
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Jean-Marc DELORT & Jérémie SZEFTEL

Bounded almost global solutions for non hamiltonian semi-linear
Klein-Gordon equations with radial data on compact revolution
hypersurfaces
Tome 56, no 5 (2006), p. 1419-1456.

<http://aif.cedram.org/item?id=AIF_2006__56_5_1419_0>

© Association des Annales de l’institut Fourier, 2006, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2006__56_5_1419_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
56, 5 (2006) 1419-1456

BOUNDED ALMOST GLOBAL SOLUTIONS FOR NON
HAMILTONIAN SEMI-LINEAR KLEIN-GORDON

EQUATIONS WITH RADIAL DATA ON COMPACT
REVOLUTION HYPERSURFACES

by Jean-Marc DELORT & Jérémie SZEFTEL

Abstract. — This paper is devoted to the proof of almost global existence
results for Klein-Gordon equations on compact revolution hypersurfaces with non-
Hamiltonian nonlinearities, when the data are smooth, small and radial. The
method combines normal forms with the fact that the eigenvalues associated to
radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy
convenient asymptotic expansions.

Résumé. — Cet article est consacré à la preuve de résultats d’existence presque
globale pour des équations de Klein-Gordon sur des hypersurfaces compactes de
révolution avec des non-linéarités non hamiltoniennes, lorsque les données sont pe-
tites, régulières et radiales. La méthode repose sur l’utilisation de formes normales
et sur le fait que les valeurs propres associées à des fonctions propres radiales du
Laplacien sont simples et vérifient des propriétés de séparation convenables.

0. Introduction

Let (M, g) be a compact Riemannian manifold without boundary, V a
nonnegative potential on M , m ∈]0,+∞[, and consider a nonlinear Klein-
Gordon equation on M

(0.1) (∂2
t −∆g + V + m2)u = f(x, u, ∂tu)

where f is a polynomial in (u, ∂tu) with smooth dependence in x. We
are interested in questions of almost global existence and Hs-boundedness
for (0.1) when (M,V ) are rotationally symmetric around some axis, the

Keywords: Almost global solutions, nonlinear Klein-Gordon equation, radial
hypersurfaces.
Math. classification: 35L70, 58J47.
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Cauchy data are smooth, small and radial, and m is taken outside an ex-
ceptional set of zero measure. This problem has been studied in the case of
Hamiltonian nonlinearities (i.e., nonlinearities f(x, u) independent of ∂tu)
by Bourgain [3], Bambusi [1], Bambusi and Grébert [2] on a bounded in-
terval with boundary conditions, or on the circle. In this case, conservation
of H1 norm implies immediately global existence in H1, and these authors
show for almost all values of m boundedness of Hs norms of the solution
(for any s) over intervals of time of length cN ε−N (for any N), where ε

is the size of the Cauchy data. Their method relies on construction of ap-
proximate action-angle variables for the Hamiltonian formulation of the
equation.

On the other hand, a considerable amount of work has been done since
the 80’s on the problem of long time existence for solutions to wave or Klein-
Gordon nonlinear equations on Rd with data which are smooth, small,
and rapidly decaying at infinity. We refer to the introduction of [4] for
bibliographical references on that problem. Let us just recall that in this
framework, global existence holds true when linear solutions decay rapidly
enough at infinity – so that the nonlinearity may be viewed as a short
range perturbation of the linear equation. When the nonlinearity is a long
range perturbation, global solutions still exist if the nonlinearity satisfies a
structure condition, introduced under the name of null condition by Klain-
erman [8] for the wave equation in three space dimensions. Examples of null
conditions for one dimensional Klein-Gordon equations have been found by
Moriyama [9], and Delort [4] proved global existence under a general null
condition (see also the recent work of Sunagawa [11]). All these null condi-
tions have no relation with a possible Hamiltonian structure of the equa-
tion. Actually they appear in most of the above works through a method
of normal forms, initially introduced in the framework of nonlinear Klein-
Gordon equations by Shatah [10]. This brings the natural question whether
problems of type (0.1) have almost global Hs-bounded solutions for more
general nonlinearities than the Hamiltonian ones considered by Bourgain,
Bambusi, Bambusi-Grébert, and for more general manifolds than the circle
or the interval. We prove in this paper that such a result holds true for
essentially one dimensional problems – i.e., cases when M = S1 or M is a
revolution hypersurface with radial potential and data – and for nonlinear-
ities satisfying a “null condition” allowing non Hamiltonian contributions.
Actually, we consider nonlinearities which contain even powers of ∂tu (If
we accept nonlocal nonlinearities, we can even permit dependence of f in√
−∆g + V u).

ANNALES DE L’INSTITUT FOURIER



KLEIN-GORDON ON RADIAL HYPERSURFACES 1421

Our method of proof is an extension of the one we used in our pa-
pers [6, 5], to study long time existence for equations of type (0.1) when
M is a sphere or a Zoll manifold, and when the potential and the data are
not assumed rotationally invariant. We introduced a pseudo-Hamiltonian
Es(u), equivalent to the Hs norm on a neighborhood of zero, and we proved,
for convenient nonlinearities vanishing at order p at 0 that, for almost all
values of the mass m, the solution exists and stays bounded in Hs (s � 1)
on intervals of time of length at least cε−2p+1 (where ε is the size of the
data). This is better that the time of existence given by local existence
theory, namely cε−p+1, but is far from providing almost global solutions.
The point is that the construction of the pseudo-Hamiltonian Es makes
appear new nonlinear contributions, which are of higher order, and whose
structure is more involved than the one of the right hand side of (0.1). This
prevents one from iterating the method to construct a pseudo-Hamiltonian
that can be controlled over intervals of time of arbitrary length. Actually,
the difficulties are related to the structure of the spectrum of −∆g + V

on a Zoll manifold: the eigenvalues are grouped in well-separated clusters,
and the pseudo-Hamiltonian Es is a multilinear expression in the spec-
tral projections Πλu of u on the different clusters. The right hand side of
d
dtEs(u(t, ·)) has the same type of structure, except that it involves prod-
ucts of images by spectral projections of products of Πλu’s. This prevents
one from modifying Es to cancel out those new contributions.

On the other hand, for rotationally symmetric problems (or one dimen-
sional ones), one has only to cope with those eigenvalues which correspond
to symmetric eigenfunctions. Under convenient assumptions, this singles
out a sequence of well separated eigenvalues, and allows to construct Es

in terms of Fourier coefficients of u corresponding to the associated eigen-
functions. This greatly simplifies the nonlinear expressions and allows one,
exploiting some of the results of our preceding paper [5], to construct a
pseudo-Hamiltonian controlled over intervals of arbitrary length.

From a technical point of view, we have to establish some separation
properties of the eigenvalues of −∆g + V corresponding to eigenfunctions
satisfying convenient symmetry assumptions. For problems on M = S1 or
on a hypersurface of revolution that does not meet the axis of symmetry,
these properties follow readily from the well known spectral theory of the
Hill operator. When M is a surface of revolution meeting the axis, the spec-
tral problem may be reduced to the study of the eigenvalues for an elliptic
second order operator on [0, 1], degenerated at the boundary. Since we have
been unable to find in the literature references to the spectral results we
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1422 Jean-Marc DELORT & Jérémie SZEFTEL

need, we provide a proof of them in the third section of the paper. Actu-
ally, we have to get asymptotics for the eigenvalues of such a degenerate
problem. We prove them combining WKB expansions for solutions of the
corresponding singular ODE with a quantization condition.

1. Main results

1.1. Statement of the main theorem

Consider (M, g) a compact Riemannian manifold without boundary, of
dimension d > 1. Denote by ∆g its Laplace-Beltrami. Let W be a closed
subspace of L2(M) such that ∆g restricted to W is a self-adjoint op-
erator. Let V : M → R be a smooth nonnegative potential such that
x → V (x)w(x) belongs to W whenever w ∈ W and set

(1.1) P =
√
−∆g + V .

We shall assume that the spectrum of P |W consists of simple eigenvalues
(λn)n>1 having the following asymptotic expansion as n → +∞

(1.2) λn =
2π

τ
n + α +O

(
1
n

)
.

where τ > 0, α ∈ R.
If I ⊂ R is an interval, u is a smooth real function defined on I × M ,

denote by f the function defined by

(1.3) f(x, u, ∂tu, Pu) =
∑

26q6q̄

fq(x, u, ∂tu, Pu),

where

(1.4)
fq is a sum of homogeneous expressions of degree q of type
a(x)u`(∂tu)k(Pu)jwith a in C∞(M) and real valued, `, k, j

natural integers with ` + k + j = q and with k even.

We assume furthermore that

(1.5) f(x, u, v, w) ∈ W for all (x, u, v, w) ∈ M × (W ∩ C∞(M))3.

We shall look for a solution u defined on ] − T, T [×M of the following
problem

(∂2
t −∆g + V + m2)u = f(x, u, ∂tu, Pu)

u|t=0 = εu0(1.6)

∂tu|t=0 = εu1

ANNALES DE L’INSTITUT FOURIER
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where m > 0, ε > 0 is a small parameter, u0 ∈ Hs+1(M)∩W,u1 ∈ Hs(M)∩
W are given real valued functions. Our main result is the following:

Theorem 1.1. — Assume that condition (1.2) holds true. There is a
zero measure subset N of ]0,+∞[ satisfying the following: for any function
f of form (1.3) satisfying (1.4) and (1.5), for any m ∈]0,+∞[−N , for
any N ∈ N, there are ε0 > 0, c > 0, s0 ∈ N such that for any s > s0,
any pair (u0, u1) of real valued functions belonging to the unit ball of
Hs+1(M) × Hs(M) and to W × W , any ε ∈]0, ε0[, problem (1.6) has a
unique solution

(1.7) u ∈ C0(]− Tε, Tε[,Hs+1(M)) ∩ C1(]− Tε, Tε[,Hs(M))

with Tε > cN ε−N . Moreover, the solution is uniformly bounded in Hs+1(M)
on ]−Tε, Tε[ and ∂tu is uniformly bounded in Hs(M) on the same interval.

