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ON SOLVABLE GENERALIZED CALABI-YAU
MANIFOLDS

by Paolo DE BARTOLOMEIS & Adriano TOMASSINTI (*)

ABSTRACT. We give an example of a compact 6-dimensional non-Kéhler sym-
plectic manifold (M, k) that satisfies the Hard Lefschetz Condition. Moreover, it is
showed that (M, k) is a special generalized Calabi-Yau manifold.

RESUME. — On donne un exemple d’une variété symplectique compacte (M, k)
de dimension 6 qui n’admet aucune structure Ké&hlerienne, mais qui satisfait la
condition de Lefschetz Forte et dont ’algebre de DeRham est formelle; de plus,
on montre que (M, k) peut étre dotée d’une structure de Calabi-Yau généralisée
spéciale.

1. Introduction

In the symplectic universe, a distinguished galaxy is represented by those
objects satisfying the Hard Lefschetz Condition (HLC), i.e. those compact
2n-dimensional symplectic manifolds (M, k) for which the maps

[k]? : H* P(M,R) — H"™"(M,R), 0<p<n

are isomorphisms. A classical result states that, if (M, k, J) is a compact
Kéhler manifold, then (M, k) satisfies the HLC (see [7]), and A*(M) is
a formal DGA; moreover, HLC symplectic manifolds possess some of the
cohomological properties of a Kéhler manifold (e.g. the odd Betti numbers
bap+1 (M) are even, b, (M) < by2(M) ,0 < p < n—1). It is well known that,
given a symplectic manifold (M, k), it is possible to define a % symplectic
Hodge operator on AP(M), for 0 < p < 2n and a codifferential operator
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d*. Then (A*,d*,d) is a differentiable Gerstenhaber-Batalin-Vilkovisky
(dGBYV) algebra, that is integrable (i.e. the dd*-lemma holds), if and only
if (M, k) satisfies the HLC (see [13], [10], [9], [6]), and in this case (A*, d*, d)
is formal in the sense of DSLA’s (see e.g. [3]).

On the other hand, in recent years, a great deal of interest has been origi-
nated by generalizations of the notion of Calabi-Yau manifold (especially in
connection with a more flexible theory of deformation of classical objects)
and further special generalization can be investigated in real dimension 6
(see [2]).

In this paper we construct an example of a 6-dimensional compact sym-
plectic manifold (M, k), carrying a structure of special generalized Calabi-
Yau manifold and satisfying HLC, whose De Rham algebra is formal (as
DGA), but which does not admit any Kéhler structure). Note that our
manifold is solvable but not nilpotent and its cohomology is larger than
the invariant one.

2. Special generalized Calabi-Yau manifolds

Let (M, k) be a 2n-dimensional symplectic manifold. An almost complex
structure J on M is said to be k-calibrated if, for any = € M,

is an almost Hermitian metric on M. Let (M, J,g) be an almost Ké&hler
manifold and let VX be the Levi Civita connection of g. The Chern con-
nection is the covariant exterior differential operator defined by

1
V= VO - DIV
V is characterized by the following three conditions:
1
VJ=0, Vg=0, TV:ZNJ,

where TV is the torsion of V and N is the Nijenhuis tensor of .J.
Recall that, if J is an almost complex structure on M, then we have that

d: AI(M) — ABT2IH M) + ABPYU(M) + AR (M) + AR (M)
and so d splits accordingly as

d=A;+0;+0;+A;.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 2.1. — A special generalized Calabi-Yau manifold is the
datum of (M, k, J,€) where (M, k) is a compact symplectic 6-dimensional
manifold, J is a k-calibrated almost complex structure on M and € is a
nowhere vanishing (3,0)-form on M satisfying

i) Ve=0
i) Aj(e)+As(e) =0.
Remark 2.2. — Tt can be proved (see [2]) that € satisfies i) and ii) if and
only if

(2.1)

ENE = —ie"g—f, with o = const.
dRee = 0.

