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ON NON-COMMUTATIVE TWISTING IN
ETALE AND MOTIVIC COHOMOLOGY

by Jens HORNBOSTEL & Guido KINGS

ABSTRACT. — This article confirms a consequence of the non-abelian Iwasawa
main conjecture. It is proved that under a technical condition the étale cohomol-
ogy groups HY (O [1/S], H(X,Qp(5))), where X — Spec Ox[1/S5] is a smooth,
projective scheme, are generated by twists of norm compatible units in a tower
of number fields associated to H*(X,Zp(5)). Using the “Bloch-Kato-conjecture” a
similar result is proven for motivic cohomology with finite coefficients.

RESUME. — Cet article confirme une conséquence de la conjecture principale
de la théorie d’Iwasawa non abélienne. On démontre que, sous une condition tech-
nique, les groupes de cohomologie étale H'(Ox[1/S], H (X, Qp(5))), ot X —
Spec Ok [1/S] est un schéma projectif lisse, sont engendrés par des unités tordues
compatible par rapport aux normes dans une tour de corps de nombres associés
A H'(X,Zp(5)). On établit un résultat similaire pour la cohomologie motivique &
coefficients finis en utilisant la conjecture de Bloch-Kato.

Introduction

One of the most astonishing consequences of the non-abelian Iwasawa
main conjecture is the twist invariance of the zeta elements, which implies
that all motivic elements should be twists of norm compatible units in (big)
towers of number fields. More precisely one expects that for a Z,-lattice T'
in a motive with p-adic realization V the image of the twisting map (see 1.3
below)

(lim H Ok, [1/5), Z,(1))) © T(G — 1) — H*(Ox[1/S).T(5))

Keywords: Etale cohomology, motivic cohomology, non-commutative Iwasawa-theory.
Math. classification: 11R23, 14G40, 14F42, 11R32.



1258 Jens HORNBOSTEL & Guido KINGS

generates a subgroup of finite index. Here the inverse limit runs over the
number fields K, := K(T/p"™) obtained from K by adjoining the ele-
ments T'/p". Moreover, the image of this map should have a motivic mean-
ing, that is the elements should be in the image of the p-adic regulator
from motivic cohomology. (This idea is developed in [10] and builds on
ideas of Kato [14]).

The philosophy of twisting with the cyclotomic character originates from
work of Iwasawa, Tate and Soulé. This already lead to many interesting
results. Here Kato’s work [15] on the Birch-Swinnerton-Dyer conjecture
is the most spectacular example. Earlier Soulé used this idea in the case
of Tate motives in his deep investigations about the connection of K-theory
and étale cohomology for number rings [26]. He also pointed the way to
applications to CM-elliptic curves [29].

The first goal of this paper is to construct the above twisting map and
to show that it has for j > 0 indeed finite cokernel assuming the very
reasonable condition that the Iwasawa pu-invariant of the number field K
vanishes. This result supports the non-abelian Iwasawa main conjecture
and has the astonishing consequence that for the construction of interesting
elements in étale cohomology one is reduced to construct norm compatible
systems of units in towers of number fields. The proof of this result relies
on certain finiteness results of Coates and Sujatha.

In the second part of the paper we consider the statement that the re-
sulting elements are in the image of the regulator from motivic cohomology.
Our results in this direction give a hint that the elements obtained as twists
of units are motivic. Using the “Bloch-Kato-conjecture” for all fields (as an-
nounced by Voevodsky), we prove that there is a twisting map for motivic
cohomology compatible with the one for étale cohomology under the cycle
class map. This uses constructions of Levine and Geisser.

The authors like to thank Coates and Sujatha for useful discussions and
for making available the results of [3] before their publication. The authors
are indebted to Geisser for insisting to use motivic cohomology with finite
coefficients instead of K-theory in the formulation of the results in the
second part.

1. Non-commutative twisting in étale cohomology

In this section we describe the étale situation. All cohomology groups in
this paper are étale cohomology groups unless explicitly labeled otherwise.

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1259
1.1. The twisting map in étale cohomology

Let K be a number field with ring of integers Ok . Fix a prime number
p > 2 (we assume p # 2 only to have O cohomological dimension 2) and a
finite set of primes S of O, which contains the primes dividing p. As usual
let

G = Gal(Ks/K)

be the Galois group of Kg/K, where Kg is the maximal outside of S
unramified extension field in a fixed algebraic closure K of K. Let T be a
finitely generated Z,-module with a continuous G g-action

p:Gs — Autg, (T).

We will consider T also as étale sheaf on Og[1/5] (see e.g. [5, p. 640] using
the fixed embedding into K as base point) and write V := T ®z, Q) for
the associated Q,-sheaf. The most important example is T = H* (X, Z,(j)),
where X := X X ¢, 11/¢/K and X is a smooth and proper scheme over O [1/5].
Let G := im p be the image of p. If we define finite groups

G, = im{Pn Gy — Autz/an(T/p"T)}

then we also have G =2 mn G,,. Note that G is a p-adic Lie group. The
Iwasawa algebra of G is by definition the continuous group ring
A(G) = @ZP[Gn] = @Z/pn[Gn]'

Note that A(G) is flat over Z,. If G is pro-p then A(G) is a noetherian
local ring (see [17, 11.2.2.2 and V.2.2.4]) as G is by construction p-adic an-
alytic. The action of Gg on A(G) factors through G and this acts on A(G)
via G C A(G)*. We denote by K, the field fixed by the kernel of p and
by K, the field fixed by the kernel of p,, so that K = Un K, and
Gal(K«/K) = G. Note that Ok, [1/S] is finite and étale over Ok |[1/S].