1.2. Application to almost global existence of radial solutions

Let us apply Theorem 1.1 in four situations.
Let M be the circle S1 identified to [−π, π] with periodic boundary con-

ditions, let V be a smooth nonnegative odd function, and let g be the
canonical metric on S1. Define W as the set of all the odd functions in
L2(S1). Then, the spectrum of P |W coincides with the spectrum of P on
[0, π] with Dirichlet boundary conditions. Therefore, the spectrum of P |W
consists of simple eigenvalues and (1.2) holds (see for example chapter 4
of [7]). Thus, we have the following corollary:

Corollary 1.2. — Let M = S1, let V be a smooth nonnegative odd
function, let g be the canonical metric on S1 and let W be the set of
all the odd functions in L2(S1). Assume f satisfies f(−x,−u,−v,−w) =
−f(x, u, v, w) for all (x, u, v, w) ∈ S1 × R3. Then Theorem 1.1 holds true.

Assume now that M and V satisfy the following assumptions:

(1.8)

M is a hypersurface of Rd, d > 3, with coordinates
(x1, . . . , xd) = (x′, xd), given by an equation of the form
Φ(|x′|, xd) = 0, where {(r, xd) ∈]0,+∞[×R : Φ(r, xd) = 0}
is a simple closed curve, and where Φ(r,−xd) = Φ(r, xd)
for any r > 0, xd ∈ R.

(1.9)
V is a smooth nonnegative function which is invariant under
the action of the rotations with axis xd, and even with
respect to xd.

TOME 56 (2006), FASCICULE 5
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Proposition 1.3. — Let M and V be chosen as in (1.8) and (1.9). Let
W consist of all functions in L2(M) which are invariant under the action of
the rotations with axis xd and even with respect to xd. Then the spectrum
of P |W consists of simple eigenvalues satisfying (1.2).

The proof of Proposition 1.3 is postponed to section 3. We have the
following corollary:

Corollary 1.4. — Let M and V be chosen as in (1.8) and (1.9) and
let W be chosen as in Proposition 1.3. Let f be such that f(Rx, u, v, w) =
f(x, u, v, w) for all (x, u, v, w) ∈ M × R3 and all rotations R with axis xd,
and f((x′,−xd), u, v, w) = f((x′, xd), u, v, w) for all (x, u, v, w) ∈ M × R3

where x = (x′, xd). Then Theorem 1.1 holds true.

Proposition 1.5. — Let M and V be chosen as in (1.8) and (1.9). Let
W consist of all functions in L2(M) which are invariant under the action of
the rotations with axis xd and odd with respect to xd. Then the spectrum
of P |W consists of simple eigenvalues satisfying (1.2).

The proof of Proposition 1.5 is postponed to section 3. We have the
following corollary:

Corollary 1.6. — Let M and V be chosen as in (1.8) and (1.9) and
let W be chosen as in Proposition 1.5. Let f be such that f(Rx, u, v, w) =
f(x, u, v, w) for all (x, u, v, w) ∈ M × R3 and all rotations R with axis xd,
and

f((x′,−xd),−u,−v,−w) = −f((x′, xd), u, v, w)

for all (x, u, v, w) ∈ M × R3

where x = (x′, xd). Then Theorem 1.1 holds true.

Finally, assume that M and V satisfy the following assumptions:

(1.10)
M is a hypersurface of Rd, d > 3, which is invariant under the
action of the rotations with axis xd. Furthermore, M intersects
the xd axis at two points.

(1.11)
V is a smooth nonnegative function which is invariant under
the action of the rotations with axis xd.

Proposition 1.7. — Let M and V be chosen as in (1.10) and (1.11).
Let W consist of all functions in L2(M) which are invariant under the
action of the rotations with axis xd. Then the spectrum of P |W consists of
simple eigenvalues satisfying (1.2).

ANNALES DE L’INSTITUT FOURIER
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The proof of Proposition 1.7 is postponed to section 3. We have the
following corollary:

Corollary 1.8. — Let M and V be chosen as in (1.10) and (1.11) and
let W be chosen as in Proposition 1.7. Let f such that f(Rx, u, v, w) =
f(x, u, v, w) for all (x, u, v, w) ∈ M × R3 and all rotations R. Then Theo-
rem 1.1 holds true.

2. Proof of Theorem 1.1

For λ1, . . . , λp p nonnegative real numbers define respectively the second
and third largest elements of this family by

max2(λ1, . . . , λp) = max
(
{λ1, . . . , λp} − {λi0}

)
(2.1)

max3(λ1, . . . , λp) = max
(
{λ1, . . . , λp} − {λi0 , λi1}

)
where i0 and i1 are indices such that

λi0 = max(λ1, . . . , λp), λi1 = max2(λ1, . . . , λp).

Set also

µ(λ1, . . . , λp) = max3(λ1, . . . , λp) + 1
(2.2)

S(λ1, . . . , λp) =
p∑

`=1

[
λ` −

∑
j 6=`

λj

]
+

+ µ(λ1, . . . , λp)

where [a]+ = max(a, 0) and where, by convention, µ(λ1, λ2) = 1 in the
case p = 2. If for instance λp and λp−1 are the largest two numbers among
λ1, . . . , λp then

µ(λ1, . . . , λp) ∼ 1 + λ1 + · · ·+ λp−2

(2.3)
S(λ1, . . . , λp) ∼ |λp − λp−1|+ λ1 + · · ·+ λp−2 + 1.

2.1. Definition and properties of multilinear forms

For n ∈ N∗, let ϕn denote a normalized eigenfunction associated to the
eigenvalue λn of P |W . Denote by E the span of the ϕn’s, n ∈ N∗.

TOME 56 (2006), FASCICULE 5



1426 Jean-Marc DELORT & Jérémie SZEFTEL

Definition 2.1. — Let s ∈ [0,+∞[, ν ∈ [0,+∞[, N ∈ N, p ∈ N, p > 2.
We denote by Ss,ν,N

p the algebra of all symbols (N∗)p → R such that there
is C > 0 satisfying: for every (n1, . . . , np) ∈ (N∗)p one has
(2.4)

|a(n1, . . . , np)| 6 C max(n1, . . . , np)s max2(n1, . . . , np)s µ(n1, . . . , np)ν+N

S(n1, . . . , np)N
.

The best constant C in (2.4) defines a norm ‖a‖Ss,ν,N
p

. We set Ss,ν,+∞
p =⋂

N∈N Ss,ν,N
p .

Definition 2.2. — Let s ∈ [0,+∞[, ν ∈ [0,+∞[, N ∈ N, p ∈ N, p > 2.
For a in Ss,ν,N

p , we denote by L(a) the p-linear form on E × · · · × E defined
for every u1, . . . , up ∈ E by

(2.5) L(a)(u1, . . . , up) =
∑

n1,...,np

a(n1, . . . , np)〈u1, ϕn1〉 · · · 〈up, ϕnp〉,

where 〈·, ·〉 denotes the scalar product on L2(M).

Let us give an example of an operator with symbol in Ss,ν,N
p .

Example 2.3. — Let s ∈ [0,+∞[. For every u1, u2 ∈ E , let M0(u1, u2)
be defined by

(2.6) M0(u1, u2) =
∑

n

n2s〈u1, ϕn〉〈u2, ϕn〉.

The bilinear form (u1, u2) → M0(u1, u2) is equal to L(a) where a is in
Ss,0,+∞

2 and is defined by a(n1, n2) = ns
1n

s
21{n1=n2}.

Lemma 2.4. — Let s ∈ [0,+∞[, ν ∈ [0,+∞[, N ∈ N, p ∈ N, p > 2, ` ∈
N, 1 6 ` 6 p. Let m ∈]0,+∞[ and set Λm =

√
−∆g + V + m2.

(i) For a in Ss,ν,N
p , we denote by M the p-linear form on E × · · · × E

satisfying: for every u1, . . . , up ∈ E one has

(2.7) M(u1, . . . , up) = L(a)(u1, . . . ,Λ−1
m u`, . . . , up).

Then there exists ã in Ss,ν,N
p such that M = L(ã). Furthermore, ‖ã‖Ss,ν,N

p
6

m−1‖a‖Ss,ν,N
p

.
(ii) For a in Ss,ν,N

p , we denote by M the p-linear form on E × · · · × E
satisfying: for every u1, . . . , up ∈ E one has

(2.8) M(u1, . . . , up) = L(a)(u1, . . . , PΛ−1
m u`, . . . , up).

Then there exists ã in Ss,ν,N
p such that M = L(ã). Furthermore, ‖ã‖Ss,ν,N

p
6

‖a‖Ss,ν,N
p

.
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Proof.
(i) In this case, an explicit computation shows that

ã(n1, . . . , np) =
a(n1, . . . , np)√

λ2
n`

+ m2

which yields ‖ã‖Ss,ν,N
p

6 m−1‖a‖Ss,ν,N
p

.
(ii) In this case, an explicit computation shows that

ã(n1, . . . , np) =

√
λ2

n`

λ2
n`

+ m2
a(n1, . . . , np)

which yields ‖ã‖Ss,ν,N
p

6 ‖a‖Ss,ν,N
p

. �

Proposition 2.5. — Let ν ∈ [0,+∞[, s ∈ R, s > ν+3/2, N ∈ N, N > 1.
Then for any a ∈ Ss,ν,N

p , L(a) extends as a bounded multilinear form on
Hs(M) × · · · ×Hs(M). Moreover for any s0 ∈]ν + 3/2, s], there is C > 0
such that for any a ∈ Ss,ν,N

p and any u1, . . . , up ∈ Hs(M)
(2.9)

|L(a)(u1, . . . , up)| 6 C‖a‖Ss,ν,N
p

∑
16j<k6p

[
‖uj‖Hs‖uk‖Hs

∏
` 6=j,k

‖u`‖Hs0

]
.

Proof. — The proof is a modification of the one of Proposition 4.4 in [6].
We give it for the convenience of the reader. We write
(2.10)

|L(a)(u1, . . . , up)| 6
∑

n1,...,np

|a(n1, . . . , np)||〈u1, ϕn1〉| · · · |〈up, ϕnp〉|.

By (2.4) the above sum is smaller than

(2.11) C
∑

n1,...,np

max(n1, . . . , np)s max2(n1, . . . , np)s µ(n1, . . . , np)ν+N

S(n1, . . . , np)N

× |〈u1, ϕn1〉| · · · |〈up, ϕnp
〉|.

By symmetry we may restrict ourselves to indices satisfying n1 6 · · · 6 np.
We have

max(n1, . . . , np) = np, max2(n1, . . . , np) = np−1

and

µ(n1, . . . , np) ∼ 1 + np−2

S(n1, . . . , np) ∼ |np − np−1|+ np−2 + 1.

