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THE HILBERT SCHEME OF SPACE CURVES OF
SMALL DIAMETER

by Jan Oddvar KLEPPE

Abstract. — This paper studies space curves C of degree d and arithmetic
genus g, with homogeneous ideal I and Rao module M = H1

∗(Ĩ), whose main results
deal with curves which satisfy 0Ext2R(M, M) = 0 (e.g. of diameter, diamM 6 2).
For such curves we find necessary and sufficient conditions for unobstructedness,
and we compute the dimension of the Hilbert scheme, H(d, g), at (C) under the suf-
ficient conditions. In the diameter one case, the necessary and sufficient conditions
coincide, and the unobstructedness of C turns out to be equivalent to the vanishing
of certain graded Betti numbers of the free minimal resolution of I. More gener-
ally by taking suitable deformations of C we show how to kill repeated direct free
factors (“ghost-terms”) in the minimal resolution of I, leading to a rather concrete
description of the number of irreducible components of H(d, g) which contains an
obstructed diameter one curve. We also show that every irreducible component of
H(d, g) is reduced in the diameter one case.

Résumé. — Cet article concerne des courbes gauches C de degré d et de genre
g, d’idéal homogène I et de module de Rao M = H1

∗(Ĩ) ; les résultats princi-
paux portent sur les courbes qui vérifient 0Ext2R(M, M) = 0 (e.g. de diamètre,
diamM 6 2). Pour de telles courbes nous trouvons des conditions nécessaires et
suffisantes pour être non obstruées et nous calculons la dimension du schéma de
Hilbert, H(d, g) en (C) sous des conditions suffisantes. Dans le cas du diamètre 1,
les conditions nécessaires et suffisantes coïncident et la condition d’être non obs-
truée s’avère être équivalente à l’annulation de certains nombres de Betti gradués
de la résolution libre minimale de I. Plus généralement, en prenant des défor-
mations convenables de C, nous montrons comment éliminer les facteurs directs
libres répétés (“termes-fantômes”) dans la résolution minimale de I, conduisant à
une description relativement concrète du nombre des composantes irréductibles de
H(d, g) qui contiennent une courbe obstruée de diamètre 1. Nous prouvons aussi
que chaque composante irréductible de H(d, g) est réduite au cas de diamètre 1.

Keywords: Hilbert scheme, space curve, Buchsbaum curve, unobstructedness, cup-
product, graded Betti numbers, ghost term, linkage, normal module, postulation Hilbert
scheme.
Math. classification: 14C05, 14H50, 14B10, 14B15, 13D10, 13D02, 13D07, 13C40.
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1. Introduction and main results

The Hilbert scheme of space curves of degree d and arithmetic genus g,
H(d, g), has received much attention over the last years after Grothendieck
showed its existence [13]. At so-called special curves it has turned out that
the structure of H(d, g) is difficult to describe in detail, and questions re-
lated to irreducibility and number of components, dimension and smooth-
ness have been hard to solve. For particular classes of space curves, some
results are known. In 1975 Ellingsrud [10] managed to prove that the open
subset of H(d, g) of arithmetically Cohen-Macaulay curves (with a fixed res-
olution of the sheaf ideal IC) is smooth and irreducible, and he computed
the dimension of the corresponding component. A generalization of this re-
sult in the direction of smoothness and dimension was already given in [18]
(see Theorem 1.1(i) below) while the irreducibility was nicely generalized by
Bolondi [3]. Later, Martin-Deschamps and Perrin gave a stratification Hγ,ρ

of H(d, g) obtained by deforming space curves with constant cohomology
[26]. Their results lead immediately to (iii) in the following

Theorem 1.1. — Let C be a curve in P3 of degree d and arithmetic
genus g, let I = H0

∗(IC) := ⊕H0(IC(v)), M = H1
∗(IC) and E = H1

∗(OC)
and suppose at least one of the following conditions:

(i) vHomR(I,M) = 0 for v = 0 and v = −4,
(ii) vHomR(M,E) = 0 for v = 0 and v = −4, or
(iii) 0HomR(I,M) = 0, 0HomR(M,E) = 0 and 0Ext2R(M,M) = 0.

Then H(d, g) is smooth at (C), i.e., C is unobstructed. Moreover if
0ExtiR(M,M) = 0 for i > 2, then the dimension of the Hilbert scheme
at (C) is

dim(C) H(d, g) = 4d+ 0homR(I, E) + −4homR(I,M) + −4homR(M,E).

We may drop the condition 0ExtiR(M,M) = 0 for i > 2 in Theorem 1.1
by slightly changing the dimension formulas (cf. Theorem 2.6 and Re-
mark 2.7). Moreover we remark that once we have a minimal resolution
of IC , we can easily compute 0homR(I, E) (as equal to δ2(0) in Defini-
tion 2.1) while the dimensions of the other Hom-groups are at least easy to
find provided C is Buchsbaum (Remark 2.7, (3.4) and (3.6)). Another re-
sult from Section 2 is that if a sufficiently general curve C of an irreducible
component V of Hγ,ρ satisfies the vanishing of the two Hom-groups of The-
orem 1.1 (iii), then V (up to possible closure in H(d, g)) is an irreducible
component of H(d, g) (Proposition 2.10).
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A main goal of this paper is to see when the sufficient conditions of
unobstructedness of Theorem 1.1 are also necessary conditions. Note that
it has “classically” been quite hard to prove obstructedness because one
essentially had to compute a neighborhood of (C) in H(d, g) to conclude
([34], [18], [7], [15]). Looking for another approach to prove obstructedness,
we consider in Section 3 the cup product and its “images” in 0HomR(I, E),
−4HomR(I,M)∨ and −4HomR(M,E)∨ via some natural maps, close to
what Walter and Fløystad do in [40] and [11] (see also [29], [35]). These
“images” correspond to three Yoneda pairings, one of which is the natural
morphism

(1.1) 0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E).

All three pairings are easy to handle because they are given by taking
simple compositions of homomorphisms, cf. Proposition 3.6 and 3.8. If
0Ext2R(M,M) = 0, it turns out that the non-vanishing of one of the three
pairings is sufficient for obstructedness. In particular, for a Buchsbaum
curve of diameter at most 2, we can, by using a natural decomposition
of M , get the non-vanishing of (1.1) from the non-vanishing of some of
the Hom-groups involved. More precisely we have (cf. Theorem 3.2 for a
generalization to e.g. curves with 0Ext2R(M,M) = 0 obtained by Liaison
Addition)

Theorem 1.2. — Let C be a Buchsbaum curve in P3 of diameter at
most 2 and let M ∼= M[c−1] ⊕M[c] be an R-module isomorphism where
M[t], for t = c− 1 and c, is the part of M = H1

∗(IC) supported in degree t.
Then C is obstructed if one of the following conditions hold

(a) 0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0,
for t = c or t = c− 1,

(b) −4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0,
for t = c or t = c− 1,

(c) 0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0,
for t = c or t = c− 1.

Buchsbaum curves in P3 are rather well understood by studies of Migliore
and others (cf. [30] for a survey of important results as well as for an
introduction to Liaison Addition), and Theorem 1.2 takes some care of
its obstructedness properties. Note also that since the main assumption
0Ext2R(M,M) = 0 of Section 3 is liaison-invariant, there may be many
more applications of Proposition 3.6 and 3.8.

Our results in Section 3 also allow an effective calculation of (at least
the degree 2 terms of) the equations of the singularities of H(d, g) at some
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curves whose diameter is 2 or less (as illustrated in Example 3.12). To get
equivalent conditions of unobstructedness and a complete picture of the
equations of the singularities of H(d, g) more generally, we need a more
general version of the cup product and we certainly need to include their
higher Massey products (Laudal, [25] and [24]).

If we reformulate Theorem 1.1 by logical negation to necessary conditions
of obstructedness (cf. Proposition 3.1) we get necessary conditions which
are quite close (resp. equivalent) to the sufficient conditions of Theorem 1.1
in the diameter 2 case (resp. in the diameter 1 case). It is easy to substitute
the non-vanishing of the Hom-groups of Theorem 1.2 by the non-triviality
of certain graded Betti numbers in the minimal resolution,

0 →
⊕
i

R(−i)β3,i →
⊕
i

R(−i)β2,i →
⊕
i

R(−i)β1,i → I → 0,

of I (cf. Corollary 3.3). In the diameter one case, we get the following main
result (cf. [26], pp. 185-193 for the case M ∼= k).

Theorem 1.3. — Let C be a curve in P3 whose Hartshorne-Rao module
M 6= 0 is of diameter 1. Then C is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0.

Moreover if C is unobstructed and M is r-dimensional, then the dimension
of the Hilbert scheme H(d, g) at (C) is

dim(C) H(d, g) = 4d+ 0homR(I, E) + r(β1,c+4 + β2,c).

The Hilbert scheme of constant postulation (or the postulation Hilbert
scheme), for which there are various notations, GradAlg(H), HilbH(P3) or
just Hγ in the literature, has received much attention recently. We prove

Proposition 1.4. — In addition to the general assumptions of Theo-
rem 1.3, let M−4 = 0. Then

Hγ is singular at (C) if and only if β1,c+4 · β2,c+4 6= 0.

Moreover if Hγ is smooth at (C), then dim(C) Hγ = 4d + 0homR(I, E) +
r(β1,c+4 + β2,c − β1,c).

In Section 4 we are concerned with curves which admit a generization
(i.e., a deformation to a “more general curve”) or are generic in Hγ,ρ, Hγ or
H(d, g). Inspired by ideas of Martin-Deschamps and Perrin in [26] we prove
some results, telling that we can kill certain repetitions in a minimal reso-
lution (“ghost-terms”) of the ideal I(C), under deformation. Hence curves
with such simplified resolutions exist. One result of particular interest is

ANNALES DE L’INSTITUT FOURIER
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Theorem 4.1 which considers the form of a minimal resolution of I(C) given
by a Theorem of Rao, cf. (3.1) and (3.2). We prove

Theorem 1.5. — If C is a generic curve of Hγ,ρ (or of Hγ or H(d, g)),
then C admits a minimal free resolution of the form

0 → L4
σ⊕0−→ L3 ⊕ F1 → F0 → I(C) → 0,

where σ : L4 → L3 is given by the leftmost map in the minimal resolution of
the Rao module M , cf. (3.1), and where F1 and F0 are without repetitions
(i.e., without common direct free factors).

Restricting to general Buchsbaum curves, we prove, under some condi-
tions, that L4 and F1, and L4 and F0(−4), have no common direct free
factor (Proposition 4.2). We get

Corollary 1.6. — Let C be a curve in P3 whose Rao module M 6= 0
is of diameter 1 and concentrated in degree c.

(a) If C is generic in Hγ,ρ, then Hγ is smooth at (C). Moreover C is
obstructed if and only if β1,c · β2,c+4 6= 0. Furthermore if β1,c = 0 and
β2,c+4 = 0, then C is generic in H(d, g).

(b) If C is generic in Hγ , then C is unobstructed. Indeed both H(d, g) and
Hγ are smooth at (C). In particular every irreducible component of H(d, g)
whose generic curve C satisfies diamM = 1 is reduced (i.e., generically
smooth).

Moreover we are able to make explicit various generizations of Buchs-
baum curves of diameter at most two, allowing us in many cases to de-
cide whenever an obstructed curve is contained in a unique component of
H(d, g) or not (Proposition 4.6). Finally we show that any Buchsbaum curve
whose Hartshorne-Rao module has diameter 2 or less, admits a generiza-
tion in H(d, g) to an unobstructed curve, hence belongs to a reduced irre-
ducible component of H(d, g). We believe that every irreducible component
of H(d, g) whose generic curve C satisfies diamM 6 2 is reduced.