Example 1.1. — To make the above definitions more concrete, consider
the following important example. Let E/K be an elliptic curve without
complex multiplication and T),E := lim E[p"] its Tate-module. We have

K, = K(E[p"]).

It is a well-known result of Serre that the image of the Galois group Gg
in Autz, (T,FE) has finite index and is equal to Autz, (T, E) for almost all p.
If we assume the latter case, we have in the above notation G, = Gly(Z/p™)
and G = Glo(Z,).

TOME 56 (2006), FASCICULE 4



1260 Jens HORNBOSTEL & Guido KINGS

The following proposition for the étale cohomology should be well-known.
For convenience of the reader and to explain the normalizations of the
action in detail, we give the proof in an appendix.

PROPOSITION 1.2 (see Appendix B)). — There are canonical isomor-
phisms of compact finitely generated A(G)-modules

R (0k[1/8],A(Q)) ®% T = RI(Ok([1/8],A(G) ®z, T),
which induce a map

H'(Ok[1/5],A(G)) ®z, T — H'(Ok[1/S],A(G) ®z, T),

and
lim H' (O, [1/5),T/p")=lim H' (O, [1/S], T)=H' (Ok[1/S], A(G)®z,T)

(limit over the corestriction maps). Here the A(G)-module structure on the
left hand side is induced by the action of G,, on H (O, [1/S],T/p"). On
the right hand side the A(G)-action is induced by the action on A(G) via
multiplication with the inverse and T has its natural A(G)-module structure
induced by the action of G.

Remark. — If one assumes that T is a free Zy-module, then one gets
of course an isomorphism

HY(Ok[1/S],A(G)) ®z, T — H'(Ok[1/S],A(G) ®z, T).

The extra generality to allow T to be finitely generated is needed, if one
wants to consider T := H*(X, Zy) for a smooth, projective variety X over

Ok[1/S].
We can now make our main definition:

DEFINITION 1.3. — The twisting map
Twr : H (Ok[1/S],A(G)) ®z, T — H'(Ok[1/5],T)
is the composition of the map of Proposition 1.2 with the map
e: H'(Ok[1/S],AM(G) ®z, T) — H'(Ok[1/S],T)

induced by the augmentation ¢ : A(G) — Z,,.

Our goal is to show that the twisting map is surjective in certain cases
after tensoring with @Q,. In particular it allows to construct elements in
H'(Ok[1/8S],T) starting from (corestriction or norm compatible) elements

m

H'(Ok[1/S],A(G)) = lim H' (O, [1/5], Zy).

i
n

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1261

We will apply this in the case where T'= H" (X X ¢ [1/9] K,7,).

1.2. Another description of the twisting map

To make the similarity with the twisting map in motivic cohomology and
in p-adic K-theory more apparent, we describe the twisting map at finite
level.

Fix an integer n > 0. We have by Shapiro’s Lemma
H (O [1/S). Z/p"Z(G,)) = H' (Ox, [1/5). 2/p"2)

using the identification as explained in Appendix B. As T'/p™T is a trivial
sheaf over O, [1/95], we have T/p"T = H°(Ok, [1/S],T/p"T) and the cup
product gives an isomorphism

HY(Ok,[1/S],Z/p"Z) @ T/p"T —— H' (O, [1/S],T/p"T).
Together with the corestriction (= trace map in étale cohomology)
H'(Ok, [1/8],T/p"T) — H'(Ok[1/S],T/p"T)

we get a map
(1.1)  HY(Ox([1/S],Z/p"ZIG.) @ T/p"T — H'(Ok([1/S], T/p"T).

Observe that by Mittag-Leffler we have

lim H'(Ok[1/S],T/p"T) = H' (Ok(1/5],T).
LEMMA 1.4. — The inverse limit with respect to the trace map and

reduction on the coefficients of the maps (1.1) coincides with the twisting
map in Definition 1.3.

Proof. — Straightforward. a

1.3. Tate twist

Let K¢ := |J,, K(pp») be the field K with all the p-th power roots
of unity pp~ adjoined. We will assume that K., contains K“°. If this is
not the case it can be achieved by considering K, (u,n) instead of K.
Let T := Gal(K%°/K), then we have a map § — T' and we denote its
kernel by H. This map induces a surjection

(1.2) A(G) — A(T).

TOME 56 (2006), FASCICULE 4



1262 Jens HORNBOSTEL & Guido KINGS

The cyclotomic character induces an inclusion of I' in Z, and the associated
free Z,, — I'-module of rank 1 is denoted by Z,(1). As usual let

Zy(j) = Z,()¥ and T():=T ®Z,()).

We will consider the following important variant of the twisting map,
given by combining Definition 1.3 and Proposition 1.2 for T = Z,(1) and
TG —1):

Twr-1)

(1.3) H'(Ox[1/5],M9)(1) @z, T(j —1) H'(Ok[1/8],T(5)).

Note that H'(Og[1/S],A(G)(1)) = lim | H'(Ok,[1/S],Z,(1)) and that by
Kummer theory we have for any m, n an exact sequence

(14) 0— Ok, [1/SI*®Z/p™ — H'(Ok,[1/S],Z/p™ (1))
— Cl(OKn [1/5’])[pm] — 0.

