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SPECIALIZATIONS OF ONE-PARAMETER FAMILIES
OF POLYNOMIALS

by Farshid HAJIR & Siman WONG (*)

Abstract. — Let K be a number field, and suppose λ(x, t) ∈ K[x, t] is irre-
ducible over K(t). Using algebraic geometry and group theory, we describe condi-
tions under which the K-exceptional set of λ, i.e. the set of α ∈ K for which the
specialized polynomial λ(x, α) is K-reducible, is finite. We give three applications
of the methods we develop. First, we show that for any fixed n > 10, all but finitely
many K-specializations of the degree n generalized Laguerre polynomial L

(t)
n (x)

are K-irreducible and have Galois group Sn. Second, we study specializations of
the modular polynomial Φn(x, t) (which vanishes on the j-invariants of pairs of
elliptic curves related by a cyclic n-isogeny), and show that for any n > 53, all but
finitely many of the K-specializations of Φn(x, t) are K-irreducible and have Galois
group containing SL2(Z/n)/{±I}. Third, for a simple branched cover π : Y → P1

K
of degree n > 7 and of genus at least 2, all but finitely many K-specializations
are K-irreducible and have Galois group Sn.

Résumé. — Soient K un corps de nombres et λ(x, t) ∈ K[x, t] un polynôme irré-
ductible sur K(t). À partir de la géométrie algébrique et de la théorie des groupes,
nous donnons des conditions suffisantes pour que l’ensemble K-exceptionnel de λ,
c’est-à-dire l’ensemble des éléments α de K tels que λ(x, α) est réductible sur K,
soit fini. Nos méthodes nous permettent alors de développer trois applications. Tout
d’abord, nous obtenons que pour tout entier n plus grand que 10, à l’exception d’un
nombre fini de cas, la K-spécialisation du polynôme de Laguerre généralisé L

(t)
n (x)

de degré n est K-irréductible et a pour groupe de Galois Sn. Ensuite, nous étu-
dions les spécialisations du polynôme modulaire Φn(x, t) (celui-ci s’annule en les
j-invariants des paires de courbes elliptiques reliées entre elles par une n-isogénie
cyclique). Nous montrons que pour tout n > 53, à l’exception d’un nombre fini
de cas, les K-specialisations de Φn(x, t) sont K-irréductibles et ont un groupe de
Galois contenant SL2(Z/n)/{±I}. Enfin, nous obtenons que pour un revêtement
simple π : Y → P1

K de degré n > 7 et de genre au moins 2, à l’exception d’un
nombre fini de cas, les K-spécialisations de π sont K-irréductibles et ont pour
groupe de Galois Sn.

Keywords: Branched cover, complex multiplication, Hilbert irreducibility, modular equa-
tion, orthogonal polynomial, rational point, Riemann-Hurwitz formula, simple cover,
specialization.
Math. classification: 12H25, 11C08, 11G15, 11R09, 14H25, 33C45.
(*) Hajir’s research is supported in part by NSF Grant No. 0226869.
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1. Introduction

Let K be a number field. Consider a polynomial λ(x, t) ∈ K[x, t] which is
non-constant in each of x and t; it can be viewed as a one-parameter family
of K-polynomials in x. If λ is irreducible in K[x, t], the Hilbert irreducibility
theorem furnishes infinitely many α ∈ K for which λ(x, α) is K-irreducible.
It is then natural to study the set of α ∈ K with reducible specialization.
These exceptional sets are thin sets [31, §9.6], and the example xn − t

shows that they can be infinite. Using techniques from diophantine analysis,
Fried [13] bounded the number of exceptional specializations of bounded
height. Exceptional sets for concrete families have also been examined; for
example the irreducibility and Galois group of the generalized Laguerre
polynomial

(1.1) L(t)
n (x) =

n∑
j=0

(−x)j
(n

j

) n∏
k=j+1

(t + k).

for various rational values of the parameter t were studied by Schur [28],
[29]; more recently, Feit [10] used them to solve the inverse Galois prob-
lem over Q for certain double covers of the alternating group An. See
also [15], [17], [30], [16], for other related results. Note that in the pa-
pers just cited, the focus is primarily on a related, but different, ques-
tion from the one we began with, namely that of irreducibility and Galois
properties of L

(αn)
n (x) for suitable sequences {αn}n. For example, the case

αn = −1−n corresponds to the truncated exponential polynomial studied
by Schur [28]. For the latter type of question, the p-adic Newton polygon
is a powerful tool. For example, in Filaseta-Lam [11] it is shown that if
we fix α ∈ Q− Z<0, then L

(α)
n (x) is Q-irreducible for n sufficiently large,

while in Filaseta-Trifonov [12], Grosswald’s conjecture, to the effect that
L

(−1−2n)
n (x) (i.e. the n-th degree Bessel polynomial) is Q-irreducible for

every n, is proved. The Newton Polygon approach, however, does not ap-
pear to be well-suited to the problem under consideration here, namely
that of studying exceptional specializations of L

(t)
n (x) for n fixed.

In this paper we investigate the exceptional set of a given λ(x, t) from
the algebro-geometric and group-theoretic points of view. First, note that
λ(x, t) defines a 1-dimensional subvariety Xλ ⊂ P2

K . To say that the special-
ization of λ at t = α has a K-rational root is to say that the fiber above α of
the projection-to-t map has a K-rational point. Say Xλ is in fact absolutely
irreducible; then, by Faltings, at most finitely many K-specializations of λ

have a K-rational root if Xλ has genus > 2. More generally, a result of
Müller [25] leads to an irreducibility criterion for specializations in terms
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SPECIALIZATIONS OF POLYNOMIALS 1129

of the genus of intermediate subfields of K ′/K(t) where K ′ is the Galois
closure of λ(x, t) over the function field K(t) (cf. also the related results of
Dèbes and Fried [6]).

In Sections 2, 4, and 5, we refine this geometric criterion in two ways.
First, we expand its scope to specializations which are not only irreducible
but whose Galois group coincides with the geometric Galois group of the
cover. Second, we reformulate it in terms of the ramification of the cor-
responding branched cover. Thanks to recursive properties of L

(t)
n (x), the

ramification data of the projection-to-t map can be expressed in terms of
information about the conjugacy classes of maximal subgroups of Sn. The
analysis of this ramification data in terms of maximal subgroups is some-
what delicate and constitutes the technical core of the proof of the following
result.

Theorem 1. — Let K be a number field.
(a) Fix n > 5. Then for all but finitely many α ∈ K, L

(α)
n (x) is K-

irreducible and its Galois group (over K) contains An. For fixed n > 10,
this Galois group is exactly Sn except for finitely many α ∈ K.

(b) Let R be a finitely generated subring of K. If n > 6, then for all but
finitely many α ∈ R, the Galois group over K of L

(α)
n (x) is exactly Sn.

Remark 1. — Note that Theorem 1 is optimal in two ways. First, for
6 6 n 6 9, the set of α ∈ K for which the discriminant of L

(α)
n (x) is a square

in K turns out to be parameterized by a curve of geometric genus one, so
for suitable K there are infinitely many specializations with even Galois
group. And when n = 5, the square discriminants are parameterized by a
curve of geometric genus zero, so there are fields K and finitely generated
subrings R of K over which there are infinitely many even specializations.
Second, L

(t)
4 (x) = 0 is a model (cf. [16]) of the elliptic curve 384H2 in

Cremona’s table. This curve has Mordell-Weil rank 1 over Q, so over any
number field K there are infinitely many α ∈ K for which L

(α)
4 (x) has

a K-rational linear factor. However, the exceptional set in Theorem 1 is
captured by rational points on curves of high geometric genus, so it would
be difficult to make the theorem effective.

As we mentioned earlier, the study of the irreducibility properties of clas-
sical families of orthogonal polynomials has a long history. In most previous
work on this topic, however, one studies “families” parametrized by the de-
gree alone, that is to say for each n > 1, one has a univariate polynomial fn

of degree n whose irreducibility is to be established and whose Galois group
is to be computed. These types of questions have a different flavor, and the

TOME 56 (2006), FASCICULE 4



1130 Farshid HAJIR & Siman WONG

difficulties tend to be more arithmetic as opposed to algebraic: we have
mentioned already the recent success of Filaseta and Trifonov in treating
Bessel polynomials; for the family of Legendre polynomials, on the other
hand, only very partial results are currently known these and quite a few
other specializations of the 3-variable family of Jacobi polynomials P

(α,β)
n

seem to present difficulties of a higher order of magnitude. One benefit of
investigating our question of exceptional specializations of Laguerre poly-
nomials of fixed degree is to establish the effectiveness of our techniques for
the higher-dimensional case of Jacobi polynomials, which we hope to treat
in a future work.

Before we develop the tools necessary for proving Theorem 1, we illus-
trate the use of Müller’s criterion by applying it to another well-studied
polynomial, namely the modular polynomial Φn(x, j). This monic Z-poly-
nomial plays a central role in the theory of elliptic curves; it is deter-
mined up to a scalar multiple by the property that two elliptic curves
over C with j-invariants j1, j2 are related by a cyclic n-isogeny if and only
if Φn(j1, j2) = 0. It is irreducible over C(j), and its Galois group over Q(j)
is PGL2(Z/n).

For any integer n > 1 and any prime p, define

Qp,n =


unique quadratic ext. of Q of conductor p if p > 2 and p | n,
unique biquadratic ext. of Q of conductor 8 if p = 2 and 8 | n,
unique quadratic ext. of Q of conductor 4 if p = 2 and 4 ||n,
Q otherwise.

For any number field K and any n > 1, denote by K̃n the compositum
of K with all Qp,n as p runs over the prime divisors of n; note that this is
a finite extension of K.

Theorem 2. — Let n > 53, and let K be a number field. Then for all
but finitely many α ∈ K̃n, Φn(x, α) is K̃n-irreducible, and its Galois group
over K̃n is SL2(Z/n)/{±I}. If n is a prime then it suffices to take n > 23.

Remark 2. — Theorem 2 is close to optimal in the n-aspect; cf. Re-
mark 3. However, as in the discussion following Theorem 1, it would be
difficult to make Theorem 2 effective.

We will describe our strategy via Müller’s criterion in Section 2, after we
establish some notation. To apply this criterion to specializations of Φn,
in Section 3 we investigate the algebraic closure of Q in the function field
defined by Φn, and we study the genus of Riemann surfaces defined by
congruence subgroups. In Sections 4 and 5, we develop the technical tools

ANNALES DE L’INSTITUT FOURIER



SPECIALIZATIONS OF POLYNOMIALS 1131

needed for carrying out the strategy outlined in Section 2. In Section 6,
we implement this plan for the generalized Laguerre polynomial after first
establishing several geometric properties of the projective plane curve Ln

defined by L
(t)
n (x) = 0. Specifically, let ιn : Ln → P1

K be the branched cover
defined by the projection-to-t map. Then

(i) K is algebraically closed in the splitting field of L
(t)
n over K(t);

(ii) the (geometric) Galois group of ιn is Sn;

(iii) L
(t)
n (x), as a polynomial in x, has discriminant which is non-constant

in t;
(iv) Ln has no affine singular points, and
(v) ιn has several “simple” branch points of index close to n.

