ]) gives
rise to a map of ringed topoi.) The category of locally ringed Grothendieck-
topologized spaces contains the category of locally ringed spaces as a full
subcategory. If C is a ring and we consider the category of pairs (X,O)
for which O is a sheaf of C-algebras, then by only allowing morphisms
such that f ] is a map of sheaves of C-algebras we get the category of
locally ringed Grothendieck-topologized spaces over C; if C = k is a non-
archimedean field then this category contains the category of rigid spaces
over k as a full subcategory.

Lemma 2.2.3. — Let C be a commutative ring. For any C-algebra A

and locally ringed Grothendieck-topologized space (X,OX) over C, the
natural map of sets HomC(X, Spec A) → HomC-alg(A,Γ(X,OX)) is a bi-
jection, where the left side is the set of morphisms in the category of locally
ringed Grothendieck-topologized spaces over C.

Proof. — The proof for locally ringed spaces (and C = Z) in [15, II, Er-
rata, 1.8.1] carries over verbatim. �

ANNALES DE L’INSTITUT FOURIER



RELATIVE AMPLENESS IN RIGID GEOMETRY 1065

Remark 2.2.4. — By the preceding lemma, scheme-theoretic fiber prod-
ucts of C-schemes serve as fiber products in the category of locally ringed
Grothendieck-topologized spaces over C.

The next theorem summarizes most of the basic results concerning an
analytic Spec functor on the category of locally finitely generated quasi-
coherent sheaves of algebras (or equivalently, locally finitely presented shea-
ves of algebras) in the rigid-analytic case. Similar results are obtained
in [30, II, §1] for complex-analytic spaces and a pre-Tate notion of ana-
lytic space over non-archimedean fields. Our argument is a variant that
works for rigid spaces.

Theorem 2.2.5. — Let S be a rigid space, and let A be a sheaf of
OS-algebras that is locally finitely generated and quasi-coherent.

1) The functor

(f : X → S) HomOS-alg(A, f∗OX) = HomOX-alg(f∗A,OX)

on rigid spaces over S is represented by an S-separated rigid space fA :
Specan A → S, and when S is affinoid with A a direct limit of coherent
sheaves then the natural map

(2.2.1) HomOS-alg(A, f∗OX) −→ HomOS(S)-alg
(
A(S),OX(X)

)
is a bĳection.

2) The following properties hold:
• the formation of Specan A → S is naturally compatible with base

change on S, and with change of the base field for quasi-separated or
pseudo-separated S,
• a surjective map A → B of quasi-coherent and locally finitely gen-

erated OS-algebras induces a closed immersion Specan B → Specan A de-
fined by the coherent ideal in OSpecan A induced by the quasi-coherent ideal
ker(A � B) in A,
• for maps C → A and C → B between locally finitely generated and

quasi-coherent OS-algebras, the canonical map

Specan(A ⊗C B) −→ Specan A ×Specan C Specan B

(which makes sense, by Lemma 2.1.8.(2)) is an isomorphism.
3) If S0 is an algebraic k-scheme and A0 is a quasi-coherent sheaf of

OS0-algebras that is locally finitely generated, then the natural San
0 -map

(2.2.2) Specan(Aan
0 ) −→ (SpecA0)an
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is an isomorphism. It respects base change on S0 and change of the base
field.

4) Choose x ∈ Specan A over s ∈ S. Let mx ⊆ As be the maximal ideal
induced by the composite map of stalks

As −→ (fA∗OSpecan A)s −→ OSpecan A,x.

The natural map of maximal-adic completions (As)∧mx
→ O∧Specan A,x is an

isomorphism.

Remark 2.2.6. — The map (2.2.2) is defined by the universal property
of analytification and by considerations (locally over S0) with the universal
property of affine k-schemes in Lemma 2.2.3.

Proof. — In general, if Specan A exists for some pair (A, S) then for any
admissible open U ⊆ S the restriction of Specan A over U satisfies the
universal property to be Specan(A U ). Thus, it suffices to carry out the
general existence proof locally on S. We may therefore assume that A is a
quotient of some OS [T1, . . . , Tn]. Let I denote the kernel of the surjection

(2.2.3) OS [T1, . . . , Tn]−� A,

so I is quasi-coherent on S. By the universal property of An
k in the rigid-

analytic category, it is clear that An
k×S with its standard global coordinates

is SpecanOS [T1, . . . , Tn]. Let π : An
k × S → S be the projection. For any

f : X → S, to give an OS-algebra map A → f∗OX is the same as to give
an S-map X → An

k×S such that the ideal sheaf J = image(π∗I → OAn×S)
pulls back to the ideal sheaf 0 on X. Since π∗I is quasi-coherent on An

k ×S

(as I is quasi-coherent on S), J is a quasi-coherent subsheaf of OAn
k
×S .

We conclude (Lemma 2.1.9) that J is a coherent ideal. The rigid-analytic
zero locus of J on An

k × S has the universal property to be Specan A.
By construction, Specan A is S-separated. In the special case that S =

Sp(C) is affinoid and F is a direct limit of coherentOS-modules, the natural
map HomOS

(F , f∗OX) → HomC(F(S),OX(X)) is a bĳection for rigid
spaces X over S (as one sees by passing to the limit on the trivial case
of coherent F). Hence, when the OS-algebra A is a direct limit of coherent
sheaves, Specan A → S represents the functor

X  HomC-alg
(
A(S),OX(X)

)
on rigid spaces over S. This settles 1).

We now turn to 2) and 3). The compatibility of Specan with both base
change and fiber products is a trivial consequence of the universal property
of Specan. Universal properties also provide the desired compatibility of
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Specan with respect to analytification and base change for algebraic k-
schemes (the key point is Lemma 2.2.3), as well as the fact that a surjection
A � B with quasi-coherent kernel I induces a closed immersion of Specan’s
defined by the coherent ideal sheaf im(f∗AI → OSpecan A) in OSpecan A .

Fix an analytic extension field k′/k. Let us construct a natural mor-
phism hA from k′⊗̂k Specan A to Specan A′ over S′ = k′⊗̂kS for quasi-
separated or pseudo-separated S, with A′ denoting the quasi-coherent lo-
cally finitely generated OS′ -algebra pullback k′⊗̂kA in the sense of Defi-
nition 2.1.14. First consider the case when S = Sp(C) is affinoid and A
is a direct limit of coherent sheaves. The S-space Specan A represents the
functor X  HomC-alg(A(S),OX(X)) on rigid spaces X over S. Exam-
ple 2.1.15 ensures A′(S′) = C ′ ⊗C A(S) for C ′ = k′⊗̂kC = OS′(S′), so
Specan A′ represents the functor

(2.2.4) X ′  HomC′-alg
(
A′(S′),OX′(X ′)

)
= HomC-alg

(
A(S),OX′(X ′)

)
on rigid spaces X ′ over S′. For X ′ = k′⊗̂k Specan A there is an evident
natural C-algebra map

A(S) −→ Γ(Specan A,OSpecan A) −→ Γ(X ′,OX′),

so by (2.2.4) this is induced by a unique morphism hA : X ′ → Specan A′.
By Lemma 2.1.8.(3), the formation of hA is compatible with affinoid base
change on S and further extension of the base field. In particular, the
formation of hA is compatible with replacing the affinoid S with any affi-
noid open U ⊆ S. The construction of hA for affinoid S therefore uniquely
extends to the case of any quasi-separated or pseudo-separated S in a man-
ner that is compatible with any base change T → S for quasi-separated or
pseudo-separated T . This extended construction of hA respects any further
extension of the base field.

To prove that hA is an isomorphism, by working locally on S we can
assume that A is a quotient of a polynomial algebra over OS . By exactness
of the pullback functor Qcoh(S) → Qcoh(S′) and the fact that Specan

converts surjections into closed immersions (cut out by the expected ideal
sheaf), the isomorphism problem is reduced to the trivial case when A is a
polynomial algebra over OS . Using hA , (2.2.2) is compatible with change
of the base field.

Finally, we turn to 4). The ideal mx is maximal because the k-algebra
As/mx is a subalgebra of the k-finite residue field at x on Specan A. It suf-
fices to check that (As)∧mx

→ O∧Specan A,x is an isomorphism for Artin lo-
cal S because in the general case the inverse limits of these two completions
on infinitesimal fibers over s ∈ S are the two completions of interest in 4).
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Thus, we now assume that S is Artin local. In this case we can use 3) to
reduce the isomorphism problem to the obvious fact that if Z is an alge-
braic k-scheme and ι : Zan → Z is its analytification then the induced
maps O∧Z,ι(z) → O

∧
Zan,z are isomorphisms for all z ∈ Zan (as these two

complete local noetherian k-algebras pro-represent the same functor on
the category of finite local k-algebras, and the map between them respects
this functorial identification since analytification is fully faithful on finite
local k-schemes). �

Corollary 2.2.7. — Let A be a quasi-coherent and locally finitely
generated OS-algebra. If A is OS-flat then Specan A is S-flat.

Proof. — This follows from Theorem 2.2.5.(4). �

Corollary 2.2.8. — Let A be a quasi-coherent and locally finitely
generated OS-algebra. The structure map fA is finite if and only if A is
coherent, in which case A → fA∗OSpecan A is an isomorphism. The functors

(f : X → S) f∗OX , A  (Specan A → S)

between the category of rigid spaces finite over S and the category of coher-
ent sheaves of OS-algebras form an adjoint pair for which the adjunctions
are isomorphisms, so these are quasi-inverse equivalences of categories.

The complex-analytic case is treated in [30, II, §3, §5], except that it is
not proved in [30] that finiteness of fA forces A to be coherent; our method
yields this result in the complex-analytic case.

Proof. — First assume that A is coherent. We may work locally on S to
show that fA is finite and A → fA∗OSpecan A is an isomorphism. Hence,
we can assume S = Sp(C) is affinoid and A is associated to a finite C-
algebra A. The bĳection (2.2.1) and the universal property of Sp(A) in
the rigid-analytic category imply that the finite map h : X = Sp(A)→ S

(equipped with the canonical isomorphism A → h∗OX) satisfies the uni-
versal property to be Specan A.

Conversely, if fA is finite then fA∗OSpecan A is a coherent OS-module.
Thus, to establish the coherence of the quasi-coherent A in such cases
it suffices (by Lemma 2.1.9) to prove that in general the canonical map
A → fA∗OSpecan A is injective. The only proof of such injectivity that we
could come up with rests on the theory of Proj and so it will be given later,
with a proof that works in the complex-analytic case, in Theorem 2.3.12.
(Corollary 2.2.8 will not be used until §3.)
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If f : X → S is finite then the isomorphism property for the canoni-
cal S-map X → Specan f∗OX can be checked by working locally over affi-
noids in S. The asserted quasi-inverse equivalences of categories are thereby
checked to be quasi-inverse to each other. �

Example 2.2.9. — Let S = Sp(C) be affinoid and let A be a quasi-
coherent and locally finitely generated OS-algebra. Let X = Specan A.
Shrinking S if necessary, assume that A is a quotient of a polynomial alge-
bra overOS in finitely many variables. By Theorem 2.1.11 and Lemma 2.2.3,
the C-algebra A(S) is finitely generated and X represents the functor

Z  HomC-alg
(
A(S),OZ(Z)

)
= HomSpec C

(
Z,SpecA(S)

)
on the category of rigid spaces over S. This says that X is the relative
analytification of the finite-type C-scheme SpecA(S) in the sense of Köpf
[33, Satz 1.2].

Example 2.2.10. — For any locally finitely generated quasi-coherent
OS-algebra A and a ∈ A(S), the sheaf

Aa
def
== A[T ]/(1− aT )

is a locally finitely generated quasi-coherent OS-algebra. By functoriality
of Specan there is a canonical map

ξa : Specan Aa → Specan A.

The canonical map A → fA∗OSpecan A carries the global section a of A
to a global section ã of OSpecan A . Universality forces ξa to be an isomor-
phism of Specan Aa onto the Zariski-open locus in Specan A where ã is
non-vanishing.

It is straightforward to check (via universal properties and working lo-
cally on S) that the formation of ξa is compatible with base change on S,
with analytification of algebraic k-schemes, and (for quasi-separated or
pseudo-separated S) with change of the base field. The open immersions ξa

provide the gluing data to be used in the rigid-analytic relative theory
of Proj.

Example 2.2.11. — We can enhance Example 2.2.9 to obtain a new
quick construction of the relative analytification functor of Köpf in [33,
§1]. More precisely, for any C-scheme X locally of finite type we seek to
construct a map ιX : X an → X that is a final object in the category
of rigid spaces over Sp(C) equipped with a map to X as locally ringed
Grothendieck-topologized spaces over C. (If C is k-finite, so X is an alge-
braic k-scheme, then Sp(C) = Spec C and the usual analytification of X
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over k does the job; hence, in such cases there is no risk of confusion caused
by the notation “X an”.)

It follows formally from Lemma 2.2.3 and universal properties that the
formation of X an (when it exists) must be compatible with fiber products
and with k-affinoid base change on C, and must carry open immersions to
Zariski-open immersions and closed immersions to closed immersions. For
example, the Zariski-open preimage in X an of a Zariski-open U ⊆ X satisfies
the universal property to be Uan, and the compatibility with fiber products
follows from Remark 2.2.4. Existence of the relative analytification for affine
X is settled by Example 2.2.9 and Theorem 2.2.5(4), and the automatic
compatibility with open immersions and fiber products permits us to glue
along Zariski-opens for the general case.

Since Sp(R) = Spec(R)an for any C-algebra R that is k-finite, by con-
sidering morphisms from Spec(k′) = Sp(k′) to X for varying finite exten-
sions k′/k we see that ιX : X an → X must be a bĳection onto the set of
points of X with residue field of finite degree over k. (Hence, if f : X ′ → X
is a surjective map between locally finite type C-schemes then fan must be
surjective.) Similarly, by using R-points for varying k-finite C-algebras R

we deduce from universal properties that for all x ∈ X an the natural map
of complete local noetherian k-algebras O∧X ,ιX (x) → O

∧
X an,x is an isomor-

phism, so ιX is necessarily flat. In particular, pullback along ιX defines an
exact analytification functor F  Fan from OX -modules to OX an-modules
carrying coherent sheaves to coherent sheaves.

We have seen that relative analytification carries Zariski-open/closed
immersions to Zariski-open/closed immersions and carries fiber products
to fiber products, so (as in the case C = k) it follows that the mor-
phism X an → Sp(C) is pseudo-separated for any locally finite type C-
scheme X . The separatedness of Sp(C) therefore implies that X an is a
pseudo-separated rigid space for any such X , so it makes sense to address
the compatibility of relative analytification with respect to any analytic
extension field k′/k. Arguing as in the case C = k, we obtain a transitive
natural Sp(k′⊗̂kC)-isomorphism of k′-analytic rigid spaces

k′⊗̂kX '
(
(k′⊗̂kC)⊗C X

)an
.

This isomorphism is compatible with fiber products and k-affinoid base
change on C, and for affine X it is compatible with the behavior of Specan

with respect to extension of the base field.
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2.3. Relative Proj

Let S be a rigid space and let

(2.3.1) A =
⊕
n>0

An

be a graded sheaf of OS-algebras such that
• each An is coherent as an OS-module (so A is a quasi-coherent OS-

algebra),
• A is locally finitely generated as an OS-algebra.

Locally on S, A is a quotient of a graded polynomial algebra in finitely
many variables overOS , with each variable assigned a suitable non-negative
degree. By Theorem 2.1.11, if U ⊆ S is an admissible open such that A U

is a graded quotient of a weighted polynomial algebra OU [T1, . . . , Tm] then
A(V ) is a graded quotient ofO(V )[T1, . . . , Tm] for any open affinoid V ⊆ U .

Definition 2.3.1. — Let a ∈ H0(S,An) be a global section with n > 0,
so Aa is naturally a Z-graded quasi-coherent sheaf of OS-algebras such that
1/a is a homogeneous global section with constant degree −n. The OS-
algebra A(a) is the degree-0 part of Aa.

Lemma 2.3.2. — The OS-algebra A(a) is locally finitely generated and
quasi-coherent. If A is a graded quotient of a polynomial algebra over OS in
finitely many homogeneous variables then A(a) is a quotient of a polynomial
algebra over OS in finitely many variables.

Proof. — Since Aa is quasi-coherent, by Lemma 2.1.9, its direct sum-
mand A(a) as an OS-module is quasi-coherent. To check that A(a) is locally
finitely generated, we may work locally on S. Thus, we can assume that A
is a quotient of a graded OS-algebra OS [T1, . . . , Tr] with deg(Tj) = dj > 0.
It follows that A(a) is a quotient of the OS-algebra

(2.3.2) OS

[
T d1Tn

1 , . . . , T drTn
r , T eT e1

1 · · ·T er
r |ne =

∑
ejdj , 0 6 ej < n

]
.

This sheaf has the form OS⊗ZA(a) where A = Z[T1, . . . , Tr, a] is the graded
noetherian polynomial ring over Z with deg(Tj) = dj and deg(a) = n. Since
A(a) is of finite type over Z [15, II, 2.1.6 (iv), 2.2.5], we conclude that (2.3.2)
is a quotient of a polynomial algebra over OS in finitely many variables. �

In an evident manner, the formation of A(a) is compatible with base
change on S and (for quasi-separated or pseudo-separated S) with change
of the base field. By Lemma 2.3.2, it makes sense to form the rigid space
Specan A(a) over S, and the functor (A, a)  Specan A(a) is compatible
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with base change on S and (for quasi-separated or pseudo-separated S)
with change of the base field.

For f ∈ H0(S,An) and g ∈ H0(S,Am) with n, m > 0, there is an equality
of OS-subalgebras of Afg:

(2.3.3) (A(f))gn/fm = A(fg) = (A(g))fm/gn .

By Example 2.2.10, Specan A(fg) is naturally identified with a Zariski-open
in each of Specan A(f) and Specan A(g). The data of these Zariski-opens for
all f and g satisfy the triple overlap compatibilities as we vary f and g and
shrink the base, so we can glue over S. To be precise:

Definition 2.3.3. — Let A be as in (2.3.1). For varying admissible
opens U, V ⊆ S and sections f ∈ H0(U,An) and g ∈ H0(V,Am) with
n, m > 0, we glue

Specan((A U )(f)) U∩V and Specan((A V )(g)) U∩V

via (2.3.3) over U∩V . The resulting rigid space over S is denoted Projan A.

Remark 2.3.4. — For any f ∈ An(S) with n > 0, the admissible open
Specan A(f) in Projan A is Zariski-open. Indeed, for any admissible open
U ⊆ S and any section g ∈ Am(U) with m > 0, the overlap of Specan A(f)

and Specan(A U )(g) in Projan A is the non-vanishing locus of fm/gn on
Specan(A U )(g).

We define A>N =
⊕

n>N An for A as in (2.3.1). This A-ideal is quasi-
coherent over OS . By Corollary 2.1.12, the A-module A>N is A-finite. We
let A+ denote A>0.