A first version of this paper (containing Theorem 2.6, Theorem 1.3, The-
orem 1.5, Corollary 1.6, Proposition 4.6 and the “cup product part” of
Proposition 3.6 and 3.8, see [19], available from my home-page) was writ-
ten in the context of the group “Space Curves” of Europroj, and some
main results were lectured at its workshop in May 1995, at the Emile Borel
Center, Paris. Later we have been able to generalize several results (e.g.
Theorem 1.2). The author thanks prof. O. A. Laudal at Oslo and prof. G.
Bolondi at Bologna for interesting discussions on the subject.
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1.1. Notations and terminology

A curve C in P3 is an equidimensional, locally Cohen-Macaulay sub-
scheme of P := P3 of dimension one with sheaf ideal IC and normal sheaf
NC = HomOP (IC ,OC). If F is a coherent OP -Module, we let Hi(F) =
Hi(P,F), Hi

∗(F) = ⊕v Hi(F(v)) and hi(F) = dim Hi(F), and we de-
note by χ(F) = Σ(−1)ihi(F) the Euler-Poincaré characteristic. Moreover
M = M(C) is the Hartshorne-Rao module H1

∗(IC) or just the Rao mod-
ule, E = E(C) is the module H1

∗(OC) and I = I(C) is the homogeneous
ideal H0

∗(IC) of C. They are graded modules over the polynomial ring R =
k[X0, X1, X2, X3], where k is supposed to be algebraically closed of char-
acteristic zero. The postulation γ (resp. deficiency ρ and specialization σ)
of C is the function defined over the integers by γ(v) = γC(v) = h0(IC(v))
(resp. ρ(v) = ρC(v) = h1(IC(v)) and σ(v) = σC(v) = h1(OC(v))). Let

s(C) = min{n|h0(IC(n)) 6= 0},

c(C) = max{n|h1(IC(n)) 6= 0},

e(C) = max{n|h1(OC(n)) 6= 0}.

Let b(C) = min{n|h1(IC(n)) 6= 0} and let diamM(C) = c(C) − b(C) + 1
be the diameter of M(C) (or of C). If c(C) < s(C) (resp. e(C) < b(C)),
we say C has maximal rank (resp. maximal corank). A curve C such that
m ·M(C) = 0, m = (X0, . . . , X3), is a Buchsbaum curve. C is unobstructed
if the Hilbert scheme of space curves of degree d and arithmetic genus g,
H(d, g), is smooth at the corresponding point (C) = (C ⊆ P3), otherwise C
is obstructed. The open part of H(d, g) of smooth connected space curves
is denoted by H(d, g)S , while Hγ,ρ = H(d, g)γ,ρ (resp. Hγ , resp. Hγ,M )
denotes the subscheme of H(d, g) of curves with constant cohomology, i.e.,
γC and ρC do not vary with C, (resp. constant postulation γ, resp. constant
postulation γ and constant Rao module M), cf. [26] for an introduction.
The curve in a sufficiently small open irreducible subset of H(d, g) (small
enough to satisfy all the openness properties which we want to pose) is
called a generic curve of H(d, g), and accordingly, if we state that a generic
curve has a certain property, then the curve belongs to an open irreducible
subset of H(d, g) of curves having this property. A generization C ′ ⊆ P3 of
C ⊆ P3 in H(d, g) is a generic curve of some irreducible subset of H(d, g)
containing (C).

For any graded R-module N of finite type , we have the right derived
functors Hi

m(N) and vExtim(N,−) of Γm(N) = ⊕v ker(Nv → Γ(P, Ñ(v)))
and Γm(HomR(N,−))v respectively (cf. [14], exp. VI). We use small letters
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for the k-dimension and subscript v for the homogeneous part of degree v,
e.g. vextim(N1, N2) = dim vExtim(N1, N2).

2. Preliminaries. Sufficient conditions for
unobstructedness.

In this section we recall the main Theorem on unobstructedness of space
curves of this paper (Theorem 1.1 or Theorem 2.6). Theorem 2.6 is not
entirely new. Indeed (i) and (i’) were proved in [18] under the assumption
“C generically a complete intersection” (combining [20], Rem. 3.7 and [22],
(4.10.1) will lead to a proof), while the (iii) and (iii’) part is a rather
straightforward consequence of a theorem of Martin-Deschamps and Perrin
which appeared in [26]. However, (ii) and (ii’) seem new, even though at
least (ii) is easily deduced from (i) by linkage. Indeed linkage preserves
unobstructedness also in the non arithmetically Cohen-Macaulay (ACM)
case provided we link carefully (Proposition 2.5). We will include a proof of
Theorem 2.6, also because we need the arguments (e.g. the technical tools
and the exact sequences which appear) later.

Let N , N1 and N2 be graded R-modules of finite type. Then recall that
the right derived functors vExtim(N,−) of vH0

m(HomR(N,−)) are equipped
with a spectral sequence ([14], exp. VI)

(2.1) Ep,q2 = vExtpR(N1,Hq
m(N2)) ⇒ vExtp+qm (N1, N2)

(⇒ means “converging to”) and a duality isomorphism ([23], Thm. 1.1);

(2.2) vExtim(N2, N1) ∼= −v−4 Ext4−iR (N1, N2)∨

where (−)∨ = Homk(−, k), which generalizes the Gorenstein duality

vHi
m(M) '−vExt4−iR (M,R(−4))∨.

These groups fit into a long exact sequence ([14], exp.VI)

(2.3) → vExtim(N1, N2) → vExtiR(N1, N2) → ExtiOP
(Ñ1, Ñ2(v))

→ vExti+1
m (N1, N2) →

which in particular relates the deformation theory of (C ⊆ P3), described
by Hi−1(NC) ∼= ExtiOP

(Ĩ , Ĩ(v)) for i = 1, 2 (cf. [18], Rem. 2.2.6 for a proof
of this isomorphism), to the deformation theory of the homogeneous ideal
I = I(C), described by 0ExtiR(I, I), in the following exact sequence

(2.4) vExt1R(I, I) ↪→ H0(NC(v)) → vExt2m(I, I) α−→ vExt2R(I, I)

→ H1(NC(v)) → vExt3m(I, I) → 0.

TOME 56 (2006), FASCICULE 5
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Let M = H2
m(I). In this situation C. Walter proved that the map α :

vExt2m(I, I) ∼= vHomR(I,H2
m(I)) → vExt2R(I, I) of (2.4) factorizes via

vExt2R(M,M) in a natural way ([39], Thm. 2.3), the factorization is in
fact given by a certain edge homomorphism of the spectral sequence (2.1)
with N1 = M , N2 = I and p + q = 4, cf. (2.15), (2.16) and (2.17) where
the factorization of this map occurs. Fløystad furthered the study of α in
[11]. Also in [29], (see [29] Sect. 0.e and Sect. 3), they need to understand
α properly to make their calculations.

To compute the dimension of the components of H(d, g), we have found
it convenient to introduce the following invariant, defined in terms of the
graded Betti numbers of a minimal resolution of the homogeneous ideal I
of C:

(2.5) 0 →
⊕
i

R(−i)β3,i →
⊕
i

R(−i)β2,i →
⊕
i

R(−i)β1,i → I → 0.

Definition 2.1. — If C is a curve in P3, we let

δj(v) =
∑
i

β1,i·hj(IC(i+v))−
∑
i

β2,i·hj(IC(i+v))+
∑
i

β3,i·hj(IC(i+v)).

Lemma 2.2. — Let C be any curve of degree d in P3. Then the following
expressions are equal

0ext1R(I, I)− 0ext2R(I, I) = 1− δ0(0) = 4d+ δ2(0)− δ1(0)

= 1 + δ2(−4)− δ1(−4).

Remark 2.3. — Those familiar with results and notations of [26] will rec-
ognize 1−δ0(0) as δγ and δ1(−4) as εγ,δ in their terminology. By Lemma 2.2
it follows that the dimension of the Hilbert scheme Hγ,M of constant pos-
tulation and Rao module, which they show is δγ + εγ,δ − 0hom(M,M)
(Thm. 3.8, page 171), is also equal to 1 + δ2(−4)− 0hom(M,M).

Proof. — To see the equality to the left, we apply vHomR(−, I) to the
resolution (2.5). Since HomR(I, I) ∼= R and since the alternating sum of
the dimension of the terms in a complex equals the alternating sum of the
dimension of its homology groups, we get

(2.6) dimRv − vextR1(I, I) + vextR2(I, I) = δ0(v), v ∈ Z.

If v = 0 we get the equality of Lemma 2.2 to the left. The equality in the
middle follows from [18], Lemma 2.2.11. We will, however, indicate how we
can prove this and the right hand equality by using (2.2) and (2.3). Indeed
by (2.2), vext4−im (I, I) = −v−4extiR(I, I). Hence

(2.7) vext2m(I, I)− vext3m(I, I) + dimR−v−4 = δ0(−v − 4), v ∈ Z

ANNALES DE L’INSTITUT FOURIER
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by (2.6). Combining (2.6) and (2.7) with the exact sequence (2.4), we get

(2.8)
(
v + 3

3

)
− χ(NC(v)) = δ0(v)− δ0(−v − 4), v ∈ Z

because dimRv − dimR−v−4 =
(
v+3
3

)
. Therefore it suffices to prove

(2.9) δ0(−v − 4) = δ1(v)− δ2(v), v > −4.

Indeed using (2.8) and (2.9) for v = 0 we get the equality of Lemma 2.2 in
the middle because χ(NC) = 4d holds for any curve (cf. Remark 2.4) while
(2.9) for v = −4 takes care of the last equality appearing in Lemma 2.2.

To prove (2.9) we use the spectral sequence (2.1) together with (2.7).
Letting M = H2

m(I) and E = H3
m(I) we get vExt2m(I, I) ∼= vHomR(I,M)

and vExt2R(I, E) ∼= vExt5m(I, I) = 0 and an exact sequence

(2.10) vExt1R(I,M) ↪→ vExt3m(I, I) → vHomR(I, E) → vExt2R(I,M)

→ vExt4m(I, I) � vExt1R(I, E)

where we have used that v > −4 implies vHom(I,H4
m(I)) = 0 since H4

m(I) =
H4

m(R). As argued for (2.6), applying vHom(−,M) (resp. vHom(−, E)) to
the resolution (2.5), we get
(2.11)

δ1(v) =
2∑
i=0

(−1)i vexti(I,M), (resp. δ2(v) =
2∑
i=0

(−1)i vexti(I, E)).

So δ1(v) − δ2(v) equals
∑4
i=2(−1)ivextim(I, I) by (2.10), and since

vExt4m(I, I) ∼= −v−4Hom(I, I)∨ ∼= R∨
−v−4 we get (2.9) from (2.7), and the

proof of Lemma 2.2 is complete. �

Remark 2.4. — In [18], Lemma 2.2.11 we proved χ(NC(v)) = 2dv + 4d
for any curve and any integer v by computing δ0(v) for v >> 0. Indeed
using the definition of δ0(v), the sequence 0 → IC → OP → OC → 0 and∑
j(−1)j

∑
i i ·βj,i = 0, we get by applying Riemann-Roch to χ(OC(i+v)),

(2.12) δ0(v) =
∑
j

∑
i

(−1)jβj,i · χ(OP(i+ v))− (dv + 1− g) , v >> 0

while duality on P and (2.5) show that the double sum of (2.12) equals
−χ(IC(−v − 4)) =

(
v+3
3

)
+ χ(OC(−v − 4)). We get χ(NC(v)) = 2dv + 4d

by combining with (2.8).
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Proposition 2.5. — Let C and C ′ be curves in P3 which are linked
(algebraically) by a complete intersection of two surfaces of degrees f and g.
If

H1(IC(v)) = 0 for v = f, g, f − 4 and g − 4,

then C is unobstructed if and only if C ′ is unobstructed.

One may find a proof in [22], Prop. 3.2. Proposition 2.5 allows us to
complete the proof of the following main result on unobstructedness. It
applies mostly to curves of small diameter, see also Miró-Roig’s criterion
for unobstructedness of Buchsbaum curves of diameter at most 2 ([33]).

Theorem 2.6. — If C is any curve in P3 of degree d and arithmetic
genus g, satisfying (at least) one of the following conditions:

(i) vHomR(I,M) = 0 for v = 0 and v = −4
(ii) vHomR(M,E) = 0 for v = 0 and v = −4
(iii) 0HomR(I,M) = 0, 0HomR(M,E) = 0 and 0Ext2R(M,M) = 0,

then C is unobstructed. Moreover, in each case, the dimension of the Hilbert
scheme H(d, g) at (C ⊆ P3) is given by

(i’) dim(C)H(d, g) = 4d+ δ2(0)− δ1(0), provided (i) holds ,
(ii’) dim(C)H(d, g) = 4d + δ2(0) − δ1(0) + −4homR(I,M) + 0homR(I,

M)− 0ext2R(M,M), provided (ii) holds,
(iii’) dim(C)H(d, g) = 4d+δ2(0)−δ1(0)+−4homR(I,M), provided (iii)

holds.