In (v), a simple branch point of index e is one whose fiber consists of a
number (possibly 0) of multiplicity one points together with a single rami-
fied point (of multiplicity e). The cover defined by the degree n generalized
Laguerre polynomial has one simple branch point of every index between 2
and n: we use the four of highest index, which suffices in our analysis for
all n > 6. As the calculations in Section 6 will show, the proof of Theorem 1
extends readily to other one-parameter families of polynomials satisfying
properties (i)–(v) (as long as their degree is large with respect to the pre-
cise form taken by condition (v)). On the other hand, given an arbitrary
λ(x, t) which is irreducible over K(t), in general we cannot expect all but
finitely many of its K-specializations to be K-irreducible, let alone having
the same Galois group as λ(x, t) over K(t) — the subvariety Xλ mentioned
just before the statement of Theorem 1 could, for example, have genus 6 1
giving, for a suitably large K, infinitely many specializations λ(x, α) with
a K-linear factor. In Section 7 we analyze this situation further in the
case of a degree n simple branched cover, i.e. where every fiber has at
least n− 1 distinct points. Our result here (Theorem 4) is that almost all
K-specializations of a simple cover π : Y → P1

K of degree n > 7 possess a
K-irreducible factor of degree at least n − 1; moreover, if Y has genus at
least 2, then almost all K-specializations are K-irreducible and have Galois
group Sn.

2. Rational specializations

We first establish some notation and hypotheses which will be main-
tained throughout. Let K be a field of characteristic 0, finitely generated
over Q. Fix an algebraic closure K of K. Denote by K0 the function

TOME 56 (2006), FASCICULE 4
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field K(t). Fix λ(x, t) ∈ K[x, t] so that λ has degree n > 0 in x and is irre-
ducible over K0. Then K1 := K0[x]/(λ(x, t)) is a degree n extension of K0.
Let K ′/K0 be a Galois closure of K1/K0, and write Gλ = Gal(K ′/K0).
By [31, p. 123], the Galois group of λ(x, α) over K is a subgroup of Gλ

for any α ∈ K, and by [31, Prop. 9.2], there are infinitely many β0 ∈ K

for which this Galois group is exactly Gλ.

From now on, suppose that
(i) K is algebraically closed in K ′/K0.

It is a classical fact that every intermediate subfield E of K ′/K0 is the
function field of a smooth projective curve XE over K, and if E ⊂ E′

are two such subfields, then there exists a K-morphism XE′ → XE of de-
gree [E′ : E]; for a precise statement over an arbitrary field K, see [33,
Remark II.2.5]. We write g(XE) for the genus of XE . By Galois theory,
intermediate fields E of K ′/K0 are in bĳective correspondence with sub-
groups E = Gal(K ′/E) of Gλ.

To simplify the exposition, we abbreviate the phrase

“all but finitely many α ∈ K” by α ∈af K.

Our approach relies on a classic argument for studying exceptional spe-
cializations of λ in terms of rational or integral points on certain curves
associated to λ; see, for example, [21, Ch. 9, §1] as well as §5 for more de-
tails. For our purposes, a particularly useful version of this argument can
be stated as follows.

Proposition 1. — Let K ′/K0 be as above, and consider a polynomial
f ∈ K[x, t] which is irreducible over K0 but splits completely into linear fac-
tors over K ′. Suppose for every intermediate subfield E of K ′/K0 such that
f is reducible over E, we have g(XE) > 1. Then f(x, α) is K-irreducible
for α ∈af K.

Proof. — As mentioned above, this is certainly well-known to experts;
for a convenient reference see Müller [25, Prop. 4.20]. An alternative method
of proof is also indicated in Remark 6 of Subsection 5.2. �

For any α ∈ K, the Galois group of λ(x, α) over K is a subgroup of Gλ,
and we are interested in finding conditions on α under which λ(x, α) is not
only K-irreducible, but also has Galois group coinciding with the full Gλ.
Here is our strategy: suppose the splitting field of some “test-polynomial”
f(x, t) ∈ K[x, t] is contained in K ′; then the splitting field of f(x, α) over K

is contained in that of λ(x, α). So if f(x, α) is K-irreducible, then the de-
gree of the splitting field of λ(x, α) over K would be divisible by the degree
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SPECIALIZATIONS OF POLYNOMIALS 1133

of f(x, α). By running through an appropriate collection of f (e.g. the poly-
nomials Λj introduced in 5), we can then hope to show that #Gλ divides
the degree of the splitting field of λ(x, α) over K, whence the Galois group
of λ(x, α) over K must be Gλ. To study the irreducibility of the specializa-
tions f(x, α) we use Proposition 1, which reduces the problem to estimating
the genus of XE as we run through intermediate subfields E of K ′/K0.

3. Modular equations

By [22, p. 55], the modular polynomial Φn(x, j) ∈ Z[x, j] is irreducible
over C(j). We now apply the strategy developed in the last section to study
specializations of Φn. Denote by Ln the splitting field of Φn over Q(t).
Recall the definition of Qp,n and K̃n immediately preceding the statement
of Theorem 2.

Lemma 1. — The algebraic closure of Q in Ln/Q(t) is Q̃n.

Proof. — As a coarse moduli scheme, the open modular curve Y0(n)
classifies isomorphism classes (E → E′) of pairs of elliptic curves related
via a cyclic n-isogeny. Over the complex numbers, the map (E → E′) →
(j(E), j(E′)), where j(E) denotes the j-invariant of E, is generically injec-
tive. Thus the complex points of Y0(n) are canonically identified with the
complex points of the affine plane curve defined by Φn(x, j) = 0. Under
this identification, the projection-to-j map from this complex plane curve
corresponds precisely to the branched cover π0(n) : Y0(n) → Y0(1) coming
from the inclusion Γ0(n) ⊂ SL2(Z). The smallest regular branched cover
containing π0(n) is then the cover π(n) : Y (n) → Y (1) = Y0(1) correspond-
ing to the inclusion Γ(n) ⊂ SL2(Z). In particular, the deck transformation
group of π(n) is(1)

PSL2(Z)/(Γ(n)/± I) ' PSL2(Z/n).

It follows that the geometric Galois group of Φn is PSL2(Z/n). But Macbeath
[24] showed that Gal(Ln/Q(t)) ' PGL2(Z/n), so the algebraic closure of Q
in Ln/Q(t) is the compositum of Q(t) with a Galois extension L(n)/Q with

(1) Given a ring R, we write PSL2(R) for SL2(R)/{±I}, and PGL2(R) for
GL2(R)/{diagonals}.

TOME 56 (2006), FASCICULE 4
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Galois group

PGL2(Z/n)/ PSL2(Z/n) '
∏
p|n

PGL2(Z/pep)/ PSL2(Z/pep) where pep ||n

'
∏
p|n
p>2

(Z/2)×


Z/2× Z/2 if 8|n
Z/2 if 4 ||n
{1} otherwise

 .(3.1)

If m | n then Lm ⊂ Ln, hence L(m) ⊂ L(n), so to prove the lemma we are
reduced to showing that for any prime power pe > 1,

(3.2) L(pe) = Qp,pe .

For any α ∈ Q and any n > 1, the splitting field of Φn(x, α) over Q
also contains L(n). Take α ∈ Q to be one of the thirteen j-invariants
over Q corresponding to CM elliptic curves over Q, say α = j(τ). Denote
by kα/Q the corresponding complex quadratic field. By the ‘First Main
Theorem’ of complex multiplication [4, Thm. 11.1], kα(j(nτ)) is the ring
class field of kα of conductor n, hence L(n) ⊂ kα(j(nτ)). In particular,
L(n)/Q is unramified outside of the prime divisors of n and of the dis-
criminant of kα/Q. If j(τ ′) = α′ ∈ Q is another CM j-invariant over Q,
then L(n) ⊂ kα(j(nτ))∩kα′(j(nτ ′)). We may choose α′ so that kα and kα′

have coprime discriminants, whereby L(pe)/Q is unramified outside p. On
the other hand, (3.1) says that L(pe)/Q is quadratic if p > 2 or pe = 4,
and that it is biquadratic if 8 | pe. Recalling the definition of Qp,n, we
get (3.2) except when pe = 4. To treat this remaining case we actually
need to determine these ring class fields.

Set ω = 1
2 (1 +

√
−7), and take α = j(ω) ∈ Q, so kα = Q(ω). The

conductor of the extension kα(
√
−1)/kα clearly divides 4Z[ω]. On the other

hand, by [4, Thm. 7.24] the ring class field of kα of conductor 4Z[ω] is a
quadratic extension of kα, so this ring class field is precisely kα(

√
−1).

Recalling (3.1), we see that L(4)/Q is a quadratic extension in Q(ω,
√
−1)

unramified outside 2, and (3.2) follows for pe = 4. �

Rademacher conjectured that there are only finitely many congruence
subgroups with corresponding modular curve of genus zero (cf. [20]). Den-
nin [7] proved the stronger result that for any integer g, there are at most
finitely many n for which PSL2(Z/n) contains a subgroup of genus 6 g.
Cummins and Pauli [5] recently tabulated all such subgroups for g 6 24,
from which we deduce the following result.

ANNALES DE L’INSTITUT FOURIER



SPECIALIZATIONS OF POLYNOMIALS 1135

Lemma 2 (Cummins-Pauli). — If n > 53, then every proper subgroup
of PSL2(Z/n) has genus > 2. If n is a prime, the same conclusion holds
for n > 23. �

Proof of Theorem 2. — Thanks to Lemma 1, the discussion in Section 2
is applicable to Φn over K̃n for any number field K.

Let πn be a primitive element for the extension K̃nLn(t)/K̃n(t), and
let fn(x, t) be the minimal polynomial of πn over K̃n(t). Then fn is irre-
ducible over K̃n(t), by construction. So if n is as in Lemma 2, then Proposi-
tion 1 and this lemma together imply that for α ∈af K̃n, the specializations
of fn and of Φn at t = α are both K̃n-irreducible. If we write Fn(α) for
the splitting field of Φn(x, α) over K̃n, then that means [Fn(α) : K̃n] is
divisible by deg fn = [K̃nLn(t) : K̃n(t)] = # PSL2(Z/n), and Theorem 2
follows. �

Remark 3. — The fact that every non-trivial intermediate subfield of
K̃nLn(t)/K̃n(t) has genus > 2 for n > 53 significantly simplifies our search
for the ‘test polynomial’ f in Proposition 1. The modular curve X0(n) has
genus 6 1 for n 6 21 and for n ∈ {24, 25, 27, 32, 36, 49}, so by the discussion
immediately preceding Theorem 1, for these n the modular equation has
infinitely many reducible specializations over suitable K. To analyze the
remaining values of n 6 52 we could search for test polynomials f which
remain irreducible over intermediate subfields of genus 6 1. We will not
pursue this issue here, but in Section 5 we will study the same problem
for specializations of Sn-extensions by using a family of [ 12 (n − 1)] test
polynomials Λj(x, t).