Here Cl(Ok,[1/S])[p™] is the p™-torsion subgroup of the class group
of Ok, [1/S]. Taking the limit first over m then over n and using that
Cl(Ok, [1/8]) is finite, we get

(1.5) lim Ok, [1/S]* ® Z,, = lim H' (Ok, [1/5], Zp(1)).
We have a twisted variant of Lemma 1.4. Namely, the map Twp;_1)
of (1.3) is again given by taking cup products
H'(Ok,[1/8),Z/p" (1)) @z, T/p"(j — 1)

and passing to the limit, using again Proposition 1.2.

1.4. The cokernel of the twisting map

To study the cokernel of the twisting map, we factor the augmentation
into A(G) — A(T") — Z, using (1.2) and get:

(1.6)  H'(Ok[1/8],A(G) @z, T(j)) — H'(Ox[1/S], A() ®z, T(5)).

The analysis of the cokernel of the twisting map Twy(;_1) will proceed
in two steps. The first is to investigate the cokernel of (1.6). The sec-
ond step treats then the cokernel of the map induced by the augmenta-
tion A(T) — Z,:

(L.7) H'(Ok[1/8],A(D) ®z, T(j)) — H'(Ok[1/S],T(j))-

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1263

LEMMA 1.5. — There is a spectral sequence
By = Tor}¥ (H*(Ok[1/8], A(G) ®z, T(4)), A(T"))
= H*7"(Ok[1/8], A(T) ®z, T(j))-

Proof. — The projection formula (see e.g. [36, Exercise 10.8.3]) in the
derived category gives

RT(Ok([1/5], M) @z, T(4)) % g)AT) = R (Ok([1/S], A(T) @z, T(j))-
Taking cohomology gives the desired spectral sequence. O

COROLLARY 1.6. — There is an exact sequence

H' (Ox[1/5), AG) (1) 2, T(j—1) == H' (Ox[L/S], A(D)@2,T())
— Tory @ (H?(0k[1/5], A(G) ®z, T(7)), A(I)).

Proof. — As p > 2 the cohomological p-dimension of Ok[1/S] is 2 and
the result follows from the spectral sequence and the fact that the twisting
map factors through

H'"(Ok[1/S],A(G) ®z, T(j)) — H'(Ok[1/5),A(G)®z, T(5)) @a(g) A(T).
O

LEMMA 1.7. — The canonical isomorphism A(G)® x y)Z,=A(T") induces
isomorphisms for all r:

Tor} ) (H?(Ok[1/S], A(G) @z, T(j)), AL))
= Tor} " (H (O [1/S), A(G) @z, T(§)), Zy)-
In particular, one gets from Corollary 1.6 an exact sequence
H'(0k[1/8], M9)(1)) ®z, T(j — 1) — H'(Ok[1/S], A(T) @z, T(j))
— Tory ™ (H?(Ok[1/S],A(G) ®z, T(j)), Zp).

Proof. — The isomorphism A(G)® ) Z,=A(T") can be checked at finite
level as Z,, is a finitely generated A(H)-module. Then

ZP[Gn} ®Zp[Hn] Zp = Zp[Gn/Hn]

and the claim is obvious. In particular, for finitely generated A(G)-modules
M is the functor M +— M ® gy A(T") isomorphic to M +— M @) Zp. O

TOME 56 (2006), FASCICULE 4



1264 Jens HORNBOSTEL & Guido KINGS

From this lemma and the factorization of the twisting map it is clear
that the cokernel of the twisting map is controlled by

Tort ™ (2 (Ok[1/S], A(G) @2, T(j)), Zy)

and by Torll\(r) (H*(Ok[1/S], A(T) @z, T(4)), Zy). To say something about
these groups we need some results of Coates and Sujatha on the finiteness
of the H?’s involved.

1.5. The conjectured ranks of the étale cohomology

For the convenience of the reader, we recall the conjecture of Jannsen [12]
about the ranks of the étale cohomology.
Let X be a smooth, projective scheme over Ok [1/S] and denote by

X = XXOK[l/S]K
the base change to the algebraic closure.
CONJECTURE 1.8 (Jannsen). — Fori+1 < j ori+1 > 2j one has
H?(Ok[1/8), H'(X,Q,(j))) = 0.

As a consequence one obtains (for p # 2) the following formula for the
dimension of the H': for i +1 < j

dimg, H' (O [1/S], H (X,Qp(j))) = dimg H' (X x¢C,R(5)) ",

where “+” denotes the invariants under complex conjugation, which acts
on X xgC and on R(j) = (27i)’R.

Moreover in analogy with Beilinson’s conjecture that the regulator from K-
theory to Beilinson-Deligne cohomology is an isomorphism for i + 1 < j,
Jannsen also conjectures that the Soulé regulator

rp + Hipot (XL Z(j)) @2 Qp — H' (O [1/8], H (X, Qy(5)))

is an isomorphism for i+ 1 < j. It is shown in [29] that for p-adic K-theory
the above regulator is surjective if j > 0. This should be compared with
the result in 2.6.

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1265

1.6. Finiteness conditions for H?2

This section contains only slight modifications of results of Coates and
Sujatha [3]. We thank them very much for making these results available
to us before their publication. One should also compare this section with
the Appendix B in Perrin-Riou [23, Prop. B.2].

Let L% (resp. Lo,) be the maximal unramified abelian p-extension
of K% (resp. K ), in which every prime above p splits completely.