Proof.
(i) Let A = R/I and let DefI (resp. DefA) be the deformation functor

of deforming the homogeneous ideal I as a graded R-module (resp. A as
a graded quotient of R), defined on the category of local Artin k-algebras
with residue field k. Let HilbC be the corresponding deformation functor
of C ⊆ P3 (i.e the local Hilbert functor at C) defined on the same category.
To see that C is unobstructed we just need, thanks to the duality (2.2), to
interpret the exact sequence (2.4) in terms of deformation theory. Recalling
that OC,x, x ∈ C is unobstructed since IC,x has projective dimension
one (cf. [10]), we get that H1(NC) contains all obstructions of deforming
C ⊆ P3. By (2.1) and (2.2);

(2.13) 0Ext2m(I, I) ∼= 0Hom(I,M), and 0Ext2R(I, I) ∼= −4Ext2m(I, I)∨

∼= −4Hom(I,M)∨.

Using the vanishing of the first group of (2.13), we get DefI ∼= HilbC since
(2.4) shows that their tangent spaces are isomorphic and since we have an

ANNALES DE L’INSTITUT FOURIER



THE HILBERT SCHEME OF CURVES 1307

injection of their obstruction spaces (similar to the proof of DefA ∼= HilbC
in [20], Rem. 3.7, where the former functor must be isomorphic to the local
Hilbert functor of constant postulation of C because it deforms the graded
quotient A flatly, i.e., has constant Hilbert function), cf. [18], Thm. 2.2.1
and [40], Thm. 2.3 where Walter manages to get rid of the “generically
complete intersection” assumption of [18], § 2.2 by the argument in the
line before (2.13) (see also [11], Prop. 3.13 or [26], VIII, for their tangent
spaces). Now DefI is smooth because 0Ext2R(I, I) vanishes by (2.13). This
proves (i), and then (i’) follows at once from Lemma 2.2.

(iii) One may deduce the unobstructedness of C from results in [26] by
combining Thm. 1.5, page 135 with their tangent space descriptions, pp.
155-166. However, since we need the basic exact sequences below later (for
which we have no complete reference), we give a new proof which also leads
to another result (Proposition 2.10 (b)). Indeed for any curve we claim there
is an exact sequence:

(2.14) 0 → Tγ,ρ → 0Ext1R(I, I)
β−→ 0HomR(M,E) → 0Ext2R(M,M)

→ 0Ext2R(I, I) →

where Tγ,ρ is the tangent space of the Hilbert scheme of constant cohomol-
ogy Hγ,ρ at (C). To prove it we use the spectral sequence (2.1) and the
duality (2.2) twice (Walter’s idea mainly, to see the factorization of α via
0Ext2R(M,M) in (2.4)), to get an isomorphism, resp. a surjection

(2.15) 0Ext2R(I, I) ∼= −4Ext2m(I, I)∨ ∼= −4Hom(I,M)∨ ∼= 0Ext4m(M, I)

(2.16)
β1 : 0Ext1R(I, I) ∼= −4Ext3m(I, I)∨ � −4Ext1R(I,M)∨ ∼= 0Ext3m(M, I)

Now replacing I by M as the first variable in (2.10) or using (2.1) directly,
we get

(2.17) 0 → 0Ext1R(M,M) → 0Ext3m(M, I)
β2−→ 0Hom(M,E)

→ 0Ext2R(M,M) → 0Ext4m(M, I) →

which combined with (2.15) and (2.16) yield (2.14) because the composi-
tion β of β1 (arising from duality used twice) and β2 must be the nat-
ural one, i.e., the one which sends an extension of 0Ext1(I, I) (i.e., a
short exact sequence) onto the corresponding connecting homomorphism
M = H2

m(I) → E = H3
m(I). And we get the claim by [26], Prop. 2.1,

page 157, which implies kerβ = Tγ,ρ.
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To see that C is unobstructed, we get by (2.14) and the vanishing
of 0HomR(M,E) an isomorphism between the local Hilbert functor of
constant cohomology at C and DefI . The latter functor DefI is isomor-
phic to Hilb(C) because 0HomR(I,M) = 0 (cf. the proof of (i)), while
the former functor is smooth because 0Ext2(M,M) contains in a natu-
ral way the obstructions of deforming a curve in Hγ,ρ (cf. [26], Thm. 1.5,
page 135). This leads easily to the conclusion of (iii). Moreover note that
we now get (iii’) from Lemma 2.2 because h0(NC) = 0ext1R(I, I) and
0ext2R(I, I) = −4homR(I,M).

(ii) The unobstructedness of C follows from Proposition 2.5. Indeed if
we take a complete intersection Y ⊇ C of two surfaces of degrees f and g

such that the conditions of Proposition 2.5 hold (such Y exists), then the
corresponding linked curve C ′ satisfies
(2.18)

vHomR(I(C ′),M(C ′)) ∼= vHomR(M(C), E(C)) for v = 0 and v = −4

because M(C ′) (resp. I(C ′)/I(Y )) is the dual of M(C)(f + g − 4) (resp.
E(C)(f + g − 4)) and vHomR(I(Y ),M(C ′)) = 0 for v = 0,−4 by assump-
tion. Hence we conclude by Proposition 2.5 and Theorem 2.6 (i). It remains
to prove the dimension formula in (ii’). For this we claim that the image
of the map α : 0Ext2m(I, I) ∼= 0HomR(I,M) → 0Ext2R(I, I) which appears
in (2.4) for v = 0, is isomorphic to 0Ext2R(M,M). Indeed α factorizes via
0Ext2R(M,M) in a natural way, and the factorization is given by a certain
map of (2.14). Now vHomR(M,E) = 0 for v = 0 and −4 implies that the
maps vExt2R(M,M) → vExt2R(I, I) of (2.14) are injective for v = 0 and
v = −4. Dualizing one of them (the map for v = −4) we get a surjective
composition;

(2.19) 0HomR(I,M) ∼= −4Ext2R(I, I)∨ → −4Ext2R(M,M)∨

∼= 0Ext2R(M,M)

which composed with the other injective map above is precisely α. This
proves the claim. Now by (2.4) and the proven claim;

h0(NC) = 0ext1R(I, I) + dim kerα = 0ext1R(I, I) + 0homR(I,M)

− 0ext2R(M,M)

and we get the dimension formula by Lemma 2.2 and we are done. �

ANNALES DE L’INSTITUT FOURIER



THE HILBERT SCHEME OF CURVES 1309

Remark 2.7. — Putting the arguments in the text at (2.10) and (2.11)
together (and use that 0Ext4m(I, I) = 0), we get

(2.20) δ2(0) = 0homR(I, E).

Moreover if

(2.21) 0ExtiR(M,M) = 0 for 2 6 i 6 4.

then we may put the different expressions of dim(C) H(d, g) of Theorem 2.6
in one common formula;

(2.22) dim(C) H(d, g) = 4d+ δ2(0) + −4homR(I,M) + −4homR(M,E).

Indeed

0Ext2R(I,M) ∼= −4Ext2m(M, I)∨ ∼= −4Hom(M,M)∨ ∼= 0Ext4R(M,M) = 0,

and we have

0Ext1R(I,M) ∼= −4Ext3m(M, I)∨ ∼= −4Hom(M,E)∨

because −4 ExtiR(M,M) ∼= 0 Ext4−iR (M,M)∨ = 0 for i = 1, 2. Hence
0ext3m(I, I) = 0homR(I, E) + −4hom(M,E) by (2.10). Using (2.13) and
that α = 0 in (2.4) for v = 0, we get

(2.23) h1(NC) = δ2(0) + −4homR(I,M) + −4hom(M,E),

and we conclude easily.

Using (2.23), we can generalize the vanishing result of H1(NC) appearing
in [22], Cor. 4.12, to

Corollary 2.8. — Let C be any curve in P3, let diamM 6 2 and
suppose e(C) < s(C). If diamM 6= 0, suppose also e(C) 6 c+ 1− diamM

and c(C) 6 s(C). Then
H1(NC) = 0.

Proof. — Since e(C) < s(C), we get δ2(0) = 0 by the definition of δ2(0).
Moreover suppose C is not ACM. Then c(C) 6 s(C) and (2.5) imply
0ext1R(I,M) = 0. Finally, since we have max{i|β1,i 6= 0} 6 max{c(C) +
2, e(C)+3} by Castelnuovo-Mumford regularity, we get −4homR(I,M) = 0
by (2.5) and we conclude by Remark 2.7. �

Hence curves of diamM 6 2 whose minimal resolution (2.5) is “close
enough” to being linear satisfy H1(NC) = 0. Indeed H1(NC) = 0 for any
curve of diameter one or two (resp. diameter zero) whose Betti numbers
satisfy β2,i = 0 for i > min{c+ 5− diamM, s+ 3}, β1,i = 0 for i < c (resp.
β2,i = 0 for i > s+ 3). Thus Corollary 2.8 generalizes [32], Prop. 6.1.

TOME 56 (2006), FASCICULE 5



1310 Jan Oddvar KLEPPE

Remark 2.9. — (2.13), (2.14), (2.15), (2.16) and (2.17) are valid for any
curve in P3. Moreover if M−4 = 0, we get

0Hom(M,H4
m(I)) ∼= 0Ext4m(M,R) = 0

since H4
m(I) ∼= H4

m(R) and one may see that the spectral sequence which
converges to 0Ext4m(M, I) (cf. (2.15), (2.16) and (2.17)) consists of at most
two non-vanishing terms. Hence we can continue the exact sequences (2.17)
and (2.14) to the right with

0Ext4m(M, I) ∼= 0Ext2(I, I) → 0Ext1R(M,E) → 0Ext3R(M,M).

The proof of Theorem 2.6 implies also the following result (see (i), mainly
the argument from [20], Rem. 3.7, to get (a) and (iii), mainly (2.14) and
the paragraph before (ii), to get (b)). Note that if C has seminatural co-
homology (i.e., maximal rank and maximal corank), then the assumptions
of (a) and (b) obviously hold, and we get Prop. 3.2 of [27], ch. IV, which
leads to [27], ch. V, Prop. 2.1 and to the unobstructedness of C in the case
diamM 6 2 (the latter is also proved in [2]).

Proposition 2.10. — Let C be any curve in P3 and let M = H1
∗(IC)

and E = H1
∗(OC). Then

(a) 0HomR(I,M) = 0 implies Hγ
∼= H(d, g) as schemes at (C),

(b) 0HomR(M,E) = 0 implies Hγ,ρ
∼= Hγ as schemes at (C).

Finally, we shall in Section 4 see what happens to the unobstructedness
of C when we impose on C different conditions of being “general enough”.
One result is already now clear, and it points out that the condition (iii)
of Theorem 2.6 is the most important one for generic curves:

Proposition 2.11. — Let C be a curve in P3, and suppose C is generic
in the Hilbert scheme H(d, g) and satisfies 0Ext2R(M,M) = 0. Then C is
unobstructed if and only if

(2.24) 0HomR(I,M) = 0 and 0HomR(M,E) = 0.

Proof. — One way is clear from Theorem 2.6. Now suppose C is un-
obstructed and generic with postulation γ and deficiency ρ. By generic
flatness we see that Hγ,ρ

∼= Hγ
∼= H(d, g) near C from which we de-

duce an isomorphism of tangent spaces Tγ,ρ ∼= 0Ext1R(I, I) ∼= H0(NC). We
therefore conclude by the exact sequences (2.14) and (2.4), recalling that
α : 0Ext2m(I, I) → 0Ext2R(I, I), which appears in (2.4) for v = 0 factorizes
via 0Ext2R(M,M), i.e., α = 0. �
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Remark 2.12. — Combining (2.14) and (2.17) we get a surjective map
Tγ,ρ → 0Ext1R(M,M) whose kernel Tγ,M is the tangent space of Hγ,M at
(C). Now dualizing the exact sequence of (2.10) (for v = −4), one proves
that the surjective map above fits into the exact sequence
(2.25)
k → 0HomR(M,M) → −4HomR(I, E)∨ → Tγ,ρ → 0Ext1R(M,M) → 0

and k → 0HomR(M,M) is injective provided M 6= 0. We can use this
surjectivity (and some considerations on the obstructions involved) to give
a new proof of the smoothness of the morphism from Hγ,ρ to the “scheme”
of Rao modules ([26], Thm. 1.5, page 135). Since −4hom(I, E) = δ2(−4),
cf. (2.11), the exact sequence above also leads to the dimension formula of
Hγ,M we pointed out in Remark 2.3.