Let κ > 1 as close to 1 as wanted. We deduce from the above equivalences

(2.12)
∑
np

S(n1, . . . , np)−κ 6 C,
∑
np−1

S(n1, . . . , np)−κ 6 C.

TOME 56 (2006), FASCICULE 5



1428 Jean-Marc DELORT & Jérémie SZEFTEL

We estimate the contributions of the sum for n1 6 · · · 6 np to (2.11) by

(2.13) C

( ∑
n16···6np

n2s
p |〈up, ϕnp〉|

2 µν+N

SN

p−2∏
1

|〈uj , ϕnj 〉|

)1/2

×

( ∑
n16···6np

n2s
p−1|〈up−1, ϕnp−1〉|

2 µν+N

SN

p−2∏
1

|〈uj , ϕnj 〉|

)1/2

.

Using (2.12) to handle the np−1 sum, we bound the first factor by
C‖up‖Hs

∏p−2
1 ‖uj‖1/2

Hs0 if s0 > ν + κ + 1/2. Using (2.12) to handle the
np sum, we bound the second factor by C‖up−1‖Hs

∏p−2
1 ‖uj‖1/2

Hs0 if s0 >

ν + κ + 1/2. Plugging in (2.13) and (2.11) we get an estimate for the con-
tributions of the sum for n1 6 · · · 6 np in the right hand side of (2.10) by

C‖up‖Hs‖up−1‖Hs

p−2∏
1

‖uj‖Hs0 .

This concludes the proof. �

We shall now compose a multilinear form whose symbol is in the algebra
Ss,ν,N

p and a polynomial.

Theorem 2.6. — Let p, q ∈ N, p > 2, q > 2, s ∈ [0,+∞[, ν ∈ [0,+∞[,
1 6 ` 6 q. Let b ∈ C∞(M). For a ∈ Ss,ν,N

q with N > 1 + 2s + ν and
N > 1 + 2s + (p + 1)d/2 + (d − 1)/2, define a (p + q − 1)-linear form on
Ep+q−1 by
(2.14)
M(u1, . . . , up+q−1) = L(a)(u1, . . . , u`−1, bu` · · ·u`+p−1, u`+p, . . . , up+q−1).

Then there is a symbol ã in S
s,1+ν1+ν,N−1−2s−max(ν1,ν)
p+q−1 for any ν1 satisfying

(p+1)d/2+ (d− 1)/2 < ν1 < N − 1− 2s such that M = L(ã) and the map
a → ã is bounded from Ss,ν,N

q into these spaces.

Proof. — We shall take ` = 1 for the proof. For uj ∈ E , nj ∈ N∗ one has

u1 · · ·up =
∑

n1,...,np

〈u1, ϕn1〉 · · · 〈up, ϕnp〉ϕn1 · · ·ϕnp

ANNALES DE L’INSTITUT FOURIER
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and therefore

M(u1, . . . , up+q−1)

=
∑

n,np+1,...,np+q−1

a(n, np+1, . . . , np+q−1)〈bu1 · · ·up, ϕn〉

× 〈up+1, ϕnp+1〉 · · · 〈up+q−1, ϕnp+q−1〉

=
∑

n,n1,...,np+q−1

a(n, np+1, . . . , np+q−1)〈bϕn1 · · ·ϕnp , ϕn〉(2.15)

× 〈u1, ϕn1〉 · · · 〈up+q−1, ϕnp+q−1〉

=
∑

n1,...,np+q−1

ã(n1, . . . , np+q−1)〈u1, ϕn1〉 · · · 〈up+q−1, ϕnp+q−1〉

where ã : (N∗)p+q−1 → R is defined by

(2.16) ã(n1, . . . , np+q−1) =
∑

n

a(n, np+1, . . . , np+q−1)〈bϕn1 · · ·ϕnp , ϕn〉.

It remains to prove that ã is in S
s,1+ν1+ν,N−1−2s−max(ν1,ν)
p+q−1 for any

(p + 1)d/2 + (d − 1)/2 < ν1 < N − 1 − 2s. We shall make use of an
estimate for the integral of products of eigenfunctions, which generalizes
well known orthogonality properties of products of spherical harmonics.
Since we assume that the spectrum of P |W consists of simple eigenvalues,
we may choose for every n ∈ N∗ an interval of positive length In containing
the eigenvalue λn, such that In∩In′ = ∅ if n 6= n′. If Πn is the spectral pro-
jector determined by In we have Πnϕn = ϕn for any n. Using (1.2) we see
that Proposition 1.2.1 of [5] implies that for any ν1 > (p+1)d/2+(d−1)/2,
any N ∈ N and any b ∈ C∞(M)

(2.17) |〈bϕn1 · · ·ϕnp
, ϕn〉| 6 C

µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N
.

Actually Proposition 1.2.1 of [5] states such an inequality only in the
case b ≡ 1. But this proposition is deduced from inequality (1.2.10) of
Lemma 1.2.3, which allows an arbitrary C∞ weight.

Formulas (2.4), (2.16) and (2.17) yield

(2.18) |ã(n1, . . . , np+q−1)|

6 C
∑

n

max(n, np+1, . . . , np+q−1)s max2(n, np+1, . . . , np+q−1)s

× µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N

µ(n, np+1, . . . , np+q−1)ν+N

S(n, np+1, . . . , np+q−1)N
.
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We will use the following inequality obtained in formulas (2.1.10), (2.1.11)
of [5] for ν′ > 0, ν′′ > 0 and N > 1 + max(ν′, ν′′):

(2.19)
∑

n

µ(n, n1, . . . , np)ν′+N

S(n, n1, . . . , np)N

µ(n, np+1, . . . , np+q−1)ν′′+N

S(n, np+1, . . . , np+q−1)N

6 C
µ(n1, . . . , np+q−1)1+ν′+ν′′+(N−1−max(ν′,ν′′))

S(n1, . . . , np+q−1)N−1−max(ν′,ν′′)
.

1st case. Assume n 6 2 max(p, q − 1) max2(n1, . . . , np+q−1). We have
either

max(n, np+1, . . . , np+q−1) max2(n, np+1, . . . , np+q−1)

= n max(np+1, . . . , np+q−1)

or

max(n, np+1, . . . , np+q−1) max2(n, np+1, . . . , np+q−1)

= max(np+1, . . . , np+q−1) max2(np+1, . . . , np+q−1).

In each case we have using the assumption of the first case

max(n, np+1, . . . , np+q−1)s max2(n, np+1, . . . , np+q−1)s

6 C max(n1, . . . , np+q−1)s max2(n1, . . . , np+q−1)s

which together with (2.18) implies

(2.20)
|ã(n1, . . . , np+q−1)| 6 C max(n1, . . . , np+q−1)s max2(n1, . . . , np+q−1)s

×
∑

n

µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N

µ(n, np+1, . . . , np+q−1)ν+N

S(n, np+1, . . . , np+q−1)N
.

Inequalities (2.20) and (2.19) yield

(2.21)
|ã(n1, . . . , np+q−1)| 6 C max(n1, . . . , np+q−1)s max2(n1, . . . , np+q−1)s

× µ(n1, . . . , np+q−1)1+ν1+ν+(N−1−max(ν1,ν))

S(n1, . . . , np+q−1)N−1−max(ν1,ν)
.
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2nd case. Assume n > 2 max(p, q−1) max2(n1, . . . , np+q−1). In this case

max(n, np+1, . . . , np+q−1) max2(n, np+1, . . . , np+q−1)(2.22)

= n max(np+1, . . . , np+q−1)

6 n max(n1, . . . , np+q−1).

Estimates (2.18) and (2.22) imply

(2.23) |ã(n1, . . . , np+q−1)| 6 C max(n1, . . . , np+q−1)s

×
∑

n

ns µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N

µ(n, np+1, . . . , np+q−1)ν+N

S(n, np+1, . . . , np+q−1)N
.

We shall obtain a bound on n. We have

S(n, n1, . . . , np) > n− n1 − · · · − np > n− p max(n1, . . . , np),(2.24)

S(n, np+1, . . . , np+q−1) > n− np+1 − · · · − np+q−1

> n− (q − 1) max(np+1, . . . , np+q−1).

As
max(n1, . . . , np) 6 max2(n1, . . . , np+q−1)

or
max(np+1, . . . , np+q−1) 6 max2(n1, . . . , np+q−1)

(2.24) and the assumption of the second case yield

(2.25) S(n, n1, . . . , np) > n− p max2(n1, . . . , np+q−1) > n/2

or

(2.26) S(n, np+1, . . . , np+q−1) > n− (q − 1) max2(n1, . . . , np+q−1) > n/2.

Therefore

(2.27) n 6 2S(n, n1, . . . , np) + 2S(n, np+1, . . . , np+q−1)

which together with (2.23) implies

(2.28) |ã(n1, . . . , np+q−1)| 6 C max(n1, . . . , np+q−1)s

×
∑

n

[
µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N−s

µ(n, np+1, . . . , np+q−1)ν+N

S(n, np+1, . . . , np+q−1)N

+
µ(n, n1, . . . , np)ν1+N

S(n, n1, . . . , np)N

µ(n, np+1, . . . , np+q−1)ν+N

S(n, np+1, . . . , np+q−1)N−s

]
.
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Formulas (2.19) and (2.28) yield, remembering the assumptions on N made
in the statement of the theorem

|ã(n1, . . . , np+q−1)| 6 C max(n1, . . . , np+q−1)sµ(n1, . . . , np+q−1)s

(2.29)

× µ(n1, . . . , np+q−1)1+ν1+ν+(N−1−2s−max(ν1,ν))

S(n1, . . . , np+q−1)N−1−2s−max(ν1,ν)

6 C max(n1, . . . , np+q−1)s max2(n1, . . . , np+q−1)s

× µ(n1, . . . , np+q−1)1+ν1+ν+(N−1−2s−max(ν1,ν))

S(n1, . . . , np+q−1)N−1−2s−max(ν1,ν)
.

Finally, we deduce from (2.21) and (2.29) that ã is in

S
s,1+ν1+ν,N−1−2s−max(ν1,ν)
p+q−1

which concludes the proof. �

2.2. Proof of long-time existence

We first introduce some notations. Define

(2.30) H = {λn; n ∈ N∗}.

If m ∈]0,+∞[, ρ : {1, . . . , p} → {−1, 1} define

(2.31) F ρ
m(ξ1, . . . , ξp) =

p∑
j=1

ρ(j)
√

m2 + ξ2
j

and

(2.32) Z(p, ρ) = {(ξ1, . . . , ξp); ξj ∈ H; ∃σ ∈ Sp

with σ2 = Id, ρ ◦ σ = −ρ and ∀j = 1, . . . , p, ξj = ξσ(j)}.