The definition of Projan is too global. For example, there is so much data
in the definition that it is not a tautology that the formation of Projan

respects base change (but see Theorem 2.3.6). To localize the situation, we
will use the A-finite A+. By the definition of Projan there is a natural map

(2.3.4) Projan(A U ) −→ (Projan A)×S U

over admissible opens U ⊆ S; the existence of this map rests on the enor-
mous amount of data that was glued in the definition of Projan A. We claim
that (2.3.4) is an isomorphism. By working locally on S, it is enough to
consider admissible open U ⊆ S over which the finite A U -module A+ U

is generated by finitely many homogeneous U -sections. To handle the iso-
morphism problem for (2.3.4) in this special case, it suffices to prove the
very useful:
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Lemma 2.3.5. — Suppose elements fj ∈ H0(S,Aij ) for 1 6 j 6 r and
ij > 0 generate the A-finite quasi-coherent ideal sheaf A+ in A. For any
admissible open U ⊆ S and g ∈ Am(U) with m > 0, Specan(A U )(g)

is covered by its Zariski-open subsets Specan(A U )(gfj). In particular, the
Zariski-opens Specan A(fj) in Projan A form a covering. The same holds
with A+ replaced by A>N for any N > 0.

Proof. — The hypothesis on the fj ’s is preserved by renaming U as S,
and the statement to be proved is expressed in terms of Specan’s whose
formation is local on S. Thus, we just have to check that if g ∈ Am(S)
with m > 0 then the Specan A(gfj)’s are a set-theoretic cover of Specan A(g).
We may pass to fibers over points Sp(k′) of S. Renaming k′ as k, the
compatibility with analytification in Theorem 2.2.5.(2) when S = Sp(k)
reduces our problem to the known scheme version [15, II, 2.3.15] for Proj
of a graded ring. �

Theorem 2.3.6. — The map Projan A → S is separated. Moreover,
the formation of Projan A is naturally compatible with base change on S,
and with change of the base field when S is quasi-separated or pseudo-
separated.

Proof. — The isomorphism (2.3.4) and Lemma 2.3.5 imply that the con-
struction of Projan A can be given locally over S with a finite amount of
data that is insensitive to base change and change of the base field. Thus,
by Remark 2.3.4 and Lemma A.2.4 the compatibilities with base change
and (for quasi-separated or pseudo-separated S) change of the base field
follow from the analogous compatibilities for the formation of Specan A(f).

By Remark 2.3.4, for f ∈ An(S) and g ∈ Am(S) with n, m > 0, the
natural map

Specan A(fg) −→ Specan A(f) ×S Specan A(g)

fits into a cartesian square

Specan A(fg)
//

��

Specan A(f) ×S Specan A(g)

��
Gm

// A1
k ×A1

k

with the right side given by (gn/fm) × (fm/gn), the left side given by
gn+m/(fg)m, and the bottom side given by the closed immersion t 7→ (t, 1/t)
onto the hyperbola xy = 1. The top side is therefore a closed immersion,
so Projan A is separated over S. �
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In Corollary 2.3.9 we will see that Projan A is S-proper.

Definition 2.3.7. — Let F be a coherent sheaf on a rigid space S. Let
Sym(F) be the locally finitely generated and quasi-coherent graded sym-
metric algebra of F over OS . The rigid space Pan(F) is Projan(Sym(F)).

Using Lemma 2.3.5, it follows exactly as in the case of schemes that
Pan(F) classifies isomorphism classes of pairs (f, θ) where f : X → S is
a rigid space over S and θ : f∗F � L is an OX -linear surjection onto an
invertible sheaf. If S = Sp(A) is affinoid and M = H0(S,F) then we write
Pan(M) rather than Pan(F); in this case, an S-morphism X → Pan(M)
is classified by an A-linear map M → H0(X,L) whose image generates all
stalks of a line bundle L. By Theorem 2.3.6, the formation of Pan(F)
commutes with base change on S and (for quasi-separated or pseudo-
separated S) with change of the base field.

We now summarize some basic properties of Projan.

Theorem 2.3.8. — Let S be a rigid space, and let A =
⊕

n>0 An be
a locally finitely generated and graded sheaf of OS-algebras such that An

is coherent for all n.
1) If A is OS-flat then Projan A is S-flat.
2) Assume (S,A) is the analytification of an analogous pair (S0,A0)

with S0 an algebraic k-scheme. For any a ∈ H0(S0,An
0 ) with n > 0, the

S-isomorphisms

(2.3.5) Specan A(aan) ' Specan((A0)an(a)) ' (Spec((A0)(a)))an

glue to define an S-isomorphism

(2.3.6) Projan A ' (ProjA0)an

that is compatible with base change on S0 and with change of the base
field.

3) Let ϕ : A → B be a graded map between locally finitely generated and
graded OS-algebras with graded terms that are coherent and supported in
nonnegative degrees. Assume that locally on S the map ϕ is surjective in
all sufficiently large degrees. There exists a unique map

(2.3.7) Projan(ϕ) : Projan B → Projan A

over S that is compatible with base change on S and with both (2.3.6) and
the algebraic analogue of (2.3.7). The map (2.3.7) is a closed immersion,
and for quasi-separated or pseudo-separated S it respects change of the
base field.
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Proof. — Corollary 2.2.7 gives (1) because for a ∈ A(U) the OU -algebra
(A U )(a) is an OU -module direct summand of A U and hence is OU -flat.
Now consider (2). The diagram

(2.3.8) Specan
(
A(aana′an)

) ' //

��

(
Spec((A0)(aa′))

)an

��
Specan

(
A(aan)

)
'

//
(
Spec((A0)(a))

)an

commutes and is cartesian with open immersions along the columns. By
Lemma 2.3.5 the resulting map

(2.3.9) Projan A −→ (ProjA0)an

over San
0 is compatible with base change on S0 and with change of the base

field, and (via the cartesian property of (2.3.8)) it is an isomorphism.

To prove 3), note that uniqueness is clear by the Krull intersection theo-
rem. For existence, first consider an element b ∈ H0(S,Bn) that lifts to an
element a ∈ H0(S,An), with n > 0. We claim that the composite

(2.3.10) Specan B(b) ↪−→ Specan A(a) ↪−→ Projan A

is independent of a, is compatible with base change on S, and (for quasi-
separated or pseudo-separated S) is compatible with change in the base
field. The independence of a holds for Artin local S due to 2) and the
known algebraic analogue. The independence of a in general follows by
passing to infinitesimal fibers. The same method establishes compatibility
of (2.3.10) with any base change S′ → S, via passage to infinitesimal fibers
over S and S′. Compatibility of (2.3.10) with change in the base field (for
quasi-separated or pseudo-separated S) follows from Lemma 2.3.5 due to
the compatibility of Specan with change in the base field.

By working locally over admissible opens U in S such that ϕ U is sur-
jective in all degrees > NU for some NU > 0 and such that a finite set
of B U -module generators of B>NU U lifts to A(U), we can glue to define
a unique map Projan(ϕ) : Projan B → Projan A of the desired type in (3)
except that we still need to show that Projan(ϕ) is a closed immersion.
For a ∈ H0(S,An) with image b ∈ H0(S,Bn), the map A(a) → B(b) is
surjective. Thus, for such a and b the map Specan B(b) → Specan A(a) is
a closed immersion by Theorem 2.2.5.(2). By Lemma 2.3.5 (and working
locally on S), it follows that Projan B → Projan A is a closed immersion if
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the commutative diagram (with open immersions along columns)

(2.3.11) SpecanB(b)
//

��

SpecanA(a)

��
ProjanB // ProjanA

is cartesian. The induced map from Specan B(b) to the fiber product is
an open immersion (as it is a Projan B-map between admissible opens in
Projan B), so our problem is set-theoretic and hence it suffices to work on
fibers over S. On such fibers, the settled part 2) reduces us to the known
scheme analogue [15, II, 2.9.2 (i)]. �

By Theorem 2.3.8.(3), we obtain:

Corollary 2.3.9. — Let S be a rigid space and let A =
⊕

n>0 An be
a locally finitely generated and graded sheaf of OS-algebras with coherent
graded terms. Locally on S there exists a closed immersion of Projan A into
a weighted projective space over the base. In particular, Projan A → S is
proper.

Let A(d) be the graded sheaf of algebras obtained from A by drop-
ping all graded terms in degrees not divisible by some integer d > 0;
clearly A(d) has coherent graded terms, and it is locally finitely generated
because Z[T1, . . . , Tr](d) is finitely generated over Z for any assigned values
deg Tj = dj > 0 [15, II, 2.1.6 (iv)]. The natural isomorphisms ((A U )(d))(a)'
(A U )(a) for sections a ∈ H0(U,And), n > 0, induce an S-map Projan A(d)→
Projan A whose formation is local on S.

Corollary 2.3.10. — The canonical map Projan A(d) → Projan A
over S is an isomorphism, and its formation is compatible with base change
on S and (for quasi-separated or pseudo-separated S) with change in the
ground field.

Proof. — The compatibility with base change and with change in the
ground field follow from working locally on S and using Lemma 2.3.5 and
the construction of the map. For Artin local S, (2.3.5) and (2.3.6) reduce
the isomorphism problem to the known scheme case [15, II, 2.4.7 (i)]. For
general S, since Projan A and Projan A(d) are S-proper (Corollary 2.3.9),
it remains to check that if f : X → Y is an S-map between rigid spaces
proper over S then f is an isomorphism if it induces an isomorphism on
infinitesimal fibers over S. This follows from Theorem A.2.6.(2). �

ANNALES DE L’INSTITUT FOURIER



RELATIVE AMPLENESS IN RIGID GEOMETRY 1077

Example 2.3.11. — We now wish to give a Proj analogue of Exam-
ple 2.2.9. Let S = Sp(C) be affinoid and assume that A as in Theorem 2.3.8
is a graded quotient of a weighted polynomial algebra over OS , so A(S) is
a graded quotient of a weighted polynomial algebra over C in finitely many
variables. For all a ∈ A(S)n = An(S), the natural maps

Specan A(a) −→ SpecA(a)(S) = SpecA(S)(a)

glue to define a natural map of locally ringed Grothendieck-topologized
spaces Projan A → Proj(A(S)) over Spec C, and so consequently we obtain
a natural S-map

(2.3.12) Projan A −→
(
Proj(A(S))

)an

to the relative analytification (over SpC) in the sense of Example 2.2.11.
We claim that this is an isomorphism. Since A(a)(S) = A(S)(a) for any
homogeneous term a ∈ A+(S) = A(S)+, we may use Lemma 2.3.5 and
the gluing constructions of each side of (2.3.12) to reduce the isomorphism
problem to the analogue for Spec that was handled in Example 2.2.9.

The isomorphism (2.3.12) ensures that the relative analytification func-
tor in Example 2.2.11 carries projective C-schemes to rigid spaces that are
projective (and hence proper) over Sp(C). Since relative analytification car-
ries closed immersions to closed immersions and surjections to surjections,
by Chow’s Lemma and Temkin’s work on proper maps (see §A.1) it follows
that relative analytification carries proper maps to proper maps.

Theorem 2.3.12. — Let S be a rigid space and let A be a quasi-
coherent locally finitely generated OS-algebra. Let fA : Specan A → S

be the structure map. The canonical map A → fA∗OSpecan A is injective.
In particular, Specan is a faithful functor.

Remark 2.3.13. — For s ∈ S,

f−1
A (s) = Specan(As/msAs) ' Spec(As/msAs)an

may be empty even if As 6= 0. A simple example is to take S to be a
connected smooth curve and A = OS [T ]/(1−fT ) for a nonzero f ∈ OS(S)
with a zero at s ∈ S. The possibility of empty fibers at points where A
has a nonzero stalk is the reason why the proof of Theorem 2.3.12 is not
shorter or simpler.

Proof. — Since A is quasi-coherent, A(U) →
∏

s∈U As is injective for
every admissible open U in S. Thus, it suffices to prove that fA is injec-
tive on s-stalks for all s ∈ S. Our problem is therefore pointwise. Work
locally on S so that A is a quotient of a sheaf of polynomial algebras
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OS [T1, . . . , Tn] modulo a quasi-coherent ideal I. Choose s ∈ S. By passing
to stalks at s, SpecAs is thereby identified with a closed subscheme of
affine n-space over SpecOS,s. Forming the projective closure in Pn

OS,s
gives

a graded quotient A′s of the polynomial algebra OS,s[Z0, . . . , Zn] (with
deg Zj = 1 for all j) such that defining Tj = Zj/Z0 identifies (A′s)(Z0)

and As as quotients of OS,s[T1, . . . , Tn]. Explicitly, A′s is the quotient of
OS,s[Z0, . . . , Zn] by the homogeneous ideal generated by the homogeneous
polynomials g whose Z0-dehomogenization in OS,s[T1, . . . , Tn] vanishes in
the quotient As. In particular, Z0 has image in A′s that is not a zero-divisor.

By shrinking S around s and using the fact that a quasi-coherent ideal
sheaf J in a locally finitely generated quasi-coherent OS-algebra B is B-
finite (Corollary 2.1.12), there is a quasi-coherent graded quotient Ã of
OS [Z0, . . . , Zn] such that A = Ã(Z0) as quotients of OS [T1, . . . , Tn] and A′s
is identified with the s-stalk of Ã. In particular, Specan A = Specan Ã(Z0) is
identified with a Zariski-open U in the S-proper Projan Ã. The annihilator
of Z0 in Ã is a quasi-coherent ideal sheaf K whose stalk at s is zero because
Z0 is not a zero-divisor on the s-stalk of Ãs = A′s. Since K is Ã-finite we
may therefore shrink S around s so that K = 0, and hence Z0 is nowhere
a zero-divisor on Ã.

Let h : P = Projan Ã → S be the proper structure map, and let H ⊆ P

be the hypersurface Z0 = 0 (via the canonical closed S-immersion of P

into Pn
S). Clearly H is a Cartier divisor in P , though this property may

be lost upon base change to infinitesimal fibers over S. We write OP (dH)
to denote the dth (tensor) power of the inverse of the invertible ideal sheaf
of H in OP for d > 0. Let U = P − H = Specan A and let j : U ↪→ P

be the inclusion, so h ◦ j = fA is the structure map for U = Specan A.
Let Ad ⊆ A be the coherent image of the coherent sheaf of polynomials
with total degree 6 d in OS [T1, . . . , Tn], so A = lim−→Ad. There is a natural
map Ad → h∗(OP (dH)), and the map A → fA∗OSpecan A is identified with
the direct limit of the composites

Ad −→ h∗
(
OP (dH)

)
−→ h∗j∗j

∗OP (dH) = h∗j∗OU = fA∗OSpecan A .

The second step in this composite is an injection because OP (dH)→ j∗OU

is injective (as H is Cartier in P ), so to complete the proof it suffices to
prove that the map Ad → h∗(OP (dH)) is injective on s-stalks for all d > 1
and all s ∈ S. This is a map of coherent sheaves because h is proper, and
so it suffices to check the injectivity condition on completed stalks at each
point s ∈ S; we may also restrict attention to large d possibly depending
on s.
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The rigid-analytic theorem on formal functions functorially expresses the
complete stalks in terms of the associated formal schemes over Spf(O∧S,s),
and so by the algebraic theorem on formal functions it is equivalent to
prove the corresponding injectivity claim for P alg

s
def
== Proj(O∧S,s ⊗OS,s

Ãs)
over Spec(O∧S,s). For large d (depending on s) the map from the dth graded
piece of O∧S,s⊗OS,s

Ãs to the global sections of OP alg
s

(d) is an isomorphism.
Thus, using Z0 to identify OP alg

s
(1) with the inverse of the invertible ideal

of the Cartier divisor {Z0 = 0} ∩ P alg
s in Pn

SpecO∧
S,s

gives the desired injec-
tivity result. �

3. Ample line bundles

We are now in position to develop the theory of ampleness in rigid geome-
try. We first discuss some aspects that are peculiar to the special case when
the base is a field, and then we turn to the relative case. The case when the
base is a field is essentially well-known, but we address it in some detail be-
cause there are intermediate results whose formulation in terms of Specan

and Projan over Sp(k) will be convenient to use in proofs concerning the
relative case over a general base.

3.1. The absolute case

We refer the reader to §A.1 for a discussion of rigid-analytic GAGA,
including its relative version.

Definition 3.1.1. — Let f : X → Sp(k) be proper. An invertible
sheaf L on X is ample (or k-ample) if some large tensor power L⊗N is
generated by global sections (i.e., f∗f∗L⊗N → L⊗N is surjective) and the
resulting canonical map X → Pan(H0(X,L⊗N )) = Pan(f∗L⊗N ) to a rigid-
analytic projective space is a closed immersion.

Lemma 3.1.2. — Let f : X → Sp(k) be proper, and L an invertible
sheaf on X. For an analytic extension field k′/k, L is k-ample on X if and
only if k′⊗̂kL is k′-ample on X ′ = k′⊗̂kX.

Proof. — The property of L⊗N being generated by its global sections
is insensitive to extension of the ground field because the formation of
both f∗L⊗N and the support of the cokernel of the map f∗f∗L⊗N → L⊗N
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commute with extension of the ground field (Theorem A.1.2 and Corol-
lary A.2.7). Hence, it suffices to prove that a map h : X → P between
proper rigid spaces over k is a closed immersion if and only if its exten-
sion of scalars h′ : X ′ → P ′ over k′ is a closed immersion. This follows
from Theorem A.2.6.(3) (and also admits a short direct proof since proper
quasi-finite maps are finite). �

Remark 3.1.3. — Upon using GAGA to algebraize an ample pair (X,L),
the algebraization of L is ample on the algebraization of X. It therefore fol-
lows from the algebraic theory that, in the absence of ampleness hypotheses
on L, if k0 is a finite extension of k and X is a proper rigid space over k0

then the line bundle L is k-ample on X if and only if L is k0-ample on X.
A further application of GAGA shows that L is k-ample on X if and only

if there exists a closed immersion j : X ↪→ Pm
k and a positive integer N

such that L⊗N is isomorphic to j∗OPm
k

(1). The rigid-analytic cohomological
properties of O(1) on Pm

k are the key input in the proof of GAGA over k,
and these properties imply that for an ample L on X and any coherent
sheaf F on X, F ⊗L⊗n has vanishing higher cohomology and is generated
by global sections for all large n. See Theorem 3.1.5 for a converse.

The following lemma imposes very strong assumptions (the finiteness
hypothesis on A and the existence of the ms’s), but we will prove in Theo-
rem 3.2.7 below that these assumptions are satisfied if Ls = L Xs

is ample
on Xs for every s ∈ S, in which case we will prove that the map in (3.1.2)
below is an isomorphism.