3. Sufficient conditions for obstructedness

In this section we will prove that the conditions (i), (ii), (iii) of Theo-
rem 2.6 are both necessary and sufficient for unobstructedness provided M
has diameter one. More generally we are, under the assumption
0Ext2R(M,M) = 0 (resp. diamM = 1), able to make explicit conditions
which imply (resp. are equivalent to) obstructedness. Indeed note that we
can immediately reformulate the first part of Theorem 2.6 as

Proposition 3.1. — Let C be a curve in P3, and let 0Ext2R(M,M) = 0.
If C is obstructed, then (at least) one of the following conditions hold

(a) 0HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0,
(b) −4HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0,
(c) 0HomR(I,M) 6= 0 and −4HomR(M,E) 6= 0.

If C in addition is Buchsbaum, or more generally if the R-module M
contains “a Buchsbaum component”, by which we mean that M admits a
decomposition M = M ′⊕M[t] as R-modules where the diameter of M[t] is
1 (i.e., the surjection M → M[t] splits as an R-linear map), then we have
the following “converse” of Proposition 3.1.

Theorem 3.2. — Let C be a curve in P3, let M = H1
∗(IC) and E =

H1
∗(OC) and suppose 0Ext2R(M,M) = 0. Moreover suppose there is an R-

module isomorphism M ∼= M ′ ⊕M[t] where the diameter of M[t] is 1 and
M[t] supported in degree t. Then C is obstructed if at least one of the
following conditions hold

(a) 0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or
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(b) −4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or
(c) 0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0.

Note that if we consider curves obtained by applying Liaison Addition to
two curves where one of them is Buchsbaum of diameter 1, then we always
have a decomposition of M as in Theorem 3.2 ([30], Thm. 3.2.3), see also
[28] for some other cases. Moreover observe that if the module L2 below has
no generators in degree t and t + 4, then the condition 0Ext2R(M,M) = 0
holds if it holds for M ′, i.e., 0Ext2R(M ′,M ′) = 0 (Remark 3.5). We get
Theorem 3.2 immediately from Proposition 3.6 and 3.8 which we prove
shortly.

We can state Theorem 3.2 in terms of the non-triviality of certain graded
Betti numbers of the homogeneous ideal I = I(C). To see this, recall that
once we have a minimal resolution of the Rao module M of free graded
R-modules,

(3.1) 0 → L4
σ−→ L3 → L2 → L1 → L0 →M → 0,

one may put the unique minimal resolution (2.5) of the homogeneous ideal
I, 0 → ⊕iR(−i)β3,i → ⊕iR(−i)β2,i → ⊕iR(−i)β1,i → I → 0, in the follow-
ing form

(3.2) 0 → L4
σ⊕0−→ L3 ⊕ F2 → F1 → I → 0,

i.e., where the composition of L4 → L3 ⊕ F2 and the natural projection
L3⊕F2 → F2 is zero ([37], Theorem 2.5). Note that any minimal resolution
of I of the form (3.2) has well-defined modules F2 and F1. In particular
F1 = ⊕iR(−i)β1,i . Moreover applying Hom(−,M) to (3.1) we get a minimal
resolution of

Ext4R(M,R) ∼= Ext4R(M ′ ⊕M[t], R) ∼= Ext4R(M ′, R)⊕M[t](2t+ 4)

from which we see that L4 contains R(−t−4)r as a direct summand where
r = dimkM[t]. Put

(3.3) L4
∼= L′4 ⊕R(−t− 4)r, F2

∼= P2 ⊕R(−t− 4)b1 ⊕R(−t)b2 , F1

∼= P1 ⊕R(−t− 4)a1 ⊕R(−t)a2

where Pi, for i = 1, 2 are supposed to contain no direct factor of degree t
and t+4. So a1 and a2 are exactly the first graded Betti number of I in the
degree t+4 and t respectively, while b1 and r (resp. b2) are less than or equal
to the corresponding Betti number of I in degree t+4 (resp. t) because L′4
and L3 might contribute to the graded Betti numbers. If, however, M is of
diameter 1 (and M ∼= M[t]), then L′4 = 0 and the generators of L3 sit in
degree t + 3. In this case bi and r are exactly equal to the corresponding
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graded Betti numbers in the minimal resolution (2.5). Now Theorem 3.2
translates to

Corollary 3.3. — Let C be a curve in P3, let 0Ext2R(M,M) = 0 and
suppose M ∼= M ′ ⊕M[t] as R-modules where the diameter of M[t] is 1 and
supported in degree t. Then C is obstructed if

a2 · b1 6= 0 or a1 · b1 6= 0 or a2 · b2 6= 0.

This leads to one of the main Theorems of this paper, which solves the
problem of characterizing obstructedness in the diameter 1 case (raised in
[9]) completely.

Theorem 3.4. — Let C be a curve in P3 whose Rao module M 6= 0 is of
diameter 1 and concentrated in degree c, and let β1,c+4 and β1,c (resp. β2,c+4

and β2,c) be the number of minimal generators (resp. minimal relations) of
I of degree c+ 4 and c respectively. Then C is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0.

Moreover if C is unobstructed and M is r-dimensional (i.e., r = β3,c+4),
then the dimension of the Hilbert scheme H(d, g) at (C) is

dim(C) H(d, g) = 4d+ δ2(0) + r(β1,c+4 + β2,c).

Proof of Corollary 3.3. — In the sequel we frequently use the triviality of
the module structure of M[t] (m ·M[t] = 0). Now applying vHomR(−,M[t])
to the minimal resolution (3.2) we have by (3.3),

(3.4) 0homR(I,M[t]) = ra2 and −4homR(I,M[t]) = ra1.

Moreover note that the assumption 0Ext2R(M,M) = 0 implies
−4Ext2R(M,M) = 0 by (2.19) and hence vExt2R(M[t],M) = 0 for v = 0
and −4 by the split R-linear map M →M[t]. By the duality (2.2) and the
spectral sequence (2.1) (which converges to vExt3m(M[t], I)) we therefore
get an exact sequence

(3.5) 0 → vExt1R(M[t],M) → −v−4Ext1R(I,M[t])∨ → vHomR(M[t], E) → 0

for v = 0 and −4. Since vExt1R(M[t],M)∨ ∼= −v−4Ext3R(M,M[t]) by (2.2)
and (2.1) and since we have −v−4Ext3R(M,M[t]) ∼= −v−4HomR(L3,M[t])
by (3.1), we get vExt1R(M[t],M) ∼= −v−4HomR(L3,M[t])∨. Interpreting
−v−4Ext1R(I,M[t]) similarly via the minimal resolution (3.2) of I, we get
vHomR(M[t], E) ∼= −v−4HomR(F2,M[t])∨ for v = 0 and −4 and hence

(3.6) 0homR(M[t], E) = rb1 and −4homR(M[t], E) = rb2

by (3.3) and we conclude easily since r 6= 0. �
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Remark 3.5. — For later use, note that

vExt2R(M[t],M))∨ ∼= −v−4Ext2R(M,M[t]) ∼= −v−4HomR(L2,M[t]).

Hence if we assume the latter group to vanish (instead of assuming
0Ext2R(M,M) = 0), we get (3.5) and (3.6) for this v. In particular if
vExt2R(M[t],M) = 0 for v = 0 and −4, then (3.5) and (3.6) hold, as well as
0Ext2R(M,M) ∼= 0Ext2R(M ′,M ′) because

0Ext2R(M ′,M[t]) ∼= −4Ext2R(M[t],M
′)∨ = 0.

Proof of Theorem 3.4. — Combining Proposition 3.1 and Corollary 3.3
we immediately get the first part of the Theorem. Moreover since we by
Remark 2.7 have

dim(C) H(d, g) = 4d+ δ2(0) + −4homR(I,M) + −4homR(M,E),

we conclude by (3.4) and (3.6). �

To prove Theorem 3.2 the following key proposition is useful. As Fløystad
points out in [11], if the image of the cup product 〈λ, λ〉 ∈ Ext2OP

(IC , IC),
λ ∈ Ext1OP

(IC , IC), maps to a non-zero element ō ∈ 0HomR(I, E) via the
right vertical map of (3.7) below, then C is obstructed. He makes several
nice contributions to calculate ō, especially when M is a complete intersec-
tion (e.g. [11], Prop. 2.13 and §5), see also [29], §3 for further calculations
and Laudal ([24], §2) for the theory of cup and Massey products. In general
it is, however, quite difficult to prove that ō 6= 0, while the non-vanishing
of the natural composition

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

is in some cases much easier to handle. This is the benefit of the following
Proposition.

Proposition 3.6. — Let C be a curve in P3, let M = H1
∗(IC) and

E = H1
∗(OC) and suppose 0Ext2R(M,M) = 0. If the obvious morphism

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

(given by the composition) is non-zero, then C is obstructed. In particular
if M admits a decomposition M = M ′ ⊕ M[t] as R-modules where the
diameter of M[t] is 1, then C is obstructed provided

0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0.

Proof. — It is well known (cf. [25]) that if the Yoneda pairing (inducing
the cup product)

〈−,−〉 : Ext1OP
(IC , IC)× Ext1OP

(IC , IC) → Ext2OP
(IC , IC),
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given by composition of resolving complexes, satisfies 〈λ, λ〉 6= 0 for some
λ, then C is obstructed. If we let p1 : Ext1OP

(IC , IC) → 0HomR(I,M) and
p2 : Ext1OP

(IC , IC) → 0HomR(M,E) be the maps induced by sending an
extension onto the corresponding connecting homomorphisms, then 〈−,−〉
fits into a commutative diagram

(3.7)
Ext1OP

(IC , IC) × Ext1OP
(IC , IC) −→ Ext2OP

(IC , IC)
↓ p1 ↓ p2 ↓

0HomR(I,M) × 0HomR(M,E) −→ 0HomR(I, E)

where the lower horizontal map is given as in Proposition 3.6. By (2.4),
0Ext1R(I, I) = ker p1, and p1 is surjective because α = 0 for v = 0. More-
over since the composition 0Ext1R(I, I) ↪→ Ext1(IC , IC) → 0HomR(M,E)
is surjective by the important sequence (2.14), there exists (λ1, λ2) ∈
Ext1(IC , IC) × 0Ext1R(I, I) such that the composed map p2(λ2)p1(λ1) is
non-zero by assumption. Using λ2 ∈ 0Ext1R(I, I) = ker p1, we get

p2(λ1 + λ2)p1(λ1 + λ2) = p2(λ1)p1(λ1) + p2(λ2)p1(λ1)

i.e., either 〈λ1 + λ2, λ1 + λ2〉 or 〈λ1, λ1〉 are non-zero, and C is obstructed.
Finally suppose the two last mentioned Hom-groups of Proposition 3.6

are non-vanishing. Then there exists a map ψ ∈ 0HomR(M[t], E) such
that ψ(m) 6= 0 for some m ∈ (M[t])t. Since M[t] has diameter 1, we get
0HomR(I,M[t]) ∼= 0HomR(R(−t)a2 ,M[t]) ∼= (M[t])

a2
t by (3.2) and (3.3),

and we have a2 > 0. Hence there is a map φ′ ∈ 0HomR(I,M[t]) such that
φ′(1, 0, . . . , 0) = m where (1, 0, . . . , 0) an a2-tuple. Since 0Hom(I,M) →
0Hom(I,M[t]) is surjective by the existence of the R-split morphism p :
M → M[t] there is an element φ ∈ 0Hom(I,M) which maps to φ′. Since
the composition ψφ′ = ψpφ maps to a non-trivial element of 0HomR(I, E)
by construction, we conclude by the first part of the proof. �

Remark 3.7. — Let C be a curve in P3 whose Rao module has diam-
eter 1. From (2.4) and (2.14), cf. the proof above, we see at once that
0HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0 if and only if we have the fol-
lowing strict inclusions of tangent spaces

(3.8) Tγ,ρ  0Ext1R(I, I)  H0(NC)

where 0Ext1R(I, I) is the tangent space of the Hilbert scheme of constant
postulation Hγ at (C). By Proposition 3.6, C is obstructed if (3.8) holds. If
M ∼= k, this conclusion follows also from [26], ch. X, Prop. 5.9, or from [29].

Along the same lines we are able to generalize a result of Walter [40].
If the diameter of M is 1 and if 0HomR(I,M) = 0, then Walter proves
Proposition 3.8 (a) below and he computes the completion of OH(d,g),(C)
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in detail. The first part of Proposition 3.6 and 3.8, however, requires only
0Ext2R(M,M) = 0. This vanishing condition, which one may show is in-
variant under linkage (by using (4.6)), holds for instance if the diameter
of M is less or equal 2, or if M is generic of diameter 3 and the scheme of
Rao modules is irreducible (cf. [27]).