4. A Riemann-Hurwitz estimate

We now return to the general setup in Section 2. To apply Proposition 1,
we need to be able to estimate the genus of certain intermediate subfields of
K ′/K0. To do that we will apply the Riemann-Hurwitz formula to the cover
ξE : XE → P1

K corresponding to the field inclusion K0 ⊂ E. Since we do not
have any explicit model for XE , we will take an algebraic approach. Thanks
to hypothesis (i) in Section 2, in order to determine the ramification of the
geometric cover X ′ → P1

K it suffices to determine the algebraic ramification
behavior of integral extensions of Dedekind domains corresponding to this
geometric cover.

Denote by Bλ ⊂ P1
K the branch locus of the projection-to-t map for λ.

Then ξE is unramified outside Bλ. Fix affine open sets on XE and X ′ which

TOME 56 (2006), FASCICULE 4
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contain every fiber of ξE and X ′ → P1
K above Bλ, and denote by OE and O′

their respective affine coordinate rings. Write O0 for the affine coordinate
ring of the affine line in P1

K . Let mν (or just m if ν is fixed) be the maximal
ideal in O0 corresponding to a given ν ∈ Bλ. We let eν = e(M/m) be the
ramification index of M in the Galois cover K ′/K0, where M is an arbitrary
prime of O′ dividing mO′.

Definition 1. — (a) For a positive integer δ and a branch point ν ∈ Bλ

corresponding to an ideal m of O0, let

cδ(ν) = cδ(m) =
∑

n |mOE

e(n/m)=δ

f(n/m),

be the sum of the residual degrees of distinct OE-primes n of ramification
index δ over m.

(b) For ν ∈ Bλ corresponding to an ideal m of O0, let

∆(ν) = ∆(m) =
∑

n|mOE

(
e(n/m)− 1

)
f(n/m)

be the ν-component of the discriminant of E/K0.
(c) For an integer e > 1, let d(e) be the least prime divisor of e.

Lemma 3. — With the notation and hypotheses as in Section 2, if E is
an intermediate field of K ′/K0 corresponding to a subgroup

E = Gal(K ′/E)

of Gλ = Gal(K ′/K0), and V is any subset of Bλ, then

(4.1) g(XE) > 1+
[G : E ]

2

(
−2+

∑
ν∈V

(
1− 1

d(eν)

))
−1

2

∑
ν∈V

c1(ν)
(
1− 1

d(eν)

)
.

Proof. — First, note that

(4.2)
∑

16δ|eν

cδ(ν)δ = [E : K0] = [Gλ : E ].
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For each ν ∈ Bλ, we have from Definition 1,

∆(ν) =
∑

16δ|eν

cδ(ν)(δ − 1) =
∑

1<δ|eν

cδ(ν)
(
1− 1

δ

)
δ

>
(
1− 1

d(eν)

) ∑
1<δ|eν

cδ(ν)δ

>
(
1− 1

d(eν)

) ∑
16δ|eν

cδ(ν)δ −
(
1− 1

d(eν)

)
c1(ν)

> [Gλ : E ]
(
1− 1

d(eν)

)
− c1(ν)

(
1− 1

d(eν)

)
by (4.2).(4.3)

By Riemann-Hurwitz for E/K0, [26, Theorem 7.16], we have

g(XE)− 1 = [E : K0](0− 1) +
1
2

∑
ν∈Bλ

∆(ν).

Since ∆(ν) > 0, we have, for any subset V ⊆ Bλ,

g(XE) > 1− [Gλ : E ] +
1
2

∑
ν∈V

∆(ν)

> 1 +
[Gλ : E ]

2

(
−2 +

∑
ν∈V

(
1− 1

d(eν)

))
− 1

2

∑
ν∈V

c1(ν)
(
1− 1

d(eν)

)
by (4.3). �

Remark 4. — Note that the bound (4.1) is useful only when c1(ν) is
fairly small for all ν ∈ V , so in using (4.1), it is often useful to take V to be
a proper subset of Bλ. Moreover, the inequality (4.1) is in fact strict if V

is a proper subset of Bλ since ∆(ν) > 0 for ν ∈ V .

In view of Proposition 1, our task will be to show that the right hand
side of (4.1) is > 1 when a given f(x, t) ∈ K[x, t] is reducible over E. For
our application to generalized Laguerre polynomials, we will achieve this
by taking V to be an appropriately small subset of Bλ.

We now turn to the task of bounding c1 = c1(ν) from above, where,
for the remainder of this section, ν ∈ Bλ is a fixed branch point, with
corresponding ideal m = mν of O0. Fix also a prime M ⊂ O′ lying over m,
with corresponding decomposition group D = {σ ∈ G : Mσ = M}, and
inertia group I = I(M/m). Let T be a subset of G = Gλ = Gal(K ′/K0)
such that

(4.4) G =
∐
τ∈T

EτD
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is the decomposition of G into disjoint double cosets, where E = Gal(K ′/E)
is the subgroup fixing E.

As is clear from Lemma 3, it will be important to keep track of the
primes n of OE dividing m and especially their ramification indices e(n/m).
That these can be described nicely in terms of the double coset decompo-
sition (4.4) is a useful fact (we learned from Tate) for which we were not
able to find a suitable reference, so we give the details. For each σ ∈ G,
let nσ be the prime Mσ ∩ OE of OE lying under Mσ. Let Iσ ⊆ Dσ be
the inertia and decomposition groups of Mσ/m, respectively. They satisfy
Dσ = σDσ−1 and Iσ = σIσ−1. In the extension K ′/E, the inertia and de-
composition groups for Mσ/nσ are simply Iσ ∩ E and Dσ ∩ E , respectively.
For the ramification indices of M/m,M/nσ, and nσ/m, let us put

e = e(M/m), e′σ = e(M/nσ), eσ = e(nσ/m),

and similarly for the residual degrees, we put

f = f(M/m), f ′σ = f(M/nσ), fσ = f(nσ/m).

By multiplicativity in towers for these invariants, we have

(4.5) eσe′σ = e, fσf ′σ = f.

Lemma 4. — With the notation introduced above,
(a) The distinct primes of OE dividing m are those induced by Mτ for

τ ∈ T . In other words, we have nσ = nσ′ if and only if EσD = Eσ′D.
(b) For σ ∈ G, we have

eσfσ = [σDσ−1 : E ∩ σDσ−1], eσ = [σIσ−1 : E ∩ σIσ−1].

Proof. — Let w be the valuation of O′ corresponding to M. For α ∈ O′,
we have |α|σw = |σ−1α|w. If EσD = Eσ′D, we can write σ′ = hσg, with h ∈
E , g ∈ D. For α ∈ OE , we compute

|α|σ′w = |α|hσgw = |α|hσw = |h−1α|σw = |α|σw.

Thus, σw and σ′w induce the same valuation on OE , i.e. nσ = nσ′ . Con-
versely, suppose nσ = nσ′ , i.e. the set of primes of O′ lying over nσ in-
cludes Mσ′

as well as Mσ. Since E = Gal(K ′/E) acts transitively on this
set, there exists h ∈ E such that Mhσ′

= Mσ, i.e. σ−1hσ′ ∈ D. There-
fore, EσD = Eσ′D. This proves (a). We have ef = #Iσf = #Dσ and
e′σf ′σ = #(Iσ ∩ E)f ′σ = #(Dσ ∩ E), so we get (b) by multiplicativity in
towers (4.5). �
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Define
Y =

{
σ ∈ G : σIσ−1 ⊂ E

}
.

For the application to Riemann-Hurwitz, we’ll need to estimate c1. We
proceed as follows.

Lemma 5. — If a ∈ Y , then {b ∈ Y : EaI = EbI} = Ea. We have
c1 = #Y/#E .

Proof. — We first make a remark that simplifies the calculation. Note
that if we compose our fields K0 ⊂ E ⊂ K ′ with a finite extension K̃ of
the constant field K that splits M, then cδ(m) remains unchanged, since
each prime nσ of E of residual degree fσ splits in EK̃ into fσ primes of
residual degree 1 with the same inertia group Iσ ∩ E . In fact, the genus
calculation we are performing is a purely geometric one, so we could have
simply assumed from the outset that the constant field K is algebraically
closed.

Either way, we take M/m as above and assume without loss of generality,
that f(M/m) = 1, i.e. I = D. By Lemma 4, for any σ ∈ G, e(nσ/m) = 1 if
and only if σIσ−1 ⊂ E . Thus

(4.6) c1 = #
{
EσI : σIσ−1 ⊂ E

}
.

Note that EaI = EbI if and only if b ∈ EaI. Suppose b ∈ Y and b ∈ EaI.
Then ba−1 ∈ EaIa−1 ⊂ E , hence b ∈ Ea. Conversely, suppose b = ha with
h ∈ E . Then

bIb−1 = haIa−1h−1 ⊂ hEh−1 = E

so b ∈ Y . Finally, clearly Ea ⊂ EaI so b ∈ Ea implies b ∈ EaI. Therefore, Y

is a union of (right) cosets of E , and the number of distinct double cosets EaI

with a ∈ Y is exactly #Y/#E . This completes the proof by (4.6). �

Since we are working with function fields of characteristic 0, all ramifi-
cation is tame, so the inertia group I is cyclic. We now specialize to the
case where G = Sn, and I is generated by a cycle (under its natural action
on the roots of λ). Of course, if #I is greater than 1

2n, the latter condition
holds automatically.

Lemma 6. — If Gal(K ′/K0) = Sn and I is generated by an m-cycle,
then

c1 =
(number of m-cycles in E)

#E
×m(n−m)!(4.7)

< m(n−m)!(4.8)
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Proof. — Just as in the proof of the preceding lemma, we may assume
that I = D. Let J = {sIs−1 ⊂ E : s ∈ G} be the set of subgroups of E
which are G-conjugate to I. Then

#Y =
∑
I′∈J

#
{
s ∈ G : sI ′s−1 = I ′

}
.(4.9)

Any two m-cycles in Sn are Sn-conjugate, so

#J = number of cyclic subgroups of E(4.10)

generated by an m-cycle

= (number of m-cycles in E)/ϕ(m).(4.11)

There are n!/(m(n −m)!) m-cycles in Sn, so for any Sn-conjugate I ′ ⊂ E
of I,

#{s ∈ Sn : sI ′s−1 = I ′} =
n!