Lemma 3.1.4. — Let f : X → S be proper and let L be an invertible
sheaf on X. For each s ∈ S assume that there exists an integer ms > 0
such that

(3.1.1) f∗f∗L⊗ms → L⊗ms

is surjective over f−1(Ws) for an admissible open Ws ⊆ S containing s.
Define the graded OS-algebra A =

⊕
n>0 f∗L⊗n, and assume that A is

locally finitely generated as an OS-algebra.
There exists a canonical S-map

(3.1.2) φA : X −→ Projan A

that is compatible with flat base change on S, change of the base field (for
quasi-separated or pseudo-separated S), and analytification (via (2.3.6) and
the relative GAGA isomorphism (A.1.1) for direct images).
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Proof. — Let Ar = f∗L⊗r denote the rth graded piece of A. For any
a ∈ H0(X,L) = A1(X), the support of the coherent cokernel of the
map a : OX → L is an analytic set Za ⊆ X. For the Zariski-open com-
plement Ua = X − Za where a generates L we get a canonical S-map

ρa : Ua −→ Specan A(a) ↪−→ Projan A

defined by the map A(a) → f∗OUa sending t/a⊗r ∈ A(a)(V ) = A(V )(a)

to the section g ∈ (f∗OUa
)(V ) = OX(Ua ∩ f−1(V )), where t ∈ Ar(V ) =

(f∗L⊗r)(V ) = L⊗r(f−1(V )) restricts to g · a⊗r on Ua ∩ f−1(V ) and the
subset V ⊆ S is admissible.

For any a, a′ ∈ L(X), clearly ρa and ρa′ coincide on Ua ∩Ua′ . Moreover,
for any admissible open V ⊆ S the map ρa Ua∩f−1(V ) = ρa|f−1(V ) is the
canonical one associated to the morphism f−1(V ) → V and the section
a f−1(V ) of L f−1(V ). Thus, if f∗f∗L → L is surjective on X then we can
carry out the construction of ρa locally over S for local sections a of the
coherent sheaf f∗L; gluing the resulting maps ρa defines an S-map

(3.1.3) φA : X −→ Projan A.

For m > 0, the maps φA and φA(m) are compatible via the isomorphism
in Corollary 2.3.10, so the map (3.1.3) is unaffected by replacing L with
any L⊗m for m > 0. Thus, we can carry out the construction of (3.1.3) if
the sets

U ′
m =

{
s ∈ S | f∗f∗L⊗m → L⊗m is surjective on stalks at all x ∈ Xs

}
for m > 1 are admissible opens and form an admissible cover of S. We shall
now show that these conditions on the U ′

m’s hold.
For a fixed m we have U ′

m = S − f(Zm) where

Zm =
{
x ∈ X | f∗f∗L⊗m → L⊗m is not surjective at x

}
.

Since Zm is the support of the coherent sheaf coker(f∗f∗L⊗m → L⊗m),
it is Zariski-closed in X. By properness of f , the locus U ′

m is therefore
Zariski-open in S. Again using this properness, the existence of the ms’s
as in (3.1.1) says that the U ′

m’s set-theoretically cover S, so {U ′
m} is an ad-

missible covering because each U ′
m is a Zariski-open in S. This completes

the construction of (3.1.2) whenever ms’s exist as in (3.1.1). By construc-
tion, φA is compatible with flat base change, change of the base field (for
quasi-separated or pseudo-separated S), and analytification. �

Here is the cohomological criterion for ampleness over a field; see Corol-
lary 3.2.5 for a relativization.
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Theorem 3.1.5. — Let f : X → Sp(k) be proper and let L be an
invertible sheaf on X. If H1(X, I ⊗L⊗n) = 0 for all coherent ideal sheaves
I on X and all large n (depending on I) then L is k-ample.

Proof. — The proofs of the analogous theorem for schemes and complex-
analytic spaces use pointwise arguments (such as ideal sheaves of points),
and so admissibility problems arise when trying to use these proofs for rigid
spaces. We shall adapt the principles of the algebraic and complex-analytic
proofs via a suitable application of Lemma 3.1.4 and GAGA.

Pick x ∈ X, and let I{x} be the coherent ideal associated to

ix : Sp
(
k(x)

)
↪−→ X.

The short exact sequence

0→ I{x} ⊗ L⊗n −→ L⊗n −→ ix∗(L⊗x /mxL⊗n
x )→ 0

induces a surjection H0(X,Ln)� L⊗n
x /mxL⊗n

x for large n depending on x.
Thus, the map f∗f∗L⊗n → L⊗n between coherent sheaves is surjective
on the stalks at x for large n depending on x. The Zariski-open locus
Un = X − coker(f∗f∗L⊗n → L⊗n) therefore contains x when n > n(x)
for some n(x) > 0. Let Vx = Un(x) ∩ . . . ∩ U2n(x)−1, so f∗f∗L⊗n → L⊗n is
surjective on Vx for n(x) 6 n < 2n(x).

For n > 2n(x) we have n = n(x)q + r with q > 1 and n(x) 6 r < 2n(x),
and the composite map of coherent sheaves

(f∗f∗L⊗n(x))⊗q ⊗ f∗f∗L⊗r −→ f∗f∗L⊗n −→ L⊗n

is equal to

(f∗f∗L⊗n(x))⊗q ⊗ f∗f∗L⊗r −→ (L⊗n(x))⊗q ⊗ L⊗r = L⊗n.

This second map is visibly surjective over Vx. Thus, f∗f∗L⊗n
Vx
→ L⊗n

Vx

is surjective for all n > n(x). The Zariski covering {Vx}x∈X of the quasi-
compact X has a finite subcovering, so there exists n0 > 0 such that
f∗f∗L⊗n → L⊗n is surjective for n > n0. That is, L⊗n is generated
by H0(X,L⊗n) for all n > n0.

If x 6= x′ are distinct points in X, then using the short exact sequence

0→ I{x,x′} ⊗ L⊗n −→ I{x′} ⊗ L⊗n −→ ix∗(L⊗n
x /mxL⊗n

x )→ 0

and the cohomological hypothesis on L shows that H0(X, I{x′} ⊗ L⊗n)→
L⊗n

x /mxL⊗n
x is surjective for large n (a priori depending on {x, x′}). In par-

ticular, there exists n > 0 and s ∈ H0(X,L⊗n) that each depend on {x, x′}
such that

(3.1.4) sx ∈ mxL⊗n
x , sx′ 6∈ mx′L⊗n

x′ .
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Consider the short exact sequence 0 → K → f∗f∗L⊗n0 → L⊗n0 → 0
with K defined to be the kernel term. Since the coherent sheaf f∗L⊗n0 on
Sp(k) is globally free, its pullback by f is globally free of finite rank on X.
Hence, K has a finite filtration whose successive quotients are isomorphic to
coherent ideal sheaves. By the cohomological hypothesis on L, we therefore
have H1(X,K⊗L⊗n) = 0 for large n. Using the projection formula, we get
a commutative diagram

f∗L⊗n0 ⊗ f∗L⊗n

'
��

// f∗(L⊗n0 ⊗ L⊗n)

'
��

f∗
(
(f∗f∗L⊗n0)⊗ L⊗n

)
// f∗L⊗n+n0

on Sp(k). The bottom side is a surjection for large n since H1(X,K⊗L⊗n) = 0
for large n. Thus, the top side is surjective for large n. It follows that the
graded k-algebra

⊕
n>0 H0(X,L⊗n) is finitely generated. We may therefore

use Lemma 3.1.4 (with ms = n0 for the unique point s in S = Sp(k)) to
obtain a canonical morphism of rigid spaces

ι : X −→ P = Projan
( ⊕

n>0

H0
(
X,L⊗n)

)
.

By (3.1.4) and the definition of ι, if x 6= x′ are distinct points in X

then ι(x) 6= ι(x′) because (by Remark 2.3.4) there is a Zariski-open in
Projan(

⊕
n>0 H0(X,L⊗n)) that contains ι(x) but does not contain ι(x′).

Thus, ι has finite fibers. The map ι : X → P is proper, so X is finite
over P . By Theorem 2.3.8 (2), the rigid space P is projective. Since finite
maps of rigid spaces are classified by coherent sheaves of algebras as in
Corollary 2.2.8, we may infer from Theorem 2.2.5(3) and GAGA on P that
the P -finite rigid space X is the analytification of a scheme finite over a
projective k-scheme. Hence, X is projective. By rigid GAGA on X, the
cohomological hypothesis on L and the cohomological ampleness criterion
in the algebraic case imply that the invertible sheaf L on X is ample in the
sense of Definition 3.1.1. (By [15, III1, 2.3.4.1] and GAGA, it now follows
that ι is even an isomorphism.) �

By standard cohomological arguments, we deduce:

Corollary 3.1.6. — Let X be a proper rigid space over k. An invert-
ible sheaf L on X is ample on X if and only if L Xred is ample on Xred.
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3.2. Relative ampleness

There are (at least) two ways to introduce the relative theory of ample-
ness, both of which will be proved to be equivalent. In the theory of schemes,
relative ampleness is defined rather generally for any quasi-compact and
separated morphism of schemes [15, II, 4.5.3, 4.6.1]. In the proper case, it
admits a fibral characterization:

Theorem 3.2.1. — Let f : X → S be a proper and finitely presented
morphism of schemes. Let L be an invertible sheaf on X. The set U of s ∈ S

such that Ls = L Xs
is ample on Xs is Zariski-open in S, and L f−1(U) is

U -ample. In particular, L is S-ample if and only if Ls is ample on Xs for
all s ∈ S.

Proof. — This is [15, IV3, 9.6.4]. �

Theorem 3.2.1 motivates the following definition in the rigid-analytic
case:

Definition 3.2.2. — Let f : X → S be a proper morphism of rigid
spaces. An invertible sheaf L on X is S-ample, or relatively ample over S,
if Ls is ample on Xs for every s ∈ S.

It is obvious that S-ampleness is preserved by base change, but it is
not obvious a priori (for quasi-separated or pseudo-separated S) whether
or not relative ampleness is insenstive to change of the ground field; see
Corollary 3.2.8 for the affirmative result. It is also not obvious if S-ample
line bundles satisfy a relative version of the Cartan-Serre theorems A and B
for O(1) (as was proved in the complex-analytic case by Grauert and Rem-
mert [20] when projective embeddings are assumed to exist locally on the
base).

A satisfactory relative theory of ampleness requires linking our fibral
definition with properties of higher direct images and maps to relative
projective spaces. It saves no effort to cheat by replacing Definition 3.2.2
with the property of being “relatively potentially very ample” (that is,
locally over S, a high tensor power of L is a pullback of O(1) under a
projective embedding over the base): at some point in the development of
the theory (for applications in abstract situations) one has to confront the
problem of proving the equivalence of “relatively potentially very ample”
and fibral ampleness. Our strategy for proving such an equivalence is to
prove that fibral ampleness implies that the hypotheses in Lemma 3.1.4 are
satisfied and that (3.1.2) is an isomorphism in such cases. The development
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of the relative theory cannot be substantially simplified by merely adopting
a different initial definition.

The first step is the trivial observation that infinitesimal deformations
of a projective algebraic rigid space remain projective algebraic if we can
deform an ample line bundle:

Lemma 3.2.3. — Let A0 be a finite local k-algebra, and let X → Sp(A0)
be a proper morphism. If there exists a Sp(A0)-ample invertible sheaf L
on X then L is k-ample on the k-proper X and hence X is projective
algebraic over k.

Proof. — Corollary 3.1.6 reduces us to the case when A0 is replaced
with its residue field k0 of finite degree over k, and the equivalence of k0-
ampleness and k-ampleness was noted in Remark 3.1.3. �

Under the hypothesis in Lemma 3.2.3, Spec A0 is k-finite and

(Spec A0)an ' SpA0.

Thus, it follows from GAGA that there exists a Sp(A0)-isomorphism X '
Y an where Y is a projective scheme over Spec(A0), and under this iso-
morphism we have L ' Man for an invertible sheaf M on Y that must
be A0-ample (as this algebraic ampleness can be checked on the algebraic
closed fiber, since A0 is an Artin local ring and ampleness is insensitive
to nilpotents on the algebraic side). In other words, the pair (X,L) in
Lemma 3.2.3 is “projective algebraic over Spec(A0).”

Theorem 3.2.4. — Let f : X → S be proper, L an S-ample invertible
sheaf on X, and F a coherent sheaf on X. There exists an admissible open
covering {Uα} of S and integers nα > 0 such that

1) Rpf∗(F ⊗ L⊗n) Uα
= 0 for all p > 0, n > nα;

2) the natural map f∗f∗(F ⊗ L⊗n) f−1(Uα) → F ⊗ L⊗n
f−1(Uα) is sur-

jective for n > nα.

Proof. — Choose s ∈ S and let Rn = OS,s/mn+1
s . Let Xn → Sp(Rn)

be the nth infinitesimal neighborhood of the fiber Xs. By Corollary 3.1.6,
the line bundle Ln = L Xn is Sp(Rn)-ample on Xn because Ls is ample
on Xs. Define Fn = F Xn , so Fn is a coherent sheaf on Xn. We may apply
Lemma 3.2.3 to the pair (Xn,Ln) over Sp(Rn). By rigid GAGA, the triple
of rigid-analytic data (Xn,Ln,Fn) is the analytification of a unique (up to
unique isomorphism) triple of algebraic data (Yn,Mn,Gn) over Spec(Rn),
where Yn is a proper Rn-scheme,Mn is an Rn-ample invertible sheaf on Yn,
and Gn is a coherent sheaf on Yn. By the uniqueness, this algebraic data

TOME 56 (2006), FASCICULE 4



1086 Brian CONRAD

is compatible with change in n. By [15, I, 10.6, 10.11], this system of alge-
braic data defines a triple (Y,M,G) where f̂ : Y→ Spf(ÔS,s) is a proper
formal scheme, M is an invertible sheaf on Y, and G is a coherent sheaf
on Y. The Spec(Rn)-fiber of (Y,M,G) is (Yn,Mn,Gn). We emphasize (for
later purposes) that only the hypothesis of ampleness for Ls on Xs (and
no hypotheses on higher infinitesimal fibers of f) has provided us with a
proper formal scheme over Spf ÔS,s equipped with a line bundle M that
has ample reductionM0 modulo msÔS,s. This will open the door to using
the cohomological theory of formal schemes to solve our problems.

Step 1. — Since the reductionM0 of M on Y0 is ample, it follows from the
Grothendieck algebraization theorem [15, III1, 5.4.5] and Grothendieck’s
formal GAGA theorem [15, III1, 5.1.6, 5.4.1] that the formal scheme data
(Y,M,G) arises as the formal completion (along the closed fiber) of unique
algebraic data (Y,M,G) where Y is a proper scheme over Spec(ÔS,s), M
is an invertible sheaf on Y , and G is a coherent sheaf on Y . The reduction
of this data modulo mn+1

s is the algebraized triple (Yn,Mn,Gn) as defined
above via GAGA over Rn. In particular, since Y is ÔS,s-proper it follows
from Theorem 3.2.1 that M is (relatively) ample on Y over Spec ÔS,s (as
this is true for M0 on Y0 over Spec k(s) because Ls is ample on Xs).
By the algebraic cohomological theory of ample line bundles, for large n

(depending on s) we have that Hp(Y,G ⊗ M⊗n) vanishes for all p > 0
and G ⊗M⊗n is generated by global sections.

It follows that for large n, G⊗M⊗n is generated by global sections and
(by Grothendieck’s scheme-theoretic theorem on formal functions)

lim←−
m

Hp(Ym,Gm ⊗M⊗n
m ) ' Hp(Y,G ⊗M⊗n) = 0

for all p > 0. Rigid GAGA and Kiehl’s rigid-analytic theorem on formal
functions identify this inverse limit with

lim←−
m

Hp(Xm,Fm ⊗ L⊗n
m ) ' ÔS,s ⊗OS,s

Rpf∗(F ⊗ L⊗n)s.

Thus, for some ns > 0 depending on s we have Rpf∗(F ⊗ L⊗n)s = 0 for
all p > 0 and all n > ns.

Step 2. — Now consider the maps

(3.2.1) θn : f∗f∗(F ⊗ L⊗n) −→ F ⊗L⊗n

for n > 0. For fixed n > 0, coker θn has analytic support Zn in X. If Zn is
disjoint from a fiber Xs for some s ∈ S then S − f(Zn) is a Zariski-open
neighborhood of s over which θn is surjective.
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We now fix s ∈ S and shall show that for some n′s > 0 and all n > n′s,
the map θn between coherent sheaves induces a surjection on stalks at
each x ∈ Xs (that is, Zn ∩ Xs = ∅ for all n > n′s). To prove surjectivity
on x-stalks it is equivalent to check surjectivity after applying the functor
ÔX,x ⊗OX,x

(·) to such stalks. Thus, for all large n (depending on s), we
want the natural map

(3.2.2) ÔX,x ⊗ÔS,s
(ÔS,s ⊗OS,s

f∗(F ⊗L⊗n)s)→ ÔX,x ⊗OX,x
(F ⊗L⊗n)x

to be surjective for all x ∈ Xs.
Recall the algebraic data (Y,M,G) over Spec(ÔS,s) and the formal scheme

data (Y,M,G) over Spf(ÔS,s) that we introduced above. By the theory of
analytification, the underlying set of Xs ' Y an

0 is canonically identified
with the set of closed points in the closed fiber Y0 of Y . Moreover, the
underlying topological spaces of Y0 and Y are canonically identified. Let
y ∈ Y0 be the closed point corresponding in this way to x ∈ Xs. Since
the mth infinitesimal neighborhood of Xs in X is identified with the ana-
lytification Y an

m of the mth infinitesimal neighborhood Ym of Y0 in Y in a
manner that is compatible with change in m, it is easy to check that there
are canonical isomorphisms of ÔS,s-algebras

ÔY,y ' ÔY,y ' ÔX,x.

Using this isomorphism and both rigid and formal GAGA, it follows via
the rigid-analytic and scheme-theoretic theorems on formal functions that
(3.2.2) is identified with the natural map

(3.2.3) ÔY,y ⊗ÔS,s
H0(Y,G⊗M⊗n) −→ ÔY,y ⊗OY,y

(G⊗M⊗n)y.

In Step 1 we saw that G ⊗M⊗n is generated by global sections for all
large n (depending on s). The surjectivity of (3.2.3) is clear for such large
n (independent of y = x ∈ Xs for fixed s). Hence, for fixed s ∈ S we have
found n′s such that (3.2.2) is surjective for all x ∈ Xs when n > n′s. That
is, Zn ∩ Xs = ∅ for all n > n′s, and so for each n > n′s there exists a
Zariski-open neighborhood S − f(Zn) of s in S over which θn is surjective.

Step 3. — The preceding general analysis may be applied to OX in the
role of F . Hence, we can find an admissible cover {Uα} of S so that (i)
f∗f∗L⊗mα → L⊗mα is surjective over f−1(Uα) for some mα > 0 and (ii)
the coherent sheaf f∗L⊗mα

Uα
is the quotient of a free OUα

-module of
finite rank. In particular, L⊗mα is a quotient of a free Of−1(Uα)-module Eα
of finite rank.