Proposition 3.8. — Let C be a curve in P3, let M = H1
∗(IC), E =

H1
∗(OC) and let 0Ext2R(M,M) = 0.
(a) If the obvious morphism

−4HomR(I,M)× 0HomR(M,E) −→ −4HomR(I, E)

(given by the composition) is non-zero, then C is obstructed. In particular
if M admits a decomposition M = M ′ ⊕ M[t] as R-modules where the
diameter of M[t] is 1, then C is obstructed provided

−4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0.

(b) If the morphism

0HomR(I,M)× −4HomR(M,E) −→ −4HomR(I, E)

(given by the composition) is non-zero, then C is obstructed. In particular
if M admits a decomposition M = M ′ ⊕ M[t] as R-modules where the
diameter of M[t] is 1, then C is obstructed provided

0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0.

Proof.
Step 1. In Step 1 we give a full proof of (a) under the extra tempo-

rary assumption M−4 = 0. Denote by p′2 the restriction of p2 (see (3.7))
to 0Ext1R(I, I) via the natural inclusion 0Ext1R(I, I) ↪→ Ext1(IC , IC) and
consider the commutative diagram

(3.9)
〈−,−〉0 : 0Ext1R(I, I) × 0Ext1R(I, I) −→ 0Ext2R(I, I)

↑ ↓ p′2 ↓ i
Tγ,ρ × 0HomR(M,E) −→ 0Ext1R(M,E)

where 〈−,−〉0 is the Yoneda pairing. Indeed the restriction of 0Ext1R(I, I)
to the subspace Tγ,ρ in (3.9) makes the lower horizontal arrow well-defined
in the commutative diagram above because of the natural map Tγ,ρ →
0Ext1R(M,M) of Remark 2.12. Due to the exact sequence (2.14), contin-
ued as in Remark 2.9, the map p′2 is surjective and i is injective by the
assumption 0Ext2R(M,M) = 0. Hence the pairing 〈−,−〉0 factorizes via

(3.10) ϕ′ : Tγ,ρ × 0HomR(M,E) −→ 0Ext2R(I, I)
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and vanishes if we restrict ϕ′ to −4HomR(I, E)∨ × 0HomR(M,E) via the
map of Remark 2.12. (using the identity on 0HomR(M,E), because
−4HomR(I, E)∨ maps to zero in 0Ext1R(M,M).

To prove (a) it suffices to prove 〈λ, λ〉0 6= 0 for some λ. We do this, we
claim that there is another pairing ϕ 6= 0, which commutes with 〈−,−〉0,
and which essentially corresponds to the restriction of ϕ′ above except for
the exchange of variables, i.e.,

(3.11) ϕ : 0HomR(M,E)× −4HomR(I, E)∨ −→ 0Ext2R(I, I)

(since Tγ,M = coker(0HomR(M,M) → −4HomR(I, E)∨) by Remark 2.12,
we can continue the arguments below to see that the map ϕ of (3.11)
extends to a somewhat more naturally defined pairing 0HomR(M,E) ×
Tγ,M → 0Ext2R(I, I), but this observation does not really effect the proof).
Now, to prove the claim there is, as in (3.7), a commutative diagram

−4Ext2m(I, I) × 0Ext1R(I, I) −→ −4Ext3m(I, I)
↓∼= ↓ p′2 ↓

−4HomR(I,M) × 0HomR(M,E) −→ −4HomR(I, E)

where two of the vertical arrows are given by the spectral sequence (2.1)
(cf. (2.10)) and where the lower pairing is the non-vanishing map of Propo-
sition 3.8. Dualizing, we get the commutative diagram

0Ext1R(I, I) × −4Ext3m(I, I)∨ −→ −4Ext2m(I, I)∨

↓ p′2 ↑ ↑∼=
0HomR(M,E) × −4HomR(I, E)∨ −→ −4HomR(I,M)∨

where the non-vanishing lower arrow can be identified with the map ϕ of
(3.11). Using the duality (2.2), we see that ϕ commutes with the Yoneda
pairing 〈−,−〉0, and the claim follows easily.

Now since ϕ 6= 0 and p′2 is surjective, there exists

(λ2, λ1) ∈ 0HomR(M,E)× −4HomR(I, E)∨

and λ′2 ∈ 0Ext1R(I, I) such that p′2(λ′2) = λ2 and such that 〈λ′2, λ1〉0 =
ϕ(λ2, λ1) 6= 0. Note that 〈λ1, λ〉0 = 0 for any λ ∈ 0Ext1R(I, I) because
〈λ1, λ〉0 = ϕ′(λ1, p

′
2(λ)) = 0 by (3.10). It follows that

〈λ1 + λ′2, λ1 + λ′2〉0 = 〈λ′2, λ1〉0 + 〈λ′2, λ′2〉0
i.e., either 〈λ1 + λ′2, λ1 + λ′2〉0 or 〈λ′2, λ′2〉0 are non-zero. Finally since the
map α of (2.4) factors via 0Ext2R(M,M) for v = 0, it follows that the map
0Ext2R(I, I) → Ext2(IC , IC) is injective and maps obstructions to obstruc-
tions, i.e., the Yoneda pairing 〈−,−〉0 and the corresponding pairing 〈−,−〉
of (3.7) commute and vanish simultaneously. C is therefore obstructed.
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Step 2. To prove (b) we use Step 1 and Proposition 2.5. Indeed let C be a
curve as in (b) and let Y ⊇ C be a complete intersection of two surfaces of
degrees f and g such that the conditions of Proposition 2.5 hold and such
that H1(IC(f + g)) = 0, H1(OC(f − 4)) = 0 and H1(OC(g − 4)) = 0 (such
Y exists). Then we claim that the corresponding linked curve C ′ satisfies
the conditions given in Step 1. Indeed slightly extending Remark 2.9, we
have

0HomR(I(C),M(C)) ∼= 0HomR(M(C ′), E(C ′))

−4HomR(M(C), E(C)) ∼= −4HomR(I(C ′),M(C ′))(3.12)

−4HomR(I(C), E(C)) ∼= −4HomR(I(C)/I(Y ), E(C))
∼= −4HomR(I(C ′)/I(Y ), E(C ′))

and we get the claim because

−4HomR(I(C ′)/I(Y ), E(C ′)) → −4 HomR(I(C ′), E(C ′))

is injective and H1(IC(f + g)) ∼= H1(IC′(−4)). It follows that C ′ is ob-
structed by Step 1, and so is C by Proposition 2.5. Moreover if M =
M ′ ⊕M[t] and the diameter of M[t] is 1, we conclude easily by arguing as
in the very end of the proof of Proposition 3.6.

Step 3. Finally using the same idea as in Step 2, we prove that (b)
and Proposition 2.5 imply (a). Indeed by Proposition 2.5 we can see that
(a) and (b) are equivalent by making a suitable linkage, and the proof is
complete. �

Focusing on the Hilbert scheme with constant postulation, Hγ , we have
the following result, quite similar to Theorem 3.4.

Proposition 3.9. — Let C be a curve in P3 whose Rao module M 6= 0
is of diameter 1 and concentrated in degree c, and let β1,c+4 and β1,c

(resp. β2,c+4 and β2,c) be the number of minimal generators (resp. minimal
relations) of degree c+ 4 and c respectively. Suppose also M−4 = 0. Then

Hγ is singular at (C) if and only if β1,c+4 · β2,c+4 6= 0.

Moreover if Hγ is smooth at (C) and M is r-dimensional (i.e., r = β3,c+4),
then

dim(C) Hγ = 4d+ δ2(0) + r(β1,c+4 + β2,c − β1,c).

Proof. — Since the tangent space, resp. the obstructions, of Hγ at C is
0Ext1R(I, I), resp. sit in 0Ext2R(I, I), cf. the proof of (i) in Theorem 2.6, we
have by Step 1 of the proof above that Hγ is not smooth at (C) provided
M−4 = 0 and the conditions of Proposition 3.8 (a) hold. Hence if β1,c+4 ·
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β2,c+4 6= 0, it follows from (3.4) and (3.6) that Hγ is singular at (C) (only for
this way here we need the assumption M−4 = 0). For the converse, suppose
β1,c+4 = 0. Then 0Ext2R(I, I) ∼= −4homR(I,M)∨ = 0. And if β2,c+4 = 0,
we get by (3.6) and Proposition 2.10 an isomorphism between Hγ,ρ and
Hγ at (C). The former scheme is smooth because 0Ext2R(M,M) = 0, and
we get the smoothness of the latter. Finally to see the dimension we use
χ(NC) = 4d and (2.4) with α = 0 for v = 0 to get

0ext1R(I, I) = 4d+ h1(NC)− 0homR(I,M),

and we conclude by (2.23), (3.4) and (3.6). �

Remark 3.10. — Corollary 3.3 admits the following generalization. In-
stead of assuming the R-module isomorphism M ∼= M ′ ⊕ M[t], we sup-
pose that M contains a minimal generator T of degree t and we replace
ai 6= 0 by the surjectivity of a certain non-trivial map as follows. Let
M � M ⊗R k � k(−t) and η(T ) : vHomR(I,M) → vHomR(I, k(−t))
be maps induced by T . Note that M � M ⊗R k is not necessarily a
split R-homomorphism. So if Ft−v is a minimal generator of I of degree
t − v (inducing maps R(−t + v) ↪→ I and τ(Ft−v) : vHomR(I, k(−t)) →
vHomR(R(−t+v), k(−t)) ∼= k), we just suppose the surjectivity of the com-
position τ(Ft−v)η(T ) for v = 0 (resp. −4) instead of a2 6= 0 (resp. a1 6= 0),
to get a generalization of Corollary 3.3. Hence if

τ(Ft)η(T ) is surjective for some minimal generator Ft of I,

and b1 6= 0 or b2 6= 0 ,

OR if

τ(Ft+4)η(T ) is surjective for some minimal generator Ft+4 of I,

and b1 6= 0,

then C is obstructed. There is no real change in the proof. Indeed looking
to the very final part of Proposition 3.6 and to the proof of Corollary 3.3,
noting that we don’t need the surjectivity of

−v−4Ext1R(I, k(−t))∨ → vHomR(k(−t), E)

in (3.5) (where we have replaced M[t] by k(−t)), we get the result. Finally
note that it is easy to see that τ(Ft−v)η(T ) is surjective if the row in the
matrix of relations (i.e., the middle arrow) of (2.5) which corresponds to
Ft−v, maps Mt to zero. If

min{i > t− v|β2,i 6= 0} > c− t,
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then the entries of this row map Mt onto Mc+j for j > 0, i.e onto zero, and
we have the mentioned surjectivity. This surjectivity holds in particular if
t = c (and L4 contains generators of degree c+ 4, as always).

Remark 3.11. — We have by Proposition 3.6 and 3.8 the following three
Yoneda pairings

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

0HomR(I,M)× −4HomR(I, E)∨ −→ −4HomR(M,E)∨

0HomR(M,E)× −4HomR(I, E)∨ −→ −4HomR(I,M)∨.

To illustrate, in a diagram, how the right hand sides contribute to H1(NC),
we suppose 0ExtiR(M,M) = 0 for i > 2 to simplify. Then recall that
0Ext2R(I,M) = 0 and 0Ext1R(I,M) ∼= −4Hom(M,E)∨ by Remark 2.7. Now
(2.4) (resp. (2.10)) leads to the exactness of the horizontal (resp. vertical,
with injective upper downarrow and surjective lower downarrow) sequence
in the diagram

0Ext1R(I,M) ∼= −4Hom(M,E)∨

↓
0 → 0Ext2R(I, I) → H1(NC) → 0Ext3m(I, I) → 0

↓∼= ↓

−4HomR(I,M)∨ 0HomR(I, E)

.

We will end this section by showing that there exists smooth connected
space curves in any of the three cases (a), (b) and (c) of Theorem 3.2.
The case (b) is treated in [40], where Walter manages to find obstructed
curves of maximal rank (see also [4]). These curves make Hγ singular as
well (Proposition 3.9). By linkage we can transfer the result in [40] to the
case (c) and we get the existence of obstructed curves of maximal corank,
whose local ring OH(d,g),(C) can be described exactly as in [40]. However,
since we in the next section will see that a sufficiently general curve of Hγ,ρ

does not verify neither (b) nor (c), the case (a) deserves special attention.
We shall now see that there exist many smooth connected curves satisfying
the conditions (a).