# orbitSn(I ′)

=
n!

n!
m(n−m)!/ϕ(m)

= mϕ(m)(n−m)!(4.12)

The proof is complete once we combine (4.9)–(4.12) with Lemma 5. �

We end this section with an elementary criterion which guarantees the
hypothesis of Lemma 6 (on inertia being generated by a cycle) to hold; the
criterion will be easily verified for the generalized Laguerre polynomial at
all its branch points.

Recall that K1/K0 is a root field for λ, i.e. K1 ' K0[x]/(λ).

Definition 2. — Let ν ∈ Bλ be a branch point of λ, with corresponding
maximal ideal m ⊂ O0. Let e > 1 be an integer. We say that ν (or m) is
simple of index e for λ if

(4.13) mOK1 = ne
0n1 · · · ns,

where n0, . . . , ns are pairwise distinct primes of OK1 ; in other words, in
OK1 , there is a unique prime dividing mOK1 with non-trivial ramification
index (equal to e).

Lemma 7. — Suppose G = Gal(K ′/K0) = Sn. Let m ⊂ O0 be a max-
imal ideal corresponding to a branch point ν ∈ Bλ, which is simple of
index e > 1. Then, for any M ⊂ O′ lying above m, the inertia group
I = I(M/m) has order e and is generated by a cycle of length e.
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Proof. — Let E = Gal(K ′/K1). The index n subgroups in Sn are stabi-
lizers of any one of the n letters. By reordering the roots if needed, we can
identify E ' Sn−1 with the stabilizer of the letter n. Every element in Sn is
a product of disjoint, non-trivial cycles. This decomposition is unique once
a labelling is fixed, and two elements in Sn are conjugate if and only if they
decompose into the same number of cycles of each length.

Returning to the proof of the lemma, suppose M is a prime of O′ whose
restriction M ∩ OK1 is the unique prime n of OK1 of ramification index
e > 1 over m. Let I = I(M/m). We may assume, as in the preceding
lemmas, that composing with a suitable finite extension of K, M/m has
degree 1, i.e. I = D (this disturbs neither the identification G ' Sn nor
the embedding I ↪→ G).

Let γ be a generator of the cyclic group I. Write γ = γ1 · · · γr for its
decomposition into disjoint, possibly trivial, cycles. Since the γi pairwise
commute, we may assume that the letter n occurs in the cycle γ1. For
1 6 i 6 r, let ai = ord(γi) > 1, and let a = min{m > 1 : γm ∈ E}.
On the one hand, γa generates I ∩ E , and, on the other hand, we have
a = a1 (recalling our convention that E is the stabilizer of the letter n).
By Lemma 4, e(n/m) = #[I/(I ∩ E)] = #[〈γ〉/〈γa〉] = a, thus γ1 has order
a = a1 = e > 1, since we took n to be the unique prime of ramification
index e > 1 over m.

It remains to show that the cycles γ2, . . . , γr are trivial, i.e. ai = 1
for i > 1. We proceed by contradiction. If a2 > 1, say, then, there ex-
ists σ ∈ G such that σγ2σ

−1 is a cycle acting non-trivially on the letter n.
Then, as before, e(nσ/m) = a2 > 1, so we get a2 = e and nσ = n by the
assumption on the simplicity of the ramification. By Lemma 4, therefore,
σ ∈ EI, say σ = ηθ with η ∈ E and θ ∈ I. Letting x′ = σxσ−1 for x ∈ G,
we have γ′ = γ′1γ

′
2 · · · γ′r is the decomposition of γ′ into disjoint cycles since

conjugation preserves cycle structure. But we claim that γ′1 and γ′2 are not
disjoint, as they both act non-trivially on the letter n. To see this, note
that θ = γb for some integer b, so θγiθ

−1 = γi for i = 1, . . . , r. On the
other hand, since η ∈ E , it fixes n, so γ′1 = ηγ1η

−1 and γ′2 = ηγ2η
−1 are

both e-cycles that act non-trivially on n, hence are not disjoint. This con-
tradiction shows that γ2, . . . , γr are all trivial, so I = 〈γ1〉 is generated by
an e-cycle, hence has order e. �

TOME 56 (2006), FASCICULE 4



1142 Farshid HAJIR & Siman WONG

5. Specializations of Sn-covers

In this section, we develop a strategy for applying Proposition 1 to a
geometric Sn-cover. Namely, starting with an Sn-extension of function fields
K ′/K0 as in Section 2, in Subsection 5.1 we construct a family of polyno-
mials Λj(x, t) ∈ K[x, t] with splitting field contained in K ′ (to which we will
later apply Proposition 1). In 5.2, we will give a geometric interpretation in
terms of fiber products for the curves corresponding to these Λj : their K-
rational points correspond precisely to the K-rational degree j factors of λ.
We will use this interpretation in the proof of Theorem 1 for controlling
the genus of subfields of K ′ cut out by a subgroup contained in An, and
also for the study of simple branched covers in the final section. A reader
who is interested in a proof of Theorem 1 for n > 10 only, can skip 5.2
entirely, as it will enter the proof only for 6 6 n 6 9.

5.1. Distinguished subfields in Sn-extensions

Let λ(x, t) and K ′/K0 be as in Section 2; in particular, recall the regu-
larity hypothesis (i) introduced there. Suppose further that

(ii) Gλ ' Sn, and
(iii) λ, as a polynomial in x, has discriminant which is non-constant in t.
These two conditions actually recover the regularity of the cover, at least

when n is not too small.

Lemma 8. — Suppose n > 5. Then
(a) K is algebraically closed in K ′/K0, and
(b) K ′/K0 has a unique Galois subfield. This subfield is quadratic over K0.

Proof. — Fix an algebraic closure K of K. Then K ∩ K ′ is a Galois
subfield of the Sn-extension K ′/K0. Since n > 5, the only non-trivial Ga-
lois subfield in K ′/K0 is the unique quadratic subfield generated by the
square-root of the discriminant (with respect to x) of λ(x, t). Invoke the
discriminant condition on λ and we are done. �

The following result is standard.

Lemma 9. — Let X/K be a smooth projective curve, and let ξ : X →
P1

K be a non-constant K-morphism. Then X is K-birational to a plane
curve G(x, t) = 0 such that ξ is the projection-to-t map. �
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We now describe a distinguished collection of subfields in K ′/K0. Fix
a labelling of the roots of λ(x, t) over K0, giving an identification of Gλ

with the symmetric group Sn. For 1 6 j < n, write Sn,j for the sub-
group Sj × Sn−j ⊂ Sn, where Sj permutes the first j roots, and Sn−j , the
remaining n− j roots. Denote by

• Kj the subfield of K ′/K0 fixed by Sn,j ,
• Xj the associated smooth projective curve over K, and
• φ̃n,j : Xj → P1

K the K-branched cover corresponding to the exten-
sion Kj/K0.

Lemma 9 furnishes a K-birational map taking Xj to a plane curve
Λj(x, t) = 0 which is smooth above t = β0, and such that φ̃n,j is the
projection-to-t map. Clearly we can take Λ1 = λ and do so. Since Xj is
smooth, it is absolutely irreducible, hence so is Λj(x, t). Thus we can apply
Proposition 1 to Λj .

Lemma 10. — Fix positive integers n, j satisfying n > 5 and j ∈ [1, 1
2n].

Suppose for every intermediate subfield E of K ′/K0 over which Λj(x, t) is
reducible, we have g(XE) > 1. Then for α ∈af K, the specialization λ(x, α)
is K-irreducible, and its splitting field has degree divisible by

(
n
j

)
.

Proof. — As deg φ̃n,j = [Kj : K0] = #Sn/#Sn,j =
(

n
j

)
> n, and n > 5,

Lemma 8 (b) says that K ′/K0 is the Galois closure of Kj ; equivalently,
K ′/K0 is the splitting field of Λj(x, t) over K0. But K ′ is the splitting field
of λ(x, t) = Λ1(x, t) over K0, so by Proposition 1, for α ∈af K the splitting
field of λ(x, α) contains the roots of Λj(x, α), and we are done. �

For the proof of Theorem 1, we will employ the following application of
Proposition 1.

Theorem 3. — Suppose n > 7 and Λj(x, t) satisfies the hypothesis in
Lemma 10 for each integer j ∈ [1, 1

2n]. Then for α ∈af K, the specialization
λ(x, α) is K-irreducible and has Galois group containing An.

Proof. — First, recall that Λ1 = λ. By Lemma 10, λ(x, α) is K-irreducible
for α ∈af K, hence its Galois group is a transitive subgroup of Sn. If n > 8,
then there exists a prime q with 1

2n < q < n− 2 [27, p. 370]. Necessarily q

divides
(

n
k

)
for some 1 < k < 1

2n, so by Lemma 10, for α ∈af K the spe-
cialization λ(x, α) is K-irreducible, and q divides the degree of its splitting
field over K. That means the Galois group of such a λ(x, α) is a transi-
tive subgroup of Sn and has order divisible by q; a theorem of Jordan [18,
Thm. 5.6.2 and 5.7.2] then implies that this Galois group contains An.
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For n = 7, Lemma 10 implies that for α ∈af K, the Galois group of
λ(x, α) is a transitive subgroup of S7 of size divisible by LCM

((
7
2

)
,
(

7
3

))
=

105. By the classification of transitive subgroups of S7 [8, p. 60] it follows
that this Galois groups contains A7. �

Remark 5. — After we completed the manuscript, Edixhoven informed
us that by [19, Thm. XII.4.3] and the classification of finite simple groups
(which verifies the Schreier hypothesis, cf. [8, App. A]), any k-fold transitive
group of Sn for k > 6 is either An or Sn. It follows that in Theorem 3 it
suffices to take 1 6 j 6 7. However, this improved range for j does not
simplify our subsequent genus calculation, so we will stick to Theorem 3 in
its present form.

5.2. Interpretation in terms of fiber products

We continue with the notation of the previous subsection and assume
properties (i)–(iii) are satisfied. Fix a labelling λ1, . . . , λn of the roots of
λ = Λ1 in K ′, and let Σ = Σ1 = {λ1, . . . , λn}. For an integer j ∈ [1, n− 1],
let Σj be the set of roots of Λj in K ′, and let Σ(j) be the set of “j-subsets”
of Σ (i.e. those of cardinality j). Recall that Λj splits into linear factors
over K ′, hence #Σj = #Σ(j) =

(
n
j

)
. Each of these sets carries a natural

action of Gal(K ′/K0) ' Sn.