PROPOSITION 1.9 (Coates-Sujatha [3]). — Assume that G = Gal(K/K)
is a pro-p-group, then the following conditions are equivalent:

i) Gal(L®%°/K®°) is a finitely generated Z,-module;
ii) Gal(Lo/Ks) is a finitely generated A(H)-module;
iii) H%(Ok[1/S], AT') ®z, T) is a finitely generated Z,-module;
iv) H*(Og[1/S],A(G) ®z, T) is a finitely generated A(H)-module.
In particular, if these equivalent conditions are satisfied, the A(T")-module
H?*(Ok([1/5],A(T') ®z, T) is torsion, ie., the weak Leopold conjecture
is true.

Remarks. — The first condition is equivalent to the famous u = 0 con-
jecture of Iwasawa (see [22, Ch.XI, Thm. 11.3.18]), which is known to be
true for K/Q abelian.

Note also that the statements i) and ii) in the proposition are independent
of the Galois representation T'.

Proof. — The proof of the proposition can be found in Coates and Suja-
ha [3] in the case of the Tate module for an elliptic curve. The case for an
arbitrary Galois representation 7' is the same. More precisely, the equiv-
alence i) < ii) is Lemma 3.7, i) <= iii) is Thm. 3.4. in loc. cit. To prove
iii) < iv), we have from the spectral sequence in Lemma 1.5 and the van-
ishing of étale cohomology for s > 2 that

H? (OK[l/S],A(g) ®z, T) QA(H) Ly = H? (OK[l/S], A(T) ®z, T)
and the claim follows from Nakayama’s lemma. (|
Example 1.10. — Let E/Q be an elliptic curve over Q and F/Q be
an abelian extension such that E, (F') # 0. Then it is easy to see (cf. [3,
Cor. 3.6]) that F((E;°)/F(u,) is a pro-p extension. Thus these elliptic curves

provide examples where the above Proposition 1.9 with K = F'(u,,) applies.
More specific examples are:

e Byt ay=2%—x—1and F = Q(ur) or
e By’ +ay=2%—3x—3and F = Q(us) (see loc. cit. 4.7. and 4.8.).

TOME 56 (2006), FASCICULE 4



1266 Jens HORNBOSTEL & Guido KINGS
1.7. Etale cohomology classes as twists of units

Recall that L€ is the maximal unramified abelian p-extension of K“¥¢, in
which every prime above p splits completely, and that we have an isomor-
phism H'(Ok[1/S],A(G)(1)) = lim Ok, [1/S]" ® Z;, by Proposition 1.2
and (1.5).

THEOREM 1.11. — Suppose that G as defined in 1.1 is pro-p and that

Gal(L®°/K°) is a finitely generated Z,-module, then there exists a J € N
such that for all j > J the twisting map

H'(Ok[1/8],A(9)(1)) ®z, T(j — 1) H'(0k[1/8],T(3))
has finite cokernel. In particular, for j > J all elements in H*(Ox[1/S],V (5))

(where V =T ®z, Q, as before) are “twists” of norm compatible units in

H' (Ok[1/5),A(G)(1)) = lim H' (O, [1/8], Z, (1))

n

with a basis of the free part of T(j — 1).

Twr-1)

Remark. — a) Note that there is always an open subgroup of G, which
is pro-p. In particular, after a finite field extension of K, one can always
assume that this is the case.

b) The choice of the twist 1 in H'(Og[1/S], A(G)(1)) and hence of the
group of norm compatible units instead of any other twist is just for esthetic
reasons. For the application to Euler systems and the construction of p-adic
L-functions the units are certainly the most interesting case. In particular,
we see this theorem as a strong confirmation of the philosophy explained
in [10], that all p-adic properties of motives in connection with L-values
should be encoded in the associated tower of number fields.

It is an interesting question to investigate H?(Og[1/S],T(j)) with the
above methods and to compare this with the results by McCallum and
Sharifi [19].

Proof. — 1t follows from Proposition 1.9 that under our conditions

Tory " (H? (O [1/8],AG) @z, T())). Z,)

is a finitely generated Z,-module. Indeed H*(Ok[1/5],A(G) ®z, T(j)) is
a finitely generated A(H)-module and A(H) is noetherian (see [17, I1.2.2.2
and V.2.2.4]), as H is a closed subgroup of G, hence p-adic analytic and
pro-p. Thus the groups

Tor} ™) (H? Ok [1/S], MG) @z, T())). Zy)

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1267

are also finitely generated Z,-modules by standard homological algebra.
The exact sequence 1.6 implies that the cokernel of

H'(0k[1/5], M(G) ®z, T(§)) ®agy ML) — H'(Ok[1/5], A(T) @z, T(j))

is a A(I')-module, say M (j), which is finitely generated as a Z,-module,
hence torsion as A(I')-module. By the classification of torsion A(I')-modules,
the coinvariants of M(j) ®x(r) Z, are finite for sufficiently big j. We get
an exact sequence

H'(Ok[1/S],A(G) ®z, T(§)) ®ac) Zy
— HY(Ok[1/S],A(T) ®z, T(5)) @aqr) Zp — M(j) @aqr) Zp — 0.