Remark that by definition, Z(p, ρ) 6= ∅ ⇒
∑p

1 ρ(j) = 0, so p must be even
and among 1, . . . , p there are ` = p/2 indices for which ρ(j) = 1 and `

indices for which ρ(j) = −1. In other words, Z(p, ρ) is the set of p-tuples of
eigenvalues that can be coupled in such a way that each eigenvalue appears
with both signs in (2.31). Therefore, F ρ

m vanishes identically on Z(p, ρ).

Proposition 2.7. — Let p ∈ N, p > 2, ρ : {1, . . . , p} → {−1, 1} be
given. There is a zero measure subset N of ]0,+∞[ and for every m ∈
]0,+∞[−N , there are c > 0, N1 ∈ N, such that for every (λn1 , . . . , λnp

) ∈
Hp − Z(p, ρ) we have

(2.33) |F ρ
m(λn1 , . . . , λnp)| > cµ(n1, . . . , np)−N1
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with µ defined by (2.2).

We shall prove (2.33) using general estimates we obtained in [6]. Alter-
natively one could make use of inequalities obtained in more elementary
ways by Bambusi [1] and Bambusi and Grébert [2].

Before beginning the proof, let us simplify somewhat notations. Up to a
permutation on the indices, we may assume ρ(j) = 1 for j = 1, . . . , `, ρ(j) =
−1 for j = ` + 1, . . . , p. Then F ρ

m may be written

(2.34) F p,`
m (ξ1, . . . , ξp) =

∑̀
j=1

√
m2 + ξ2

j −
p∑

j=`+1

√
m2 + ξ2

j .

Define an auxiliary function

(2.35) Gp,`
m (ξ1, . . . , ξp+1) = F p,`

m (ξ1, . . . , ξp) + ξp+1

and set

DF = Hp, DG = Hp × Z
(2.36)

LF = Z(p, ρ), LG = Z(p, ρ)× {0}

these last two sets being empty if p is odd or p is even and ` 6= p/2. We shall
denote by ξ either (ξ1, . . . , ξp) or (ξ1, . . . , ξp+1) according to the context and
set D∗ = DF or D∗ = DG.

Lemma 2.8.
(i) There is C > 0 with

(2.37) #{ξ ∈ D∗; |ξ| < λ} 6 Cλ ∀λ > 1.

(ii) When p is even and ` = p/2, there is c > 0 such that for any ξ

belonging respectively to DF − LF and DG − LG, and any σ ∈ S`

(2.38)
∑̀
j=1

(ξ2
σ(j) − ξ2

p/2+j)
2 > c,

∑̀
j=1

(ξ2
σ(j) − ξ2

p/2+j)
2 + ξ2

p+1 > c.

Proof. — Assertion (i) follows from (1.2). Let us prove that (ii) holds
true. Let (ξ1, . . . , ξp) ∈ DF−LF . Then for every σ ∈ S` there is j, 1 6 j 6 `

with ξσ(j) 6= ξ`+j . Since the distance between two eigenvalues is bounded
from below by a fixed positive constant by (1.2), we get the conclusion in
the case of DF − LF . The case of DG − LG is similar. �

Proof of Proposition 2.7. — Conditions (2.37) and (2.38) are condi-
tions (A), (BF ) and (BG) of [6] section 5.2. The proof of Theorem 4.7 in
that paper applies – it relies only on these conditions – and shows that
there is N ⊂]0,+∞[ of zero measure and for any m ∈]0,+∞[−N , there
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are constants c > 0, N0 ∈ N such that for any (ξ1, . . . , ξp) ∈ DF − LF ,
(ξ1, . . . , ξp+1) ∈ DG − LG respectively one has

|F p,`
m (ξ1, . . . , ξp)| > c

(
1 +

p∑
1

|ξj |
)−N0

(2.39)

|Gp,`
m (ξ1, . . . , ξp+1)| > c

(
1 +

p+1∑
1

|ξj |
)−N0

.

We may assume that the largest two indices among n1, . . . , np are n1 and
nj for some j between 2 and p. Then the quantity by which we want to
bound from below the absolute value of (2.34) is a negative power of

(2.40) µ(n1, . . . , np) ∼
∑

k 6=1,k 6=j

nk + 1.

If µ(n1, . . . , np) > δ(1 +
∑p

1 nk)δ for some δ > 0, then the first inequality
of (2.39) implies the conclusion. Assume now

(2.41) µ(n1, . . . , np) < δ

(
1 +

p∑
1

nk

)δ

.

It follows that n1 and nj are much larger than nk for any k 6= 1, j if δ is
small enough. If j ∈ {2, . . . , `} a lower bound of type (2.33) is then trivial.
Assume now j > `, for instance j = p and write
(2.42)

F p,`
m (λn1 , . . . , λnp) =

√
m2 + λ2

n1
−
√

m2 + λ2
np

+F p−2,`−1
m (λn2 , . . . , λnp−1).

Using (1.2), we can write expanding the two square roots in (2.42) this
expression as

(2.43)
2π

τ
(n1 − np) + F p−2,`−1

m (λn2 , . . . , λnp−1) + O(1/n1) + O(1/np).

If |n1 − np| � µ(n1, . . . , np), (2.43) trivially implies (2.33). Assume now
there exists C > 0 such that

(2.44) |n1 − np| 6 Cµ(n1, . . . , np).

The sum of the first two terms in (2.43) is Gp−2,`−1
m (λn2 , . . . , λnp−1 , n1−np)

so its absolute value is larger by (2.39), (2.40) and (2.44) than
cµ(n1, . . . , np)−N0 . Since for δ small enough, (2.41) implies that n1 and
np are larger than Cδ−1/δµ(n1, . . . , np)1/δ, the remainders in (2.43) do not
perturb this estimate for δ > 0 small enough. This gives the conclusion. �

Let us define convenient subspaces of the algebra of Definition 2.1.

ANNALES DE L’INSTITUT FOURIER



KLEIN-GORDON ON RADIAL HYPERSURFACES 1435

Definition 2.9. — Let p ∈ N, p > 2, ρ : {1, . . . , p} → {−1, 1} be given,
s ∈ [0,+∞[, ν ∈ [0,+∞[, N ∈ N.
• If

∑p
j=1 ρ(j) 6= 0, we set S̃s,ν,N

p (ρ) = Ss,ν,N
p .

• If
∑p

j=1 ρ(j) = 0, we denote by S̃s,ν,N
p (ρ) the closed subspace of Ss,ν,N

p

given by those a ∈ Ss,ν,N
p such that a(n1, . . . , np) ≡ 0 for any (n1, . . . , np)

such that there is σ ∈ Sp with σ2 = 1, ρ ◦ σ = −ρ and for any j = 1, . . . , p,
nj = nσ(j).

In other words, we assume the vanishing of a(n1, . . . , np) every time the
p indices n1, . . . , np can be grouped in p/2 pairs, each pair containing an
element associated by ρ to sign +1 and an element associated by ρ to
sign −1.

Proposition 2.7 implies immediately the following:

Proposition 2.10. — Let p ∈ N, p > 2, ρ : {1, . . . , p} → {−1, 1} be
given, s ∈ [0,+∞[, ν ∈ [0,+∞[, N ∈ N. There is a zero measure subset N
of ]0,+∞[ and for every m ∈]0,+∞[−N , there are c > 0, N1 ∈ N, such
that for every a in S̃s,ν,N

p (ρ), the symbol ã defined by

(2.45) ã(n1, . . . , np) =
a(n1, . . . , np)

F ρ
m(λn1 , . . . , λnp)

is in Ss,ν+N1,N
p .

We begin the proof of Theorem 1.1. If u is a real valued function on I×M ,
where I is some interval, we define Dt = 1

i
∂
∂t , Λm =

√
−∆ + V + m2 and

(2.46) u± = (Dt ± Λm)u,

so that

(2.47) u =
1
2
Λ−1

m (u+ − u−), Dtu =
1
2
(u+ + u−).

By (2.46) and (2.47), equation (1.6) with real Cauchy data is equivalent to
(2.48)

(Dt − Λm)u+ = −f
(
x,

1
2
Λ−1

m (u+ − u−),
i

2
(u+ + u−),

1
2
PΛ−1

m (u+ − u−)
)

with Cauchy data

(2.49) u+|t=0 = εw

where w is in a fixed ball of Hs(M) and in W .
We shall use the notation for p, ` ∈ N

(2.50) e`(p) = + if p 6 `, e`(p) = − if p > `.
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Lemma 2.11. — Let s ∈ [0,+∞[, ν ∈ [0,+∞[, p ∈ N, p > 2, ` ∈ N, 0 6
` 6 p. Define ρ` : {1, . . . , p} → {−1, 1} by ρ`(j) = 1, j = 1, . . . , `, ρ`(j) =
−1, j = `+1, . . . , p. For a in Ss,ν,+∞

p , we may decompose a = a′+a′′ where:
• a′ ∈ S̃s,ν,+∞

p (ρ`)
• For any u± defined by (2.46) in terms of a real valued smooth enough

u, we have, using notation (2.50)

(2.51) ImL(a′′)(ue`(1), . . . , ue`(p)) ≡ 0.

Proof. — If p is odd or p is even and ` 6= p/2, then Ss,ν,+∞
p = S̃s,ν,+∞

p (ρ`).
Therefore, the conclusion follows in this case by taking a′ = a and a′′ = 0.
Assume now that p is even and ` = p/2. For (n1, . . . , np) in (N∗)p, define
a′(n1, . . . , np) = a(n1, . . . , np)1{(n1,...,np)/∈Z(p,ρ`)}. Then a′ ∈ S̃s,ν,+∞

p (ρ`)
by Definition 2.9 and

(2.52) L(a′′)(ue`(1), . . . , ue`(p)) =
∑

(n1,...,np)∈Z(p,ρ`)

a(n1, . . . , np)

× 〈ue`(1), ϕn1〉 · · · 〈ue`(p), ϕnp〉.