Lemma 11. — For each j ∈ [1, n−1], there is a bĳective correspondence
between Σj and Σ(j) which respects the natural action of Gal(K ′/K0) on
these sets.

Before proving Lemma 11, let us state two applications of it that we shall
need.

Proposition 2. — For α ∈ K, the K-rational roots of Λj(x, α) are in
one-to-one correspondence with the K-rational degree j factors of λ(x, α).

Proof. — The K-rational linear factors of Λj(x, α) are in one-to-one cor-
respondence with the fixed points of Gλ in its action on Σ(j). By the lemma,
these are in one-to-one correspondence with the Gλ-invariant subsets of Σ
of size j. The roots of a K-rational degree j factor of λ(x, α) clearly form
such a subset, and conversely, a Gλ-invariant T ∈ Σj gives the K-rational
degree j factor

∏
θ∈T (x− θ) of λ. �
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Remark 6. — Proposition 2 lends some perspective on Proposition 1.
Namely, λ has a degree j E-rational factor, for some j in the range 1 6
j 6 n − 1 and some intermediate field K0 ⊆ E ⊆ K ′, if and only if Λj

has a root in E, i.e. if and only if E contains (a conjugate of) Kj . Thus
the hypothesis of Proposition 1, namely that g(XE) > 2 for every E over
which λ is reducible is equivalent to the hypothesis that g(Xj) > 2 for
1 6 j 6 n − 1. One then obtains Proposition 1 by applying Proposition 2
in conjunction with Faltings’ Theorem.

Proposition 3. — Suppose 1 6 j 6 n− 1. Then Λj(x, t) is irreducible
over the subfield of K ′/K0 fixed by An.

Proof. — Since the group An is (n − 2)-transitive, if 2 6 j 6 n − 2
then An, as a subgroup of the group of permutations on the set Σ, acts
transitively on the set Σ(j). Thanks to Lemma 11, An, as a subgroup of
Gal(K ′/K0), then acts transitively on the set of roots of Λj in K ′, estab-
lishing the proposition for this range of j.

Write F for the fixed field of K ′/K0 by An. If Λ1 is reducible over F , then
Gal(K ′/F ) is contained in S` × Sn−` for some 1 6 ` 6 n− 1. Since F/K0

is quadratic, #Gal(K ′/K0) 6 2 · #S` · #Sn−` < #Sn, a contradiction.
Thus Λ1 is irreducible over F . Thanks to Lemma 11, that means An, as a
subgroup of the group of permutations of Σ, acts transitively on Σ(1), hence
also on Σ(n−1). Applying Lemma 11 again, we see that Λn−1 is irreducible
over F , as desired. �

We now verify Lemma 11 via a fiber product construction. The lemma
and the construction are probably well-known, but we cannot locate a
reference for either one so we give the details here. We begin with a general
setup. Recall that K is a field of characteristic 0.

Let ℘n
K denote the set of equivalence classes of non-zero, degree 6 n

polynomials in K[x], where two polynomials are identified if they are K×-
multiples of each other. We have a natural bĳection between ℘n

K and the
set of K-rational points Pn

K(K) of projective n-space, via

a0x
n + a1x

n−1 + · · ·+ an 7−→ [a0 : · · · : an].

In light of this, to give a polynomial λ(x, t) ∈ K[x, t] which is non-constant
and of degree 6 n in x is to give a non-constant K-morphism Λ : P1

K → Pn
K .

Also, for every 1 6 j < n the multiplication map ℘j
K × ℘n−j

K → ℘n
K gives
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rise to a K-morphism φn,j : Pj
K ×Pn−j

K → Pn
K , whence a pull-back diagram

(5.1)

X◦
j

Λ(j)−−−−−−−−→ Pj
K × Pn−j

K

φ̃◦
n,j

y y φn,j

P1
K

Λ−−−−−−−−−−→ Pn
K .

Denote by φn : (P1
K)n → Pn

K the K-morphism corresponding to the n-fold
multiplication map (℘1

K)n → ℘n
K . Then we have an analogous pull-back

diagram

(5.2)

X
Λ−−−−−−−−→ (P1

K)n

φn

y y φn

P1
K

Λ−−−−−−−−→ Pn
K .

Any permutation of the n-coordinates of the points of (P1
K)n is a K-

morphism which is compatible with φn. Clearly deg φn = n!, so φn is a
regular branched cover with deck transformation group Sn.

Suppose Λ corresponds to a separable, degree n polynomial λ over K0 =
K(t). Then the fiber of φn over the generic point of P1

K consists of n!
pairwise distinct, ordered n-tuples of the roots of λ over K0. Every element
of the Galois group Gλ of λ over K0 permutes these n-tuples, and such a
permutation gives rise to a permutation on (P1

K)n making diagram (5.2)
commute. Having fixed a labelling of the roots of λ, we see that Gλ is
canonically identified with a subgroup of Sn. Since λ is separable over K0,
these n! n-tuples are pairwise distinct, whence the scheme X is reduced.
Also,

X is K-reducible ⇐⇒ the generic fiber of φn is the disjoint union

of non-trivial, Gλ-stable subsets

⇐⇒ Gλ does not act transitively on this fiber

⇐⇒ Gλ ( Sn.(5.3)

The multiplication map (℘1
K)n → ℘n

K naturally factors through every
℘j

K × ℘n−j
K . That means φn factors through φn,j for every j; therefore

the diagram (5.2) factors through the diagram (5.1) for every j, and Φn,j is
also a regular branched cover with deck transformation group isomorphic
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to Sj × Sn−j :

X

Φ̃n,j

��
φn

##

Λ // (P1
K)n

Φn,j

��
φn

zz

X◦
j

φ̃◦
n,j

��

Λ(j) // Pj
K × Pn−j

K

φn,j

��
P1

K
Λ // Pn

K

Finally, suppose λ satisfies hypotheses (i)–(iii). Then Gλ = Sn, whence
the deck transformation group of φn is also Sn. By (5.3), the scheme X is
reduced and K-irreducible, and so it makes sense to speak of the func-
tion field K(X ). Both Φ̃n,j and φ̃n,j are surjective, so X◦

j is also K-
irreducible, and so it makes sense to speak of the function field K(X◦

j )
as well, and K(X )/K(P1

K) is an Sn-extension of function fields. We have
deg Φ̃n,j = j!(n−j)!, and the same argument after (5.2) shows that the deck
transformation group of Φ̃n,j is isomorphic to a subgroup of, and hence is
exactly, Sj × Sn−j .

Proof of Lemma 11. — First, recall the notations Xj ,Kj etc. intro-
duced after Lemma 9, and the fact that X1 is given by λ = 0. For any
t0 ∈ P1

K
, the K -rational points on the fibers of φ̃◦n,1 are in bĳective corre-

spondence with the K -linear factors of λ(x, t0), while those on the fibers
of φ̃n,1 are in bĳective correspondence with the K -rational points of the
curve λ(x, t) = 0 with t-coordinates t0. These two sets are in natural bĳec-
tive correspondence with each other; the universal property of the pullback
diagram (5.1) then implies that there is a K-isomorphism µn : X1 → X◦

1

such that φ̃n,1 = µnφ̃◦n,1. This allows us to identify the two Sn-extensions
K(X )/K0 and K ′/K0. The Sj × Sn−j subgroups in Sn are pairwise con-
jugate, so we can identify the intermediate subfields K(X◦

j ) with K(Xj).
That means the smooth curve Xj is the canonical desingularization of X◦

j ,
and φ̃n,j is the extension of φ̃◦n,j to Xj , whence the Gal(K ′/K0) ' Sn action
on the roots of Λj over K0 is the same as that on the generic fiber of φ̃◦n,j .
But the points on this generic fiber are precisely the j-subsets of Σ. �
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6. Generalized Laguerre polynomials

In this section we apply the machinery developed above to study special-
izations of generalized Laguerre polynomials L

(t)
n (x) defined in the intro-

duction. In Subsection 6.1, we study the singular locus of the plane curve Ln

defined by L
(t)
n (x) = 0. By analyzing the structure of maximal subgroups

of Sn, in Subsection 6.2 we compute the genus of the intermediate sub-
fields of K ′/K0 over which Λj is reducible. In Subsection 6.3 we combine
these ingredients to deduce Theorem 1 following the strategy outlined in
Sections 2 and 5.

From now on, we fix n and take λ(x, t) = L
(t)
n (x), carrying over all the

notation (K0, K1, K ′, O0, Gλ, Bλ, etc.) from Sections 2, 4, 5 to the present
setting.

6.1. The singular locus of L
(t)
n (x)

Fix n > 2. Following Schur [29, p. 54], we homogenize L
(t)
n (x) by setting

Fn(x, r, s) := (−1)nn! snL(r/s)
n (x/s)

= xn − kn

1
xn−1 +

kn−1kn

1 · · · 2
xn−2 − · · ·+ (−1)n k1 · · · kn

1 · 2 · · ·n
,(6.1)

where kj = j(r+js). Let Ln be the plane curve Fn(x, r, s) = 0. To simplify
the notation, we write ∂xFj for ∂Fj/∂x. Then we have the relations [29,
p. 54]

x∂xFm = mFm + kmFm−1, (m > 1, F0 := 1);(6.2)

Fm = (x− r − (2m− 1)s)Fm−1 − skm−1Fm−2, (m > 2).(6.3)

Setting s = 0, (6.1) becomes

xn − nxn−1r +
n(n− 1)

2
xn−2r2 − · · ·+ (−1)nrn = (x− r)n.

Thus Ln has exactly one point along the line at infinity, namely [1 : 1 : 0].
Let ιn : Ln → P1

K be the projection map defined by [x : r : s] 7→ [r : s].

Lemma 12. — Suppose for some integer j ∈ [0, n] and some point z =
[x(z) : r(z) : s(z)] ∈ P2

C with x(z)s(z) 6= 0, we have

(6.4) Fn−j |z = ∂xFn−j |z = 0 and kn−j 6= 0.

Then Fn−j−1|z = 0 and kn−j−1 6= 0. Moreover, if j 6 n− 2, then
∂xFn−j−1|z = 0.
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Proof. — Since s(z) 6= 0, without loss of generality we can set s(z) = 1.
Suppose n > j + 1; when we substitute into (6.2) the first two relations

in (6.4), we get 0 = kn−jFn−j−1|z, whence

(6.5) Fn−j−1|z = 0.

Next, suppose kn−j−1 = 0. When we use the expansion (6.1) to evalu-
ate (6.5), we see that x(z) = 0, a contradiction. Finally, suppose n > j +2.
Substituting (6.5) along with the first relation in (6.4) into (6.3), we get

0 = −s(z)kn−j−1Fn−j−2|z.