To get the twisting map we have to compose with the first map in the
following exact sequence (which is similar to Corollary 1.6)

H'(Ok[1/S], MT) @z, T(5)) @awy Zp — H' (Ox[1/5],T(3))
— Tort ™ (H? (O [1/5], A(T) ®z, T(j)), Zy).
By our condition and Proposition 1.9 H?*(Ok[1/5], A(T') @z, T(j)) is also
a finitely generated Z,-module and thus A(T')-torsion. As I' is cyclic (G

and hence T' is pro-p), the Torll\(r) term identifies with the I'-invariants
of H?(Ok[1/5],A(I)®z, T(j)). Again for j big enough these are finite. [

Remark. — 1In fact, if M is the p-adic realization of a motive (say M =
H"(XxK,Q,) for X/K smooth, projective), one should expect that the
A(T)-module

Tort @ (H? (O [1/5), A(G) ©z, T(5)), AT)) @a(r) Zp

is finite for all j > n+1. Compare this with Jannsen’s Conjecture 1.8 about
the vanishing of H?(Og[1/S], H*(Xx gk K,Q,(j))) for j > n + 1.

2. Twisting for motivic cohomology with p-adic coefficients

In this section X will always be a smooth and projective scheme over
D = 0k[1/5].

The goal in this section is to study the twisting map in motivic coho-
mology with finite coefficients. The general assumption is that the “Bloch-
Kato-conjecture” for motivic cohomology holds as announced by Voevod-
sky in [34] (do not confuse this with the Tamagawa number conjecture).
This implies, using the Beilinson-Lichtenbaum conjecture, that we have to
deal with étale cohomology of X.

TOME 56 (2006), FASCICULE 4



1268 Jens HORNBOSTEL & Guido KINGS

2.1. Review of motivic cohomology with finite coefficients
over Dedekind domains

For a variety X smooth over a Dedekind ring D, we define motivic co-
homology groups as the hypercohomology of Bloch’s cycle complex Z(j).
As usual,

= Spec (D[to, . ,ts]/Zti - 1)

denotes the standard algebraic s-simplex.

For a variety X smooth over a Dedekind ring D, let 2/ (X, i) be the free
abelian group on closed integral subschemes of codimension j on X x p A%,
which intersect all faces properly. The associated complex of presheaves
(with 27(X,2j —4) in degree i) is denoted Z(j), and

Z/n(j) = Z(j) &"“ Z/n.
The complex Z(j) (and thus also Z/n(j)) is a complex of sheaves for the

étale topology [6, Lemma 3.1], and we write Z/n(j)st resp. Z/n(j)zar when
considering it as a complex of étale resp. Zariski sheaves.

DEFINITION 2.1 (compare [6, p. 779]). — The motivic cohomology of X
is the hypercohomology

(2.1) H}oo (X, Z/n(j)) = H' (X, Z/n(j)7ar)-
Calling this motivic cohomology is justified by Voevodsky’s [35] Theorem
Hom p yresr.— 5y (M(X), Z(j)[i]) =: H],

mot

(X,Z(j)) = CH? (X, 2j — i)

if D = K is a field. In this case, higher Chow groups are defined by taking
just cohomology and not hypercohomology. By [6, Thm. 3.2] both defini-
tions coincide not only over a field but still if the base D is a discrete
valuation ring.

Observe [6, Section 3] that H{ , is covariant for proper maps (with degree
shift) and contravariant for flat maps. The latter applies in particular to
the structural morphisms p,, : X,, — D,,.

The étale cycle class

c: H(X,Z/n(j)a) — H (X, Z/n(j))
factors through the étale sheafification Z/n(j)e via the map
Z/n(j)zar — RmZ/n(5)es
induced by the morphism of sites 7 : (Sm/D)s — (Sm/D)zar.
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For us the most important consequence of the Bloch-Kato conjecture is
the truth of the Beilinson-Lichtenbaum conjecture:

THEOREM 2.2 (Geisser [6, Thm. 1.2(2)(4)]). — Assume that X is a
smooth scheme over a Dedekind domain D with n € D* and that the
“Bloch-Kato-conjecture” holds.

1) For all i and j there is an isomorphism
H'(X,Z/n(j)er) = H' (X, Z/n(j))
of the étale hypercohomology of Z/n(j)s, with the étale cohomology.
2) The étale cycle class map induces isomorphisms for 0 < i < j

Hrinot (Xa Z/n(j)) = Hz (Xa Z/n(j))

of motivic with étale cohomology.

2.2. The geometric twisting map

We are going to define a geometric twisting map, which will allow to
relate our results for étale cohomology with motivic cohomology. The main
difficulty is that the cup-product is not compatible with corestriction maps.
We use the compatibility of the Hochschild-Serre spectral sequence with
cup-product to overcome this and to reduce to an observation due to Soulé.

In this section we consider X — Spec Og[1/5] smooth and proper. We
denote by

X = XxK

and let
(2.2) T:=limT,, T,:= HZ(X,Z/pn(j—l)).

n
This is a Galois-module and finitely generated Z,-module. As in Section
1.1 we define a tower of number fields K, where K, is now obtained by
adjoining H*(X,Z/p"(j — 1)) instead of T/p"T to K, and a p-adic Lie
group G := Gal(K/K). The constructions and results of Section 1 carry
over to this case. Let

X = Xx0g11/50k,[1/5]

and denote by f, : X,, — Spec Ok|[1/S5] the structure map. Denote the
kernel of the edge morphism v by

H*Y (X, 2/p" (7))
= ker{ H'"(X,,, Z/p"(j)) = H°(Ok, [1/S], H(X,Z/p"(5))) }-
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LEMMA 2.3. — The product
H' (O, [1/8), Z/p" (1)) x H' (X, Z/p"(j = 1)) — H'™" (X0, Z/D"(j))
Exn— frEUn
factors through H1(X,,,Z/p"(5))°.
Proof. — The pull-back
fr o HY (O, [1/S), Z/p" (1)) — H' (Xn,Z/p"(1))

has image in H'(X,,,Z/p"(1))° and the resullt follows from the fact that
the Hochschild-Serre spectral sequence