For (n1, . . . , np) ∈ Z(p, ρ`), the definition (2.32) of Z(p, ρ`) and the fact
that u+ = −u− imply that every term 〈u+, ϕnj 〉, j = 1, . . . , `, can be
coupled with a term 〈u+, ϕnj 〉, j = ` + 1, . . . , p. So

(2.53) 〈ue`(1), ϕn1〉 · · · 〈ue`(p), ϕnp〉 = (−1)`|〈u+, ϕn1〉|
2 · · · |〈u+, ϕn`

〉|2

which together with the fact that a(n1, . . . , np) ∈ R for all (n1, . . . , np) in
(N∗)p implies

(2.54) a(n1, . . . , np)〈ue`(1), ϕn1〉 · · · 〈ue`(p), ϕnp〉 ∈ R

when (n1, . . . , np) ∈ Z(p, ρ`). This together with (2.52) gives the conclu-
sion. �

Let p̄ ∈ N, p̄ > q̄ + 1 (where q̄ is defined in (1.3)) and let b`
p ∈ S

s,νp,+∞
p ,

0 6 ` 6 p, 3 6 p 6 p̄, with νp > 0. We set for s ∈ R+

Es(u+)(t) =
∑

n∈N∗
n2s 1

2
|〈u+, ϕn〉|2(2.55)

+ Re
∑

36p6p̄

p∑
`=0

L(b`
p)(ue`(1), . . . , ue`(p)).

Remark that for s > s0 large enough, Proposition 2.5 implies

(2.56) Es(u+)(t) > c‖u+(t, ·)‖2Hs − C
∑

36p6p̄

‖u+(t, ·)‖p
Hs .
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To conclude the proof of Theorem 1.1, it is enough to get c > 0 small
enough so that if ε > 0 is small enough and Tε = cε−p̄+1, ‖u+(t, ·)‖Hs has a
uniform a priori bound for t ∈]− Tε, Tε[ (s being fixed large enough). This
is a consequence of (2.56) and the following proposition.

Proposition 2.12. — For any p̄ > q̄ + 1 and any m fixed outside an
exceptional subset N ⊂ ]0,+∞[ of zero measure, there are s0 > 0, νp >

0, 3 6 p 6 p̄, large enough, b`
p ∈ S

s,νp,+∞
p , 0 6 ` 6 p, 3 6 p 6 p̄, and C > 0

such that for any s > s0, any interval ] − T, T [ over which (2.48), (2.49)
has a solution staying in the unit ball of Hs(M) and in W , one has for any
t ∈]− T, T [

(2.57) Es(u+)(t) 6 Es(u+)(0) + C

∣∣∣∣∫ t

0

‖u+(τ, ·)‖p̄+1
Hs dτ

∣∣∣∣.
Before giving the proof of this proposition, let us explain the idea on the

following simple example

(∂2
t −∆g + V + m2)u = (∂tu)2,

which by (2.48) is equivalent to

(Dt − Λm)u+ =
1
4
(u+ + u−)2.

One wants, in the right hand side of (2.55), to choose the corrections b`
p in

such a way that d
dtEs(u+)(t) vanishes at some large order p̄ + 1 at u+ = 0.

Let us explain the construction of these terms when p̄ = 3. If one computes
d
dt

1
2

∑
n∈N∗ n2s|〈u+, ϕn〉|2 and expresses ∂tu+ using the equation, one gets

d

dt

1
2

∑
n∈N∗

n2s|〈u+, ϕn〉|2 = Re i
∑

n∈N∗
n2s〈(Dt − Λm)u+, ϕn〉〈u+, ϕn〉

(2.58)

=
1
4

Im
∑

n∈N∗
n2s

〈
(u+ + u−)2, ϕn

〉
〈u−, ϕn〉.

We decompose 〈uε1uε2 , ϕn〉 =
∑

n1

∑
n2
〈uε1 , ϕn1〉〈uε2 , ϕn2〉〈ϕn1ϕn2 , ϕn〉

(ε1, ε2 = ±) to get expressions of type
1
4

Im
∑

n1,n2,n3

n2s
3 〈u−, ϕn1〉〈u−, ϕn2〉〈u−, ϕn3〉〈ϕn1ϕn2 , ϕn3〉(2.59)

+
1
2

Im
∑

n1,n2,n3

n2s
3 〈u+, ϕn1〉〈u−, ϕn2〉〈u−, ϕn3〉〈ϕn1ϕn2 , ϕn3〉

+
1
4

Im
∑

n1,n2,n3

n2s
3 〈u+, ϕn1〉〈u+, ϕn2〉〈u−, ϕn3〉〈ϕn1ϕn2 , ϕn3〉.
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Define now

Es(u+)(t) =
∑

n∈N∗
n2s 1

2
|〈u+, ϕn〉|2

(2.60)

+
1
4

Re
∑

n1,n2,n3

n2s
3 〈ϕn1ϕn2 , ϕn3〉

−
√

m2 + λ2
n1
−
√

m2 + λ2
n2
−
√

m2 + λ2
n3

× 〈u−, ϕn1〉〈u−, ϕn2〉〈u−, ϕn3〉

+
1
2

Re
∑

n1,n2,n3

n2s
3 〈ϕn1ϕn2 , ϕn3〉√

m2 + λ2
n1
−
√

m2 + λ2
n2
−
√

m2 + λ2
n3

× 〈u+, ϕn1〉〈u−, ϕn2〉〈u−, ϕn3〉

+
1
4

Re
∑

n1,n2,n3

n2s
3 〈ϕn1ϕn2 , ϕn3〉√

m2 + λ2
n1

+
√

m2 + λ2
n2
−
√

m2 + λ2
n3

× 〈u+, ϕn1〉〈u+, ϕn2〉〈u−, ϕn3〉.

Proposition 2.7 will imply that the denominators do not vanish, and have
a good enough control, so that the series converge for s large enough. We
compute the time derivative of (2.60), using that

d

dt
〈u±, ϕnj 〉 = 〈±iΛmu±, ϕnj 〉+

〈
i

4
(u+ + u−)2, ϕnj

〉
.

One checks immediately, using expression (2.59) for the time derivative
of the first term in the right hand side of (2.60), that all cubic terms in
(u+, u−) cancel, and that d

dtEs(u+)(t) may be written as a quartic expres-
sion given in terms of expressions

(2.61)
∑

n1,n2,n3,n4

a(n1, n2, n3, n4)〈uε1 , ϕn1〉〈uε2 , ϕn2〉〈uε3 , ϕn3〉〈uε4 , ϕn4〉

with convenient coefficients a and where ε1, . . . , ε4 = ±. The idea to get
(2.57) at order p̄ = 4 is then to continue the procedure, adding new cor-
rections to (2.60). Let us point out that there is anyway a new difficulty
when one deals with expressions of even order: for example, when p̄ = 4,
one gets in the definition of Es(u+) denominators of type√

m2 + λn2
1
+
√

m2 + λn2
2
−
√

m2 + λn2
3
−
√

m2 + λn2
4

which vanish for any m when {n1, n2} = {n3, n4}. Consequently, to be
able to pursue the procedure, one has to check that the quartic expressions
(2.61) do not contain contributions of that type. This will be done using
lemma 2.11.
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Proof of Proposition 2.12. — We compute d
dtEs(u+)(t). Using (2.48) we

have

d

dt

∑
n∈N∗

n2s|〈u+, ϕn〉|2(2.62)

= 2Re i
∑

n∈N∗
n2s〈(Dt − Λm)u+, ϕn〉〈u+, ϕn〉

= 2 Im
∑

n∈N∗
n2s
〈
f
(
x,

1
2
Λ−1

m (u+ − u−),
i

2
(u+ + u−),

1
2
PΛ−1

m (u+ − u−)
)
, ϕn

〉
〈u+, ϕn〉

= 2 Im M0

(
f
(
x,

1
2
Λ−1

m (u+ − u−),

i

2
(u+ + u−),

1
2
PΛ−1

m (u+ − u−)
)
, u+

)
where M0 has been defined in Example 2.3. Using (1.3) and (1.4), we can
write f(x, 1

2Λ−1
m (u+ − u−), i

2 (u+ + u−), 1
2PΛ−1

m (u+ − u−)) as a real linear
combination of expressions

(2.63) b(x)uα
+(Λ−1

m u+)β(PΛ−1
m u+)γuα′

− (Λ−1
m u−)β′(PΛ−1

m u−)γ′

where α, α′, β, β′, γ, γ′ ∈ N, 2 6 α+α′+β+β′+γ+γ′ 6 q̄ and b is a smooth
real valued function. Using (2.63) and the fact that M0 is in L(Ss,0,+∞

2 )
by Example 2.3, Theorem 2.6 and Lemma 2.4 imply the existence of a`

p ∈

S
s,ν̃p,+∞
p , 0 6 ` 6 p, 3 6 p 6 q̄ + 1, for all ν̃p > pd/2 + (d + 1)/2 such that

(2.64) M0

(
f
(
x,

1
2
Λ−1

m (u+ − u−),
i

2
(u+ + u−),

1
2
PΛ−1

m (u+ − u−)
)
, u+

)
=

∑
36p6q̄+1

p∑
`=0

L(a`
p)(ue`(1), . . . , ue`(p))

which together with (2.62) yields

(2.65)
d

dt

∑
n∈N∗

n2s|〈u+, ϕn〉|2 = 2 Im
∑

36p6q̄+1

p∑
`=0

L(a`
p)(ue`(1), . . . , ue`(p)).

Let us compute for p 6 p̄, 0 6 ` 6 p
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(2.66) Dt[L(b`
p)(ue`(1), . . . , ue`(p))]

=
p∑

j=1

L(b`
p)(ue`(1), . . . , e`(j)Λmue`(j), . . . , ue`(p))

+
p∑

j=1

L(b`
p)(ue`(1), . . . , (Dt − e`(j)Λm)ue`(j), . . . , ue`(p)).

An explicit computation yields

(2.67)
p∑

j=1

L(b`
p)(ue`(1), . . . , e`(j)Λmue`(j), . . . , ue`(p))

= L(F ρ`
m b`

p)(ue`(1), . . . , ue`(p)),

with F ρ`
m defined by (2.31). Using (2.48), the fact that f(x, 1

2Λ−1
m (u+ −

u−), i
2 (u+ + u−), 1

2PΛ−1
m (u+ − u−)) is a real linear combination of expres-

sions (2.63), and that b`
p is in L(Ss,νp,+∞

p ), Theorem 2.6 and Lemma 2.4
imply the existence of b``′

pp′ ∈ S
s,νpp′ ,+∞
p′ , 0 6 `′ 6 p′, p+1 6 p′ 6 p+ q̄− 1,

for any νpp′ > 1 + νp + (p′ − p + 2)d/2 + (d− 1)/2, such that

(2.68)
p∑

j=1

L(b`
p)(ue`(1), . . . , (Dt − e`(j)Λm)ue`(j), . . . , ue`(p))

=
∑

p+16p′6p+q̄−1

p′∑
`′=0

L(b``′

pp′)(ue`′ (1)
, . . . , ue`′ (p

′)).