By using the “pointwise” conclusion of Step 2 for F and a fixed s ∈ Uα

with n ranging through mα consecutive integers at least as large as n′s,
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we arrive at a Zariski-open (and hence admissible) cover {Uαβ}β∈Bα of Uα

and integers nαβ > 0 such that the restriction of θn over f−1(Uαβ) is
surjective for n satisfying nαβ 6 n < nαβ+mα. Since f∗f∗L⊗mα → L⊗mα is
surjective over f−1(Uα), we conclude that θn is surjective over f−1(Uαβ) for
all n > nαβ . Renaming {Uαβ}α,β as {Uα} and nαβ as nα, we may suppose
that θn is surjective over f−1(Uα) for all n > nα for a suitable nα > 0.
We also may and do replace {Uα} with a refinement (still called {Uα}) so
that the restriction fα : f−1(Uα)→ Uα satisfies Rpfα∗G = 0 for all coherent
sheaves G on f−1(Uα) and all p > pα for some pα > 0. For example, by the
theorem on formal functions, we can take each Uα to be sufficiently small
so that there is a finite upper bound pα on the number of affinoids that
suffice to cover each fiber of f over Uα. (In the complex-analytic case we
take {Uα} to be a collection of compact Stein sets whose interiors cover S,
and since f−1(Uα) is compact there is a finite upper bound pα on the
number of open Stein sets that cover each fiber of f over Uα.)

It remains to prove the vanishing of Rpf∗(F ⊗ L⊗n) Uα for all p > 0
and all large n (depending on α and not on p). We now fix one Uα and
use descending induction on p > 0: the inductive hypothesis is that for
all coherent sheaves G on f−1(Uα), the sheaf Rp′fα∗(G ⊗ L⊗n) vanishes
for all p′ > p and all sufficiently large n (that may depend on G and
on p). This inductive hypothesis is satisfied for p = pα. We now assume
that the inductive hypothesis is known for p + 1 with some p > 0, and
we seek to check it for p. It was arranged above (by pullback from Uα)
that L⊗mα

f−1(Uα) is the quotient of a free coherent sheaf Eα. Thus, for
each coherent sheaf G on f−1(Uα) we get a short exact sequence

0→ K −→ G ⊗ Eα −→ G ⊗ L⊗mα → 0

for some coherent sheaf K on f−1(Uα). By the inductive hypothesis applied
to K, for some n′ > 0 the sheaves Rp′fα∗(K⊗L⊗n) vanish for all p′ > p+1
and all n > n′. We conclude that for n > n′, Rpfα∗(G ⊗ L⊗(n+mα)) is a
quotient of a direct sum of finitely many copies of Rpfα∗(G ⊗ L⊗n).

Choose s ∈ Uα. Since p > 0, by Step 1 there exists a Zariski-open
Vs ⊆ Uα containing s such that Rpfα∗(G ⊗ L⊗n) Vs

= 0 if nVs
6 n <

nVs
+ mα, with nVs

= max(n′, ns) > ns. Combining this with the fact
that Rpfα∗(G ⊗ L⊗ν) is a quotient of a direct sum of finitely many copies
of Rpfα∗(G ⊗ L⊗(ν−mα)) for all ν > nVs

+ mα (since nVs
> n′), it fol-

lows by induction on b(n− nVs)/mαc that Rpfα∗(G ⊗ L⊗n) Vs = 0 for
all n > nVs . The Zariski-opens Vs (s ∈ Uα) cover Uα set-theoretically, and
so there exists a finite subcovering. The maximum of the nVs ’s associated
to the constituents of this finite subcovering is an N > 0 depending on G
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(and p and α) such that Rpfα∗(G ⊗ L⊗n) = 0 on Uα for all n > N . This
completes the inductive step, and so for each α there exists Nα > 0 such
that Rpf∗(F ⊗ L⊗n) Uα

= 0 for all p > 0 and all n > Nα. �

Corollary 3.2.5. — Let C be k-affinoid and let f : X → S = Sp(C)
be a proper map of rigid spaces. Let L be a line bundle L on X. If L is
S-ample then for all coherent sheaves F on X and all sufficiently large n,
OX ⊗C H0(X,F ⊗L⊗n)→ F ⊗L⊗n is surjective and Hp(X,F ⊗L⊗n) = 0
for all p > 0. Conversely, if H1(X, I ⊗ L⊗n) = 0 for all coherent ideal
sheaves I on X and all sufficiently large n (depending on I) then L is
S-ample.

This corollary admits an evident generalization for any quasi-compact S,
using higher direct images rather than cohomology modules. Note that
H0(X,F ⊗ L⊗n) = H0(S, f∗(F ⊗ L⊗n)) is C-finite.

Proof. — Since S is quasi-compact and Hp(X,G) = Γ(S, Rpf∗(G)) for
all p > 0 and all coherent G on S (see Remark A.1.1), Theorem 3.2.4
provides the necessity of the asserted cohomological properties of S-ample
line bundles on X. Now suppose that H1(X, I ⊗ L⊗n) = 0 for all coherent
ideal sheaves I on X and all sufficiently large n (depending on I). To
prove that L is S-ample we pick s ∈ S and we seek to show that Ls is
ample on Xs. By Theorem 3.1.5, it suffices to prove that if J is a coherent
ideal sheaf on Xs then H1(Xs,J ⊗ L⊗n

s ) = 0 for all large n. If j : Xs →
X is the canonical closed immersion then j∗J is a coherent ideal on X

and H1(Xs,J ⊗ L⊗n
s ) ' H1(X, (j∗J ) ⊗ L⊗n). Hence, we get the required

vanishing for large n. �

Example 3.2.6. — We may now give a new quick proof of the relative
version of GAGA over affinoids [33, §5–§6]. This consists of two parts: com-
parison of cohomology and an equivalence of categories of coherent sheaves.
Let C be a k-affinoid algebra. For any locally finite type C-scheme X we
write F  Fan to denote the exact pullback functor from OX -modules to
OX an-modules via the flat map ιX : X an → X as in Example 2.2.11. As we
saw in Example 2.3.11, for any proper map f : X → Y between locally finite
type C-schemes, the relative analytification fan : X an → Yan over Sp(C)
is proper. For any such f and any OX -module F there is a natural map of
OYan-modules Rif∗(F)an → Rifan

∗ (Fan) defined by δ-functoriality, and it
makes sense to ask if this is an isomorphism for coherent F . Since the source
and target sheaves are coherent, it is equivalent to check the isomorphism
property on completed stalks. Hence, the theorems on formal functions
for schemes and rigid spaces (and the isomorphism O∧Y,ιY(y) ' O

∧
Yan,y for
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all y ∈ Yan) reduce the problem to the special case when Y = Spec(R) for
a k-finite local C-algebra R. We may rename R as C, so X is k-proper and
hence upon replacing the higher direct images with cohomology modules
we can use GAGA over k to get the desired result.

In the case of C-proper X there remains the task of proving that F  Fan

sets up an equivalence between the categories of coherent sheaves on X and
on X an. Since the k-affinoid C is a Jacobson ring whose maximal ideals have
k-finite residue field, a coherent sheaf on the C-proper X vanishes if and
only if it vanishes on fibers over closed points of Spec C. It follows that
a complex of coherent OX -modules is exact if and only if its analytifica-
tion is exact. Thus, exactly as in the complex-analytic case [26, XII, §4],
Grothendieck’s method (via his unscrewing lemma and Chow’s lemma)
reduces the equivalence problem for Coh(X ) → Coh(X an) in the general
case to special case of C-projective X . Theorem 3.2.4 over S = Sp(C)
provides the required cohomological input to push through Serre’s method
in the projective case. (In particular, Serre’s argument with Hom-sheaves
and coherent ideal sheaves proves that X  X an is fully faithful on proper
C-schemes.)

An important property of Projan is that, just as in algebraic geometry, it
permits us to recover a proper object from the sections of powers of a given
ample line bundle. More precisely, S-ampleness is equivalent to “relative
very ampleness” locally on the base:

Theorem 3.2.7. — For an arbitrary proper map f : X → S and S-
ample invertible sheaf L on X, the hypotheses on L and A =

⊕
n>0 f∗L⊗n

in Lemma 3.1.4 are satisfied and the map (3.1.2) is an isomorphism. More-
over, locally on S there is a large tensor power L⊗N generated by global
sections such that the quasi-coherent graded OS-algebra

⊕
m>0 f∗L⊗mN is

generated by its degree-1 term over its degree-0 term.
In particular, there exists an admissible covering {Si} of S, positive in-

tegers ni and Ni, and closed Si-immersions ji : Xi ↪→ Pni

k × Si such that
j∗iO(1) ' L⊗Ni

Xi
, where Xi = X Si .

Proof. — By Theorem 3.2.4 we deduce the existence of the ms’s as re-
quired in Lemma 3.1.4. By working locally on S, Theorem 3.2.4 reduces us
to the case where there exists an n0 > 0 such that f∗f∗(L⊗n) → L⊗n is
surjective for all n > n0. Before showing that A is locally finitely gener-
ated (so Projan A makes sense) and that the resulting map X → Projan A
in (3.1.2) is an isomorphism, we shall prove a weaker assertion: for fixed
s ∈ S we claim that there exists a Zariski-open neighborhood of s over
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which the restriction of the natural map

(3.2.4) ιn : X −→ Pn
def
== Pan(f∗L⊗n)

for n > n0 is a closed immersion for all n > ns for some ns > n0 depending
on s. In Steps 1 and 2 below we will prove this claim by using the method
of formal schemes as in the proof of Theorem 3.2.4.

Step 1. — By Theorem A.2.6(2), to find a Zariski-open Un(s) ⊆ S

around s such that the restriction of ιn over Un(s) is a closed immersion
(for some fixed n > n0), it suffices to show that the induced rigid-analytic
map

(3.2.5) Xm −→ Pan
(
(f∗L⊗n)s/mm+1

s (f∗L⊗n)s

)
on the mth infinitesimal fiber is a closed immersion for all m > 0 (we view
(f∗L⊗n)s/mm+1

s (f∗L⊗n)s as a coherent sheaf on Sp(OS,s/mm+1
s )).

For n > 0, let N
(n)
m denote the finite OS,s/mm+1

s -module

(f∗L⊗n)s/mm+1
s (f∗L⊗n)s.

By GAGA, if n > n0 then we may identify the map (3.2.5) with the ana-
lytification of an “abstract” Spec(OS,s/mm+1

s )-scheme morphism

(3.2.6) Ym −→ P
(
N (n)

m

)
for a unique proper scheme Ym over OS,s/mm+1

s as in the proof of Theo-
rem 3.2.4. To find ns for (3.2.4), it is necessary and sufficient to prove that
the maps (3.2.6) are closed immersions for all m > 0 provided that n is
sufficiently large (perhaps depending on s but not on m).

Let the ÔS,s-proper scheme Y and the ample line bundleM on Y be de-
fined by algebraization of the formal-scheme data (Y,M) built from the al-
gebraizations of the rigid-analytic infinitesimal fibers over the OS,s/mm+1

s ’s
as in Step 1 of the proof of Theorem 3.2.4. The line bundle M⊗n is gen-
erated by global sections for all n > n0, as this can be checked by using
suitable completions as in (3.2.3) with G = OY, so for n > n0 we have a
canonical map

(3.2.7) Y −→ P
(
H0(Y,M⊗n)

)
of proper schemes over Spec(ÔS,s).

Step 2. — We need to relate (3.2.7) with the “abstract” map (3.2.6). By
the algebraic theory of ampleness, there exists ns > n0 such that (3.2.7)
is a closed immersion for n > ns. Thus, for all m > 0 and n > ns, the
map (3.2.7) induces compatible closed immersions of infinitesimal fibers

(3.2.8) Ym −→ P(H0(Y,M⊗n)/mm+1
s H0(Y,M⊗n))
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over Spec(OS,s/mm+1
s ). By the rigid-analytic and scheme-theoretic theo-

rems on formal functions and GAGA, we have a natural isomorphism

ÔS,s ⊗OS,s
(f∗L⊗n)s ' lim←−

r

H0(Xr,L⊗n
r )(3.2.9)

' lim←−
r

H0(Yr,M⊗n
r ) = H0(Y,M⊗n).

Thus, for all n > 0 there is a natural isomorphism of OS,s/mm+1
s -modules

(compatible with change in m)

N (n)
m =

(
ÔS,s ⊗OS,s

(f∗L⊗n
)
s
)/mm+1

s

(
ÔS,s ⊗OS,s

(f∗L⊗n)s

)
(3.2.10)

' H0(Y,M⊗n)/mm+1
s H0(Y,M⊗n).

Fix n > ns > n0. The map (3.2.5) is classified by the natural map

(3.2.11) N (n)
m = (f∗L⊗n)s/mm+1

s (f∗L⊗n)s → H0(Xm,L⊗n
m ),

and its “abstract” algebraization (3.2.6) is classified by the natural map

(3.2.12) H0(Y,M⊗n)/mm+1
s H0(Y,M⊗n) −→ H0(Ym,M⊗n

m ).

Consider the diagram

(3.2.13) H0(Y,M⊗n)/mm+1
s H0(Y,M⊗n)

'
��

// H0(Ym,M⊗n
m )

'
��

N
(n)
m

// H0(Xm,L⊗n
m )

in which the left side is (3.2.10), the right side is the rigid-analytic GAGA
comparison isomorphism, the top side is (3.2.12), and the bottom side
is (3.2.11). By the definition of the left side of (3.2.13) in terms of inverse
limits, (3.2.13) commutes. Thus, the left side of (3.2.13) identifies (3.2.8)
and (3.2.6). Since (3.2.8) is a closed immersion for all n > ns and all m > 0,
this implies that if n > ns then (3.2.6) is a closed immersion for all m > 0,
and this is what we needed to prove.

Step 3. — In Steps 1 and 2, we have shown that for any s ∈ S there
exists ns > n0 such that for each n > ns the map (3.2.4) is a closed
immersion over a Zariski-open neighborhood Un(s) ⊆ S around s that may
depend on n. Since Zariski-open set-theoretic covers of S are admissible,
by working locally on S we may now assume that for a suitably large N

there is a closed S-immersion j : X ↪→ Pm
k × S such that j∗O(1) ' L⊗N .

Let f : Pm
k ×S → S be the structure map. The local finite-generatedness

of A reduces to the claim that for a coherent sheaf F on Pm
k ×S, the graded

sheaf of modules
⊕

n>0 f∗F(n) over
⊕

n>0 f∗O(n) = OS [Z0, . . . , Zm] is
locally generated by finitely many sections of bounded degree. Working
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locally on S, by Theorem 3.2.4 we may suppose that there exists an n0 > 0
such that f∗(f∗F(n)) → F(n) is surjective for all n > n0 and f∗F(n0) is
the quotient of a locally free coherent sheaf E . Similarly, we may suppose
that for large r, say r > r0, the maps

f∗f
∗(f∗F(n0)

)
(r) −→ f∗F(n0 + r)

E ⊗ f∗O(r) ' f∗(f∗E)(r) −→ f∗f
∗(f∗F(n0)

)
(r)

are surjective. The main point here is that (by Theorem 3.2.4) we may work
locally on S and find r0 so that R1f∗(K(r)) = 0 for all r > r0 when K is
the kernel of either of the two maps f∗f∗F(n0)� F(n0) or E � f∗F(n0).

We conclude that for r > r0 the natural composite map

E ⊗ f∗O(r) −→ f∗F(n0)⊗ f∗O(r) −→ f∗F(n0 + r)

is surjective, so for all r > r0 the map

f∗F(n0)⊗ f∗O(r) −→ f∗F(n0 + r)

is surjective. Thus,
⊕

n>0 f∗F(n) is generated over
⊕

n>0 f∗O(n) by its
coherent subsheaf of terms in degrees < n0 + r0, so A =

⊕
n>0 f∗L⊗n

satisfies the hypotheses in Lemma 3.1.4 (taking ms = n0 and Ws = S for
all s ∈ S). We therefore have a canonical S-map

ι : X −→ Projan A.

It remains to show that ι is an isomorphism. By Theorem A.2.6, it suffices
to prove that ι is an isomorphism on infinitesimal fibers over each s ∈ S.
Fix a choice of s, and let ιs,m be the map induced by ι on mth infinitesimal
fibers over s. For Y and M as in Step 1 (with M ample on Y ), we have a
canonical map

j : Y −→ Proj
( ⊕

n>0

H0(Y,M⊗n)
)

of proper schemes over Spec(ÔS,s), and since (3.2.9) is an isomorphism
for n > 0 we may use Theorem 2.3.8.(2) and Corollary 2.3.10 to identify j

with the algebraization of the map of proper formal ÔS,s-schemes induced
by algebraization of the ιs,m’s. Hence, ιs,m is an isomorphism for all m if
(and only if) j is an isomorphism, and the isomorphism property for j is a
special case of [15, III1, 2.3.4.1]. �

Corollary 3.2.8. — Let f : X → S be a proper map of rigid spaces
over k, and L an invertible sheaf on X. Assume S is quasi-separated or
pseudo-separated, and let k′/k be an analytic extension. Let f ′ : X ′ → S′

be the induced proper map of rigid spaces over k′, with L′ the pullback
line bundle on X ′.
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The line bundle L is S-ample if and only if L′ is S′-ample.

Proof. — Assume L is S-ample. To prove that L′ is S′-ample we may
work locally on S. Thus, by Theorem 3.2.7 we can assume that there is an
isomorphism of line bundles L⊗N ' j∗O(1) for some closed S-immersion
j : X ↪→ Pm

S . Hence, L′⊗N ' j′
∗O(1) for the closed S′-immersion j′ :

X ′ ↪→ Pm
S′ induced by j. By the second part of Remark 3.1.3 on fibers

over S′, this implies that L′ is S′-ample.
Now assume that L′ is S′-ample. To prove that L is S-ample we can as-

sume S = Sp(k0) for a finite extension k0/k. By hypothesis, L′ is k′ ⊗k k0-
ample on k′⊗̂kX = (k′⊗kk0)⊗̂k0X. Without loss of generality (by Re-
mark 3.1.3) we may replace k with k0 and replace k′ with a residue field
of k′ ⊗k k0 (see Corollary 3.1.6) so S = Sp(k) and k′⊗̂kL is k′-ample
on k′⊗̂kX. By Lemma 3.1.2, L must be k-ample on X. �

We conclude our general discussion of relative ampleness with a result
(inspired by Theorem 3.2.1) that concerns the locus of ample fibers with
respect to a proper morphism.

Theorem 3.2.9. — Let f : X → S be proper, L an invertible sheaf
on X. Define UL to be the set of s ∈ S such that Ls is ample on Xs.
There exists a canonical Zariski-open set WL in S containing UL such that
UL is a Zariski-open locus in the rigid space WL and the formation of WL
is compatible with base change on S and (for quasi-separated or pseudo-
separated S) with change in the base field.

The formation of UL is compatible with base change on S and (for quasi-
separated or pseudo-separated S) with change of the base field.