By = H?(Ok, [1/S), HY(X,Z/p"(j))) = H""* (X0, Z/p"(5))
is compatible with cup-products. O
As Egl’i = EL! we have a surjection,
i n( )0 (Y n(;
(23)  HFYXnZ/p"(j) — H'(Ok,[1/S], H' (X, Z/p"(5))),
which we compose with the corestriction map
(24) H'(Oxk,[1/8], H'(X,Z/p"(5)))
—= H'(Ok[1/8], H'(X,Z/p"(5)))-
We compose the cup-product in (2.3) with this composition and get
H'(Ok, [1/S], Z/p" (1)) < H' (Xn, Z/p" (j — 1))
— H'(Ok[1/S], H' (X, Z/p"(5))).

Using again the compatibility of the spectral sequence with products we
see that the right factor of the cup-product has to factor through the edge
morphism

(2.5) H'(X,,Z/p"(j — 1)) - H°(Ok, [1/S], H' (X, Z/p"(j — 1)))
=~ H' (X, Z/p"(j — 1)),

where the last isomorphism results from our definition of K, (see begining
of this section). We get

(2.6) H'(Ok,[1/8),Z/p"(1))xH'(X,Z/p"(j — 1))
— H'(Ok[1/5], H' (X, Z/p"(5)))-
From the construction it is obvious that:

LEMMA 2.4. — The above map (2.6) coincides with the twisting map
at finite level in equation (1.1).
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Together with the isomorphisms in 2.2 we obtain:

DEFINITION 2.5. — For 0 < ¢ < j — 1 the geometric twisting map is the
map constructed above together with the isomorphisms in 2.2
Hyo1 (O, [1/8], 2/p" (1)) X Hyyo (X, Z/p" (5 — 1))
— H'(Ok[1/S), H' (X, Z/p"())))-

We apply Theorem 1.11 in this situation and get:

THEOREM 2.6. — Under the condition of Theorem 1.11 there is an in-
teger m such that for all n > m the cokernel of the geometric twisting map
in25for0<i<j—1

Hpo1 (Ox, [1/S1, 2/p" (1)) X Hyyor (X, Z/p" (7 — 1))
is annihilated by p™ for all j > J.

It is an important observation by Soulé that, although the cup-product
in general is not compatible with corestriction, the image in (2.5) is com-
patible. To formulate this properly we need:

DEFINITION 2.7. — A sequence of elements «,, € H"(X,,,Z/p™) is norm
compatible if the image of cores(a,) under the restriction of coefficients
Z/p™ — Z/p"~ ' equals a,,_q for all n > 2. The sequence {a,} is reduction
compatible if the reduction modulo p"~' of a,, is the pull-back of cv,,_1 for
alln > 2.

Note that the elements {a,} of any Z,-lattice T C H*(X,Q,(j))) are
reduction compatible. Soulé proves the following:

LEMMA 2.8. — If the sequence {ay,} is norm compatible and {f,} is
reduction compatible, then {a,, U 8,} Is norm compatible.

Proof. — This is just the projection formula, see [29, Lemma 1.4]. (|

COROLLARY 2.9. — Taking the projective limit over the corestriction
maps in (2.6) gives the twisting map of Definition 1.3:

H'(Ok[1/8),A(G)(1))®H (X, Zy(j—1)) — H' (Ox[1/S), H(X, Zy(5)))-

Remarks. — a) More generally, the above construction is possible for
any theory A*, which is covariant for proper maps, contravariant for flat
maps and satisfying the projection formula f.(aU f*(b)) = f.(a)Ub for flat
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proper (or at least finite étale) maps f. We explain the case of K-theory
with finite coefficients in Appendix A.

b) Soulé applies the above construction to get non-torsion elements in the
K-groups of rings of integers or elliptic curves with complex multiplication.
In these cases the schemes X, are base changes of X to the ring Ok, [1/5],
where K, is defined by adjoining p™-th roots of unity or p™-th division
points of the elliptic curve. The towers of fields are in these cases abelian.
It is shown in the cyclotomic case in [11] and [9] (with another method)
and in the case of CM-elliptic curves in [16] that these twisted elements are
in fact motivic, i.e., are in the image of motivic cohomology.

2.3. Compatibility of cup products in motivic and étale
cohomology

The aim of this technical section is to establish the compatibility of cup
products in étale and motivic cohomology. More precisely, we show that
the pairing of the previous section lifts to motivic cohomology even without
assuming the Bloch-Kato conjecture. The problem is that the cup product
for motivic cohomology over Dedekind rings is only defined if one factor
consists of equi-dimensional cycles (see Definition 2.11 below). We will show
that we have a commutative diagram
(2.7)

(D) @ Z/p") ¥ Hyyor (X, Z/p" (7 — 1) Hyot (X, Z/p" (7))

i(ﬁXCl J{cl

HY(Dy, Z/p" (1)) x H (X, Z/p"(j — 1)) ——— H'*(X,,, Z/p"(j))

- :

HY (D, Z/p" (1)) x HY (X, Z/p"(j — 1)) — > H (D, H'(X, Z/p" (5)))

) Umoto¢ X id
_—

where D,, := Spec(Ok, [1/5]), v and 7 are the edge maps as before, the
vertical arrows cl are étale cycle class maps and the cup product Uy, as
well as the map ¢ are defined below. The commutativity of the lower square
follows from lemma 1.4 and the compatiblity of the Hochschild-Serre spec-
tral sequence with cup products. The commutativity of the upper square
of (2.7) is discussed below; this generalizes the classical result for the usual
cycle class map (see e.g. [20, Prop. VI1.9.5]). Recall that by [30, Cor. 4.3] we