Formulas (2.66), (2.67) and (2.68) yield

(2.69) Dt[L(b`
p)(ue`(1), . . . , ue`(p))] = L(F ρ`

m b`
p)(ue`(1), . . . , ue`(p))

+
∑

p+16p′6p+q̄−1

p′∑
`′=0

L(b``′

pp′)(ue`′ (1)
, . . . , ue`′ (p

′)).

Now, (2.55), (2.65) and (2.69) yield

d

dt
Es(u+)(t) = Im

[ ∑
36p6q̄+1

p∑
`=0

L(a`
p)(ue`(1), . . . , ue`(p))(2.70)

−
∑

36p6p̄

p∑
`=0

(
L(F ρ`

m b`
p)(ue`(1), . . . , ue`(p))

−
∑

p+16p′6p+q̄−1

p′∑
`′=0

L(b``′

pp′)(ue`′ (1)
, . . . , ue`′ (p

′))
)]
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Proposition 2.5 and the fact that b``′

pp′ ∈ S
s,νpp′ ,+∞
p′ imply

(2.71)

−
∑

36p6p̄

p∑
`=0

∑
p̄+16p′6p+q̄−1

p′∑
`′=0

L(b``′

pp′)(ue`′ (1)
, . . . , ue`′ (p

′)) = G(u+(t, ·))

with |G(u+(t, ·))| 6 C‖u+(t, ·)‖p̄+1
Hs as long as u+(t, ·) stays in the unit ball

of Hs. Therefore we obtain

d

dt
Es(u+)(t) = Im

[ ∑
36p6q̄+1

p∑
`=0

L(a`
p)(ue`(1), . . . , ue`(p))

(2.72)

−
∑

36p6p̄

p∑
`=0

(
L(F ρ`

m b`
p)(ue`(1), . . . , ue`(p))

−
∑

p+16p′6min(p̄,p+q̄−1)

p′∑
`′=0

L(b``′

pp′)(ue`′ (1)
, . . . , ue`′ (p

′))
)]

+ G(u+(t, ·)).

For 3 6 p 6 q̄ + 1, 0 6 ` 6 p, we decompose a`
p using Lemma 2.11

in (a`
p)
′ + (a`

p)
′′, where (a`

p)
′ is in S̃

s,ν̃p,+∞
p (ρ`). For 3 6 p 6 p̄, 0 6 ` 6

p, p + 1 6 p′ 6 min(p̄, p + q̄ − 1), 0 6 `′ 6 p′, we decompose b``′

pp′ using
Lemma 2.11 in (b``′

pp′)
′ + (b``′

pp′)
′′, where (b``′

pp′)
′ is in S̃

s,νpp′ ,+∞
p′ (ρ`′). Using

the second point of Lemma 2.11, (2.72) becomes

d

dt
Es(u+)(t) = Im

[ ∑
36p6q̄+1

p∑
`=0

L((a`
p)
′)(ue`(1), . . . , ue`(p))

(2.73)

−
∑

36p6p̄

p∑
`=0

(
L(F ρ`

m b`
p)(ue`(1), . . . , ue`(p))

−
∑

p+16p′6min(p̄,p+q̄−1)

p′∑
`′=0

L((b``′

pp′)
′)(ue`′ (1)

, . . . , ue`′ (p
′))
)]

+ G(u+(t, ·)).

By Proposition 2.10, we may choose when m is fixed outside a convenient
subset N ⊂ ]0,+∞[ of zero measure, for νp > 0 large enough b`

p in S
s,νp,+∞
p ,
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0 6 ` 6 p, 3 6 p 6 p̄, defined by

b`
3(n1, n2, n3) =

(a`
3)
′(n1, n2, n3)

F ρ`
m (λn1 , λn2 , λn3)

, 0 6 ` 6 3

(2.74)

b`
p(n1, . . . , np) =

(a`
p)
′(n1, . . . , np)−

∑
36p′6p−1

∑p′

`′=0(b
`′`
p′p)

′(n1, . . . , np)
F ρ`

m (λn1 , . . . , λnp)
,

4 6 p 6 q̄ + 1, 0 6 ` 6 p,

b`
p(n1, . . . , np) = −

∑
p+1−q̄6p′6p−1

∑p′

`′=0(b
`′`
p′p)

′(n1, . . . , np)
F ρ`

m (λn1 , . . . , λnp)
,

q̄ + 2 6 p 6 p̄, 0 6 ` 6 p.

Remark that in order to define b`
p, 4 6 p 6 p̄, by (2.74) we need to know

b`′`
p′p, p

′ 6 p− 1. This is indeed the case as b`′`
p′p, p

′ 6 p− 1, depends only on
bj
r, 3 6 r 6 p− 1, 0 6 j 6 r, which have already been constructed.

We finally get from (2.73) and (2.74)
d

dt
Es(u+)(t) = G(u+(t, ·))

whence (2.57) and the conclusion of the proof. �

Remark. — When one considers the special case of an integrable Hamil-
tonian equation, like the sine-Gordon equation �u + sinu = 0 on S1, it is
classical that the existence of infinitely many conserved quantities allows
one to control uniformly all Sobolev norms for all times. Remark that such
a result holds true for a given value of the mass m2, while we prove theo-
rem 1.1 only when m is outside an exceptional subset of zero measure of
]0,+∞[. This plays an essential role in the above proof, since taking m out-
side this set prevents F ρ`

m (λn1 , . . . , λnp) from vanishing, as soon as the eigen-
values (λn1 , . . . , λnp

) satisfy {λn1 , . . . , λn`
} 6= {λn`+1 , . . . , λnp

}. This gives
us the possibility of defining in (2.74) b`

p dividing by F ρ`
m . If one were try-

ing to use such a strategy to recover long time boundedness for Es(u+)(t),
with u+ coming from a solution u to the sine-Gordon equation, we would
have to divide by quantities of type

∑`
j=1

√
1 + λ2

nj
−
∑p

j=`+1

√
1 + λ2

nj

which do vanish for certain indices (n1, . . . , np) such that {λn1 , . . . , λn`
} 6=

{λn`+1 , . . . , λnp
}. The method we use would thus fail, unless one could prove

that every time one wants to divide in (2.74) by a vanishing quantity, the
numerator is yet zero. It is possible that such a property hold true, because
of the very special structure of the nonlinearity sinu − u, but we have no
proof of that.
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3. Proof of Propositions 1.3, 1.5 and 1.7

3.1. Proof of Propositions 1.3 and 1.5

As M satisfies (1.8), there are C∞ 2π-periodic functions r, xd such that

(3.1) M = {x = (r(θ)ω, xd(θ)) : ω ∈ Sd−1, θ ∈ [0, 2π]}

and satisfying for any θ ∈ [0, 2π]

(3.2)
r(2π − θ) = r(θ), xd(2π − θ) = −xd(θ),
r(θ) > 0, r′(θ)2 + x′d(θ)

2 6= 0.

The function V (r(θ)ω, xd(θ)) is by (1.9) a function of θ alone, that we shall
denote for short by V (θ). Because of (1.9) it satisfies V (2π− θ) = V (θ) for
any θ ∈ [0, 2π].

In the cylindrical coordinates (r, ω, xd), the euclidean metric is given by
dr2 + r2dω2 + dx2

d. Its restriction to M is

(3.3) (r′(θ)2 + x′d(θ)
2)dθ2 + r(θ)2dω2 = b(θ)2dθ2 + r(θ)2dω2

where we have set b(θ) =
√

r′(θ)2 + x′d(θ)2. Thus, the determinant of the
metric is b(θ)2r(θ)2(d−2). As ∆g = (det g)−1/2∂i[gij(det g)1/2∂j ], the part
of the Laplacian acting only on θ is

(3.4) b(θ)−1r(θ)−(d−2)∂θ[b(θ)−2b(θ)r(θ)d−2∂θ].

The riemannian measure is (det g)1/2dθ = b(θ)r(θ)d−2dθ up to a multi-
plicative constant. The eigenfunctions of P =

√
−∆g + V associated to

the eigenvalue λ, invariant under the action of the rotations with axis xd,
are functions ϕ(θ) satisfying

(3.5)
∫ 2π

0

|ϕ(θ)|2b(θ)r(θ)d−2dθ < +∞

and
(3.6)
− b(θ)−1r(θ)−(d−2)∂θ[b(θ)−2b(θ)r(θ)d−2∂θϕ(θ)] + V (θ)ϕ(θ) = λ2ϕ(θ).

It remains to prove that the eigenvalues λ of (3.6) are simple and satisfy
(1.2) under the additional hypothesis that ϕ belongs to the space W defined
in the statement of Proposition 1.3 (resp. to the space W defined in the
statement of Proposition 1.5).

First, let us write equation (3.6) in a different manner. Set

(3.7) p(θ) = b(θ)−1r(θ)d−2, s(θ) = b(θ)r(θ)d−2, q(θ) = V (θ)b(θ)r(θ)d−2.
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Then (3.6) becomes

(3.8) ∂θ[p(θ)∂θϕ(θ)] + (λ2s(θ)− q(θ))ϕ(θ) = 0.

We obtain a Hill equation and ϕ is an eigenfunction in L2(s(θ)dθ). Let
(λP

n )n denote the periodic eigenvalues, (λA
n )n the anti-periodic eigenvalues,

(λD
n )n the Dirichlet eigenvalues and (λN

n )n the Neumann eigenvalues. It is
known (see for instance chapters 2 and 3 of [7]) that λA

2n 6 λA
2n+1 < λP

2n+1 6
λP

2n+2, λD
2n, λN

2n+1 ∈ [λA
2n, λA

2n+1], and λD
2n+1, λ

N
2n+2 ∈ [λP

2n+1, λ
P
2n+2]. Fur-

thermore, as the functions defined in (3.7) satisfy

(3.9) p(2π − θ) = p(θ), s(2π − θ) = s(θ), q(2π − θ) = q(θ)

we have

(3.10) {λD
2n, λN

2n+1} = {λA
2n, λA

2n+1}, {λD
2n+1, λ

N
2n+2} = {λP

2n+1, λ
P
2n+2}.