Substitute this and (6.5) back into (6.2) and we get x∂xFn−j−1|z = 0.
As x(z) 6= 0, that means ∂xFn−j−1|z = 0. This completes the proof of
the lemma. �

Lemma 13. — For n > 3 the curve Ln has no finite singular point.

Proof. — Using the relations (6.2) and (6.3), Schur [29, p. 54] showed
that Fn, viewed as a polynomial in x, has discriminant

(6.6) sn(n−1)/2n! k2k
2
3 · · · kn−1

n .

We are interested in the finite points on Ln, so for the rest of the proof we
can set s = 1. Clearly it suffices to consider only the points on Ln lying
above the branch locus of ιn.

Suppose z = (x0, r0) is a finite singular point. By (6.6) we have r0 ∈
{−2, . . . ,−n}, and

(6.7) Fn|z = ∂xFn|z = ∂rFn|z = 0.

We claim that x0 6= 0. Suppose otherwise; set ∂rFn = 0 and then substitute
x = 0 (recall that s = 1), to get

0 = (−1)n ∂

∂r

n∏
k=1

(r + k) = (−1)n
n∑

m=1

n∏
k=1
k 6=m

(r + k).

Set r = r0 and this becomes
n∏

k=1
k 6=−r0

(r0 + k) = 0,

a contradiction. Thus x0 6= 0. Also, if kn = 0, then from (6.1) we get x0 = 0,
a contradiction. Thus kn 6= 0, i.e. r0 6= −n. That means the hypotheses
of Lemma 12 are satisfied for j = 0. Applying the lemma, we find the
conditions of the lemma hold for j = 1 as well as r0 6= 1 − n. Repeating
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this procedure, we find r0 6∈ {−2, . . . ,−n}, a contradiction. Thus Ln has
no finite singular point. �

Lemma 14. — Suppose n > 2. Then K(
√

disc L
(t)
n (x)) is a quadratic

extension of K0 corresponding to a smooth curve of genus
[
1
4 (n− 2)

]
.

Proof. — Since n > 2, (6.6) says that disc L
(t)
n (x) is a polynomial in t

whose square-free part has degree
[
1
2n

]
, and the lemma follows. �

Recall that the notation of Section 4, such as O0,O′, etc. now applies to
the case λ(x, t) = L

(t)
n (x). For ν ∈ Bλ = {−2, . . . ,−n} ⊂ P1

K , denote by mν

the corresponding maximal ideal in O0. Denote by O1 the coordinate ring
of an affine open set of X1 containing all places lying above every ν with
respect to the projection map ιn. Then (6.6) says that the restriction of ιn
to O0 is unramified outside the mν , and Lemma 13 says that the inclusion
map O0 ⊂ O′ is an integral extension of Dedekind domains when localized
at these mν . From (6.1), we obtain easily

Fn(x, t, 1) ≡ x|ν|Fn+ν(x,−t, 1) (mod (t− ν)), ν ∈ {−1,−2, . . . ,−n},

which, in conjunction with (6.6), tells us that O1 has exactly one ramified
maximal ideal lying above mν :

(6.8) mνO1 = n
|ν|
0 n1 · · · ns,

where the ni are pairwise distinct; in other words each branch point ν

of L
(t)
n (x) is simple of index |ν|. Applying Lemma 7, we deduce the following

result.

Lemma 15. — For ν ∈ {−2, . . . ,−n}, let Mν ⊂ O′ be a maximal ideal
lying above mν . Then the inertia group I(Mν/mν) is generated by a cycle
of length |ν|. In particular,

eν := e(Mν/mν) = |ν|. �

Proposition 4. — Suppose n > 6. Then the geometric genus of Ln

is > 1.

Proof. — First, assume n > 7. Thanks to Lemma 15, we can apply
Lemma 3 with V = {−n, 1 − n, . . . , 5 − n}. Since there is a unique prime
in O1 above mν with non-trivial ramification index −nu, we have
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c1(ν) = n + ν, and (4.1) becomes

g(Ln) = g(K1) > 1 +
n

2

(
−2 +

5∑
i=0

(
1− 1

d(n− i)

))
(6.9)

−1
2

5∑
i=0

(
1− 1

d(n− i)

)
i.

For any six consecutive, positive integers, exactly two of them are prime
to 6, another one is odd, and the remaining three are even. Thus the first
i-sum in (6.9) is

> −2 + 6− 2× 1
5
− 1

3
− 3× 1

2
=

53
30
·

Thus (6.9) yields

(6.10) g(Ln) > 1 +
53n

60
− 1

2

(
1− 1

n

)
(0 + 1 + 2 + 3 + 4 + 5),

which is > 1 if n > 10. Using the more refined version (6.9) we find that
in fact g(Ln) > 1 if n > 7. Using the full Riemann-Hurwitz formula, or the
Algcurves package in Maple, we find that g(L6) = 4. This completes
the proof of the proposition. �

Remark 7. — By analyzing the singularity at infinity, one in fact has a
nice formula g(Ln) = [(−1 + 1

2n)2] valid for all n.

6.2. Genus of maximal subgroups

In this subsection, we carry out the calculations which will be necessary
ingredients for the application of Theorem 3 to L

(t)
n (x) in the next section.

This involves a mixed strategy in the following sense. For n > 10, we
show that every minimal intermediate subfield E of K ′/K0 has genus > 1,
thanks to Lemma 14 and Proposition 5(a) below. It then follows from
Riemann-Hurwitz that every proper intermediate subfield has genus > 1.
For 6 6 n 6 9, the quadratic extension inside K ′/K0 has genus 0 or 1,
but we have shown in Proposition 3 that Λj is not reducible over this field.
It remains, then, to check for 6 6 n 6 9 that proper subgroups of An

give fixed fields of genus > 1, and this is the content of Proposition 5 (b).
We treat n = 5 “by hand.”

Proposition 5. — (a) Suppose n > 6. If E is a maximal subgroup of Gλ

other than An, with corresponding fixed field E, then g(XE) > 1.
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(b) Suppose 6 6 n 6 9. If E is a proper maximal subgroup of An ⊂ Gλ,
with corresponding fixed field E, then g(XE) > 1.

Proof. — We begin with (a). Up to conjugation, the maximal subgroups
of Sn other than An belong to exactly one of the following three types [8,
p. 268]:

• imprimitive subgroups: the wreath products Sj oSn/j in its imprim-
itive action(2) , for some divisor j of n, 1 < j < n;

• intransitive subgroups: Sn,j for some 1 6 j < 1
2n (note that if n is

even then Sn,n/2 is contained in Sn/2 o S2);
• a primitive subgroup of Sn.

For each of the three types of E , we use group-theoretic properties of E
plus ramification data of K ′/K0 to bound (4.1) from below for large n, and
then handle the remaining cases individually. Note that among any four
consecutive integers > 2, exactly one of them is prime to 6, another one is
odd, and the other two are even. Recall the notation d(e) from Definition 1
and we see that for n > 6,

(6.11) − 2 +
3∑

j=0

(
1− 1

d(n− j)

)
> −2 + 4− 1

2
− 1

2
− 1

3
− 1

5
=

7
15
·

We will also make repeated use of the following remark. For the rest of this
proof, we will take

V =
{
3− n, 2− n, 1− n,−n

}
.

By Lemma 15, the inertia group of any ν ∈ V is generated by a single cycle,
which will allow us to use Lemma 6 in conjunction with (4.1).

We now consider each of the different types of maximal subgroups in
turn.

• Case: imprimitive subgroups Sj o Sn/j . — First, suppose n > 7.
Since n−3 > 1

2n, Sj oSn/j does not contain any (n−s)-cycle for 0 6 s 6 3.
That means c1(ν) = 0 for every ν ∈ V . Recall (6.11) and (4.1) becomes

g(XE) > 1 +
7
30

[Sn : Sj o Sn/j ] > 1.

Next, suppose n = 6. The same reasoning as above shows that c1(ν) = 0
if ν 6 2−n, and if j = 2, then c1(3−n) = 0 as well. So as before g(XE) > 1
if E ' S2 oS3. It remains to consider the case E ' S3 oS2 ' (S3×S3)oZ/2.
A representative of the non-trivial coset of S3 × S3 in (S3 × S3) o Z/2
(as a subgroup of S6) is (14)(25)(36); from this we check that elements

(2) i.e. the stabilizer of a partition of n letters into n/j disjoint subsets of equal size.
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in this non-trivial coset all have even order. Thus the order 3 elements
in (S3 × S3) o Z/2 are all contained in S3 × S3. The latter has a unique
Sylow 3-subgroup, namely Z/3×Z/3, so E has four distinct Z/3-subgroups,
whence (4.7) gives c1(−3) = 8

#S3oS2
3 · 3! = 2. Thus

g(XE) > 1 +
6!/72

2
7
15

− 1
2
· 2 ·

(
1− 1

3

)
> 1,

as desired.

• Case: intransitive subgroups Sn,j with 1 6 j < 1
2n. — For j > 3,

Sn,j contains no cycle of length > n − 3, so c1(ν) = 0 for every ν ∈ V .
Thus (4.1) gives g(XE) > 1.

Next, suppose j = 3, so that we can take n > 7. Then c1(ν) = 0 for
|ν| > n− 3, and (4.8) gives c1(3− n) < 6(n− 3). Thus (4.1) becomes

g(XE) > 1 +
7
30

n!
3!(n− 3)!

− 6n− 19
2

(
1− 1

d(n− 3)

)
,

which is easily seen to be > 1 for n > 7 (for n > 8, use the trivial bound
d(n− 3) 6 n− 3).

Now, take j = 2. Since n > 6, the only cycles of order n − 2 and n − 3
in Sn,2 = S2×Sn−2 come from the cycles in Sn−2 of such order. There are
(n− 3)! and (n− 2)(n− 4)! of them, respectively, so by (4.7),

c1(n− 2) = 1 and c1(n− 3) = 3,

whence (4.1) plus (6.11) gives

g(XE) > 1 +
7
30

n(n− 1)
2

− 1
2

(
1− 1

d(n− 2)

)
− 3

2

(
1− 1

d(n− 3)

)
.

This is > 1 for n > 5, so we are done.
Finally, consider the case j = 1. Then XE is simply the curve X1, which

we saw right before the statement of Lemma 10 is simply the curve Ln

defined by L
(t)
n (x). By Proposition 4, this curve has geometric genus > 1 if

n > 6, so we are done.