If J is a holomorphic structure, then Ay = 0, V = V¢ and a special
generalized Calabi-Yau manifold is a Calabi-Yau manifold of complex di-
mension 3.

3. The solvmanifold M

In this section we will recall the construction of the solvmanifold M. Let
A € SL(2,7) with two distinct real eigenvalues e* and e~*, where A > 0.
Let P € GL(2,R) such that

Y
1. (e 0
parioa= (50,

On C?, with coordinates (z,w), let ~ be defined by

(2)-(2) = (2)-(2)er((mizm).
w w w w mo + 2ming

where mq, mo,n1,ny € Z. Then (Cz/ ~ is a complex torus T2 and

S[CRIEENI

!
is a well defined automorphism of T2. Indeed, if < 121/ ) ~ ( fu >, then

A z (7 LAP my + 2ming _

w’ w me + 2mng
_ z my + 2ming _ z my + 2ming
_A<w>+PA(m2+27m2 >_A<w>+P<m2+27m2 )
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A
sothatA< Z, > NA( y )

w w
For example, take

2 1
A= .
(7 1)

Then \ = log % and we can choose

15 1
_ 2
(3.1) P= < : - > .

2

Set again

3+V5 V-1
5 and u = log 5

on C3, with coordinates (21, 22, 23), let us consider a multiplication * defined
by

A = log

(21, 22, 23) * “(w1, w2, w3) = (21 + w1, e M zg + w2, ¥ 25 + w3)

for any (21, 22, 23), {(w1, wa, w3) € C3. Then (C3, %) is a complex solvable
Lie group. Let

Ti(z) = '(z1+ A e o, etzs),
To(z) = Y21+ 2mi, 29, 23),

T3(2) = "2, 22+ 1, 23— p),

Ty(z) = (a1, 22 +mp, 23+ 1),

Ts(z) = Y21, 22 + 2mi, 23 — 2mip, ),
Ts(z) = Y21, 22 + 2mip, 23 + 2mi)

and let I' be the subgroup generated by Ti,...,Ts. Then I' is a closed
subgroup of the Lie group (C3,x) and, consequently, the quotient C3/T is
a manifold. We have

C x C?/P(Z? + 2miZ?)

—
—

(3.2) M = (C3 %) /T ~

)

where
=i=<T1,T5 > .

Therefore, M is a non-nilpotent compact complex solvmanifold (see [11],
[12]).
It is immediate to check that

(3.3) p1:=dz, @2:=edzy, @3:=e “dz;

ANNALES DE L’INSTITUT FOURIER
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define holomorphic (with respect to the standard complex structure in-
duced by C3) invariant 1-forms on M, such that

(3.4) dp1 =0, dps=p1Np2, dp3=—p1Nps.

By (3.2), the solvmanifold M is diffeomorphic to the product
R x T?

3.5 St x .

(3:5) <T >

4. Cohomology of M

We will compute the cohomology of the solvmanifold M.
THEOREM 4.1. — We have by(M) = 2, bo(M) =5 and b3(M) = 8.

Proof. — We start by computing the second Betti number of M. By
Hodge theorem, we determine the space of real harmonic two-forms on M.
Let ¢ € A?(M,R); then,

p=p+I+9,
with ¢ € A29(M) and 9 =9 € Ab1(M). Therefore, we can set
Y= Yrap1 A+ Y1301 A w3+ P23 02 A s
v o= 1911301 NPy +1915801 N ©q +"91§S01 NPy

—01502 APy + Vo502 APy + Vg3 02 APy

—V1303 NP1 — U303 NPy + 33903 NP3,

where Ygp, ¥ 7, a, b = 1,2, 3 are C* and TI-invariant functions on C?

ab?

satisfying the following

Vi1 = ?11
(4.1) Vg3 = 225

Vg3 = —Vg3.-
Then, the two-form ¢ is harmonic if and only if

oy =

(4.2) o+ 0y =

PP+ 9 = 0,
where, as usual,

*

d=0+09, 0"=—%x0x, 0 =—x%0x, &=0"+0"

TOME 56 (2006), FASCICULE 5
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and * : AP9(M) — A37P379(M) is the Hodge operator is taken with
respect to the Hermitian metric

3

90:Z<,0h @ Pp, -
h=1

The first and the second equation of (4.2) are equivalent to say that de = 0,
while the last equation means d*p = 0.