It may be that UL is Zariski-open in S, but we do not see how to prove
this (nor does it seem to be known in the complex-analytic case) because
Zariski-openness is not a transitive condition in the analytic case.

Proof. — Once UL is shown to be an admissible open, its formation
obviously commutes with base change on S. Compatibility with change of
the base field is not so trivial, and will follow from the description we shall
give below for UL (using WL).

Fix s ∈ UL. For all sufficiently large n (depending on s), L⊗n
s is generated

by global sections. We claim that

(3.2.14) (f∗L⊗n)s −→ H0(Xs,L⊗n
s )

is surjective for large n (depending on s). It suffices to check the surjectivity
of (3.2.14) after making the faithfully flat base change OS,s → ÔS,s. The
formal-scheme method over ÔS,s in the proof of Theorem 3.2.4 only requires
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ampleness of Ls, not S-ampleness of L, and it identifies the ÔS,s-linear
extension of (3.2.14) with the natural map

H0(Y,M⊗n) −→ H0(Ys,M⊗n
s ),

where Y → Spec(ÔS,s) is a proper morphism andM is an ample invertible
sheaf on Y . By the algebraic theory of ampleness, we thereby deduce the
desired surjectivity of (3.2.14) for n > ns where ns depends on s. Since Ls

is ample on Xs, we may and do also assume ns is so large that L⊗n
s on Xs

is generated by global sections for all n > ns. By Nakayama’s Lemma, the
map of coherent sheaves

ϕn : f∗f∗L⊗n −→ L⊗n

is therefore surjective on stalks at all x ∈ Xs for all n > ns.
The Zariski-closed support Zn ⊆ X of the coherent coker(ϕn) is disjoint

from Xs for n > ns, and so for such n the Zariski-open Vn = S − f(Zn)
contains s, with ϕn a surjection over f−1(Vn). Note that for any n > 0,
the formation of the Zariski-open Vn is compatible with change of the base
field, by Lemma A.2.4 and Corollary A.2.7; its compatibility with base
change on S is clear. Moreover, by Lemma A.2.4, for any n > 0 the overlap

Wn =
2n−1⋂
i=n

Vi = Vn ×S · · · ×S V2n−1

in S is a Zariski-open whose formation is compatible with change of the
base field for quasi-separated or pseudo-separated S (and with base change
on S for arbitrary S). Since any integer m > 2n− 1 can be written in the
form m = nq + r with q > 1 and n 6 r 6 2n − 1, we see that Wn ⊆ Vi

for all i > n (so Wn = ∩i>nVi). That is, ϕi is surjective over f−1(Wn) for
all i > n. Since descending chains of analytic sets are locally stationary,
WL def

== ∪Wn is locally equal to ∪n6NWn for all large N , and hence it
is a Zariski-open in S that contains UL. The local finiteness of the union
defining WL ensures that the formation of WL is compatible with arbitrary
base change on S and with change of the base field for quasi-separated or
pseudo-separated S (Lemma A.2.4), so we may replace S with WL to get
to the case when {Wn} is a Zariski-open covering of S provided that we
prove more: in this case we must prove that UL is a Zariski-open in S and
that its formation commutes with extension of the ground field when S is
quasi-separated or pseudo-separated.

By working locally on S, we can reduce to the case where f∗f∗L⊗n →
L⊗n is surjective for all large n. Consider the resulting S-morphisms

ιn : X −→ Pan(f∗L⊗n)
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for large n; the formation of the ιn’s is clearly compatible with change of the
base field. By the formal scheme argument in the proof of Theorem 3.2.7,
the ampleness of Ls for s ∈ S implies that there is an integer n′s > 0 such
that the fiber map (ιn)s at s is a closed immersion for all n > n′s. Define

Un =
{
s ∈ S | (ιn)s is a closed immersion

}
.

By Theorem A.2.6.(2), Un is a Zariski-open set whose formation is compati-
ble with change of the base field for quasi-separated or pseudo-separated S,
and ιn is a closed immersion over Un. As with WL above, the union
U =

⋃
Un is Zariski-open. Also, the formation of U is compatible with

change of the base field for quasi-separated or pseudo-separated S, and U

contains UL.
We claim U = UL. Pick s ∈ Un for some fixed n. For the finite-dimensional

k(s)-vector space
Es = (f∗L⊗n)s/ms(f∗L⊗n)s

we have a closed Sp(k(s))-immersion

ι : Xs ↪−→ Pan(Es)

into a projective space over k(s), with a natural map of invertible sheaves
ι∗(OPan(Es)(1))→ L⊗n

s that is surjective and hence an isomorphism. This
forces Ls to be ample, or in other words s ∈ UL. �

4. Applications and descent theory

The relative theories of Projan and ampleness have several immediate
applications in the direction of providing rigid-analytic versions of stan-
dard algebro-geometric existence theorems. In this section we will discuss
some applications to representability and effective descent of geometric ob-
jects. In [14] some of these results will be applied to study the problem of
analytification of locally separated algebraic spaces over non-archimedean
fields.

4.1. Representability results

The simplest universal construction that we can carry out using Projan

is blowing up a rigid space along a coherent ideal sheaf. Let S be a rigid
space and let I be a coherent ideal sheaf on S. The graded Rees algebra⊕

n>0 In is locally finitely generated as an OS-algebra and has coherent
graded terms. Thus, Projan of this sheaf makes sense and is a rigid space
proper over S:

ANNALES DE L’INSTITUT FOURIER



RELATIVE AMPLENESS IN RIGID GEOMETRY 1097

Definition 4.1.1. — The blow-up BlI(S) of S along I is the S-proper
rigid space Projan(

⊕
n>0 In).

By Lemma 2.3.5 the pullback ideal sheaf induced by I on BlI(S) is
invertible, and as in the case of schemes the map BlI(S) → S is the final
object in the category of rigid spaces over S such that the coherent pullback
ideal sheaf induced by I is invertible. More specifically, for an admissible
open U ⊆ S and any a ∈ I(U) viewed as a degree-1 section a1 of

⊕
n>0 In

over U , Specan((
⊕

n>0 I n
U )(a1)) → S is the universal rigid space over U

on which the pullback coherent ideal sheaf induced by I U is a globally
free invertible sheaf admitting the pullback of a as a basis. This is proved
exactly as in the algebraic case.

Universal properties provide canonical comparison morphisms that ex-
press the compatibility of rigid-analytic blow-up with respect to both flat
base change on S and analytification of scheme-theoretic blow-up, and these
comparison morphisms are isomorphisms. The behavior with respect to
change of the base field also works out nicely, as follows. If Y is a quasi-
separated or pseudo-separated rigid space over k, and k′/k is an analytic ex-
tension field, then for any coherent ideal J on Y the pullback J ′ = k′⊗̂kJ
is a coherent ideal on Y ′ = k′⊗̂kY , and J ′ is invertible if (and only if)
J is invertible. Hence, for any k′/k and any quasi-separated or pseudo-
separated S over k equipped with a coherent ideal I, exactness proper-
ties of the functor k′⊗̂k(·) on coherent sheaves imply that the pullback
of the invertible coherent O

k′⊗̂kS
-ideal I ′ = k′⊗̂kI is an invertible coher-

ent ideal on k′⊗̂kBlI(S). We therefore obtain a canonical morphism over
S′ = k′⊗̂kS,

k′⊗̂kBlI(S) −→ BlI′(S′),

via the universal property of the target blow-up. This map is seen to be an
isomorphism by direct inspection of the construction of blow-ups via Rees
algebras.

Remark 4.1.2. — An entirely different approach to the construction
of rigid-analytic blow-up and the verification of a few properties of such
blowing up is given in [40] in the case of an algebraically closed base field.

A more interesting (but still easy) comparison with the algebro-geometric
theory is the representability of Hilbert functors. Let f : X → S be a proper
morphism of rigid spaces, and define the Hilbert functor

HilbX/S

to classify closed immersions Z ↪→ X×S T such that Z is T -flat, for variable
rigid spaces T over S. If L is an S-ample invertible sheaf on X, then the
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Hilbert polynomials of the fibers of Z → T with respect to the T -ample
LT Z naturally break up HilbX/S into a disjoint union of Zariski-open and
closed subfunctors

HilbQ
X/S for Q ∈ Q[t]

(by Theorem A.1.6). Thus, representability of HilbX/S is equivalent to that
of HilbQ

X/S for all Q ∈ Q[t] when there exists an S-ample L on X.
More generally, for a coherent sheaf E on X, we define the Quot-functor

QuotE/X/S

to classify T -flat coherent quotients of ET on XT , for variable rigid spaces
T → S. If L is an S-ample invertible sheaf on X then QuotE/X/S naturally
breaks up into a disjoint union of subfunctors

QuotQ
E/X/S

that are both Zariski-open and Zariski-closed, where QuotQ
E/X/S classifies

the flat coherent quotients whose fibral Hilbert polynomial with respect
to L is Q ∈ Q[t] on all fibers.

The representability of QuotE/X/S in the complex-analytic category for
S-projective X was proved by Grothendieck [23], based on the complex-
analytic relative theorems A and B of Grauert-Remmert [20] that are ana-
logues of Theorem 3.2.4 and Theorem 3.2.7. Since the complex-analytic ver-
sions of Theorems 3.2.4 and 3.2.7 mildly strengthen the Grauert-Remmert
theorems by dropping the explicit assumption that there exist projective
embeddings locally on the base (even though we have shown that this fol-
lows from the existence of fibrally ample line bundles), we get a mildly
stronger form of Grothendieck’s theorem in the complex-analytic case. In
the rigid case we obtain:

Theorem 4.1.3. — Let f : X → S be proper and assume that there
exists an S-ample invertible sheaf L on X. Fix Q ∈ Q[t] and a coherent
sheaf E on X. The functor QuotQ

E/X/S is represented by a proper rigid
space over S. Its formation is compatible with analytification of algebraic
k-schemes, and (for quasi-separated or pseudo-separated S) its formation
is compatible with change of the base field.

In particular, HilbX/S = QuotOX/X/S exists as a separated rigid space
over S and its formation is compatible with analytification and (for quasi-
separated or pseudo-separated S) with change of the base field.

Proof. — By Theorem 3.2.4 and Theorem 3.2.7, Grothendieck’s complex-
analytic arguments work essentially verbatim to prove the rigid-analytic
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version. The only extra ingredient that does not arise in the complex-
analytic case is the compatibility with change in the base field, so we now
address this aspect. Grothendieck’s method uses the relative theorems A
and B (that we have proved in the rigid-analytic case) to reduce the repre-
sentability problems to the special case E = O⊕N

X , X = CPn, S = Spec(C)
(as a complex-analytic space), and L = O(1), and the rigid-analytic ana-
logues of these reduction steps are compatible with change in the base field
(by Lemma A.2.4 and Corollary A.2.7). In this special case Grothendieck’s
argument shows that the analytification of the separated algebraic universal
object

QuotQ

O⊕N

Pn
SpecC

/Pn
SpecC

/ SpecC

is the complex-analytic universal object (for the same Q). His argument
applies in the rigid-analytic case, and so the compatibility of the universal
rigid-analytic objects with respect to change of the base field is a conse-
quence of the general compatibility between rigid-analytification (of alge-
braic k-schemes) and extension of the analytic base field. �

Example 4.1.4. — If Hn denotes the Hilbert scheme for Pn
Spec(k) and

Zn ↪→ Hn × Pn
Spec(k) is the universal flat family over Hn, then the pair

(Han
n , Zan

n ) represents the Hilbert functor for Pn
k in the rigid-analytic cat-

egory. This special case of Theorem 4.1.3 can also be deduced from Köpf’s
relative rigid-analytic GAGA (Example 3.2.6) but this alternative method
of proof has no complex-analytic analogue (whereas the proof of Theo-
rem 4.1.3 works simultaneously over both C and non-archimedean fields).
The real content in Theorem 4.1.3 is its applicability to situations that are
not tautologically projective over the base, but rather are equipped with
a fibrally ample line bundle. That is, the usefulness of Theorem 4.1.3 in
abstract situations rests on the analytic theory of relative ampleness in §3.

Corollary 4.1.5. — Let S be a rigid space and let X and Y be two
proper rigid spaces over S such that Y admits an S-ample line bundle
and X is S-flat. The functor

Hom(X, Y ) : T  HomT (XT , YT )

on rigid spaces over S is represented by an S-separated rigid space. The
formation of this rigid space is compatible with analytification and (for
quasi-separated or pseudo-separated S) with change of the base field.

Proof. — This goes exactly as in the case of schemes [24, §4 (c)], using
Theorem 4.1.3. Grothendieck only gives a sketch of the proof, so we note
that filling in the details requires using Theorem A.2.6.(1)–(2) (applied
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to representing objects for suitable Hilbert functors), exactly as in the
algebraic case. �

Corollary 4.1.6. — Let S be a rigid-analytic space and let D be a
diagram of finitely many proper flat rigid spaces Xi over S equipped with
finitely many S-maps fijr : Xi → Xj (r ∈ Rij). Assume that each Xi

admits a closed S-immersion into a projective space over S. There exists
a separated algebraic k-scheme S, projective flat S-schemes Xi equipped
with finitely many S-maps φijr : Xi → Xj , a map h : S → San, and S-
isomorphisms Xi ' X an

i ×San S that identify fijr with the pullback of φan
ijr

for all i, j, r.

Proof. — Let Xi ↪→ PNi

S be a closed immersion over S. We may assume
S is connected. By the constancy of Hilbert polynomials in proper flat
rigid-analytic families over a connected base (Theorem A.1.6), all fibers
of each Xi over S have a common Hilbert polynomial Pi ∈ Q[t] with
respect to the embedding into PN . The universality in Theorem 4.1.3 and
Corollary 4.1.5 therefore gives the desired result. �

The case of relative Picard functors will be addressed later in a special
case in Theorem 4.3.3.

4.2. Faithfully flat descent

The condition of quasi-compactness is a very natural one in descent the-
ory for schemes. However, when considering descent theory (or quotients
by étale or flat equivalence relations) for rigid spaces it is inconvenient to
impose quasi-compactness conditions on the structural morphisms. For ex-
ample, one wants to consider the possibility of associating rigid spaces to
algebraic spaces, say by forming an analytic quotient for an étale chart, yet
(by Nagata’s compactification theorem [36]) the analytification of a quasi-
compact separated map f between algebraic k-schemes is quasi-compact
in the sense of rigid geometry if and only if f is proper. (Recall from §1.3
that we take algebraic k-schemes to merely be locally of finite type over k,
and not necessarily of finite type.) To avoid quasi-compactness conditions
that are unduly restrictive in the setting of algebraic spaces, we shall use
Berkovich spaces. The starting point is the following definition:

Definition 4.2.1. — Let f : X → Y be a flat map of rigid spaces. An
fpqc quasi-section of f is a faithfully flat and quasi-compact map U ′ → Y

equipped with a Y -map s : U ′ → X. The map f admits local fpqc quasi-
sections if there exists an admissible covering {Yi} of Y such that each

ANNALES DE L’INSTITUT FOURIER



RELATIVE AMPLENESS IN RIGID GEOMETRY 1101

restriction f−1(Yi) → Yi has an fpqc quasi-section. The notion of étale
quasi-section is defined similarly, imposing the condition that U ′ → Y be
an étale quasi-compact surjection; these are special kinds of fpqc quasi-
sections.

Since base change preserves the fpqc property for maps of rigid spaces
(due to Raynaud’s flat models theorem), base change preserves the property
of admitting local fpqc quasi-sections. (The same goes in the étale case.) It
is a tautology that any fpqc map of rigid spaces has an fpqc quasi-section,
namely itself, and similarly for étale quasi-compact surjections. Our interest
in local fpqc quasi-sections and local étale quasi-sections is that they exist
in abundance for rigid-analytic maps that arise from algebraic geometry:

Theorem 4.2.2. — If f : X → Y is a faithfully flat map between alge-
braic k-schemes then fan : X an → Yan admits local fpqc quasi-sections.
Likewise, if f is an étale surjection then fan admits local étale quasi-
sections.

Proof. — We first treat the faithfully flat case. By [15, IV4, 17.6.1], if we
work Zariski-locally on Y we may suppose that Y is separated and quasi-
compact (e.g., affine) and that there exists a quasi-finite, flat, and separated
surjection Y ′ → Y equipped with a Y-map X → Y ′. Upon renaming Y ′
as X , we may assume X is quasi-finite, flat, and separated over Y. Our
problem is therefore reduced to proving that if U → S is a quasi-finite, flat,
and separated surjection of algebraic k-schemes and S is separated, then for
any quasi-compact admissible open V in San there exists a quasi-compact
admissible open U in Uan such that U → V is surjective; note that U → V

is quasi-compact because V is separated and U is quasi-compact. (To solve
the initial problem, we then take such V to range over the constituents of
an admissible affinoid covering of San.)

Since S is separated, and hence U is separated, finite unions of quasi-
compact admissible opens in Uan are quasi-compact admissible opens. Thus,
we can work locally on S and V , so we may assume S is quasi-compact
and V is affinoid. By Zariski’s Main theorem, there is a commutative dia-
gram

(4.2.1) U //

��?
??

??
??

? U

��
S

where U → U is an open immersion and U → S is finite. Analytifying this
and restricting over the open V ⊆ San yields a commutative diagram of
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rigid spaces

(4.2.2) W
j //

h   B
BB

BB
BB

B W

h
��

V

where h is finite, j is a Zariski-open immersion, and h is flat and surjective.
Since V (and hence W ) is affinoid, we can use [3, §1.6] to realize this
diagram of rigid spaces as being induced by an analogous diagram

(4.2.3) W ′ j′ //

h′ !!C
CC

CC
CC

C W
′

h
′

��
V ′

in the category of Berkovich spaces over k, where V ′ is (strictly) k-affinoid,
h
′

is finite, and j′ is a Zariski-open immersion. Due to how we constructed
(4.2.2) by localizing on the analytification of a similar diagram (4.2.1) of
finite type k-schemes, it follows from [3, 3.2.10] that the map h′ is flat
quasi-finite in the sense of [3, §3.1].

By [3, 3.2.7], flat quasi-finite maps of Berkovich spaces are open. Since V ′

is compact and every point of W ′ admits a strictly k-affinoid neighborhood
(as W ′ is Zariski-open in the strictly k-affinoid W

′
), it therefore suffices to

show that the open map h′ is surjective. The map h′ is induced by applying
Berkovich-analytification and localization (on the base) to a surjective map
U → S between algebraic k-schemes, and surjectivity in the category of
schemes is preserved by change of the ground field. Thus, it follows that h′

is surjective (cf. [3, 2.6.8]).
The étale case goes exactly the same way: replace “flat” with “étale”

everywhere. �

Theorem 4.2.3. — Let f : S′ → S be a faithfully flat of rigid spaces,
and assume it admits local fpqc quasi-sections. The functor

(X → S) (X ′ = X ×S S′, ϕ : X ′ ×S S′ ' S′ ×S X ′)

from rigid spaces over S to rigid spaces over S′ equipped with descent data
relative to f is a fully faithful functor.