Example 3.12. — We claim that for any triple (r, a2, b1) of positive
integers there exists a smooth connected curve C with minimal resolution
as in (3.2) and (3.3) and diamM(C) = 1, such that s(C) = e(C) = c,
h0(IC(c)) = a2, h1(IC(c)) = r, h1(OC(c)) = b1 and a1 = 0, b2 = 0. Hence

0homR(I,M) = ra2 6= 0 and 0homR(M,E) = rb1 6= 0
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by (3.4) and (3.6). Since a2 = β1,c and b1 = β2,c+4 the curves are obstructed
by Theorem 3.4. To see their existence, put a = a2 and b = b1. If a = 1,
we consider curves with Ω-resolution

0 → OP(−2)3r−1 ⊕OP(−4)b → OP ⊕ Ωr ⊕OP(−3)b−1 → IC(c) → 0.

By Chang’s results ([5] or [40], Thm. 4.1) there exists smooth connected
curves having Ω-resolution as above. Moreover c = 1 + b + 2r, the degree
d =

(
c+4
2

)
− 3r− 7 and the genus g = (c+ 1)d−

(
c+4
3

)
+ 5. If a > 1, curves

with Ω-resolution

0 → OP(−1)a−2 ⊕OP(−2)3r ⊕OP(−4)b → Oa
P ⊕ Ωr ⊕OP(−3)b−1

→ IC(c) → 0

exist, they are smooth and connected ([5] or [40], Thm. 4.1), c = a + b +
2r+1, d =

(
c+4
2

)
− 3a− 3r− 6 and the genus g = (c+1)d−

(
c+4
3

)
+3a+3.

We leave the verification of details to the reader, recalling only the exact
sequences we frequently used in the verification;

(3.13) 0 → Ω → OP(−1)4 → OP → 0

and 0 → OP(−4) → OP(−3)4 → OP(−2)6 → Ω → 0.

Putting the two sequences together, we get the Koszul resolution of the
regular sequence {X0, X1, X2, X3}.

We will analyze these curves a little further, using Laudal’s descrip-
tion of the completion of OH(d,g),(C) ([25], Thm. 4.2.4). This completion is
k[[H0(NC)∨]]/o(H1(NC)∨), where o is a certain obstruction morphism (giv-
ing essentially the cup and Massey products). Now, consulting for instance
the proof of Proposition 3.8, we see that the dual spaces of 0HomR(I,M)∨

and 0HomR(M,E)∨ inject into H0(NC)∨ and their intersection is empty.
This implies

H0(NC)∨ ∼= T∨γ,ρ ⊕ 0HomR(I,M)∨ ⊕ 0HomR(M,E)∨ as k-vector spaces,

and we can represent k[[H0(NC)∨]] as k[[Y1, . . . , Ym, Z11, . . . , Zar,W11, . . . ,

Wrb]], letting Y1, . . . , Ym, resp. Z11, . . . , Zar, resp. W11, . . . ,Wrb correspond
to a basis of T∨γ,ρ, resp. 0HomR(I,M)∨, resp. 0HomR(M,E)∨. Since a1 =
0, b2 = 0, we get by (3.4) and (3.6);

−4HomR(I,M) = 0 and −4HomR(M,E) = 0.

By Remark 2.7 and Definition 2.1, h1(NC) = δ2(0) = a2b1, and we can
use Proposition 3.8 and its proof to conclude that, modulo m3

O (mO the
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maximal ideal of the completion of OH(d,g),(C)), we have

(3.14) OH(d,g),(C)/m
3
O = k[[Y1, . . . , Yl, Z11, . . . , Zar,W11, . . . ,Wrb]]/a

where the ideal a is generated by the components of the matrix given by
the product

(3.15)


Z11 . . . Z1r

Z21 . . . Z2r

...
...

Za1 . . . Zar



W11 . . . W1b

W21 . . . W2b

...
...

Wr1 . . . Wrb

 .
Note that (3.15) corresponds precisely to the composition given by the
pairing of Proposition 3.6! As in [40], proof of Thm. 0.5, we believe that
the Massey products corresponding to (3.15) vanish, i.e., the right-hand
side of (3.14) is exactly the completion of OH(d,g),(C).

The simplest case is (r, a2, b1) = (1, 1, 1), which yields curves C with
s(C) = 4, d = 18 and g = 39 (Sernesi’s example [38] or [8]), while the case
(r, a2, b1) = (2, 1, 1) yields curves C with s(C) = 6, d = 32 and g = 109.
More generally, the curves of the case (r, 1, 1) satisfy h1(NC) = a2b1 = 1,
i.e., the ideal a of (3.14) is generated by the single element

(3.16)
r∑
i=1

Z1i ·Wi 1.

For Sernesi’s example (r = 1), we recognize the known fact that this curve
sits in the intersection of two irreducible components of H(d, g), while for
r > 1, the irreducibility of (3.16) can be used to see that C belongs to
a unique irreducible component of H(d, g). Other examples of singulari-
ties of H(d, g) which belong to a unique irreducible component are known
([21], Rem. 3b) and [16], Thm. 3.10). In the next section we prove the ir-
reducibility/reducibility by studying in detail the possible generizations of
a Buchsbaum curve.

4. The minimal resolution of a general space curve

In this section we study generizations of space curves C and how suitable
generizations will simplify the minimal resolution of I(C). By a generiza-
tion we mean a deformation to a “more general curve”, cf. Subsection 1.1.
The general philosophy is that a sufficiently general curve of any irreducible
component of H(d, g) should have as few repeated direct factors “as pos-
sible” in consecutive terms of the minimal resolution. We prove below a
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general result in this direction (Theorem 4.1) and a more restricted one
(Proposition 4.2) for curves with special Rao modules, using some nice
ideas from [26] where they make explicit some cancellations in the min-
imal resolution under flat deformation, in a special case (M ∼= k) which
has the potential of being generalized. More recently several papers have
appeared using “consecutive cancellations” to relate graded Betti numbers
with the same Hilbert function (see [36], [31] and its references). Recalling
the notations (3.1) and (3.2) from Rao’s theorem ([37], Thm. 2.5), we show

Theorem 4.1. — Let C be a curve in P3 with postulation γ and Rao
moduleM = M(C) and suppose the homogeneous ideal I(C) has a minimal
free resolution of graded R-modules;

(4.1) 0 → L4
σ⊕0−→ L3 ⊕ F2 → F1 → I(C) → 0.

If there exists a direct free factor F satisfying F2
∼= F ′

2⊕F and F1
∼= F ′

1⊕F ,
then there is a generization C ′ ⊆ P3 of C ⊆ P3 in the Hilbert scheme H(d, g)
(in fact in Hγ,M , i.e., with constant postulation and Rao module) whose
homogeneous ideal I(C ′) has a minimal free resolution of the following form

0 → L4
σ⊕0−→ L3 ⊕ F ′

2 → F ′
1 → I(C ′) → 0.

Now suppose M = M(C) admits an R-module decomposition M =
M ′ ⊕ M[t] where the diameter of M[t] is 1 (e.g. C is Buchsbaum). Let

0 → L′4
σ′

−→ L′3 → L′2 → L′1 → L′0 →M ′ → 0 be the minimal resolution of
M ′ and let

0 → R(−t− 4)r
σ[t]−−→ R(−t− 3)4r → · · · → R(−t)r →M[t] → 0

be the corresponding resolution of M[t] (which is “r times” the Koszul
resolution of the R-module k ∼= R/(X0, X1, X2, X3).) By the Horseshoe
lemma the minimal resolution of M is the direct sum of these two resolu-
tions. Looking to (3.3), we get a1 · b1 = 0 and a2 · b2 = 0 for a general
curve C of H(d, g) by Theorem 4.1. Hence the corresponding singularities
of H(d, g) given by Corollary 3.3 can not occur for a general C, neither can
the remaining class of singularities due to

Proposition 4.2. — Let C be a curve in P3 and let M(C) ∼= M ′⊕M[t]

as R-modules where M[t] is r-dimensional of diameter 1 and supported in
degree t. Moreover suppose the homogeneous ideal I(C) has a minimal
resolution of the following form;
(4.2)

0 → L′4 ⊕R(−t− 4)r
σ′⊕σ[t]⊕0
−−−−−−→ L′3 ⊕R(−t− 3)4r ⊕ F2 → F1 → I(C) → 0,
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where F2
∼= P ′

2 ⊕R(−t− 4)b1 and F1
∼= P ′

1 ⊕R(−t)a2 and where P ′
2 (resp.

P ′
1) is without direct free factors generated in degree t+ 4 (resp. t).
(a) Let r ·b1 6= 0 and let m1 be a number satisfying 0 6 m1 6 min{r, b1}.

Then there is a generization C ′ ⊆ P3 of C ⊆ P3 in H(d, g) (in fact in
Hγ , i.e., with constant postulation γ) such that I(C ′) has a minimal free
resolution of the following form;

0 → L′4 ⊕R(−t− 4)r−m1 → L′3 ⊕R(−t− 3)4r ⊕ P ′
2 ⊕R(−t− 4)b1−m1

→ F1 → I(C ′) → 0,

and such that M(C ′) ∼= M ′ ⊕ M(C ′)[t] as R-modules for some r − m1

dimensional module M(C ′)[t] supported in degree t. Moreover if L′2 does
not contain a direct free factor generated in degree t+ 4, then

0homR(M(C ′)[t], E(C ′)) = (r −m1)(b1 −m1).

(b) Suppose L′2 is without direct free factors generated in degree t. If
r ·a2 6= 0 and if m2 is a number satisfying 0 6 m2 6 min{r, a2}, then there
is a generization C ′ ⊆ P3 of C ⊆ P3 in H(d, g) (with constant specialization)
such that I(C ′) has a minimal free resolution of the following form;

0 → L′4 ⊕R(−t− 4)r−m2 → L′3 ⊕G2 → G1 ⊕R(−t)a2−m2 → I(C ′) → 0

for some R-free modules G2 and G1 where G1 is without direct free factors
generated in degree t. Moreover M(C ′) ∼= M ′ ⊕M(C ′)[t] as R-modules for
some r −m2 dimensional module M(C ′)[t] supported in degree t, and we
have

0homR(I(C ′),M(C ′)[t]) = (r −m2)(a2 −m2).

Once we have proved a key lemma, the proof of Theorem 4.1 is straight-
forward while the proof of Proposition 4.2 is a little bit more technical.
Note that the assumptions on L′2 in Proposition 4.2 (a) and (b) show that
if 0Ext2R(M ′,M ′) = 0 then 0Ext2R(M,M) = 0 (Remark 3.5), indicating
that our results of this section combine nicely with Theorem 3.2. We delay
the proof of these results until the end of this section.

Now combining these two results with Theorem 3.4 in the diameter one
case, we get

Corollary 4.3. — Let C be a curve in P3 whose Rao module M 6= 0
is of diameter 1 and concentrated in degree c, and let β1,c+4 and β1,c

(resp. β2,c+4 and β2,c) be the number of minimal generators (resp. minimal
relations) of degree c+ 4 and c respectively.
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(a) If C is generic in Hγ,ρ, then Hγ is smooth at (C). Moreover C is
obstructed if and only if β1,c · β2,c+4 6= 0. Furthermore if β1,c = 0 and
β2,c+4 = 0, then C is generic in H(d, g).

(b) If C is generic in Hγ , then C is unobstructed. Indeed both H(d, g)
and Hγ are smooth at (C). In particular every irreducible component of
H(d, g) whose generic curve C satisfies diamM(C) 6 1 is reduced (i.e.,
generically smooth).

Proof.
(a) C is generic in H(d, g) by Proposition 2.10 because 0HomR(M,E) =

0HomR(I,M) = 0 by (3.4) and (3.6). The other statements follow directly
from Theorem 3.4, Theorem 4.1 and Proposition 3.9.

(b) If C is generic in Hγ , then we immediately have β1,c · β2,c = 0 and
r · β2,c+4 = 0 by Theorem 4.1 and Proposition 4.2. Since r > 0 we see
by Theorem 3.4 that H(d, g) (and of course Hγ by (a)) is smooth at (C).
Finally if C is a generic curve of some irreducible component of H(d, g)
satisfying diamM(C) 6 1 and γ is the postulation of C, then C is generic
in Hγ and we conclude easily. �

Corollary 4.3 (a) generalizes [4] Prop. 1.1 which tells that a curve C of
maximal rank or maximal corank of diamM(C) = 1, which is generic in
Hγ,ρ, is unobstructed.