A straightforward computation, shows that (4.2) is equivalent to the fol-
lowing system of partial differential equations in the unknowns vp, ¢
h,k=1,2,3

hk>

o Ohra ., Oz 0oz _

“3) dz3 ¢ Jza 071 0
(46) -
(47) O a0 Oy
9 T e G - G TR =
(4.9) e '
(4.10) 0 e O By
(4.12) et 8812233 —e™ 8;;? + 6_21% =0

ANNALES DE L’INSTITUT FOURIER



ON SOLVABLE GENERALIZED CALABI-YAU MANIFOLDS 1287

U1 s 001 L 05 o OV
. 31/J12+€Z1 5¢13+3 11 +€_zla 12+ez1a 13 _ .

029 0z3 071 0Z9 0Z3

(4.15) e

Since I" acts as a group of translations on the variable x4 = Sm 21, the
functions Yuk, ¥,z h, k =1, 2, 3 are periodic with respect to x4. There-
fore, we can take the Fourier expansion of these functions. Let us denote
by z = (21, 22, z3). We set:

_ _ 21— 21
= )\
Ynk(2,2) Em nk m (21, 22, 23, Z2, Z3) exp(m 5 )
_ _ z21— 21
ﬁhE(Z,Z) = g @hgm(x1’22723’z2’z3) eXp(m 2 )’
m

for h, k=1, 2,3, m € Z.
Now we put the previous expressions for the unknowns ¢, 9,7 into
equations (4.3)...(4.15). By a direct computation, we get the following:

V19, OVi3y,  OWaspy,
o1 12 e 13 i 23 er

(4.16) Oz3 0zs 021 5\11237"’ =0
(4.17) —enPOin O My,
(1 M0,) = 0
w29 e
(R0 )0 ) = 0
(419) e @523_,”_ 21868122"" a\gz’”—gl%gm = 0
120) = Dm0y By (14 e = 0
(4.21) agm_% _
(B (14 D)0y, = 0

TOME 56 (2006), FASCICULE 5
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= a\ylgm _ 8@15 8@25 m
4.23) e*t —e & m m — +1)03 = 0
( ) € 853 ¢ 022 + 82’1 + ( 2 + ) 23m
= 8\1113m 8@13 8@3§ m
4.24 1 — et m m — —1)0.3 = 0
( ) 0Z3 ¢ 073 + 0~ + ( 2 ) 33m
z aqudm 8625 _ 8635
4.25 1 — e* m z12733m
( ) 823 ¢ 82’3 te (92’2
OWiz—m om —— Uy, 003
4.26) ———— — 4+ 1)W3_,, 1 m
( ) 821 + ( 2 + ) 13 te 622 + 851 +
m = 8@ 2, = 8@) 3,
i _ —ZzZ1 2 723m _ z1 2 ~33m  _
5 O3, + ¢ 0, e 025 0
3m m _— . OVas_ ., 8@1§
4.27) ——— — +1)Wio_,, —e * m
( ) 82’1 + ( 2 + ) 12 ¢ 823 + 821 +
m z 8922 z 8925
Mg, e m _ % mo_ g
2 12m € 622 ¢ 6Z3
— 8\11127m a\:[/137171 8@1T—m m
4.28 1 Z1 - 0,-
( ) ¢ 0zo te 0z3 + 071 2 1T-m  +
6612 1 8615—
m z m _ 0
¢ 0% te 0Z3
Notice that equations (4.16)...(4.28) are identities in m.
By equations (4.22), (4.25), (4.26) and (4.27) we get that
0043 00,3 00,3 00,3
m_ Tm _ Tm _ TBm ) vy ez
822 823 652 823 "
Consequently,

043, = ®2§m(x1) .