ANNALES DE L’INSTITUT FOURIER



ON NON-COMMUTATIVE TWISTING 1273

have an isomorphism
Hyot (X, 20" (7)) = H' (X, /0" (7))

Recall from [18, Section 1.7] that an irreducible scheme Z — D is
equi-dimensional if it is dominant over D. The relative dimension dimp Z
is then defined to be the dimension of the generic fibre. Now we de-
fine the relative higher Chow group complex for our smooth X — D
as follows: 2z7(X/D,p) to be the free abelian group generated by irre-
ducible closed subsets Z C X xpAl,, such that for each face F' of Al
the irreducible components Z’ of Z N (X xF) are equi-dimensional over
D and dimp Z' = dimp F + d — j. Note that we have an inclusion of com-
plexes 27(X/D,«) C 27(X,*). We define equi-dimensional motivic coho-
mology H: . (X/D,Z(j)) to be the Zariski hypercohomology of the com-
plex which has in degree i the Zariski sheafification of the presheaf
U 22(U/D,2j —i). To define H . (X/D,Z/p"(j)) we use the same com-
plex tensored with ®@“Z/p".

The units D, we use for twisting are all equi-dimensional:
LEMMA 2.10. — The map
61 D) — Hboy (Do, Z(1))
induced by sending u # 1 € D,S to the graph of the rational map

1 u 1
<l—u7u—1) +Spec D — Ap

restricted to D, —z | u(z) = 1 (i.e. to a cycle in Dy, x pAL) factors through
H} .(D,/D,Z(1)). The induced map

mot
Dy @ Z/p" — Hyo(Dn /D, Z/p" (1))
is Injective.
Proof. —In [18, Lemma 11.2] Levine constructs a map

DX—CH"(Dy,1) using the graph of (1/(1 — u),u/(u — 1)). Together with
the natural map

CH"(Dy,1) — Hp ot (Dn, Z(1))
this defines ¢ and hence a map
D @ Z[p" — Hpyor(Dns Z/p" (1))
If we compose this with the isomorphism in 2.2, we get a map

D'r>z< ® Z/pn — Hgt (Dn,Z/pn(l)),

TOME 56 (2006), FASCICULE 4



1274 Jens HORNBOSTEL & Guido KINGS

which is obviously (reduce to the case of a field) the map induced by the
Kummer sequence, hence injective. It remains to show that the map factors
through H} . (D,/D,Z/p"(1)). As the graph of (1/(1 — u),u/(u — 1)) is an
equi-dimensional cycle, this follows from the definition. O

Now we define the upper horizontal map Up,t of (2.7).

DEFINITION 2.11. — For f : X,, — Spec(D,,) smooth, we define
Unnot. “Hiot (D /D, Z/p" (1)) X Hny (X, Z/p" (j = 1))

— Hiot (Xa, Z/p" (7))

o mot
as the composition

(fx id)*OUBZ/D,Xn

Hpot (D /D, Z/p" (1)) X Hinot (X, Z/p" (j = 1))

— H (Xux D 29" () 22 I (X Z/0" ().

Here U’ ypx P2 (Dn/D,%) ®2"(X) — 2" (X xpDy,) is the exterior
product with integral coefficients defined by Levine [18, Section 8]. The
product of the complexes of presheaves induces a product of complexes

of sheaves and (using Godement resolutions as in [7]) on the hypercoho-

mology groups.

Now we return to the commutativity of (2.7). By definition of the twisting
map at finite level in 1.2, it is enough to consider the diagram

H}oi (Do /D, Z/p™ (1)) X Hiror (X, Z/p" ( — 1)) 2220 HEEL (X% p D, Z/p" (7))

H'(Dn, Z/p" (1)) x H (X0, Z/p"(j — 1)) ———= H™ (XX pDn, Z/p"(j)).

As pointed out in [6, p. 789], the proof of [7, Prop. 4.7] for the commuta-
tivity of the corresponding diagram of varieties over fields carries over to
Dedekind domains. The argument in the proof of [7, Prop. 4.7] that U equals
the product U" of loc. cit. constructed in a way compatible with Up, /p x
is still valid over Dedekind domains. Hence the commutativity of (2.7).

Appendix A. Twisting in p-adic K-theory

In this appendix, we will reinterpret our results in terms of p-adic K-
theory.

As usual, we can define K-theory with coefficients of the exact cate-
gory Vect(X) of vector bundles on X using Quillen’s Q-construction and
homotopy groups with finite coefficients:
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DEFINITION A.1. — Let
K,(X,Z/q) =7 (2BQVect(X),Z/q)
for r > 0 and Ko(X,Z/q) := Ko(X)/q. Moreover, we set
K, (X,Zyp) = lim K, (X,Z/p")

n

and define K,(X,Q,) := K.(X,Zy) ®z, Q,.

Here we use that we have maps €, : K.(X,Z/p") — K,.(X,Z/p" 1)
given by reduction of coefficients. Applying @ to the short exact sequence

0— K, (X)/p" — K, (X,Z/p") —pn K;,—1(X) =0

shows that rkz K, (X) = rkz, K, (X,Z,), provided the groups K, (X) and
K,_1(X) are finitely generated (“Bass conjecture”) as proved if X =
Spec(Ok) by Quillen [24].