Even though we can extend the next corollary to Buchsbaum curves
satisfying 0Ext2R(M,M) = 0 (i.e., 0HomR(L2,M) = 0), we have chosen to
formulate it for the somewhat more natural set of Buchsbaum curves C
of diamM(C) 6 2. Note that Buchsbaum curves of maximal rank satisfy
diamM(C) 6 2 ([30], Cor. 3.1.4, [9], Cor. 2.8), and that Corollary 4.3
and 4.4 (and [33]) give answers to the problems on unobstructedness of
Buchsbaum curves raised by Ellia and Fiorentini in [9].

Corollary 4.4. — Let C be a Buchsbaum curve of diamM(C) 6 2.
Then there exists a generization C ′ of C in H(d, g) such that C ′ is Buchs-
baum (or ACM with L4 = 0) and such that the modules of the three sets

{F2, F1}, {L4, F2} and {L4, F1(−4)}

in its minimal resolution, 0 → L4
σ⊕0−→ L3 ⊕ F2 → F1 → I(C ′) → 0,

are without common direct free factors. Hence 0HomR(I(C ′),M(C ′)) =
0HomR(M(C ′), E(C ′)) = 0 and H(d, g) is smooth at (C ′).

Proof. — Firstly note that since the module structure ofM of any Buchs-
baum curve is trivial, we get from the resolution (4.1) that 0HomR(I,M) ∼=
0HomR(F1,M). Since M ∼= ker H3

∗(σ̃ ⊕ 0), it follows that the latter group
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vanishes if and only if L4 and F1(−4) are without common direct free
factors. Moreover by arguing as in the proof of Corollary 3.3 we get

−4HomR(F2,M)∨ ∼= 0HomR(M,E)

which vanishes if and only if L4 and F2 are without common direct free
factors.

Now, by Theorem 4.1, {F2, F1} have no common direct free factors,
and writing M(C) ∼= M[c] ⊕ M[c−1] as R-modules, we can successively
apply Proposition 4.2 to M[c] and M[c−1]. Indeed the (a) part of Propo-
sition 4.2 with M[t] = M[c] and m1 = min{r, b1} shows that {L4, F2} for
some generization of C are without common direct free factors of degree
c + 4. Then we proceed by (b) to see that {L4, F1(−4)} for some fur-
ther generization of C are without common direct free factors of degree
c + 4. Similarly we use Proposition 4.2 with M[t] = M[c−1] to see that
there remains, up to a suitable generization C ′, also no common direct
free factor of degree c + 3 in {L4, F2} and {L4, F1(−4)}. Hence we have
0HomR(I(C ′),M(C ′)) = 0HomR(M(C ′), E(C ′)) = 0 by the first part of
the proof and we conclude by Proposition 2.10. �

We should have liked to generalize Corollary 4.4 to the arbitrary case
of diameter 2 by dropping the Buchsbaum assumption. In particular if
we could prove a result analogous to Corollary 4.4 for curves whose Rao
module M is the generic module of diameter two (cf. [27] for existence and
minimal resolution), we would be able to answer affirmatively the following
question (which we believe is true).

Question. — Is any irreducible component of H(d, g) whose Rao module
of its generic curve is concentrated in at most two consecutive degrees,
generically smooth?

In our corollaries we have used Theorem 4.1 and Proposition 4.2 to con-
sider generic curves, or to get the existence of a certain generization, with
nice obstruction properties. We may, however, also use our results to study
many different generizations of a given curve C, see the works of Amasaki,
Ellia and Fiorentini and others ([1], [38], [8], [22]) for similar approaches.
Hence we may see when C sits in the intersection of different integral com-
ponents of H(d, g). There may be quite a lot of such irreducible components
of H(d, g) [12]. We will soon look closely to the possible generizations of
a curve of diameter one in the case β1,c · β2,c+4 6= 0. To get a flavour of
the other possibilities, we consider the following example of a non-generic
curve of Hγ,M .
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Example 4.5. — In [4] and [40] one proves the existence of an obstructed
curve of H(33, 117)S of maximal rank with one-dimensional Rao module.
Since the degrees of the minimal generators of I(C) are given in [4] and
M = H1(IC(5)), we easily find the minimal resolution to be

0 → R(−9) → R(−10)2 ⊕R(−9)⊕R(−8)4

→ R(−9)⊕R(−8)⊕R(−7)5 → I(C) → 0.

It follows from Theorem 3.4 of this paper that C is obstructed. By Proposi-
tion 4.2 (resp. Theorem 4.1) there exists a generization C1 (resp. C2) of C,
obtained by removing the direct factor R(−9) from L4 and F2 (resp. from
F2 and F1). The curve C1 is ACM, hence unobstructed, and belongs to a
unique irreducible component V of H(33, 117)S . Moreover the curve C2 is
unobstructed by Theorem 3.4. Now looking only to the semicontinuity of
h1(IC(5)) and h1(OC(5)), there is a priori a possibility that C2 may belong
to V . By Corollary 4.3 (a) or by Proposition 2.10, however, C2 is generic
in H(33, 117)S since we may suppose C2 is generic in H(33, 117)γ . Hence
the irreducible component W of H(33, 117)S to which C2 belongs, satisfies
W 6= V !! Since C is contained in the intersection of the components, we
get the main example of [4] from our results.

As an illustration of the main results of this section, we restrict to curves
which are generic in Hγ,M , or more generally to curves which satisfy a1·b1 =
0 and a2 · b2 = 0 (letting a1 = β1,c+4, a2 = β1,c, b1 = β2,c+4 and b2 = β2,c).
Thus we consider the case

(4.3) a1 = 0, b2 = 0 and (a2 6= 0 or b1 6= 0)

where proper generizations as in Proposition 4.2 occur, to give a rather
complete picture of the existing generizations in H(d, g) (caused by sim-
plifications of the minimal resolution). Let n(C) = (r, a1, a2, b1, b2) be an
associated 5-tuple. Only for curves satisfying a1 = 0 and b2 = 0 we allow
the writing n(C) = (r, a2, b1) as a triple. Thanks to [3] we remark that any
curve D satisfying n(D) = n(C) and γD(v) = γC(v) for v 6= c, belongs to
the same irreducible family Hγ,M as C, i.e., a further generization of C and
D in Hγ,M lead to the “same” generic curve. Now given a curve C with
n(C) = (r, a2, b1), we have by Proposition 4.2:

(4.4)

For any pair (i, j) of non-negative integers such that r − i− j > 0,

a2 − i > 0 and b1 − j > 0, there exists a generization Cij

of C in H(d, g) such that n(Cij) = (r − i− j, a2 − i, b1 − j).
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Note that if we link C to Cl as in Proposition 2.5, we get, by combin-
ing (2.18), (3.4) and (3.6) that the 5-tuple n(Cl) = (r(Cl), a1(Cl), a2(Cl),
b1(Cl), b2(Cl)) is equal to (r, b2, b1, a2, a1) where n(C) = (r, a1, a2, b1, b2).
In particular if C satisfies (4.3), then the linked curve Cl also does.

As an example, let n(C) = (4, 3, 2) (such curves exist by Example 3.12).
By (4.4) we have 10 different generizations Cij among which two curves
correspond to the triples n(C22) = (0, 1, 0) and n(C31) = (0, 0, 1), i.e., they
correspond to two unobstructed ACM curves with different postulation.
Hence they belong to two different irreducible components of H(d, g) having
(C) in their intersection. Pushing this argument further, we get at least

Proposition 4.6. — Let C be a curve in P3 whose Rao module M 6= 0
is r-dimensional and concentrated in degree c, let a1 = β1,c+4 and a2 = β1,c

(resp. b1 = β2,c+4 and b2 = β2,c) be the number of minimal generators (resp.
minimal relations) of degree c+ 4 and c respectively, and suppose

a1 = 0, b2 = 0 and a2 · b1 6= 0.

(a) If r < a2+b1, then C sits in the intersection of at least two irreducible
components of H(d, g). Moreover, the generic curve of any component con-
taining C is arithmetically Cohen-Macaulay, and the number n(comp, C)
of irreducible components containing C satisfies

min{a2, r}+ min{b1, r} − r + 1 6 n(comp, C) 6 r + 1.

In the case s(C) = e(C) = c, we have equality to the left.
(b) If r > a2 + b1 and s(C) = e(C) = c, then C is an obstructed curve

which belongs to a unique irreducible component of H(d, g).

Proof. — We firstly prove (b). Let C ′ be any generization of C in H(d, g)
and let n(C ′) = (r′, a′1, a

′
2, b

′
1, b

′
2) be the associated 5-tuple where r′ = 0

corresponds to the ACM case of C ′. Since s(C) = c and since the number
s(C) increases under generization by the semicontinuity of h0(IC(v)), we
get s(C ′) > c as well as h0(IC′(c)) = a′2 and b′2 = 0. Similarly e(C) = c

implies h1(OC′(c)) = b′1 and a′1 = 0. Applying these considerations to
C ′ = C, we get χ(IC(c)) 6 0 by the assumption r > a2 + b1.

Now let C ′ be the generic curve of an irreducible component containing
C. By Proposition 4.2 we get r′a′2 = 0 and r′b′1 = 0 which combined with
χ(IC′(c)) = χ(IC(c)) 6 0 yields a′2 = 0 and b′1 = 0. Hence n(C ′) =
(r−a2− b1, 0, 0, 0, 0) for any generic curve of H(d, g). Since γC′(v) = γC(v)
for v 6= c by semicontinuity and the vanishing of H1(IC(v)), any such C ′

belongs to the same irreducible component of H(d, g) by the irreducibility
of HγC′ ,M(C′). Moreover C is obstructed by Theorem 3.4, and (b) is proved.
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(a) Suppose r < a2 + b1. To get the lower bound of n(comp, C) (which
in fact is > 2), we use (4.4) to produce several generic curves of H(d, g)
which are generizations of C. Indeed let m(a) = min{a2, r} and m(b) =
min{b1, r}. By (4.4) there exist generizations C0, C1,. . . ,Cm(a)+m(b)−r such
that n(C0) = (0, a2 −m(a), b1 +m(a)− r), n(C1) = (0, a2 −m(a) + 1, b1 +
m(a) − r − 1),. . . , n(Cm(a)+m(b)−r) = (0, a2 + m(b) − r, b1 −m(b)). Since
the curves Ci are ACM and have different postulations, they belong to
m(a)+m(b)−r+1 different components, and we get the minimum number
of irreducible components as stated in the proposition.

To see that the generic curve C ′ of any component containing C is ACM,
we recall that r′a′2 = 0 and r′b′1 = 0 by Proposition 4.2 with notations as
in the first part of the proof. Suppose r′ 6= 0. Then a′2 = 0 and b′1 = 0.
To get a contradiction, we remark that γC′(v) = γC(v) for v < c, from
which we get h0(IC′(c)) + b′2 = h0(IC(c)) − a2 since a2 (resp. b′2) is the
only possibly non-vanishing graded Betti number of I(C) (resp. I(C ′)) in
degree c. Hence h0(IC′(c)) 6 h0(IC(c)) − a2 and similarly we have the
“dual” result h1(OC′(c)) 6 h1(OC(c))− b1. Adding the inequalities, we get

χ(IC′(c)) + h1(IC′(c)) 6 χ(IC(c)) + h1(IC(c))− a2 − b1 < χ(IC(c)),

i.e., a contradiction because χ(IC′(c)) = χ(IC(c)). Now using the fact that
the generic curve C ′ of any irreducible component containing C is ACM
and that HγC′ ,M(C′) is irreducible, we prove easily that n(comp, C) 6 r+1
because there are at most r + 1 different postulations γC′ . Indeed since
M(C ′) = 0, γC′(v) = γC(v) for v 6= c and

γC′(c) + σC′(c) = χ(IC′(c)) = χ(IC(c)) = γC(c) + σC(c)− r

where σC(v) = h1(OC(v)), we see that the different choices of γC′ can
happen in degree v = c only, and that they are given by γC′(c) = γC(c)− i
where i is chosen among {0, 1, 2, . . . , r}.