Since O3, is I-invariant, it follows that it is periodic. Therefore by (4.23)
we obtain

Vy35(2,2) = (u+iv)e”™ *  u, v eR.

By proceeding in a similar way, by taking into account (4.1) and the crucial
fact that the functions ¥k, 9,7, h, k = 1,2,3 are I'-invariant, we can solve
the initial system of partial differential equations (4.3)...(4.15). A direct

ANNALES DE L’INSTITUT FOURIER
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computation shows that

P12(2,Z) = 0
13(2,Z) = 0
Yo3(2,Z) = x+iy z,yeR
V,7(2,2) = is seR
V5(2,2) = 0
Y3(2,2) = 0
Uy3(2,2) = 0
Uy3(2,2) = (u+ w)e Ty, v eER
Uy5(2,2) = 0.

3
This proves that ba(M) = 5. Needless to say that we could perform same
computations for

N R x T? ’
<T >
sparing one dimension, but losing the complete use of complex variable.
In order to compute the first Betti number of M, we may perform the
same method as before or refer to Theorem 4 of [11] for a more general
result. We get b (M) = 2.
Since M is compact and parallelizable, we obtain that

by(M) = 2(by (M) — by (M) + 1) = 8
O

We can give also an alternative proof, using spectral sequences, to com-
pute the Betti numbers of
R x T?2
N=—=
<7 >
and then use Kunneth formula for
M=S"xN.
N can be described as the T2-bundle over S*
[0,A] x T?

where {0} x T? and {\} x T? are identified via A ;
in other words, let i := {Uy, Us, U3} be the covering of S given by:

» T T
Ulzz{ele\ —E—e<9<§+e}

TOME 56 (2006), FASCICULE 5
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Ug:z{ewﬂ—egﬁgh—i—e}

2 6
0 (T s
Us:=1e |f_6<0<_€+6

then N is the fibre bundle defined by the transition functions
Yot Uy N Uy — Aut(T?) , 1o = VA
oz : UsNU3 — Aut(Tz) , oz = VA
Pa1 : UsNUp — Aut(T?) | bz = VA

we shall compute b1 (N) and bo(N) by means of Leray’s spectral sequence
associated to the double complex

KPP .= CP (U, A1)
clearly the spectral sequence degenerate at Fs and
ELt = EPT = Hs(4, 9U(T%)) , p=0,1

(where $7(T?) is the locally constant sheaf H ,(T?)), all other elements
being zero.
Note that:
if
a = (ay, as, az) € C° (U, H(T?))
then

da = (ar — (VA)*(az), az — (VA)"(az), az — (VA)*(a1))

(1) BY' = HY(Y, H1(T?)) = {A — invariant elements of H} ,(T?)}

(3) EY? = HY(Y, H3(T?)) = {A — invariant elements of H% ,(T?)}

(4) Ey' = HX (Y, H(T?)) = {0} ; in fact, given
b= (bia, bas, bs31) € C (8, H'(T?))

we have:
(5(0,1, as, a3) = b
with

(a) az = (I — A*)"L((VX)*bs1 + bag + ((VA)?)*b12)

ANNALES DE L’INSTITUT FOURIER
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(b) a1 = bis + (\3/K)*a2
(¢) az = ((VA)~")*(as — ba3)
Consequently:
bi(N)=1, ba(N)=4
Let ay, agyp denote the real and imaginary part of ¢p, h = 1,2,3 (see
Section 3). Then Theorem 4.1 implies the following

COROLLARY 4.2. — We have
HY (M,R) = ([aa], [aa])
H*(M,R) = ([oq Aayl, [az Aag — as Aas], [az Aas — as A ag),
[cos(2x4) (g A ag + a5 A ag) —sin(2z4) (a2 A as + as A as)],
[sin(2z4) (g A ag + as A ag)+cos(2z4) (a2 A ag + as A as))).