Proof of Proposition 1.3. — In this case, W consists of all functions in
L2(M) invariant under the action of the rotations with axis xd and even
in xd. Therefore, we look for 2π-periodic functions ϕ which satisfy also
ϕ(2π − θ) = ϕ(θ). In particular, ϕ′(2π) = −ϕ′(0). We have also ϕ′(2π) =
ϕ′(0) as ϕ is 2π-periodic and thus ϕ′(2π) = ϕ′(0) = 0. This implies that
our eigenfunctions ϕ are 2π-periodic and satisfy the Neumann boundary
conditions. Therefore, the eigenvalues λ of P |W coincide with (λN

2n)n which
are known to be simple and satisfy (1.2) (see for instance chapter 4 of [7]).

�

Proof of Proposition 1.5. — In this case, W consists of all functions in
L2(M) invariant under the action of the rotations with axis xd and odd
with respect to xd. Therefore, we look for 2π-periodic functions ϕ which
satisfy also ϕ(2π − θ) = −ϕ(θ). In particular, ϕ(2π) = −ϕ(0). We have
also ϕ(2π) = ϕ(0) as ϕ is 2π-periodic and thus ϕ(2π) = ϕ(0) = 0. This
implies that our eigenfunctions ϕ are 2π-periodic and satisfy the Dirichlet
boundary conditions. Therefore, the eigenvalues λ of P |W coincide with
(λD

2n+1)n which are known to be simple and satisfy (1.2) (see for instance
chapter 4 of [7]). �

3.2. Proof of Proposition 1.7

As M satisfies (1.10), there are C∞ functions r, xd : [0, 1] → R such that

(3.11) M = {x = (r(θ)ω, xd(θ)) : ω ∈ Sd−1, θ ∈ [0, 1]}
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and satisfying

r(p)(0) = 0 if p is even,

r(p)(1) = 0 if p is even,

x
(p)
d (0) = 0 if p is odd,

(3.12)
x

(p)
d (1) = 0 if p is odd,

r(θ) > 0 ∀θ ∈]0, 1[,

r′(θ)2 + x′d(θ)
2 6= 0 ∀θ ∈ [0, 1].

Since V satisfies (1.11) it may be written as a function of θ.
Let b(θ) =

√
r′(θ)2 + x′d(θ)2. As in section 3.1, the eigenfunctions of

P =
√
−∆g + V invariant under the action of the rotations with axis xd

are functions ϕ(θ) satisfying

(3.13)
∫ 1

0

|ϕ(θ)|2b(θ)r(θ)d−2dθ < +∞

and
(3.14)
− b(θ)−1r(θ)−(d−2)∂θ[b(θ)−2b(θ)r(θ)d−2∂θϕ(θ)] + V (θ)ϕ(θ) = λ2ϕ(θ).

It remains to prove that the eigenvalues λ of (3.14) are simple and sat-
isfy (1.2).

Multiplying by −b(θ)2, we can write (3.14) as

(3.15) ∂2
θϕ(θ)+

[
(d− 2)

r′(θ)
r(θ)

− b′(θ)
b(θ)

]
∂θϕ(θ)+b(θ)2(λ2−V (θ))ϕ(θ) = 0.

Let

(3.16) g(θ) = (d− 2)
r′(θ)
r(θ)

− b′(θ)
b(θ)

, h =
1
λ

and write (3.15) as

(3.17) ∂2
θϕ(θ) + g(θ)∂θϕ(θ) + b(θ)2(h−2 − V (θ))ϕ(θ) = 0,

where g is a smooth function on ]0, 1[. Moreover, as r(θ) vanishes exactly
at order 1 at θ = 0 and θ = 1, θ(1 − θ)g(θ) extends as a smooth function
on [0, 1] and

(3.18) lim
θ→0+

θg(θ) = lim
θ→1−

(1− θ)g(θ) = d− 2.
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To simplify notations, we will thus assume in the following that

g is a smooth function on ]0, 1[ such that θ(1− θ)g(θ) extends

as a smooth function on [0, 1] and there is α ∈ [1,+∞[ with(3.19)

lim
θ→0+

θg(θ) = lim
θ→1−

(1− θ)g(θ) = α.

We first look at particular solutions of the ordinary differential equation
(3.17).

Proposition 3.1. — For any h > 0, there is a unique smooth function
ϕh

+ (resp. ϕh
−) defined on [0, 1[ (resp. on ]0, 1]) solution of (3.17) on ]0, 1[

and satisfying

lim
θ→0+

(
ϕh

+(θ),
d

dθ
ϕh

+(θ)
)

= (1, 0),
(

resp. lim
θ→1−

(
ϕh
−(θ),

d

dθ
ϕh
−(θ)

)
= (1, 0)

)
.

Moreover, any solution ϕh of (3.17) which does not belong to the vector
space spanned by ϕh

+ (resp. by ϕh
−) satisfies

ϕh(θ) ∼ chθ−α+1,
d

dθ
ϕh(θ) ∼ c′hθ−α when θ → 0+ and α > 1,

ϕh(θ) ∼ ch ln(θ),
d

dθ
ϕh(θ) ∼ c′hθ−1 when θ → 0+ and α = 1,(

resp. ϕh(θ) ∼ ch(1− θ)−α+1,
d

dθ
ϕh(θ) ∼ c′h(1− θ)−α

when θ → 1− and α > 1,

ϕh(θ) ∼ ch ln(1− θ),
d

dθ
ϕh(θ) ∼ c′h(1− θ)−1 when θ → 1− and α = 1

)
for nonzero constants ch and c′h.

Finally, if one sets, for x in a compact interval [0, c], wh
+(x) = ϕh

+(hx),
wh
−(x) = ϕh

−(1− hx), the functions wh
±(x) are smooth in (h, x) ∈ [0, h0]×

[0, c] whenever ch0 < 1.

Proof. — We shall prove the statements concerning ϕh
+. The assumptions

on g allow us to write g(θ) = α/θ + g1(θ) where g1 is smooth on [0, 1[. It is
enough to prove that the equation

(3.20)
(
∂2

x +
(α

x
+ hg1(hx)

)
∂x + b(hx)2(1− h2V (hx))

)
wh

+(x) = 0

has a unique solution wh
+(x) = ϕh

+(hx) defined on some interval [0, c] with
c > 0 small enough, smooth as a function of (h, x) ∈ [0, 1] × [0, c] and
satisfying the condition limx→0+(wh

+(x), d
dxwh

+(x)) = (1, 0). Actually, since
for 0 < x < 1/h, (3.20) has smooth coefficients and smooth h-dependence,
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that solution extends to a C∞ function in (h, x) ∈ [0, 1/c[×[0, c] for any
c > 0.

Write equation (3.20) as a system in X(x, h) =

(
wh

+(x)(
wh

+

)′ (x)

)
(3.21) X ′(x, h) = A(x)X(x, h) + B(x, h)X(x, h)

with

A(x) =
(

0 1
0 −α

x

)
(3.22)

B(x, h) =
(

0 0
−b(hx)2(1− h2V (hx)) −hg1(hx)

)
Define

S(x, x′) =

(
1 − xx′

α−1 (x′α−1 − 1)
0 x′

α

)
if α > 1

(3.23)

S(x, x′) =
(

1 −xx′ ln(x′)
0 x′

)
if α = 1

for x > 0, x′ > 0. Then

(3.24) S(x, 1) = Id,
d

dx

[
S

(
x,

x′

x

)]
= A(x)S

(
x,

x′

x

)
when 0 < x′ < x and X is a solution of (3.21) with

lim
x→0+

X(x, h) =
(

1
0

)
if and only if

(3.25) X(x, h) =
(

1
0

)
+ x

∫ 1

0

S(x, x′)B(xx′, h)X(xx′, h)dx′.

The above equation may be solved by a fixed point for x ∈ [0, c] with c > 0
small enough, and the unique solution obtained in that way has smooth
h-dependence.

It remains to prove that any solution of (3.17) which is not collinear with
the ϕh

+ we just constructed has the asymptotics stated in the proposition.
Denote by ωh the Wronskian of the solution wh

+ of (3.20) and of another
solution wh of (3.20), not collinear with wh

+. We have for a fixed x0 > 0

(3.26)
ωh(x) = ωh(x0) exp

(∫ x

x0

(
−α

t − hg1(ht)
)
dt
)

= ωh(x0)
(

x0
x

)α exp
(
−
∫ hx

hx0
g1(t)dt

)
.
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It follows that since

(3.27) wh(x) = wh
+(x)

(
wh(x0)
wh

+(x0)
+
∫ x

x0

ωh(y)
wh

+(y)2
dy

)
and since wh

+(x) → 1 when x → 0+, we have wh(x) ∼ cx−α+1 (resp.
wh(x) ∼ c ln(x)) when x → 0+ and α > 1 (resp. α = 1). We get in the
same way the asymptotics of d

dxwh. Coming back to θ variables, we get the
asymptotics for ϕh(θ). �

The following proposition gives an asymptotic expansion for ϕh
±(θ).

Proposition 3.2. — Denote φ+(θ) =
∫ θ

0
b(y)dy, φ−(θ) = −

∫ 1

θ
b(y)dy.

There are smooth functions Mk
±(θ), k ∈ N, defined on ]0, 1[ and for any δ >

0, N ∈ N, ` ∈ N there is CNδ` > 0 such that when N > 0,m < N/2 + 1/2

(3.28)∣∣∣∣∣∂m
h ∂`

θ

[
ϕh
±(θ)−

N∑
k=0

h
α
2

(
eiφ±(θ)/hhkMk

±(θ) + e−iφ±(θ)/hhkMk
±(θ)

)]∣∣∣∣∣
6 CNδ`h

N+ α
2−`−2m+1

uniformly for θ ∈ [δ, 1 − δ] and h ∈]0, 1]. Moreover, for any δ > 0 there is
C > 0 with C−1 6 M0

±(θ) 6 C for any θ ∈ [δ, 1− δ].

We shall prove the proposition only for ϕh
+.