• Case: primitive subgroups. — Let E ⊂ Sn be a primitive subgroup
other than An. By Bochert’s theorem [8, p. 79],

[Sn : E ] >
[n + 1

2

]
!
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Using (4.8) together with the trivial estimate 1− 1/d(eν) 6 1− 1/n, (4.1)
becomes

g(XE) > 1 +
7
30

[Sn : E ]− 1
2

(
1− 1

n

)(
(n− 1) + (n− 2) + (2n− 5)

)
+(6n− 19)

> 1 +
7
30

[n + 1
2

]
!−

(
1− 1

n

)10n− 27
2

(6.12)

> 1 +
7
√

πn

30

( n

2e

)n/2

−
(
1− 1

n

)10n− 27
2

(6.13)

Stirling formula [1, p. 24].

From (6.13) we get that g(XE) > 1 if n > 15. Using the sharper form (6.12),
we see that in fact g(XE) > 1 if n > 11. For n = 9, 10, if we use the original
inequality (4.1), we also obtain g(XE) > 1. To handle the remaining values
of n, i.e. 6, 7, 8, we make use of classification of primitive groups of small
degree [2].

. n = 8. — S8 has two maximal primitive subgroups other than A7,
namely PGL(2, F7) and 23·PSL2(F7) (a group with normal subgroup (Z/2)3

and with quotient PSL2(F7)). In particular, both groups contain no element
of order 5, so the c1-term in (4.1) corresponding to the branched point
ν = −5 is zero. For the group PGL2(F7), (4.1) then becomes

1 +
7
30

8!
336

− 1
2

(
7
(
1− 1

2

)
+ 6

(
1− 1

7

)
+ 11

(
1− 1

2

))
> 1.

To handle the group 23 · PSL2(F7) we need to refine our estimate for the
c1(−7)-term. Sylow theory dictates that 23 ·PSL2(F7) has at most 64 Sylow
7-subgroups, all of order 7, so 23 · PSL2(F7) has at most 64 × 6 = 384
elements of order 7. Substitute this into (4.7) and we find that c1(−7) 6 2,
whence (4.1) becomes

1 +
7
30

8!
8× 168

− 1
2

(
7
(
1− 1

2

)
+ 2

(
1− 1

7

)
+ 11

(
1− 1

2

))
> 1.

. n = 7. — S7 has a unique maximal primitive subgroup other than A7,
namely PSL2(F7). It has 42 elements of order 4, no element of order 5,
and 48 elements of order 7, so c1(−4) = 42

1684 · 6 = 6, c1(−5) = 0, and
c1(−7) = 48

168 · 7 = 2, whence (4.1) becomes

g(XE) > 1 +
7
30

7!
168

− 1
2

(
2(1− 1

7
) + 5

(
1− 1

2

)
+ 6

(
1− 1

2

))
> 1.

. n = 6. — S6 has a unique maximal primitive subgroup other than A6,
namely PGL2(F5) ' S5 ' S6,1. For such intransitive groups we already
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saw that g(XE) > 1, so we are done for n = 6. This completes the proof
of (a).

Let us now turn to (b). We will make extensive use of the Atlas [3]
to determine the maximal subgroups of these An, as well as the number
of conjugacy classes of elements in An and PSL2(Fq). Recall that V ={
−n, 1− n, 2− n, 3− n

}
.

. n = 9. — According to the Atlas, the maximal subgroups(3) of A9

are A8, S7, plus others of indices > 84 in A9. First, consider those E of
index > 84 in A9. Then [S9 : E ] > 168, and (4.1) becomes

g(XE) > 1 +
7
30

168− 1
2

((
1− 1

3

)
c1(−9) +

(
1− 1

2

)
c1(−8)

+
(
1− 1

7

)
c1(−7) +

(
1− 1

2

)
c1(−6)

)
> 1 +

196
5

− 1
2

(2
3
8 +

1
2
7 +

6
7
13 +

1
2
35

)
> 1,

which is satisfactory. Next, take E = A8. Then [S9 : E ] = 18, and A8 has
no cycles of order 9, 8 or 6, so c1(−9) = c1(−8) = c1(−6) = 0. There are
8!/7 elements of order 7 in A8, so c1(−7) = 8!/7

8!/27 · 2 = 4. Thus

g(XE) > 1 +
7 · 18
30

− 4
2

(
1− 1

7

)
> 1.

Finally, take E = S7. Then [S9 : E ] = 72 and S7 has no element of order 9
or 8, so

g(XE) > 1 +
7 · 72
30

− 1
2

((
1− 1

7

)
13 +

(
1− 1

2

)
35

)
> 1.

This completes the case n = 9.

. n = 8. — The maximal subgroups of A8, along with their indices in A8,
are

(A7, 8);
(
(23 : PSL2(F7)), 15

)
; (S6, 28);(

24 : (S3 × S3), 35
)
;

(
(A5 × 3) : 2, 56

)
.

From (4.8) we get the standard estimates

(6.14) c1(−8) < 8, c1(−7) < 7, c1(−6) < 6 · 2!.

The case E = 23 : PSL2(F7) has already been dealt with in the course of
proving Proposition 5. For E = 24 : (S3 × S3), it has no element of order 5

(3) In what follows we will consider the isomorphism classes, and not conjugacy classes,
of maximal subgroups of these An. For the purpose of computing g(XE) this is sufficient.
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or 7, whence c1(−5) = c1(−7) = 0. We have [Sn : E ] = 70, so (4.1) becomes

g(XE) > 1 +
7
30

70− 1
2

((
1− 1

2

)
8 +

(
1− 1

2

)
12

)
> 1.

Next, take E = (A5× 3) : 2, i.e. a split extension with kernel A5×Z/3 and
quotient Z/2. The order 5 elements in E are all in A5 × Z/3, and hence
there are 4! of them. Thus (4.7) gives c1(−5) = 4!

3605 · 3! = 2. Also, E has
no element of order 7, so c1(−7) = 0. Thus (4.8) becomes

g(XE) > 1 +
7
30

112− 1
2

((
1− 1

2

)
8 +

(
1− 1

2

)
6 +

(
1− 1

5

)
2
)

> 1.

For E = S6, again it has no order 7 elements so c1(−7) = 0. It has 6!/5
order 5 elements, so c1(−5) = 6!/5

6! 5 · 3! = 6. Thus (4.1) becomes

1 +
7
30

56− 1
2

((
1− 1

2

)
8 +

(
1− 1

2

)
6 +

(
1− 1

5

)
6
)

> 1.

Now take E = A7. There are no cycles of length 6 or 8 in A7, so c1(−8) =
c1(−6) = 0. There are 6! order 7 elements and 7!/(5 · 2!) order 5 elements
in A7, so c1(−7) = c1(−5) = 1. Thus

g(XE) > 1 +
7
30

8− 1
2

((
1− 1

7

)
+

(
1− 1

5

))
> 1.

. n = 7. — The maximal subgroups of A7, along with their indices in A7,
are

(A6, 7);
(
PSL2(F7), 15

)
; (S5, 21);

(
(A4 × 3) : 2, 35

)
.

Note that (4.8) gives the following estimates

c1(−7) < 7, c1(−6) < 6, c1(−5) < 5 · 2, c1(−4) < 4 · 6.

First, take E = (A4 × 3) : 2. Then E has no element of order 7 or 5, so
c1(−7) = c1(−5) = 0. Thus (4.1) becomes

g(XE) > 1 +
7
30

70− 1
2

((
1− 1

2

)
5 +

(
1− 1

2

)
23

)
> 1.

Next, take E = S5 ⊂ A7. Then it has no cycles of order 7 or 6, so c1(−7) =
c1(−6) = 0. It has 4! elements of order 5, and 5!/4 elements of order 4.
Thus c1(−5) = 2 and c1(−4) = 6. Thus

g(XE) > 1 +
7
30

42− 1
2

((
1− 1

5

)
2 +

(
1− 1

2

)
6
)

> 1.

Now, take E = A6 ⊂ A7. It has no order 7 elements and no cycles of order 6
or 4. It has 6!/5 order 5 elements, so c1(−5) = 2. Thus

g(XE) > 1 +
7
30

14− 1
2

(
1− 1

5

)
2 > 1.

Finally, take E = PSL2(F7). It has 42 elements of order 4, none of order 5
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or 6, and 48 elements of order 7. Thus c1(−4) = 42
1684 · 3! = 6, c1(−5) =

c1(−6) = 0, c1(−7) = 48
1687 = 2. Then

g(XE) > 1 +
7
30

30− 1
2

((
1− 1

7

)
2 +

(
1− 1

2

)
6
)

> 1.

. n = 6. — The maximal subgroups of A6, along with their indices in A6,
are

(A5, 6);
(
(Z/3× Z/3) o Z/4, 10

)
; (S4, 15).

First, take E = S4. It has six elements of order 4, eight of order 3, and
none of order 5 or 6. Thus c1(−4) = 2, c1(−3) = 6, c1(−6) = c1(−5) = 0,
whence g(XE) > 1.

Next, take E = A5. It has twenty-four elements of order 5, twenty ele-
ments of order 3, and none of order 6 or 4. Thus c1(−5) = 1, c1(−3) = 3,
c1(−6) = c1(−4) = 0, whence g(XE) > 1.

Finally, take E = (Z/3 × Z/3) o Z/4. Then c1(−5) = 0. There are 8
elements of order 3, and hence 6 27 elements of order 4. Thus c1(−3) = 4
and c1(−4) 6 6. It follows that g(XE) > 1. This completes the proof
of (b). �

6.3. Proof of Theorem 1

Step I. — First, we treat the case n = 5 using an argument specific
to quintics. A separable quintic over K (not necessarily irreducible) has a
solvable Galois group if and only if its resolvent sextic has a root in K [9].
Compute the resolvent sextic of L

(t)
5 (x) using the formula in [9] and set it

equal to (x − 10A)(x5 + c1x
4 + · · · + c5), obtaining six equations in t, A,

c1, . . . , c5. Eliminate c1, . . . , c5 from the six equations using Maple and we
arrive at a single equation in t and A:

A6 + (−12t2 − 24t)A5 + (120t2 + 60t3)A4

+ (720t3 + 2120t4 + 1600t5 + 360t6)A3

+ (−5040t4 − 11580t6 − 4200t7 − 540t8 − 13200t5)A2

+ (10368t4 + 39744t5 + 48864t6 + 14448t7 − 12480t8

− 9360t9 − 1728t10)A

− 3(5832t5 + 26892t6 + 50814t7 + 50645t8 + 28406t9 + 8735t10

+ 1278t11 + 54t12).

Using the Algcurves package in Maple, we find that this equation
is absolutely irreducible and defines a plane curve with geometric genus 3.
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Thanks to Faltings, that means L
(α)
5 (x) is K-irreducible and is not solvable

for α ∈af K. This completes the proof for the case n = 5. From now on,
assume that n > 6.