Proof. — A straightforward computation shows that the above forms are
harmonic with respect to the Hermitian metric
3

QOZZQD;L ® P,

h=1
on M = C3/T, where ), are the 1-forms on M defined by (3.3). O
Remark 4.3. — We stress that Hilnv(M7 R)=H'(M,R), but HiQIlV(M’ R)

C H*(M,R). Indeed, by Corollary 4.2 we have
Hi (M, R) = ([a], [au]) = H'(M,R)

nv
and

anV(M, R) = ([ Aau], [aaAag—asAas], [aaAas—asAag)) C H2(M,R).

This is in contrast with the nilpotent case.

5. Main Theorem

We are ready to prove the following

THEOREM 5.1. — Let M = C3/T. Then
i) there exists a symplectic structure k on M such that (M, k) satisfies
the Hard Lefschetz Condition;
ii) the De Rham complex of M is formal;
iii) there exists on M a structure of special generalized Calabi-Yau
manifold;

TOME 56 (2006), FASCICULE 5



1292 Paolo DE BARTOLOMEIS & Adriano TOMASSINI

iv) M has no Kéhler structures.

Proof. — i) We start showing that M satisfies the Hard Lefschetz Con-
dition. Let ¢1, @2, @3 be the differential defined by (3.3). As before, denote
by ap, as4p the real and imaginary part of pp, h = 1,2, 3, respectively. By
(3.4), we easily get that

doq = da4 =0
dOZQ :Oél/\Otngt4/\Oé5
(5.1) dag = —a1 ANag + ayg A ag
das = a1 ANag —as A ay
doag = —a1 ANag+ag Aay.
Let us define
(5.2) K:=a1 ANag+az Aas+ag A ag

Then & is closed and non degenerate and so it defines a symplectic structure
on M. Let {&,...,&} be the dual basis of {a,...,as}. Let us define a
k-calibrated almost complex structure J on M, by

JE1 =& JE& =& J& =&
JE = —& JE = —&3 JE = —&g

Let L: AP(M) — APT2(M)

(5.3)

L(a) =k A«
and

d°=J""dJ.
Then we have the following identity
(5.4) [A, L] = —[d,d]

(see e.g. [1]), where A is the Hodge Laplacian with respect to the Riemann-
ian metric

Now, observe that
Joag=—ag, Jag=0a1, J(laaNhasz—asAag)=—asAas+asAag

and that
051/\0[4, OZQ/\OL67043/\OL5,

(cos(2z4) (a2 A s + as A ag) — sin(2z4) (e A o + g A as)) ,

(sin(2z4) (2 A as + a5 A ag) + cos(2z4) (e A ag + as A as)),

ANNALES DE L’INSTITUT FOURIER
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are J-invariant. Hence, by (5.4), we get that [A,L] = 0 on the above
forms. Therefore, given a € H*"?(M,R), p = 1,2, let h(a) be its harmonic
representative. Then 0 # LP(h(a)) is harmonic. Therefore

LP : H37P(M,R) — H3*P(M,R)

is injective and, by Poincaré duality, bijective. Hence, (M, k) satisfies the
Hard Lefschetz Condition.

ii) Summarizing, we have that the whole cohomology of M expressed
through its harmonic representative is given by:

H'(M,R) =([o], [eu])

H?(M,R) =([o1 A ], [aa A ag — a3 A as), [aa A az—as A ag),
[cos(2x4) (g N ag+as A ag) —sin(2z4) (as A ag + ag A as)],
[sin(2x4) (g A ag + as A ag)+cos(224) (a2 A ag + as A as)])

=(len Aadl, [al, [, D], 16D

H*(M,R) =([o1 Aag Aag — a1 Aas A ag),
[a1 A ag Aag —ag A ag A as],
[ag A ag A ay —ayg A as A agl,
[as A g A as — as A ag A ag),
[cos(2x4) (g A ag Ay + g A as A ag)+
+sin(2z4) (2 A g A g + a3 Aoy A as)],
[sin(2z4) (g A ag Aoy + ag A as A ag)+
—cos(2z4) (o A ag A ag + as Aag A as)],
[—cos(2z4) (a1 ANz Aas + a1 Aas Aag)+
+sin(2z4) (o1 A Aag + a1 Aag A as)l,
[—sin(2z4) (1 A e A ag + a1 A as Aag)+