We assume as before that X is smooth over Og[1/S], of relative di-
mension d. Adams operations carry over to finite coefficients and their
eigenspaces are denoted by K (X,Z/p")) as usual. By [28, Prop. 6] the
transfer maps (f,, ). respect these eigenspace decomposition (the hypothe-
sis of loc. cit. is satisfied as the field extension K,, /K, _ is finite).

Thomason constructs an algebraic Bott element § € Ko(X,Z/p™) and
proves that there is an isomorphism

K(X.2/p"[57"] = K&(X.Z/p")
(32, Thm. 4.11], that ¢, : K;(X,Z/p") — Kft(X, Z/p™) is an epimorphism
if j > N and BV annihilates ker(¢;) for all j > 0, where
N = %(d+ 2)(d + 3)(d + 4)
[33, Cor. 3.6]. Multiplying the short exact (for j > 2N) sequence
ker(¢;) — K;(X,Z/p") — K;* (X, Z/p")

with BN and applying the Snake Lemma, we get a split-
ting Kjion(X,Z/p") — ker(¢jion) and thus étale K-theory
is a mnatural direct summand of K-theory in these degrees. So if
2j —i—22> 8(d+2)(d+3)(d + 4), we obtain a pairing

Klét(OKn (1/S],Z/p") XKS;‘—i—Q(Xnv Z/p") — KQé;‘—i—l(Xnv Z[p")

which is a direct summand of the corresponding pairing in algebraic K-
theory with finite coefficients. Concerning the first factor, we even have an
isomorphism between K; and Kt by [4, Prop. 8.2].
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Remark A.2. — For p = 2, the bounds for j such that
Kj(X,Z/p") = KX, Z/p")

have been improved by Kahn [13, Thm. 2] provided X is “non-exceptional”.
He shows that it is an isomorphism if j > eds X — 1 As he points out [13,
p. 104], these improved bounds will carry over to odd p (without the non-
exceptional restriction) assuming the Bloch-Kato conjecture for K holds.

The next step is to observe that the étale Atiyah-Hirzebruch spectral
sequence degenerates (Fy = E) provided p > %cd,,X + 1 where cdp X
is the p-cohomological dimension of X, which is at most 2d + 3 (see [1,
Exposé X]). Moreover, the Adams filtration on K-theory and the weight
filtration on étale cohomology coincide in a certain range [27, Thm. 2], so
that the left hand side of the above pairing for K¢ is isomorphic to

HY Ok, [1/S],2/p"(1)) ® H'(X,Z/p"(j — 1))
provided p > (j+cd, X +3). As H(X,Z/p"(j—1)) is a trivial Ok, [1/S5]-
sheaf, the twist of Definition 1.3 yields an isomorphism
H' (O, [1/8],Z/p" (1)) @ H'(X,Z/p™(j — 1))
= H' (O, [1/8), H'(X,Z/p"(j)))-

It is now possible to construct elements having property R and N for alge-
braic K-theory, and to proceed as in the previous section. The p-adic cycle
class map has to be replaced by the p-adic regulator (take the inverse limit
of [8, Definition 2.22, Example 1.4 (iii)])

rpt Koj i 1(X,Z,)D — H'(X,Q,(4))).

Appendix B. Calculation of the inverse limit of Galois
cohomology

Here we give the proof of Proposition 1.2. Let G := Ggsand H C H C G
subgroups defining K, and K,,, so that G/H' = G,,, and G/H = G,, (hence
H/H' is finite).

By Shapiro’s Lemma we have

H'(Ok,[1/S],T) = H (Ok[1/S], Homp (G, T)),

where Homp (G, T) denotes the continuous maps f : G — T such that
f(hg) = hf(g). The group G acts on this from the left via (¢f)(z) := f(xg).
This action we use to take the cohomology. As H C G is a normal subgroup
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we have also a G/H-action on Homy (G, T) defined by 9f(z) := gf(g ).
This left action commutes with the G-action and defines the structure of a
Z|G/H]-module on Hompy (G, T). The corestriction on the left hand side

cores : H' (O, [1/5],T) — H'(Ok,[1/S],T)

is induced on the right hand side by the map
tr : Homy/ (G, T) — Hompy (G, T), f+— {g— Z hf(hilg)}

heH/H'

A straightforward calculation shows that this is well-defined. Note that

on T/p"™ the G-action factors through G,,. Consider the isomorphism

¢ : Hompy (G, T/p") = Zp[Gn] @z, T/p", fr— Y (z)@ flz™).

zeG,,

The G-action becomes gf — > (9z) ® f(z~1) and the G/H-action

becomes

zeG,

9f— 3 (g7'2) @ gf @ ).
z€Gp
If we put all this together we obtain that the corestriction is induced by

TRpr: Lp|Gm) @z, T/p™ — Zy|Grn] @z, T/p"

where 7 : Z,[G.,] — Z,[G,,] is the canonical surjection (integration over
the fibers) and pr : T//p™ — T/p™ the canonical projection. This proves
that

@HZ((’)KH[l/S],T) =~ H'(Ok[1/S],A(G) @z, T).

The formulas above imply that the G-action on A(G) ®z, T' is only via the
first factor so that

RT(Ok[1/5], A(G) ®z, T) = RT(Ok[1/5],A(G)) @5 T.

Here the A(G)-action on the right hand side is induced by multiplication
with the inverse on A(G) and T has its natural A(G)-structure induced from
its G-action. This proves the proposition.
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