Proof. — We are given rigid spaces X and Y over S and an S′-map
g′ : X ′ → Y ′ compatible with the descent data, and we wish to uniquely
descend g′ to an S-map g : X → Y . Uniqueness is obvious, even without
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requiring f to admit local fpqc quasi-sections, and so for the rest we may
work locally on S. Thus, we can assume S is affinoid and that there exists
an fpqc map U ′ → S equipped with an S-map U ′ → S′. Let {S′i} be an
admissible affinoid open covering of S′, so there is a finite subset of in-
dices I0 such that the S′i’s for i ∈ I0 pull back to an admissible covering
of U ′. Hence, S′0 =

∐
i∈I0

S′i is affinoid and fpqc over the affinoid S. Since
faithfulness did not require quasi-compactness of f we can (without having
required f to be quasi-separated) replace S′ with S′0 to reduce the prob-
lem of descent for morphisms to the case when S′ is also affinoid (and in
particular S′ is fpqc over S).

Obviously we can assume X is affinoid, so X ′ is also affinoid. In order to
get both X and Y to be affinoid, we need to be careful with respect to issues
of admissibility. Let {Ui} be an admissible affinoid open covering of Y , so
the pullback covering {U ′

i} of Y ′ is admissible with the U ′
i ’s quasi-compact.

Consider the admissible open covering {g′−1(U ′
i)} of X ′. Note that each

admissible open W ′
i = g′

−1(U ′
i) in X ′ has identical preimages under the

two projections from

X ′′ def
== X ′ ×X X ′ ' X ×S (S′ ×S S′)

down to X ′. To conclude that each W ′
i is the preimage of an admissible

open Wi in X, we need a lemma.

Lemma 4.2.4. — Let X ′ → X be a faithfully flat map of rigid spaces,
and assume it admits local fpqc quasi-sections. If W ′ is an admissible open
in X ′ whose two pullbacks to X ′ ×X X ′ coincide, then W ′ is the preimage
of an admissible open W in X.

Proof. — Let W be the image of W ′ in X. It is necessary and sufficient
to prove that W is an admissible open in X and f−1(W ) = W ′. The
hypothesis of equality W ′ ×X X ′ = X ′ ×X W ′ as admissible opens in
X ′ ×X X ′ is a set-theoretic condition, and by passing to fibers over points
in X we see that an equivalent formulation of the hypothesis is that W ′ is
a union of fibers of X ′ → X. Hence, W ′ = f−1(W ), and so our problem is
precisely to prove the admissibility of W in X. By working locally on X,
we may assume that there exists an fpqc map U ′ → X equipped with an
X-map U ′ → X ′. If we let V ′ be the preimage of W ′ in U ′ then since
U ′ → X is surjective and W ′ is a union of X-fibers in X ′ we see that
(i) V ′ is a union of X-fibers in U ′, and (ii) the images of V ′ and W ′ in X

coincide. We may therefore replace X ′ with U ′ and replace W ′ with V ′ to
reduce to the case when X ′ → X is fpqc. We can assume X is affinoid,
and by replacing X ′ with the disjoint union of the constituents of a finite
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admissible affinoid covering we can also assume that X ′ is affinoid. Hence,
we may assume that X and X ′ are quasi-compact and (quasi-)separated
(so f is also quasi-compact and quasi-separated).

Let {W ′
j} be an admissible covering of W ′ by quasi-compact admissible

opens that each lie over an affinoid open in X, so by [8, 5.11] Wj = f(W ′
j)

is a quasi-compact admissible open in X and clearly W is the union of
the Wj ’s. We will now check that {Wj} is an admissible covering of W in X

(whence W is admissible in X). Recalling the definition of admissibility,
we have to show that for a morphism h : Sp(A) → X whose image lands
inside of W , the set-theoretic covering {h−1(Wj)} of Sp(A) admits a finite
affinoid open refinement. Since h is quasi-compact (as X is quasi-separated
and Sp(A) is quasi-compact), the h−1(Wj)’s are quasi-compact admissible
opens and we just have to show that finitely many of these cover Sp(A).

Consider the cartesian diagram

Z ′ h′ //

f ′

��

X ′

f

��
Sp(A)

h
// X

where we note that f ′ is quasi-compact because f is quasi-compact. Due
to the surjectivity of the columns, we just have to check that finitely many
of the admissible opens f ′

−1(h−1(Wj)) = h′
−1(f−1(Wj)) cover Z ′. Since

f−1(Wj) = f−1(f(W ′
j)) contains W ′

j , it is enough to check that finitely
many of the h′

−1(W ′
j)’s cover Z ′. The morphism h′ factors through the

subset f−1(W ) that is equal to the admissible open W ′, so since Z ′ is
quasi-compact and {W ′

j} is an admissible covering of W ′ we are done. �

Continuing with the proof of Theorem 4.2.3, by Lemma 4.2.4 we get
admissible opens Wi in X that form a set-theoretic cover of X such that
their preimages W ′

i form an admissible cover of X ′. Recall that X ′ is affi-
noid, so finitely many W ′

i1
, . . . ,W ′

in
suffice to give an admissible cover of

X ′. Thus, {Wi1 , . . . ,Win
} is a set-theoretic cover of the affinoid X. If this

covering of X were admissible, then it would be permissible to replace X

with Wij and Y with Uij so as to reduce to the case where Y is affinoid
but perhaps X is not affinoid. Working locally on X would then bring us
to the case where X and Y (and S and S′) are simultaneously affinoid.

In order to complete this reduction to the affinoid case, we must show
that if X ′ → X is a faithfully flat map of affinoids and {Wi} is a collection
of admissible opens in X whose preimage {W ′

i} is an admissible covering
of X ′, then {Wi} is admissible, or equivalently, has a finite affinoid open
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refinement. If {Vij}j∈Ji is an admissible affinoid covering of Wi then the
preimage {V ′

ij}j∈Ji
is an admissible covering of W ′

i , so since {W ′
i} is as-

sumed to be an admissible covering of X ′ it follows that the entire collection
{V ′

ij}(i,j) is an admissible covering of X ′. Since {Wi} is admissible if its re-
finement {Vij}(i,j) is, we may therefore reduce to the case where the Wi’s
are all affinoid. Since X ′ is quasi-compact and {W ′

i} is an admissible cover,
there is a finite subcover {W ′

i1
, . . . ,W ′

in
}. Thus, the Wij

’s for 1 6 j 6 n

form a finite affinoid open refinement of {Wi} that set-theoretically cov-
ers the affinoid X. Such {Wij} is automatically admissible. This concludes
the reduction of descent for morphisms to the special case when X, Y , S,
and S′ are all affinoid.

Writing our situation in terms of rings, we have to check that if B → B′

is a faithfully flat map of k-affinoids, then B is the equalizer of the two
maps B′ ⇒ B′⊗̂BB′. Since the specification of an element of B is (thanks
to the Maximum Modulus Principle) functorially the same as a morphism
Sp(B)→ A1

k, it suffices to show that the functor represented by A1
k satisfies

the sheaf axioms for fpqc coverings. The advantage of this formulation is
that it allows us to work locally on both Sp(B) and Sp(B′). Hence, by
choosing a faithfully flat formal model for Sp(B′) → Sp(B) (in the sense
of Raynaud) and working over suitable formal open affines, we may reduce
to showing that for a faithfully flat map B → B′ of topologically finitely
presented R-algebras (with R denoting the valuation ring of k), the evident
equalizer sequence of R-modules

(4.2.4) 0→ B −→ B′ −→ B′⊗̂BB′

is exact. Modulo any ideal of definition of the valuation ring of k, (4.2.4)
is an equalizer sequence for a faithfully flat extension of rings, and so is
exact by ordinary fpqc descent theory. By left-exactness of inverse limits,
we conclude that (4.2.4) is exact, as desired. �

Corollary 4.2.5. — For any rigid space S and morphism X → S, the
functor HomS(·, X) on the category of rigid spaces over S satisfies the sheaf
axioms relative to faithfully flat maps that admit local fpqc quasi-sections.

Proof. — The functor HomS(·, X) is obviously a separated presheaf with
respect to such coverings. To verify the gluing axioms, consider a faithfully
flat S-map Y ′ → Y admitting local fpqc quasi-sections and an S-map
Y ′ → X whose two pullbacks to Y ′ ×S Y ′ coincide. We view the S-map
Y ′ → X as a Y ′-morphism Y ′ → X ×S Y ′. Using descent for morphisms
(Theorem 4.2.3) relative to the covering Y ′ → Y we can descend this to
a Y -morphism Y → X ×S Y , and composing this morphism with the first
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projection gives the desired (unique) S-map Y → X whose composite with
the S-map Y ′ → Y is the initially given S-map Y ′ → X. �

Descent theory also works for admissible covers:

Corollary 4.2.6. — Let X ′ → X be an faithfully flat map of rigid
spaces, and assume it admits local fpqc quasi-sections. Let {W ′

i} be an
admissible covering of X ′ such that W ′

i ×X X ′ = X ′ ×X W ′
i in X ′ ×X X ′

for all i. Each W ′
i is the preimage of a unique admissible open Wi in X,

and {Wi} is an admissible covering of X.

Proof. — Lemma 4.2.4 provides us with an admissible open Wi in X

whose preimage is W ′
i , and Wi is visibly the image of W ′

i in X; uniqueness
of Wi descending W ′

i is obvious since X ′ → X is surjective. We have to
prove that {Wi} is an admissible cover of X.

Let W be the abstract gluing of the Wi’s along the Wi ∩Wj ’s, so the
Wi’s form an admissible covering of W and there is a canonical (bĳective)
morphism f : W → X that we want to be an isomorphism. All we know
is that over each Wi ⊆ X this map restricts to an isomorphism, but we
cannot conclude anything from this precisely because we do not yet know
if {Wi} is an admissible covering of X.

Let W ′ = W ×X X ′. Since Wi in W maps isomorphically to Wi in X, the
preimage of Wi in W ′ is canonically isomorphic (via the second projection
W ′ → X ′) to the preimage of Wi under X ′ → X. We assumed that {W ′

i}
is an admissible covering of X ′, so we conclude that f ′ : W ′ → X ′ is
an isomorphism locally on the target and hence is an isomorphism. Let
g′ : X ′ → W ′ be the inverse of f ′. We shall now apply the sheaf property
of representable functors in Corollary 4.2.5 (in the category of rigid spaces
over S = Sp(k)) in order to uniquely fill in a commutative diagram

(4.2.5) X ′ g′ //

��

W ′

��
X g

? // W

and this g will be an inverse to f .
Since the functor represented by W satisfies the sheaf axiom relative to

X ′ → X, we just have to check that the two composite maps

(4.2.6) X ′ ×X X ′ ⇒ X ′ g′→W ′ →W

coincide. We have W ′ ×W W ′ ' W ×X (X ′ ×X X ′), and the projection
W ′′ → X ′′ is an isomorphism because it is the composite W ′ ×W W ′ '

ANNALES DE L’INSTITUT FOURIER



RELATIVE AMPLENESS IN RIGID GEOMETRY 1107

W ×X (X ′×X X ′) 'W ′×X X ′ ' X ′×X X ′ whose final step is an isomor-
phism because W ′ → X ′ is an isomorphism. Thus, to check that the two
composites in (4.2.6) coincide, it is enough to check after composition with
the isomorphism W ′ ×W W ′ ' X ′ ×X X ′ on the source, but the resulting
two composites W ′ ×W W ′ ⇒ W are both visibly equal to the canonical
structure map. We therefore obtain the unique morphism g making (4.2.5)
commute.

By using the existence of the commutative squares

W ′ g′ //

��

X ′

��

X ′ f ′ //

��

W ′

��
W g

// X X
f
// W

with inverses in the top row and common faithfully flat morphisms in the
vertical direction, it follows that the bottom rows must be inverses. Thus,
f is an isomorphism, so {Wi} is an admissible covering of X. �

Theorem 4.2.7. — Let f : X → Y be a map of rigid spaces, and let
Y ′ → Y be a faithfully flat map that admits local fpqc quasi-sections.
Let P denote any of the properties: quasi-compact, quasi-separated, quasi-
compact with finite fibers, separated, proper, monomorphism, surjective,
open immersion, isomorphism, closed immersion, finite, flat, smooth, fibers
with dimension 6 n, all non-empty fibers with pure dimension n, étale,
fpqc, faithfully flat with local fpqc quasi-sections, and étale with local étale
quasi-sections. The map f satisfies property P if and only if the base change
f ′ : X ′ = X ×Y Y ′ → Y ′ satisfies property P.

Proof. — See Theorem A.1.5 (with F = OX) for the equivalence of flat-
ness for f and f ′. It is obvious in all other cases that if f satisfies property
P then so does f ′. If f ′ is étale then it is clear that f must be flat with
étale fibers and so f is étale. For the converse implication for other P, we
may work locally on Y so that Y is affinoid and there exists an fpqc map
U ′ → Y equipped with a Y -map U ′ → Y ′. If {Y ′

i } is an admissible cov-
ering of Y ′ by affinoids then some finite subset {Y ′

i }i∈I0 pulls back to an
admissible covering of U ′ and so we may replace Y ′ with

∐
i∈I0

Y ′
i so that

Y ′ is also affinoid. In particular, Y ′ → Y is an fpqc morphism (between
affinoids).

Suppose that f ′ is flat (resp. étale) with local fpqc quasi-sections (resp.
with local étale quasi-sections). We wish to show that the flat (resp. étale)
map f has local fpqc quasi-sections (resp. has local étale quasi-sections).
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Since Y ′ is affinoid, by replacing Y ′ with the disjoint union of the con-
stituents of a suitable finite affinoid covering we may suppose that there
exists an fpqc (resp. étale) map U ′ → Y ′ and a Y ′-map U ′ → X ′. If {Xj}
is an admissible affinoid covering of X then its pullback {X ′

j} is an ad-
missible affinoid covering of X ′ (as Y and Y ′ are affinoid) and so some
finite subset {X ′

j}j∈J0 pulls back to an admissible covering of U ′. Thus,
the affinoid V ′ =

∐
j∈J0

X ′
j has structure map to Y ′ that is fpqc (resp.

étale, quasi-compact, and surjective). Since X → Y is flat (resp. étale), it
follows that the affinoid V =

∐
j∈J0

Xj equipped with its evident Y -map
to X is an fpqc quasi-section (resp. étale quasi-section) for X → Y . This
completes the proof that the property of being faithfully flat with local fpqc
quasi-sections (resp. étale with local étale quasi-sections) descends through
the faithfully flat base change Y ′ → Y .

We now explain how the descent of the “open immersion” property is
reduced to the descent of the “isomorphism” property. If f ′ is an open
immersion, then its admissible open image W ′ in Y ′ has both pullbacks
to Y ′′ = Y ′ ×Y Y ′ equal to the image of the open immersion f ′′. Hence,
by Lemma 4.2.4 we conclude that W ′ is the preimage of an admissible
open W in Y that must coincide with the image of f . Thus, f uniquely
factors through a map X →W that becomes an isomorphism after making
the fpqc base change W ′ → W . This reduces the “open immersion” case
to the “isomorphism” case.

Once we take care of descending the properties of quasi-compactness
and properness, all of the other properties follow immediately (by arguing
as in the case of schemes; for example, quasi-separatedness means quasi-
compactness of the diagonal morphism). Thus, we now only consider the
problem of proving that f is quasi-compact (resp. proper) when f ′ is quasi-
compact (resp. proper). We may assume Y and Y ′ are affinoid.

Assuming that f ′ is quasi-compact, so X ′ is quasi-compact, we wish
to conclude that X is quasi-compact. For this, it suffices to prove quite
generally that any rigid space X admitting an fpqc map from a quasi-
compact rigid space X ′ must be quasi-compact. By choosing an admissible
affinoid covering of X and passing to a finite refinement whose (quasi-
compact) preimages are an admissible covering of the quasi-compact X ′,
we can find finitely many admissible affinoid opens U1, . . . , Un in X whose
preimages in X ′ form an admissible covering of X. By Corollary 4.2.6,
the Ui’s form an admissible covering of X, so indeed X is quasi-compact.
This settles descent of quasi-compactness.
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Now we assume f ′ is proper and we wish to deduce that f is proper. By
descent of quasi-compactness applied to both f ′ and its diagonal ∆f ′ , we at
least know that f is quasi-compact and quasi-separated. Since Y is affinoid,
X and Y must both be quasi-compact and quasi-separated. Thus, f admits
a formal model f : X→ Y1. By Raynaud’s flat models theorem [8, 5.10 (c)],
there is also a formal model Y′ → Y2 of the flat map of affinoids Y ′ → Y

such that Y′ → Y2 is a flat morphism of formal schemes. By using a base
change to a formal model of Y that dominates the two formal models Y1

and Y2 of Y , we may suppose that the same formal model Y of Y is being
used for the formal models of both f and Y ′ → Y . Using the theory of
rig-points as developed in [7], especially [7, 3.5], the surjectivity of Y ′ → Y

implies that the flat formal morphism Y′ → Y is surjective and hence is
faithfully flat (and quasi-compact).

Since f ′ is proper, the formal model f′ must be proper. The fpqc property
of Y′ → Y allows us to use scheme-theoretic fpqc-descent modulo an ideal
of definition of the valuation ring of k to infer that the formal model f must
be proper. Hence, f = frig is proper (see §A.1). �

Theorem 4.2.8 (Bosch-Görtz). — Let f : S′ → S be a faithfully flat
map of rigid spaces, and assume f admits local fpqc quasi-sections. The
functor F  (F ′, ϕ) from coherent sheaves F on S to coherent sheaves F ′
on S′ equipped with descent data ϕ : p∗1F ′ → p∗2F ′ on S′ ×S S′ relative
to f is an equivalence of categories.

Proof. — The hard part is the case when f is fpqc, and this was settled by
Bosch and Görtz [5, Thm. 3.1]. The general case may be deduced from this
by a standard argument, as we now explain. It is obvious that F  (F ′, ϕ)
is a faithful functor. To prove full faithfulness and effectivity of descent, we
may work locally on S. Thus, the hypothesis concerning local fpqc quasi-
sections allows us to assume that there exists an fpqc map U ′ → S and
an S-map U ′ → S′. We may assume S is affinoid, so U ′ is quasi-compact.
Let {S′i} be an admissible affinoid covering of S′, and let I0 be a finite set of
indices such that the S′i’s for i ∈ I0 pull back to an admissible cover of U ′.
For each finite set of indices I containing I0, the affinoid S′I =

∐
i∈I S′i is

fpqc over the affinoid S. The admissibility of the covering {S′i} and the full
faithfulness with respect to each covering S′I → S gives full faithfulness
in general.