- COS(2I’4)(041 A ag A g + AN Qa3 A 045)] ,

TOME 56 (2006), FASCICULE 5



1294 Paolo DE BARTOLOMEIS & Adriano TOMASSINI

H*(M,R) =( [ag A ag A as A agl,
[ar ANag Ay Aag —aqg Aas A ag A as),
[ar Aag ANas Aag —ag Aas Aas A ay],
[cos(2z4) (a1 Aag ANag Aoy + ag Aag Aas A ag)+
+sin(2z4) (a1 Aag Aag Aag + a3 Aag Aag Aas)],
[sin(2z4) (a1 Aag Aag ANayg + ag Aag A as A ag)+
—cos(2x4)(ag Nag Nayg Nag + a3 Aaz Aag Aas)])

H°(M,R) =([aa Az Aag Aas Aag), [ar Aaz Aas Aas A ag))
It is easy to check that we are in a very special situation, i.e. for M the
product of harmonic forms is harmonic and, as it is very easy to see, this
is enough to establish that (A*(M), d) is formal; in fact, we have the fol-
lowing, immediate to prove

LEMMA 5.2. — Let (N, g) be a compact Riemannian manifold such
that the space of harmonic forms of N is closed under multiplication; then
the map

h: (Hpgr(N), 0) — (A*(N), d)
assigning to every De Rham class its harmonic representative is a DGA
quasi-isomorphism and consequently N is formal.

moreover, giving a closer look, if we set:
‘/i::<a17054> ‘/2:<av6a75 5>
then we see that
M= AV1 Q@ AVy

is the minimal model of the De Rham algebra of M. Hence ii) is proved.

iii) Next, we show that (M, k), where  is the symplectic form defined
by (5.2), has a structure of special generalized Calabi-Yau manifold. Set

€:= (aq +iag) A (g + iaz) A (ag + ias) .

Then, by definition, € is a (3, 0)-form with respect to the x-calibrated almost
complex structure defined by (5.3). By a direct computation we get

Ree=—a1 ANagANag—ai ANag Aas +ag Aas ANag —as Aag Aay.

By setting
_ V3.
2

€

ANNALES DE L’INSTITUT FOURIER



ON SOLVABLE GENERALIZED CALABI-YAU MANIFOLDS 1295

we have
ENE= —iK
and
dRee=0.

Therefore (M, k, J, €) is a special generalized Calabi-Yau manifold and iii)
is proved.

iv) Finally, we show that M has no Kahler structures. First of all, we
observe that the standard holomorphic structure on M = C3/T, induced
by C3, is not Kahler, since ¢y, ¢3 are holomorphic non closed 1-forms on
M. In order to prove that M has no Kéhler structures, we recall the Main
Theorem of [8].

A compact solvmanifold admits a Kahler structure if and only if it is a finite
quotient of a complex torus which has a structure of a complex torus bundle
over a complex torus. In particular, a compact solvmanifold of completely
solvable type has a Kahler structure if and only if it is a complex torus.

For the nilpotent case see [4].

Assume now that M = C3/T has a Kéhler structure. Then M is covered by
a torus and M is the total space of a holomorphic torus bundle {M, 7, B, F'}
over a complex torus B of complex dimension 1. In view of the Théoreme
Principal II, p. 192 of [5], we have that, if M is Kéhler, then

bi(M) = bi(F) +b1(B).

This is absurd, since by (M) = 2, b1 (F') = 4 and b (B) = 2. The theorem is
proved. O

Remark 5.3. — Notice that the solvmanifold M is a balanced manifold.
Indeed,
3

gO:ZSDh @ Py, -
h=1

defines an Hermitian metric on M, whose Kéhler form is

.3
1 _
Ko =5 Z AN
h=1
and, by a direct computation, we have that

d(/ﬁo AHQ) =0.
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