Step II. — Given a number field K, we claim that if there exists one
β ∈ K for which L

(β)
n (x) has Sn-Galois group over K0, then Theorem 1

holds for this K.
By (6.6), the discriminant of L

(t)
n (x) is not constant. Since n > 5,

Lemma 8 applies so that the existence of this one β yields the necessary
hypotheses on K ′/K0. For n > 10, the genus of the fixed field of every
proper maximal subgroup of Gλ is greater than 1 (Proposition 5 (a) and
Lemma 14). By Riemann-Hurwitz, since K has characteristic 0, g(XE) 6
g(XE′) whenever E ⊂ E′. Thus, for n > 10, every non-trivial intermediate
subfield of K ′/K0 has genus greater than 1. For degrees n = 6, 7, 8, 9, we
have shown, (a) that proper maximal subgroups of An and Sn have genus
greater than one (Proposition 5), and (b) over the quadratic subfield of K0

in K ′, the polynomials Λj are all irreducible (Proposition 3). Thus, for all
n > 6, the hypotheses of Theorem 3 are satisfied.

We therefore obtain the first part of Theorem 1(a) for n > 7. By Lemma
14, if n > 10 (resp. n > 6) then the set of t ∈ K corresponding to even
Galois groups are parameterized by a curve of geometric genus > 2 (resp. >
1). The rest of Theorem 1 for n > 7 now follows.

For n = 6, the argument for Theorem 3 only shows that the degree of
the splitting field of all but finitely many L

(α)
n (x) over K is divisible by

LCM
((

6
2

)
,
(

6
3

))
= 60. To improve this we use a different test function.

By Lemma 8(a), the fixed field of K ′/K0 by S3 × {1} ⊂ S6,3 corresponds
to a smooth projective curve X3,0 plus a K-morphism ξ3,0 : X3,0 → P1

K .
Write Λ3,0(x, t) = 0 for the corresponding birational plane curve. The same
argument as in Lemma 11 shows that the roots of Λ3,0(t) over K0 are in
bĳective correspondence with triples of roots of L

(t)
6 (x) over K0. Argue as

in Proposition 3 and we see that Λ3,0(x, t) is irreducible over the fixed field
of K ′/K0 by A6. The discussion in Subsection 6.2 is now applicable, and
we see that for α ∈af K, the degree of the splitting field of L

(α)
n (x) over K

is divisible by deg ξ3,0 = [S6 : S3 × {1}] = 120. By the classification of
transitive subgroups of S6 [8, p. 60], we are done.

Step III. — Schur [28] showed that L
(0)
n (x) is Q-irreducible and has Sn

Galois group. That means L
(t)
n (x) = 0 has Sn Galois group over Q(t).

Apply Step II and we get Theorem 1 for K = Q. In particular, λ(x, α)
has Sn Galois group over Q for all but finitely many α ∈ Z. From (6.6)
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we see that, for any finite set of primes Σ, infinitely many of these Sn-
extensions of Q must be ramified outside Σ. There are only finitely many
number fields of bounded degree which are unramified outside Σ, so for any
fixed number field K, there exist infinitely many α′ ∈ Q so that any root
of L

(α′)
n (x) defines a degree n extension Lα′/Q with Sn-Galois closure and is

ramified at a prime which is unramified in K/Q. Since Sn has no subgroup
of index < n, that means Lα′ ∩K = Q, whence L

(α′)
n (x) also has Sn Galois

group over K. Apply Step II with β = α′ and we are done. �

7. Simple covers

Let Y be a smooth projective curve defined over a number field K, and
let π : Y → P1

K be a K-morphism of degree n. We say that π is a simple
cover if the fiber above every point in P1

K
contains at least n − 1 distinct

points. By [14, top of p. 549], the (geometric) Galois group of a simple
n-cover is precisely Sn. Say Y has genus g; then the Riemann-Hurwitz
formula implies that the number of branch points of π is exactly

(7.1) #Bπ = 2g + 2n− 2.

Over an algebraically closed field, if n > g+1 then every smooth projective
curve of genus g admits a simple cover of degree n [14, Prop. 8.1].

Suppose λ(x, t) ∈ K[x, t] is irreducible over K0 = K(t) of degree n and
defines a simple cover K1/K0 (in the notation of Section 2). To simplify
the exposition, suppose K is algebraically closed in the splitting field K ′ of
λ over K0. The following example of Müller shows that we cannot expect
all but finitely K-specializations of λ to be K-irreducible, let alone having
the same Galois group as λ. Consider the transpositions g1 = (1, 2), g2 =
(2, 3), . . . , gn−2 = (n− 2, n− 1), gn−1 = (n− 1, n), gn = (n− 1, n), gn+1 =
(n − 2, n − 1), . . . , g2n−3 = (2, 3), g2n−2 = (1, 2). Note that the product
of these gi is 1, and that they generate Sn. So by the Riemann existence
theorem [34, Cor. 7.3], there exists a degree n branched cover Xn → P1

K

with exactly 2(n− 1) branched points over K , such that the inertia group
of the i-th branch point is generated by gi. By Riemann-Hurwitz, the cover
with this description has geometric genus zero and is a simple cover. So
taking a finite extension L/K if necessary, there are infinitely many L-
rational specializations of this cover with an L-linear factor.

This example shows that an analogue of Theorem 1 applicable to all
simple covers of sufficiently large degree does not exist. But if we start
with a simple cover of genus at least 2, then we can prove an analogue of
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Theorem 1, as in Part (b) of Theorem 4 below. Moreover, even if we start
with a simple cover of genus 6 1, Part (a) below says that all but finitely
many specializations are either irreducible or factor as a linear times a
degree n − 1 irreducible factor. Müller kindly sent us a proof of (a) and
(b) of Theorem 4 based on a deep result of Liebeck and Saxl [23] (which
uses the classification of finite simple groups). The proof we give here is
a variant of Müller’s in which we can avoid using [23] by relying on the
interpretation of the curve Xj introduced in Section 5 as the variety whose
K-rational points parametrize the K-rational degree j factors of λ.

Theorem 4. — Let λ(x, t) be an irreducible polynomial over K(t) defin-
ing a simple cover π : Y → P1

K of degree n > 5 and geometric genus
g = gY > 0. If g = 0, assume n > 6. Then,

(a) For α ∈af K, the specialization λ(x, α) has a K-irreducible factor of
degree > n− 1.

(b) If gY > 2, then for α ∈af K, the specialization λ(x, α) is K-irreducible.
(c) If gY > 2 and n > 7, for α ∈af K, the Galois group of λ(x, α) over K

is Sn.

Proof. — We first set up some notation and make a preliminary calcu-
lation. Suppose E is a maximal subgroup of Sn. Recall that K ′/K0 is the
Galois closure of the function field extension K1/K0 defined by the simple
cover π. This yields an action of Gal(K ′/K0) ' Sn on the generic fiber
of πE . By Galois theory, this action, call it ρE , is simply the left-action
of Sn on the left cosets of E in Sn; it is the natural degree n action of Sn if
only if E is conjugate to Sn,1. Let µ(E) be the largest integer m such that,
under the ρE-action, every transposition of Sn moves at least m points.
Since πE is a quotient of the Galois closure of the simple cover π, the ram-
ification index of πE at any maximal ideal n of an affine coordinate ring
of XE divides 2 (Lemma 7). By definition of µ(E), there are µ(E)/2 OE-
primes n above m with e(n/m) = 2, thus for any m ∈ Bπ, as n runs through
all maximal ideals of OE lying above m, we have∑

n/m

(
e(n/m)− 1

)
f(n/m) > µ(E)/2.

By Lemma 8 (b), the branch locus of πE is exactly Bπ. Thus Riemann-
Hurwitz gives

(7.2) 2(NE − 1 + gE) > #Bπ × µ(E)/2.

We now proceed to prove (a) and (b) together. Fix j ∈ [1, 1
2n] and recall

from Section 5.1 that Xj is the curve cut out by Sn,j = Sj × Sn−j ⊂ Gλ.
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Suppose λ(x, α) has a K-rational degree j factor for infinitely many α ∈ K.
Then Proposition 2 implies that g(Xj) 6 1. But the function field of Xj is
the fixed field E = Kj of E = Sn,j , so by Lemma 11 (recall the notation
introduced at the beginning of Subsection 5.2), ρE is the action of Gλ on the
set of j-subsets of Σ = {λ1, . . . , λn}. Thus, NE =

(
n
j

)
, and µ(E) = 2

(
n−2
j−1

)
.

Since gE = gXj
6 1, combining (7.2) with (7.1) gives

(7.3) µ(E) 6 2NE/(n + gY − 1) 6 2NE/(n− 1).

Thus, we have

(7.4) 2
(n− 2

j − 1

)
6

2
n + gY − 1

(n

j

)
.

This inequality simplifies to j(n− j) 6 n(n− 1)/(n + g − 1). Since n > 5,
this is only possible if gY 6 1 and j = 1. We have therefore proved (a)
and (b). To prove (c), assuming now that gY > 2, and n > 7, we have
already seen that the fixed field of the intransitive maximal subgroups Sn,j

have genus at least 2. Now we consider a transitive maximal subgroup E
of Gλ. First suppose E is primitive. By a theorem of Jordan (see e.g. [35,
p. 39]), a primitive subgroup of Sn containing an element of prime order
p 6 n − 3 contains An. Assuming only n > 5, therefore, if our primitive
subgroup E contains a 2-cycle, then E is Sn. Thus, we may assume E has no
transpositions. Recalling that #Bπ = 2g + 2n− 2, (4.1) and (4.7) combine
to give g(XE) > 1 in this case. It remains only to consider a maximal
subgroup E which is transitive but not primitive, i.e. E = Sj o Sk where
n = jk is a non-trivial factorization of n. For such an E , and an arbitrary
branch point ν ∈ Bπ, we have

c1(ν) =
j(k − 1)k/2

#E
· 2 · (jk − 2)!,

giving us the estimate

g(XE) > 1 +
(jk)!
2#E

(
−2 +

#Bπ

2

)
− #Bπ

4
j(j − 1)k

#E
(jk − 2)!

> 1 +
1
4

jk(jk − 2)!
#E

(
#Bπj(k − 1)− 4jk + 4

)
> 1 +

1
4

jk(jk − 2)!
#E

(
jk

(#Bπ

2
− 4

)
+ 4

)
since k > 2.

For n > 5, we have #Bπ = 2g + 2n − 2 > 8, hence the right hand side of
the last expression above is greater than 1.
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We have shown that for all minimal subfields E of K ′/K0, g(E) > 1,
hence the same is true for all its subfields by Riemann-Hurwitz. Now we
can apply Theorem 3 to conclude the proof. �

Remark 8. — The argument above plus Theorem 3 shows that if gY > 2
then the Galois group of λ(x, α) has order divisible by 60 (if n = 6) and
by 20 (if n = 5) for α ∈af K. We do not know if the Galois groups are in
fact S6 and S5, respectively, for α ∈af K.
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