It remains to prove effectivity of descent. Let (F ′, ϕ) be a coherent sheaf
on S′ equipped with descent data with respect to S′ → S. Making a base
change by U ′ → S yields a descent problem with respect to S′ ×S U ′ → U ′.
This latter map has a section, so by a standard argument (as in [9, 6.1/3])
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descent with respect to this covering is effective. This provides a coherent
sheaf F ′U ′ on U ′ descending the pullback of F ′ to S′×S U ′, and full faithful-
ness as proved above provides canonical descent data on F ′U ′ with respect
to the fpqc map U ′ → S. By the settled fpqc case, we may descend F ′U ′ to
a coherent sheaf F on S, and this is easily seen to provide the solution to
the initial descent problem with respect to S′ → S. �

Theorem 4.2.9. — Let f : S′ → S be a faithfully flat of rigid spaces,
and assume it admits local fpqc quasi-sections. If X ′ is an S′-proper rigid
space equipped with descent data relative to f and if there exists an S′-
ample line bundle L′ on X ′ compatible with the descent data, then the
descent of X ′ to a rigid space X over S is effective (and the descent of L′
to a line bundle on the S-proper X is S-ample).

Proof. — Theorem 3.2.7 ensures that (3.1.2) makes sense and is an iso-
morphism in the relatively ample case. Hence, any proper map f ′ : X ′ → S′

equipped with an S′-ample L′ is encoded in terms of the coherent sheaves
f ′∗(L′

⊗n) for n > 0 via the Projan construction. This description of X ′

is functorial with respect to isomorphisms in (X ′,L′) and it respects flat
base change on S′. The descent data on (X ′,L′) induces descent data on
the coherent sheaves f ′∗(L′

⊗n), and by descending f ′∗(L′
⊗n) to a coherent

sheaf An on S (Theorem 4.2.8) we immediately see that A def
==

⊕
n>0 An

is canonically a graded OS-algebra that descends the graded OS′ -algebra
A′ def

==

⊕
n>0 f ′∗(L′

⊗n).
By Theorem 3.2.7, A′ is locally finitely generated over OS′ . We claim

that A is locally finitely generated over OS . Since S′ → S is faithfully flat
and admits local fpqc quasi-sections, there is an admissible covering of S

by quasi-compact opens Ui for which there exists an fpqc map U ′
i → Ui

and a Ui-map hi : U ′
i → S′ for each i. Each U ′

i is quasi-compact, so the
locally finitely generated graded OU ′

i
-algebra h∗iA′ is a generated by terms

in degrees 6 Ni for some large Ni. By faithful flatness of U ′
i → Ui, the

graded OUi
-algebra A Ui

with coherent graded terms must be generated
by its coherent subsheaf of terms in degrees 6 Ni, so A is locally finitely
generated. Hence, the rigid space X = Projan(A) over S makes sense and
provides the required S-proper descent of X ′ with respect to S′ → S. By
applying Theorem 4.2.8 to the map X ′ → X, L′ descends to a coherent
sheaf L on X that is necessarily a line bundle, and L is clearly S-ample. �
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4.3. Picard groups

Let f : X → S be a proper flat map of finite presentation between
two schemes. Assume OS = f∗OX and that the same holds after any
base change on S; this condition is satisfied if f has geometrically reduced
and geometrically connected fibers. Assume that there is given a section
e ∈ X (S), so pairs (L, i) consisting of a line bundle on X and a trivializa-
tion i : OS ' e∗L admit no non-trivial automorphisms. Let PicX/S,e be
the functor whose value on any S-scheme S ′ is the group of isomorphism
classes of pairs (L, i) of eS′ -rigidified line bundles on X ×S S ′. This group
functor is a sheaf for the fpqc topology on the category of S-schemes.

Theorem 4.3.1 (Artin). — With notation and hypotheses as above,
PicX/S,e is a locally separated algebraic space whose structural morphism
to S is locally of finite presentation. It contains a unique open S-subgroup
Picτ

X/S,e of finite presentation whose fiber over each s ∈ S is the k(s)-
subgroup Picτ

Xs/k(s),e classifying line bundles representing torsion elements
of the Néron-Severi group of the geometric fiber at s.

Proof. — The existence result is [1, 5.3, 7.3], and the structure of Picτ
X/S,e

is [27, XIII, 4.7]. The local separatedness comes out of the method of proof
that PicX/S,e is an algebraic space, but it can also be proved abstractly by
using the valuative criterion for a map of finite type between noetherian
schemes to be an immersion [38, 2.13, p. 100]. (The passage to the noe-
therian case is standard, or alternatively [38, 2.13, p. 100] can be proved
without noetherian hypotheses.) �

We wish to use Theorem 4.3.1 to prove an analogous representability
result for rigid spaces. However, since we have not presented a theory of
analytification for locally separated algebraic spaces we will only treat a
special case that is sufficient for work with abelian schemes in [12]: we shall
impose the condition of geometrically integral fibers. The elimination of this
restriction will be addressed in [14]. Since we work with geometrically inte-
gral fibers, we only require Grothendieck’s earlier theorem [25, Thm. 3.1]
that in the setting of Theorem 4.3.1 if the proper flat map X → S is pro-
jective locally over S and if the geometric fibers are integral then PicX/S,e

is represented by an S-scheme PicX/S,e that is moreover separated over S.
The rigid-analytic input for what follows is a proper flat map f : X → S

between rigid spaces, and we assume that H0(Xs,OXs) = k(s) for all s ∈ S

(a condition that is satisfied if each fiber Xs is geometrically reduced and
geometrically connected in the sense of [11]). The rigid-analytic theorem
on cohomology and base change (whose proof goes as in the algebraic case,
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with the help of [31]) implies that the natural map OS → f∗OX is an
isomorphism and that this property persists after any base change on S

and (for quasi-separated or pseudo-separated S) any extension on the base
field; we say OS = f∗OX universally. Assume that there is given a section
e ∈ X(S). Since e-rigidified line bundles (L, i) on X admit no non-trivial
automorphisms, the functor PicX/S,e classifying eS′ -rigidified line bundles
on X ×S S′ for variable rigid spaces S′ over S is a sheaf for the topology
generated by faithfully flat maps that admit local fpqc quasi-sections. We
will be interested in the case when f has geometrically integral fibers.

Lemma 4.3.2. — Let F : X → S be a proper flat map of algebraic
k-schemes and assume OS = F∗OX universally. Let e ∈ X (S) be a section.
Assume moreover that F is projective locally over S and that its geometric
fibers are integral. The analytification of the separated S-scheme PicX/S,e

represents PicX an/San,ean .

Proof. — Theorem 4.3.1 provides a locally separated algebraic space
group P over S equipped with a universal e-rigidified line bundle (L, i)
on X ×S P. By results of Grothendieck (mentioned above), P is a sepa-
rated S-scheme under our assumptions on F . Thus, we may analytify to get
a separated San-group Pan that is equipped with a canonical ean-rigidified
line bundle (Lan, ian) on X an ×San Pan. We must prove that this analyti-
fied structure is the universal ean-rigidified line bundle on base changes of
X an → San in the category of rigid spaces. That is, for any map of rigid
spaces T → San and any ean

T -rigidified line bundle (M, ι) on X an ×San T ,
we must show that there exists a unique San-map T → Pan with respect
to which the pullback of (Lan, ian) is (uniquely) isomorphic to (M, ι).

By working Zariski-locally on S and locally on T we may assume S =
Spec(A) is affine and T = Sp(A) is affinoid. The composite map T → S
uniquely factors through the natural k-map Sp(A) → Spec(A), and by
universal properties of affinoids, affine schemes, and analytification, the
natural map X an ×San T → X ×S Spec(A) is the relative analytification in
the sense of Example 2.2.11.

It now suffices to prove that if A is any k-affinoid algebra and Z →
Spec(A) is any proper A-scheme with associated relative analytification
Z → Sp(A), then (i) pullback along the canonical map Z → Z of locally
ringed Grothendieck-topologized spaces sets up an equivalence Coh(Z) '
Coh(Z) (denoted F  Fan) between categories of coherent sheaves, and (ii)
F is a line bundle if and only if Fan is a line bundle. The equivalence
between categories of coherent sheaves was explained in Example 3.2.6,
and the line bundle aspect is immediate via properness over the base and
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calculations on infinitesimal fibers over Sp(A) and over the Zariski-dense
subset MaxSpec(A) in the Jacobson scheme Spec A. �

Theorem 4.3.3. — With notation and hypotheses as above, assume X

admits an S-ample line bundle. The functor PicX/S,e is represented by a
rigid space PicX/S,e over S whose structural map to S is separated, and
there is a unique Zariski-open S-subgroup Picτ

X/S,e whose fiber over each
s ∈ S classifies line bundles numerically equivalent to zero. The formation
of this representing object respects analytic extension on k when S is quasi-
separated or pseudo-separated, and it also respects analytification.

Proof. — We may now work locally on S, so we may use the S-ample
line bundle and Theorem 3.2.7 to reduce to the case when X is closed in
some PN

S . By Corollary 4.1.6 we may assume that X → S is the pullback
of the analytification of a projective flat map X → S between algebraic
k-schemes, and that e is the pullback of the analytification of a section
in X (S). By [15, 12.2.4 (viii)], the locus U of s ∈ S such that Xs is geo-
metrically integral is Zariski-open. The map S → San factors through the
Zariski-open Uan ⊆ San, so we may rename U as S and hence the hypothe-
ses of Grothendieck’s version of Theorem 4.3.1 (with projectivity and fibral
geometric integrality hypotheses) are satisfied by X → S. Lemma 4.3.2
therefore gives the desired existence result. In the case of quasi-separated
or pseudo-separated S, the behavior with respect to extension on k follows
from the general compatibility of analytification and change of the analytic
base field. �

Appendix A. Some background results

A.1. Review of properness, flatness, and quasi-finiteness

We use Kiehl’s definition of properness [6, 9.6.2/2], in terms of which
Kiehl proved the basic cohomological results for coherent sheaves on rigid
spaces. In particular, Kiehl proved that coherence is preserved under higher
direct images of proper maps [31, 2.6] and he proved the rigid-analytic
theorem on formal functions [31, 3.7].

Remark A.1.1. — Let f : X → Y be a proper map and let F be
coherent on X, so Rif∗F is coherent on Y . By a Leray spectral sequence
argument, it follows from the Tate/Kiehl acyclicity theorem that for any
open affinoid U in Y , the natural map Hi(f−1(U),F)→ (Rif∗F)(U) is an
isomorphism.
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There are some subtle aspects of the rigid-analytic theory of properness
that have been resolved by recent work of Temkin (using Berkovich spaces).
Let us review the consequences of Temkin’s work for our purposes. For a
quasi-compact map f : X → Y between locally finite type schemes over
a non-archimedean field k, elementary methods ensure that properness of
fan implies properness of f [11, 5.2.1(2)]. Likewise, in Raynaud’s theory
of formal models (see [7], [8], and [28, Appendix]), for a quasi-compact
map f : X → Y between flat and locally topologically finitely presented
formal schemes over the valuation ring R of k, it is elementary to prove
that properness of frig implies properness of f [35, 2.5, 2.6]. In practice one
needs the converses to these two assertions: by [2, 3.4.7] and [42, Cor. 4.4,
Cor. 4.5], we have
• A quasi-compact map f : X → Y between algebraic k-schemes is

proper if and only if fan is proper.
• If f : X → Y is a quasi-compact map between locally topologically

finitely presented and flat formal schemes over the valuation ring R of k,
then properness of f is equivalent to properness of frig.
• Properness is preserved under composition in the rigid-analytic cate-

gory.
• If Y is a rigid space and h : X ′ → X is a Y -morphism between rigid

spaces that are separated over Y , and if X ′ is proper over Y (so h is proper
[6, 9.6.2/4]), then the Zariski-closed set h(X ′) in X is proper over Y with
respect to the rigid-analytic structure defined by any coherent ideal sheaf
on X whose zero locus is h(X ′).

Let us now turn to “algebraic” cohomological properties of proper maps.
The rigid-analytic analogue of Serre’s GAGA theorem in the projective case
over a field is proved in [33, pp. 43–53], and Kiehl’s rigid-analytic theorem
on formal functions allows one to relativize this to higher direct images with
respect to projective morphisms. Using Chow’s Lemma and Grothendieck’s
method in [26, XII], this generalizes to the case of an arbitrary proper map
f : X → Y between algebraic k-schemes: there are δ-functorial GAGA
isomorphisms

(A.1.1) Rif∗(F)an ' Rifan
∗ (Fan)

for any coherent sheaf F on X. We shall require the following cohomological
comparison isomorphism:

Theorem A.1.2. — Let f : X → Sp(A) be a proper map to a k-affinoid,
and let F be a coherent sheaf on X. If k′/k is an analytic extension field
and f ′ : X ′ → Sp(A′) and F ′ are induced by f and F , then the natural
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δ-functorial map k′⊗̂kHi(X,F) ' A′ ⊗A Hi(X,F) → Hi(X ′,F ′) between
finite A′-modules is an isomorphism.

The natural map in this theorem is defined using Čech theory since
the functor F  F ′ is only defined for quasi-coherent OX -modules and
not for general OX -modules. The relativization of the theorem to the case
of coherent higher direct images (via Definition 2.1.14) is an immediate
consequence of Remark A.1.1.

Proof. — The first isomorphism follows from [11, 1.1.5(1)] since Hi(X,F)
is a finite A-module. The rest of the theorem is therefore an immediate con-
sequence of two ingredients: the computation of the cohomology in terms of
a Čech complex of k-Banach spaces of countable type (these are spaces to
which the Banach open mapping theorem applies), and Kiehl’s result [31,
2.5ff.] that the differentials in this complex have closed image since f is
proper. �

The following theorem is the rigid-analytic analogue of a classical result
in the complex-analytic case [22, 3.1.2]; see [30, I, §1, Thm. 1] for a dis-
cussion in terms of a cruder notion of rigid-analytic space (avoiding the
possibility of non-rational points). We give a proof, due to lack of a refer-
ence.

Theorem A.1.3 (Structure theorem for locally quasi-finite maps). —
Let f : X → Y be a separated morphism of rigid spaces, and let Σ ⊆ f−1(y)
be a finite set of isolated points for some y ∈ Y . There exists an admissible
open U around y and an admissible open V ⊆ f−1(U) around Σ such that
the restriction fV : V → U of f is a finite map. Moreover, the natural map
of OY,y-algebras

(A.1.2) (fV ∗OV )y −→
∏
x∈Σ

OX,x

is an isomorphism. In particular, OX,x is a finite OY,y-module for all x ∈
f−1(y).

Proof. — Once we find U and V such that fV : V → U is finite, the
fact that (A.1.2) is an isomorphism (and hence OX,x is OY,y-finite) follows
from [34, Satz 2.2]. The key problem is the existence of V . In principle, the
proof in the complex-analytic case is what one uses. However, the possibility
of non-rational points leads to some complications.

As a first step, we may assume Y is affinoid, so X is separated. This
ensures that overlaps of affinoids in X are affinoid. If x0 6= x1 are distinct
points in X, then X − {xi} is Zariski-open (hence admissible), so there
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exist open affinoids Ui ⊆ X −{x1−i} around xi. The overlap U0 ∩U1 is an
open affinoid in Ui not containing xi. By the Grauert-Gerritzen description
of affinoid subdomains of an affinoid in terms of rational subdomains and
Weierstrass subdomains [6, 7.5.3/3], there exists an open affinoid Vi ⊆ Ui

around xi that is disjoint from U0 ∩U1. Thus, any two distinct points in X

admit disjoint admissible open neighborhoods, so we may find pairwise
disjoint admissible open affinoids around each of the finitely many points
in Σ. This permits us to reduce to the case where Σ consists of a single
point x (the case Σ = ∅ is trivial: take V = ∅). We may then work lo-
cally around both y and x, so we can also assume X and Y are affinoid
and f−1(y) = Σ = {x}.

When x is k-rational, we may choose closed immersions Y ↪→ Bm and
X ↪→ Bn such that y = f(x) 7→ 0 and x 7→ 0 respectively (with Br

denoting the closed unit polydisc in r-space). We can then argue (with the
help of the Weierstrass preparation theorem) in a manner quite similar to
the complex-analytic proof [22, Ch. 3, §1]. It remains to reduce to the case
when the finitely many points in f−1(y) are k-rational. The key geometric
input we need is the following immediate consequence of a lemma of Kisin
[32, 2.3]:

Lemma A.1.4. — For any finite map g : T ′ → T between affinoids and
any analytic set Z ⊆ T (e.g., a point), any admissible open neighborhood
of g−1(Z) in the affinoid T ′ contains g−1(U) for some admissible open U

around Z

Continuing with the proof of Theorem A.1.3, by choosing a sufficiently
large finite extension k′ of k and letting f ′ : X ′ → Y ′ denote the base
change of f , we may assume that the finitely many points in Y ′ over y

are k′-rational and that their finite f ′-fibers consist of k′-rational points.
Let πX : X ′ → X and πY : Y ′ → Y denote the two finite projections. By
the special case already treated, there exists an admissible open affinoid
U ′ ⊆ Y ′ around π−1(y) and an admissible open V ′ ⊆ f ′

−1(U ′) around
π−1

X (x) = f ′
−1(π−1

Y (y)) such that f ′V ′ : V ′ → U ′ is finite. Since πY is a
finite map between affinoids, by Lemma A.1.4 we may shrink U ′ around
π−1

Y (y) so that U ′ is the base change of some admissible open affinoid U

in Y around y.
Using Lemma A.1.4 again, there exists an admissible open W ⊆ X

around {x} = f−1(y) such that W ′ ⊆ V ′, and W must contain f−1(U1) for
some admissible open affinoid U1 ⊆ U around y. Renaming U1 as Y and
f−1(U1) as X, we reduce to the case where f is a map between affinoids
and f ′ is finite. It is clear that f is finite. �
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For a morphism of rigid spaces f : X → Y , an OX -module F is Y -flat
if Fx is a flat OY,f(x)-module for all x ∈ X. This is only a reasonable
definition when F is quasi-coherent (see Definition 2.1.1), and this is the
only case that we shall need (e.g., see Corollary 2.2.7). If this condition
holds with F = OX , then f is a flat map.

Theorem A.1.5. — Let f : X → Y be a morphism of rigid spaces and
let F be a coherent sheaf on X. Let Y ′ → Y be a map of rigid spaces, and
let F ′ be the pullback of F to X ′ = X ×Y Y ′. If F is Y -flat then F ′ is
Y ′-flat, and the converse holds if Y ′ → Y is faithfully flat and admits local
fpqc quasi-sections in the sense of Definition 4.2.1.