Suppose s(C) = e(C) = c. Since in this case γC(c) = a2 and σC(c) = b1
by arguments as in the first part of the proof, we can easily limit the (at
most) r+1 different choices of the postulation γC′(c) = γC(c)− i above by
choosing

m(a) 6 i 6 r −m(b)

i.e., n(comp, C) equals precisely m(a)+m(b)− r+1, and we are done. �

Example 4.7. — Now we reconsider some particular cases of Exam-
ple 3.12, even though Proposition 4.6 is well adapted to treat the whole
example in detail. Recall that for any triple (r, a2, b1) of natural num-
bers, there exists a smooth connected curve C with n(C) = (r, a2, b1) and
s(C) = e(C) = c(C) by Example 3.12. In particular
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(a) For every integer r > 0 there exists a smooth connected curve C,
with triple n(C) = (r, r, r), of degree d and genus g as in Example 3.12,
which is contained in r + 1 irreducible components of H(d, g)S . Moreover
the generic curves of all the components containing C are ACM.

(b) For every r > 0 there exists an obstructed, smooth connected curve
with triple (r, a2, b1) = (2t, t, t) or (2t + 1, t, t), of degree d and genus g
as given by Example 3.12, which belongs to a unique irreducible compo-
nent of H(d, g)S by Proposition 4.6. In particular the obstructed curve C
with (r, a2, b1) = (2, 1, 1) belongs to a unique irreducible component of
H(32, 109)S , confirming what we saw in Example 3.12.

To prove Theorem 4.1 and Proposition 4.2 we need a lemma for deform-
ing a module N , which basically is known (and related to [26], Prop. 2.1,
p. 140). For our purpose it suffices to see that if we can lift a (three term)
resolution with augmentation N to a complex, then the complex defines a
flat deformation of N . In the case N = I(C) where C has e.g. codimension
2 in P3, we also know that a deformation of an ideal I(C) is again an ideal,
i.e.,

Lemma 4.8. — Let C be a curve in P3 whose homogeneous ideal I(C)
has a minimal resolution of the following form

(L•) 0 →
⊕

iR(−i)β3,i
ϕ−→

⊕
iR(−i)β2,i

ψ−→
⊕

iR(−i)β1,i → I(C) → 0.

Let A be a finitely generated k-algebra, B the localization of A in a maxi-
mal ideal ℘, and suppose there exists a complex

(L•B)
⊕

iRB(−i)β3,i
ϕB−→

⊕
iRB(−i)β2,i

ψB−→
⊕

iRB(−i)β1,i ,

RB = R ⊗k B, such that L•B ⊗B (B/℘) ∼= L•. Then (L•B) is acyclic, ϕB is
injective and the cokernel of ψB is a flat deformation of I(C) as an ideal
(so coker(ψB) ⊆ RB defines a flat deformation of C ⊆ P3 with constant
postulation). Moreover for some a ∈ A− ℘, we can extend this conclusion
to Aa via Spec(B) ↪→ Spec(Aa), i.e., there exists a flat family of curves
CSpec(Aa) ⊆ P3 × Spec(Aa) whose homogeneous ideal I(CAa

) has a resolu-
tion (not necessarily minimal) of the form

(L•Aa
) 0 →

⊕
RAa(−i)β3,i →

⊕
RAa(−i)β2,i

→
⊕
RAa(−i)β1,i → I(CAa) → 0.

Proof (sketch). — If E = cokerϕ and EB = cokerϕB , then one proves
easily that EB⊗B (B/℘) = E, Tor1(EB , B/℘) = 0 and that ϕB is injective.
By the local criterion of flatness, EB is a flat deformation of E. Letting
QB = coker(EB → ⊕iRB(−i)β1,i), we can argue as we did for EB to see
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that QB is a flat deformation of I(C) and that L•B augmented by QB is
exact.

To prove that QB is an ideal in RB , we can use the isomorphisms
Hi−1(NC) ∼= ExtiOP

(Ĩ , Ĩ) for i = 1, 2, interpreted via deformation theory
and repeatedly applied to Bi+1 → Bi for i > 1 (Bi = B/℘i), to see that a
deformation of the OP -Module Ĩ (such as Q̃B) corresponds to a deforma-
tion of the curve C in the usual way, i.e., via the cokernel of ĩ: Q̃B → R̃B .
We get in particular a morphism H0

∗(̃i): QB → RB which proves what we
want (one may give a direct proof using Hilbert-Burch theorem (cf. [26],
page 37-38)).

Finally we easily extend the morphism i and any morphism of the reso-
lution L•B to be defined over Aa′ , for some a′ ∈ A − ℘ (such that L•Aa′ is
a complex). By shrinking SpecAa′ to SpecAa, a ∈ A − ℘, we get the ex-
actness of the complex and the flatness of I(CAa

) because these properties
are open. �

Proof of Theorem 4.1. — Suppose that F has rank s and consider the
s by s submatrix M(ψ) of ψ in

0 → L4
σ⊕0⊕0−−−−→ L3 ⊕ F ′

2 ⊕ F
ψ−→ F ′

1 ⊕ F → I(C) → 0

which corresponds to F → F . As in the “Lemma de générisation simplifi-
antes” ([26], page 189), we can change the 0′s on the diagonal of M(ψ) to
some λ1, . . . , λs where the λ′is are indeterminates of degree zero. Keeping
σ ⊕ 0⊕ 0 unchanged, we still have a complex which by Lemma 4.8 implies
the existence a flat family of curves over Spec(Aa), A = k[λ1, . . . , λs], for
some a ∈ A−(λ1, . . . , λs). Let λ := Πs

i=1λi be the product. Since any curve
C ′ of the family given by Spec(Aλa) has a resolution where F is redundant
(F , and only F , is missing in its minimal resolution), and since we may
still interpret the Rao module M(C ′) as ker H3

∗(σ̃⊕0⊕0) with σ ⊕ 0⊕ 0 as
above (so the whole family given by Spec(Aa) has constant Rao modules),
we conclude easily. �

Remark 4.9. — Slightly extending the proof and using Bolondi’s result
on the irreducibility of Hγ,M ([3]), one may prove that set U of points (C) of
the scheme Hγ,M whose modules F2 and F1 of the minimal resolution (4.1)
of I(C) are without common direct free factors, form an open (and non-
empty if a curve with minimal resolution (4.1) exists) irreducible subset
of Hγ,M .

Proof of Proposition 4.2.
(a) Since we have the assumption that M ∼= M ′⊕M[t] as R-modules, the

minimal resolution (3.1) of M is given as the direct sum of the resolution of
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M ′ and the one of M[t] which is “r-times” the Koszul resolution associated
with the regular sequence {X0, X1, X2, X3}. The matrix associated to σ[t]

(resp. σ = σ′ ⊕ σ[t]) will have the form

(4.5)


X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X

 (resp.
[
σ′ 0
0 σ[t]

]
)

where X is (X0, X1, X2, X3)T and each “row” in the left matrix is a 4× r

matrix, etc. Let ηj : R(−t− 4) → L′4⊕R(−t− 4)r be the map into the j-th
direct factor of R(−t− 4)r, 1 6 j 6 r, and let

πi : L′3 ⊕R(−t− 3)4r ⊕ P ′
2 ⊕R(−t− 4)b1 → R(−t− 4)

be the projection onto the i-th factor of R(−t − 4)b1 , 1 6 i 6 b1. Similar
to what was observed by Martin Deschamps and Perrin in the case M ∼= k

([26], page 189) we can change the 0 component in the matrix of σ⊕0 which
corresponds to πiηj :R(−t−4) → R(−t−4), to some indeterminate of degree
zero. To get a complex we need to change four columns of the matrix A asso-
ciated to L3⊕F2 → F1 as follows. Let r1 := rankF1 and look to the column
(ak), 1 6 k 6 r1, of A which corresponds to the map R(−t− 4) → F1 from
the i-th factor of R(−t− 4)b1 . Put ak =

∑3
l=0 γ

i
k,lXl for every 1 6 k 6 r1.

Since the resolution is minimal, such γik,l exist, but they are not necessar-
ily unique. Since the column of the matrix of σ ⊕ 0 which corresponds to
ηj consists of only 0’s and X (cf. (4.5)) there are precisely four columns
[Hj

k,0,H
j
k,1,H

j
k,2,H

j
k,3], 1 6 k 6 r1, of A satisfying

∑3
l=0H

j
k,lXl = 0 for

every k which may contribute to the composition (σ ⊕ 0)ηj . Now if we
change the trivial map π1η1 to the multiplication by an indeterminate λ1

and simultaneously change the four columns [H1
k,0,H

1
k,1,H

1
k,2,H

1
k,3] of A

to [H1
k,0 − γ1

k,0λ1,H
1
k,1 − γ1

k,1λ1,H
1
k,2 − γ1

k,2λ1,H
1
k,3 − γ1

k,3λ1], leaving the
rest of A unchanged, we still get that (4.2) defines a complex. We can pro-
ceed by simultaneously changing the 0 component of π2η2 to λ2 and the
corresponding four columns of the matrix A as described above, etc. Put
λ := Πm1

i=1λi. By Lemma 4.8 we get a flat irreducible family of curves C ′ over
Spec(k[λ1, . . . , λm1 ]a), for some a ∈ A−(λ1, . . . , λm1), having the same (not
necessarily minimal) resolution, hence the same postulation, as C. Since λ
is invertible in Spec(k[λ1, . . . , λm1 ]λ·a), we can remove redundant factors of
the resolution of I(C ′) in this open set. Since M(C ′) ∼= ker H3

∗(σ̃ ⊕ 0⊕ 0),
we have a generization C ′ with properties as claimed in Proposition 4.2.
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Finally using Remark 3.5 for v = 0, the assumption on L′2 shows that (3.5)
holds and hence we conclude by the left formula of (3.6).

(b) We will prove (b) by linking C to a Cl via a complete intersection of
two surfaces of degrees f and g satisfying H1(IC(v)) = 0 for v = f, g, f − 4
and g−4, and then apply (a) to Cl. To see that Cl satisfies the assumption
of (a), first note that M(Cl) admits a decomposition M(Cl) ∼= M ′(Cl) ⊕
M[f+g−4−t] as R-modules. Indeed M = M(C) satisfies the duality

(4.6) M(Cl) ∼= Ext4R(M,R)(−f − g) ∼= Homk(M,k)(−f − g + 4),

(cf. [37] and [30], p. 133). If we let M ′(Cl) := Ext4R(M ′, R)(−f − g), then
the decomposition M ∼= M ′ ⊕M[t] translates to

M(Cl) ∼= Ext4R(M ′, R)(−f − g)⊕ Ext4R(M[t], R)(−f − g)
∼= M ′(Cl)⊕M[t](2t+ 4− f − g)

since M[t](t) ∼= Ext4R(M[t](t), R(−4)) by the self-duality of the minimal
resolution of M[t](t). Finally since M[t](2t + 4 − f − g) is supported in
degree f + g − 4 − t, we may write the module M[t](2t + 4 − f − g) as
M(Cl)[f+g−4−t] := M[f+g−4−t]. Next to see that direct free part F1 gener-
ated in degree t in the resolution of I(C), is equal (at least dimensionally)
to the corresponding part in degree f+g−4−t of F2(Cl)(4) in the minimal
resolution of I(Cl) of the linked curve Cl, we remark that since the isomor-
phism of (2.18) is given by the duality used in (4.6), it must commute with
their decomposition as R-modules, i.e., we have

(4.7) 0HomR(I(C),M(C)[t]) ∼= 0HomR(M(Cl)[f+g−4−t], E(Cl)).

Then we conclude by (3.4) and (3.6) provided we can use Remark 3.5 for
v = 0. Indeed if L∗ := HomR(L,R), we have an exact sequence

→ (L′2)
∗ → (L′3)

∗ → (L′4)
∗ → Ext4R(M ′, R) ∼= M ′(Cl)(f + g) → 0.

Since L′2 has no direct free factor of degree t, it follows that (L′2)
∗(−f − g)

has no direct free factor of degree f+g−t, i.e., we have −4HomR((L′2)
∗(−f−

g),M[f+g−4−t]) = 0 and Remark 3.5 applies. Now using (a) to the linked
curve Cl with m2 = m1, we get a generization of C ′

l with constant postu-
lation where R(−f − g + t)m1 is “removed” in its minimal resolution. A
further linkage, using a complete intersection of the same type as in the
linkage above (such a complete intersection exists by [22], Cor. 3.7) and
the formula (4.7) (replacing C and Cl by C ′ and C ′

l respectively), we get
the desired generization C ′, and we are done. �
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