Proof. — Choose x′ ∈ X ′ over points x ∈ X and y′ ∈ Y ′ with common
image y ∈ Y . (Note that for any point x ∈ X mapping to a point y ∈ Y we
can find points x′ ∈ X ′ and y′ ∈ Y ′ over x and y respectively when Y ′ → Y

is surjective.) Let Fn and F ′n denote the restrictions to F and F ′ to the
nth infinitesimal neighborhoods X ′

n and Xn of the fibers of f and f ′ over
y and y′ respectively. By the local flatness criterion [37, 22.3], Y ′-flatness
of F ′ at x′ is equivalent to OY ′,y′/mn+1

y′ -flatness of F ′n,x′ for all n > 0, and
similarly the Y -flatness of F at x is equivalent to OY,y/mn+1

y -flatness of
Fn,x for all n > 0. Since OY ′,y′/mn+1

y′ and OY,y/mn+1
y are k-finite, we have

OX′
n,x′ ' OXn,x⊗OY,y/mn+1

y
OY ′,y′/mn+1

y′ with an ordinary tensor product.
Hence, we have

F ′n,x′ = Fn,x ⊗OXn,x
OX′

n,x′ ' Fn,x ⊗OY,y/mn+1
y
OY ′,y′/mn+1

y′ ,

so Y -flatness of F implies Y ′-flatness of F ′.
Conversely, assume that F ′ is Y ′-flat and that f is faithfully flat with

local fpqc quasi-sections. We want to prove that Fx is OY,y-flat for all
y ∈ Y and x ∈ Xy. We can work locally on Y , and so we can assume that
there exists a Y -map U ′ → Y ′ with U ′ faithfully flat and quasi-compact
over Y . We can assume Y is affinoid, so U ′ is quasi-compact. Hence, there
exists a finite set of admissible open affinoids Y ′

i in Y ′ whose pullback
to U ′ is an admissible covering. The affinoid

∐
Y ′

i is fpqc over Y , so we
may replace Y ′ with

∐
Y ′

i to reduce to the case when Y ′ is fpqc over Y .
The case when Y ′ is Y -finite is trivial, as then X ′ is X-finite and we can
use ordinary tensor products rather than completed tensor products when
working on X ′. Hence, it suffices to prove that if Y ′ → Y is fpqc then there
exists a finite flat map Z → U over an admissible open U ⊆ Y around y

such that Y ′(Z) is non-empty (as then pullback from Y ′ to Z along a Y -
map Z → Y ′ carries F ′ to a Z-flat coherent sheaf on X ′×Y ′ Z = XU ×U Z,
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thereby reducing us to the trivial case of descent of flatness through a finite
flat covering).

Our problem now has nothing to do with F , but is rather the statement
that Y ′ → Y admits a section after base change to a finite flat neighborhood
of y ∈ Y . By the structure theorem for rigid-analytic locally quasi-finite
morphisms (Theorem A.1.3), the Y -flatness of Y ′ allows us to argue exactly
as in the case of schemes [15, IV4, 17.6.1] to reduce the problem to that
of non-emptiness of the Cohen-Macaulay locus in the non-empty fiber Y ′

y .
That is, it suffices to verify the non-emptiness of the CM-locus on a non-
empty rigid space Y ′ over a non-archimedean field k. We may suppose Y ′ is
affinoid, and since a finite flat algebra over a CM ring is CM it is enough to
show that a finite Noether normalization map from Y ′ onto a unit polydisc
is flat over a non-empty admissible open locus in the polydisc. Such flatness
follows from the elementary “generic flatness” of finite surjective morphisms
to a smooth base. �

With notation as in Theorem A.1.5, if X and Y are quasi-separated then
it is easy to check (using Raynaud’s theory of formal models, especially
[8, 4.1], and the faithful flatness of k′⊗̂kC over C for any k-affinoid C

[11, 1.1.5 (1)]) that for any analytic extension field k′/k and any coherent
sheaf F on X, the sheaf F is Y -flat if and only if the induced coherent
sheaf F ′ on X ′ = k′⊗̂kX is flat over Y ′ = k′⊗̂kY . It therefore makes sense
to consider the interaction of fibral Euler characteristics and extension on k

for flat families of coherent sheaves. This is addressed in the second part of:

Theorem A.1.6. — Let f : X → Y be proper and let F be a coher-
ent Y -flat sheaf on X. The Euler characteristic

y 7−→ χy(Fy) =
∑

(−1)i dimk(y) Hi(Xy,Fy)

is locally constant for the Zariski topology on Y .
If Y is quasi-separated or pseudo-separated, then for χ ∈ Z the formation

of the Zariski-open locus Uχ = {y ∈ Y |χy(Fy) = χ} commutes with any
extension on k.

See Definition A.2.1 for the notion of pseudo-separatedness.
Proof. — The algebraic methods in [39, §5] give the local constancy for

the Zariski topology. Thus, we may assume that for some χ ∈ Z and all
points y we have χy(Fy) = χ with Y a quasi-separated or pseudo-separated
space, and we must prove that this property is preserved after arbitrary
extension on k. We can assume that Y is connected, and the case of finite
extension on k is trivial. By [11, 3.2.3], for a suitable finite extension k′/k

the rigid space k′ ⊗k Y is a union of finitely many connected components
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that are geometrically connected over k′ (that is, each connected component
remains connected after arbitrary analytic extension on k′). Thus, we may
suppose that Y is geometrically connected over k. In view of the disjoint
Zariski-open stratification that has already been proved in the general case,
when the base is geometrically connected the preservation of the property
of having constant fibral Euler characteristics is obviously preserved by
extension of the base field. �

A.2. Pseudo-separatedness and change of base field

If f : X → Y is a non-separated map between algebraic k-schemes, the
relative analytic diagonal map ∆fan = ∆an

f is never quasi-compact (even
if f is quasi-compact) and so fan is never quasi-separated when f is not
separated. Since extension of the base field makes sense without restrictions
in algebraic geometry, we want to be able to say k′⊗̂kSan ' (k′⊗k S)an for
any algebraic k-scheme S. However, if S is not separated then we cannot
make sense of such an isomorphism until we provide an intrinsic method
to define k′⊗̂kS for a class of non-separated rigid spaces S that includes
those arising as analytifications of algebraic k-schemes. Hence, we seek a
property of morphisms of rigid spaces that is weaker than separatedness
and is satisfied by all maps of the form fan with f a map between algebraic
k-schemes.

Definition A.2.1. — A map of rigid spaces f : X → S is pseudo-
separated (or X is S-pseudo-separated) if the diagonal ∆f : X → X ×S X

factors as X
i→ Z

j→ X ×S X with i a Zariski-open immersion and j a
closed immersion. A rigid space X is pseudo-separated if X → Sp(k) is
pseudo-separated.

Example A.2.2. — If f : X → S is a map between algebraic k-schemes
then ∆f is a quasi-compact immersion of schemes. Hence, it makese sense
to form a scheme-theoretic closure for ∆f , so ∆f factors as a Zariski-open
immersion followed by a closed immersion. Since ∆fan = ∆an

f , it follows
that fan is pseudo-separated.

Example A.2.3. — A map of rigid spaces f : X → S is quasi-separated
and pseudo-separated if and only if it is separated.

It is trivial to check that pseudo-separatedness is preserved by base
change (this is why we omit a “denseness” condition on i in the defini-
tion), but the non-uniqueness of the factorization in the definition implies
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that pseudo-separatedness does not descend through fpqc base change. The
non-uniqueness of the factorization also implies that pseudo-separatedness
is generally not local on the base. Also, the failure of Zariski-openness to
be transitive in the analytic setting implies that pseudo-separatedness is
generally not preserved under composition. However, it is easy to check
that if X and Y are rigid spaces over a rigid space S and there is given
an S-map f : X → Y then f is pseudo-separated when X and Y are S-
pseudo-separated, and conversely if Y is S-separated and f is pseudo-
separated then X is S-pseudo-separated. In particular, if X and Y are
pseudo-separated rigid spaces then any map X → Y is pseudo-separated.

Recall the following elementary fact (see [11, 3.1.1] for a proof):

Lemma A.2.4. — Let ι : U → X be a Zariski-open immersion into a
quasi-separated rigid space X, with Zariski-closed complement j : Z ↪→ X.
For any analytic extension field k′/k, the induced maps ι′ : U ′ → X ′ and
j′ : Z ′ → X ′ are respectively open and closed immersions, with ι′(U ′) a
Zariski-open and j′(Z ′) its Zariski-closed complement in X ′.

The reason that we are interested in pseudo-separatedness is that it pro-
vides an alternative to quasi-separatedness that is sufficient for the forma-
tion of change of base field functors. To explain this, let X be a pseudo-
separated rigid space over k and let k′/k be an analytic extension field.
For any two affinoid opens U and V in X, the overlap W = U ∩ V is an
admissible open in each of U and V , and moreover each inclusion W → U

and W → V factors as a Zariski-open immersion followed by a closed im-
mersion. Since U , V , and W are all separated, it makes sense to form the
rigid spaces k′⊗̂kU , k′⊗̂kV , and k′⊗̂kW , and so we can consider the maps

(A.2.1) k′⊗̂kW −→ k′⊗̂kU, k′⊗̂kW −→ k′⊗̂kV.

By Lemma A.2.4, each of these maps is a Zariski-open immersion followed
by a closed immersion. We claim that each is an admissible open immer-
sion. To see this, first note that for each affinoid open Wi ⊆W , the affi-
noid open k′⊗̂kWi in k′⊗̂kW is also an affinoid open in each of k′⊗̂kU

and k′⊗̂kV . It then follows easily from the Zariski open/closed factoriza-
tion that the collection of affinoids k′⊗̂kWi in each of k′⊗̂kU and in k′⊗̂kV

is an admissible collection, so indeed the maps in (A.2.1) are admissible
open immersions.

It is now a simple exercise to check that by gluing k′⊗̂kU and k′⊗̂kV

along k′⊗̂k(U∩V ) for all pairs of affinoid opens U, V ⊆ X, the triple overlap
compatibility conditions are satisfied and hence we get a well-defined rigid
space k′⊗̂kX with the affinoids k′⊗̂kU as an admissible open covering.
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(If X is separated then this construction agrees with the one in the quasi-
separated case; also see Example A.2.3.) Exactly as in the quasi-separated
case, X  k′⊗̂kX is naturally a functor from pseudo-separated rigid spaces
over k to rigid spaces over k′, and it carries fiber products to fiber products
and Zariski open/closed immersion to Zariski open/closed immersions. In
particular, k′⊗̂kX is pseudo-separated over k′. Transitivity with respect
to further extension of the base field and the exact “pullback” functor
Coh(X) → Coh(k′⊗̂kX) on categories of coherent sheaves are defined as
in the quasi-separated case. Finally, Lemma A.2.4 carries over (with the
same proof) in the pseudo-separated case, and all appearances of “quasi-
separated” in [11] may be replaced with “pseudo-separated” (see the end
of [11, §3.1]).

Remark A.2.5. — The failure of pseudo-separatedness to be preserved
under composition can be rectified by generalizing the definition of pseudo-
separatedness to require ∆f to merely factor as a finite composite of maps
that are Zariski-open or Zariski-closed immersions. It is straightforward to
check that what we have said above remains valid under this more general
definition, and the reader will easily check that this generalization suffices
for all applications of pseudo-separatedness in this paper; however, it is not
clear if this proposed generalization of pseudo-separatedness of X an for an
analytifiable algebraic space X (in the sense of [14]) forces X to be locally
separated. For this reason, we have decided to adopt the more restrictive
definition of pseudo-separatedness that is given above.

Theorem A.2.6. — Let f : X → Y be an S-map between proper
rigid spaces over S. Let U be the locus of s ∈ S such that f induces an
isomorphism (resp. closed immersion) on the infinitesimal fibers (resp. on
the fiber) over s.

1) If X is S-flat and fs is an isomorphism for some s ∈ S then f induces
an isomorphism on infinitesimal fibers over s.

2) The locus U is Zariski-open in S, and f U : XU → YU is an isomor-
phism (resp. closed immersion).

3) If S is quasi-separated or pseudo-separated then the formation of U

is compatible with change of the base field.

Proof. — First we prove 1), so assume that X is S-flat and pick s ∈ S

such that fs is an isomorphism. For all x ∈ Xs we have f−1(f(x)) = {x}, so
f is locally quasi-finite at x. By Theorem A.1.3, the map OY,f(x) → OX,x

is finite. This is an isomorphism modulo ms, and hence it is surjective (by
Nakayama’s Lemma). The kernel ideal K ⊆ OY,f(x) is finitely generated
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and K/msK = 0 since OY,f(x) is noetherian and OX,x is OS,s-flat. Thus,
K = 0 and hence f is an isomorphism near any x ∈ Xs. More specifically,
since f−1(f(x)) = {x} for all x ∈ Xs, we conclude that on infinitesimal
fibers over s the maps induced by f are proper, bĳective (hence finite), and
local isomorphisms, so these induced maps must be isomorphisms.

Now we turn to 2). If fs is a closed immersion then the maps induced by
f on infinitesimal fibers over s are proper and quasi-finite, hence finite, and
so are closed immersions since they are closed immersions modulo ms. To
prove that f is a closed immersion over a Zariski-open neighborhood of s

when f restricts to a closed immersion on all infinitesimal fibers over s, we
first note quite generally that the proper map f is a closed immersion if and
only if the diagonal map ∆f : X → X ×Y X is an isomorphism. Indeed,
∆f is an isomorphism if and only if f is a monomorphism, and proper
monomorphisms are closed immersions (as proper monics are visibly quasi-
finite, hence finite, and a finite monomorphism to Sp(k′) is readily seen to
be either empty or Sp(k′) for finite extensions k′/k). Thus, since X ×Y X

is S-proper we can replace f with ∆f if necessary so as to reduce the proof
of 2) to the case of isomorphisms.

Fix s ∈ U . The map f is quasi-finite at all x ∈ Xs and hence OY,f(x) →
OX,x is finite for such x. Since this is an isomorphism modulo all powers
of ms, and hence modulo all powers of mf(x), this finite map becomes an
isomorphism after faithfully flat base change to ÔY,f(x) and hence it is an
isomorphism. That is, f is a local isomorphism near all points x in the
fiber Xs. Since f is proper, it follows from the theorem on formal functions
that for all x ∈ Xs the natural map

(A.2.2) f∗(OX)f(x) −→ OX,x

of (finite) OY,f(x)-modules is an isomorphism after applying the functor
ÔY,f(x) ⊗OY,f(x) (·) and so it is an isomorphism. We shall now use sheaves
of differentials to exploit the isomorphism (A.2.2).

We refer to [10, §1–§2] for a discussion of the basic properties of the
coherent sheaves of relative differentials in the rigid case. The coherent
sheaf Ω1

X/Y is supported on a Zariski-closed set Z ⊆ X, so the Zariski-
closed image of Z in S is disjoint from U because f is an isomorphism
on infinitesimal fibers over all s ∈ U . Consider the coherent sheaf f∗OX

on Y . Let W be the Zariski-open locus in Y where f∗OX is Y -flat. For any
s ∈ U and y ∈ Ys the fiber f−1(y) consists of a single point x, and y ∈ W

since (A.2.2) is an isomorphism and the natural map OY,f(x) → OX,x is
an isomorphism. Thus, the Zariski-closed image of Y −W in S is disjoint
from U . Letting V ⊆ S be the Zariski-open complement of the union of
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images of Y −W and Z in S, we conclude that for a suitable Zariski-open V

in S containing U , the coherent sheaf f∗OX YV
is YV -flat and Ω1

X/Y YV
= 0.

The vanishing of Ω1
X/Y YV

forces f V : XV → YV to be a finite map.
Indeed, since f is proper we just have to check quasi-finiteness of f V .
On fibers over YV we are reduced to the assertion that if T is a quasi-
compact rigid space over a non-archimedean field k and Ω1

T/k = 0, then T

consists of finitely many points. For any t ∈ T , the mt-adic completion
of Ω1

T/k,t is the module Ω̂1

ÔT,t/k
of continuous k-linear Kähler differentials,

and so if Ω1
T/k,t = 0 then ÔT,t has vanishing Zariski cotangent space. Thus,

the vanishing of Ω1
T/k forces T to be 0-dimensional. Being quasi-compact

and 0-dimensional, T has only finitely many points. Back in our original
situation, we conclude that f V must be finite, and hence flat (as f∗OX YV

is YV -flat).
A finite flat map has a degree that is locally constant in the Zariski topol-

ogy on a rigid space. We will show that f V has constant degree equal to 1
over a suitable Zariski-open of S contained in V , so f restricts to an iso-
morphism over this Zariski-open. Let πY : Y → S be the projection. If W ′

denotes the Zariski-open locus in Y where OY → f∗OX is an isomorphism,
then the intersection

(A.2.3) Ũ = V ∩
(
S − πY (Y −W ′)

)
= V ×S

(
S − πY (Y −W ′)

)
⊆ S

is a Zariski-open in S that contains U , and over this open the restriction of
f is finite flat of degree 1. Thus, Ũ = U and f U is an isomorphism. This
proves 2).

Now we assume S is quasi-separated or pseudo-separated, and we shall
prove 3). We want to prove that the formation of U is compatible with
change of the analytic base field. Since Ũ = U , it suffices to check that all
of the ingredients entering into the construction (A.2.3) of Ũ are compatible
with change of the base field.

The theorem on formal functions ensures that the image of an analytic
set Z under a proper map f coincides with the support of the coherent
f∗(OZ). The formation of direct images of coherent sheaves under a proper
map naturally respects change of the base field, by Theorem A.1.2, so to
show that the formation of f(Z) respects change in the base field it suffices
to study supports of coherent sheaves.

Recall from [11, 1.1.5(1)] that A→ A′ = k′⊗̂kA is faithfully flat for any
k-affinoid A, and there is a canonical isomorphism

(A.2.4) M ′ def
== A′ ⊗A M ' k′⊗̂kM
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for finite A-modules M . Since the support of a coherent sheaf is the zero
locus of its coherent annihilator ideal sheaf, it follows from (A.2.4) and the
faithful flatness of A → A′ that change of the base field commutes with
formation of the support of a coherent sheaf. By faithful flatness consider-
ations we likewise verify the compatibility of change of the base field and
the formation of the kernel/cokernel of a map between coherent sheaves.
Since Lemma A.2.4 ensures that Zariski-open/closed immersions behave
well with respect to change of the base field, we conclude that the forma-
tion of S − πY (Y −W ′) in (A.2.3) is compatible with extension on k.

To analyze V in (A.2.3), it remains to check that if F is a coherent
sheaf on a quasi-separated or pseudo-separated rigid space Y then the
formation of the Zariski-open locus of Y -flatness (or equivalently, of local
freeness) for F is compatible with change of the base field. Working on the
constituents of an admissible affinoid cover of Y , our problem is reduced to
the claim that if A is k-affinoid, M is a finite A-module, A′ = k′⊗̂kA, and
M ′ = A′ ⊗A M ' k′⊗̂kM , then under the map Spec(A′) → Spec(A) the
preimage of the Zariski-open locus of A-flatness for M is the Zariski-open
locus of A′-flatness for M ′. This claim follows from the faithful flatness
of A′ over A. �

A useful consequence of Lemma A.2.4 and the proof of Theorem A.2.6.(3)
is:

Corollary A.2.7. — For a coherent sheaf F on a quasi-separated or
pseudo-separated rigid space S, the Zariski-open locus where F is locally
free of a fixed rank n > 0 is compatible with change of the base field. In
particular, the Zariski-closed support of F is compatible with change of the
base field.
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