The coefficients b(θ), V (θ), g1(θ) = g(θ)− α/θ in (3.17) are defined only
for θ ∈ [0, 1[. We fix δ > 0 small enough, and cut-off V, g1 with a smooth
function compactly supported in [0, 1− δ/2[, equal to 1 over [0, 1− δ]. We
may thus assume that V, g1 are in C∞

0 ([0,+∞[). Moreover, we may extend b

as a smooth function on [0,+∞[ bounded from below by a positive constant
and constant for x > 1− δ/2. Let us prove

Lemma 3.3.
i) Equation (3.20) has a unique solution Wh

± defined on ]0,+∞[, and
satisfying

xα/2e∓iφ+(hx)/hWh
±(x) → 1 and (xα/2e∓iφ+(hx)/hWh

±(x))′ → 0

when x → +∞.
ii) Let N ∈ N, N > α/2 − 1 and s(x, h) be a smooth function defined

on ]0,+∞[, satisfying |∂`
x∂k

hs(x, h)| 6 Ck`x
−N+2k−2 when hx > δ for any

k and ` in N. Then
(3.29)(

∂2
x +

(α

x
+ hg1(hx)

)
∂x + b(hx)2(1− h2V (hx))

)
r(x, h) = s(x, h)
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has a unique solution r satisfying xα/2r(x, h) → 0 and xα/2r′(x, h) → 0
when x → +∞. Moreover one has the estimates

(3.30) |∂`
x∂k

hr(x, h)| 6 Ck`x
−N+2k−1

for hx > δ, 2k < N − α/2 + 1 and any ` ∈ N.

Proof.
i) Define v(x) = xα/2w(x) for w a solution of (3.20). Then v satisfies

(3.31)
(
∂2

x + hg1(hx)∂x +
[
b(hx)2(1− h2V (hx)) +

α

2x2

(
1− α

2

)
− α

2x
hg1(hx)

])
v(x) = 0

which may be written

(3.32) (∂2
x + a1(x, h)∂x + [b(hx)2 + a2(x, h)])v(x) = 0

where a1, a2 are smooth functions on ]0,+∞[ satisfying

(3.33)

∫ +∞
1

|a1(y, h)|dy 6 C, |∂`
x∂k

ha1(x, h)| 6 Ck`x
−1+k−`,

|∂`
x∂k

ha2(x, h)| 6 Ck`x
−2+k−`

for k, ` ∈ N, x > 1, with constants C,Ck` > 0 independent of h. Moreover,
ã2(θ) = h−2a2(θ/h, h) is a smooth function of θ > 0 independent of h,
satisfying for any ` ∈ N

(3.34) |ã2
(`)(θ)| 6 C`θ

−2−`.

We define X =
(

v

v′

)
and v solves (3.32) if and only if

(3.35) X ′(x, h) = N(hx)X(x, h) + A(x, h)X(x, h)

where

(3.36) N(θ) =
(

0 1
−b(θ)2 0

)
, A(x, h) =

(
0 0

−a2(x, h) −a1(x, h)

)
.

We shall have

(3.37)
∫ +∞

1

|A(y, h)|dy 6 C, |∂`
x∂k

hA(x, h)| 6 Ck`x
−1+k−` for k, ` ∈ N.

Define

(3.38) Ph(θ) =
(

eiφ+(θ)/h e−iφ+(θ)/h

ib(θ)eiφ+(θ)/h −ib(θ)e−iφ+(θ)/h

)
.
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Since φ+(hx)/h =
∫ x

0
b(hy)dy, and since b is bounded and its derivatives

are compactly supported, we have for any k, `,

(3.39)
∣∣∣∣∂`

x∂k
h

[
φ+(hx)

h

]∣∣∣∣ 6 Ck`x
1+k−`

whence

(3.40) |∂`
x∂k

hPh(hx)| 6 Ck`x
2k, |∂`

x∂k
hP−1

h (hx)| 6 Ck`x
2k, for x > 1.

Moreover

(3.41)
d

dx
(Ph(hx)) = N(hx)Ph(hx) + A1(x, h)

where A1 satisfies
(3.42)∫ +∞

1

|A1(y, h)|dy 6 C, |∂`
x∂k

hA1(x, h)| 6 Ck`x
−1+2k, k, ` ∈ N, x > 1

with constants independent of h. If we define Y (x, h) = Ph(hx)−1X(x, h),
we deduce from (3.35) the equation

(3.43) Y ′(x, h) = Ã(x, h)Y (x, h)

where Ã(x, h) = Ph(hx)−1A(x, h)Ph(hx) − Ph(hx)−1A1(x, h). It follows
from (3.37), (3.40), (3.42) that
(3.44)∫ +∞

1

|Ã(y, h)|dy 6 C, |∂`
x∂k

hÃ(x, h)| 6 Ck`x
−1+2k, k, ` ∈ N, x > 1.

The boundary condition at infinity of the statement of the lemma may be
written when v = xα/2W+ (resp. v = xα/2W−) on the corresponding vector

Y (x, h) = Ph(hx)−1X(x, h) as Y (+∞, h) =
(

1
0

)
(resp. Y (+∞, h) =

(
0
1

)
).

The Cauchy problem for (3.43) with such data at infinity may be written

(3.45) Y (x, h) = Y (+∞, h)−
∫ +∞

x

Ã(y, h)Y (y, h)dy.

The integrability condition of (3.44) implies that this fixed point problem
has a unique solution in a neighborhood of +∞, that can be extended
to ]0,+∞[. Coming back to Wh

+,Wh
− this gives the first statement of the

lemma.

ii) Set r̃(x, h) = xα/2r(x, h), s̃(x, h) = xα/2s(x, h), S =
(

0
s̃

)
. Then

r̃ satisfies equation (3.32) with the right hand side 0 replaced by s̃, so
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X =
(

r̃

r̃′

)
solves

(3.46) X ′(x, h) = N(hx)X + A(x, h)X + S(x, h)

and X(x, h) → 0 if x → +∞.
If we define again Y (x, h) = Ph(hx)−1X(x, h), we shall have

(3.47) Y ′(x, h) = Ã(x, h)Y (x, h) + S̃(x, h)

where S̃(x, h) = Ph(hx)−1S(x, h) satisfies by (3.40) and the assumptions
on s(x, h)

(3.48) |∂`
x∂k

hS̃(x, h)| 6 Ck`x
−N+2k−2+α/2, k, ` ∈ N, hx > δ.

Denote by M(x, h) the matrix solving

M ′(x, h) = Ã(x, h)M(x, h),M(1, h) = Id .

It follows from (3.44) and Gronwall inequalities
(3.49)
|∂`

x∂k
hM(x, h)| 6 Ck`x

2k, |∂`
x∂k

hM−1(x, h)| 6 Ck`x
2k, k, ` ∈ N, x > 1.

If we define Z(x, h) = M(x, h)−1Y (x, h), we shall have

Z ′(x, h) = M(x, h)−1S̃(x, h)

whence since Z(+∞, h) = 0,

(3.50) Z(x, h) = −
∫ +∞

x

M(y, h)−1S̃(y, h)dy.

It follows from (3.49) and (3.48) that if 2k < N−α/2+1, ` ∈ N and hx > δ

(3.51) |∂`
x∂k

hZ(x, h)| 6 Ck`x
−N+2k−1+α/2

whence a similar estimate for ∂`
x∂k

hY (x, h) and ∂`
x∂k

hX(x, h). This gives
inequalities (3.30). �

Let us now construct WKB approximations for the functions Wh
± defined

in Lemma 3.3.

Lemma 3.4. — There are for any k ∈ N smooth functions q±k on ]0,+∞[
satisfying

(3.52) |q±k
(`)

(θ)| 6 Ck`θ
−k−`
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for any k, ` ∈ N, such that the solutions Wh
± of Lemma 3.3 satisfy for any

N > 0, δ > 0

(3.53)

∣∣∣∣∣∂m
h ∂`

x

[
Wh
±(x)− x−α/2e±iφ+(hx)/h

N∑
k=0

hkq±k (hx)

]∣∣∣∣∣
6 CNδ`x

−N−α/2+2m−1

for any ` ∈ N,m < N/2 + 1/2 uniformly for hx > δ. Moreover, q±0 (θ) → 1
when θ → +∞ and there is C > 0 with C−1 6 q0(θ) 6 C for any θ ∈
]0,+∞[.

Proof. — Let us treat the case of sign +. We look first for an approximate
solution vN to equation (3.32) of the form

(3.54) vN (x, h) = eiφ+(hx)/h
N∑

k=0

hkqk(hx).

Using that φ′+(θ) = b(θ), a1(x, h) = hg1(hx) and a2(x, h) = h2ã2(hx), we
get

(∂2
x + a1(x, h)∂x + [b(hx)2 + a2(x, h)])vN (x, h)

= eiφ+(hx)/h
N+1∑
k=0

hk+1[2ib(hx)q′k(hx)

(3.55)
+ i(b′(hx) + g1(hx)b(hx))qk(hx) + ã2(hx)qk−1(hx)

+ g1(hx)q′k−1(hx) + q′′k−1(hx)]

where we have set by convention q−1 = qN+1 ≡ 0. Define

B(θ) = b(θ)1/2 exp

[
1
2

∫ θ

0

g1(θ′)dθ′

]
.

This is a smooth function on [0,+∞[, constant in a neighborhood of infinity.
We want vN to be an approximate solution to equation (3.32). Using (3.55)
we set for k = 0, . . . , N

2ib(hx)q′k(hx) + i(b′(hx) + g1(hx)b(hx))qk(hx)

= −ã2(hx)qk−1(hx)− g1(hx)q′k−1(hx)− q′′k−1(hx)

which may be written

B(θ)−1 d

dθ
(B(θ)qk(θ)) = G(qk−1(θ)), k = 0, . . . , N,

(3.56)

G(q(θ)) = − ã2(θ)
2ib(θ)

q(θ)− g1(θ)
2ib(θ)

q′(θ)− 1
2ib(θ)

q′′(θ).
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We solve (3.56) defining

q0(θ) =
B(+∞)
B(θ)

(3.57)

qk(θ) = −B(θ)−1

∫ +∞

θ

B(θ′)G(qk−1)(θ′)dθ′, k > 1

and we obtain (3.52) using that in the definition of G, g1 is supported for
θ 6 C and that we have (3.34). By (3.55) we thus get that vN is a solution
of (3.32) in which the right hand side 0 has been replaced by a function
of the form hN+2eiφ+(hx)/hR(hx), where R(θ) is smooth in ]0,+∞[ and
satisfies

(3.58) |R(`)(θ)| 6 C`θ
−N−2−`.

If we define r(x, h) = Wh
+(x)−x−α/2vN we thus get a solution to (3.29) for a

right hand side s(x, h) given by −x−α/2hN+2eiφ+(hx)/hR(hx). Using (3.39)
and (3.58), this s(x, h) satisfies the assumptions of ii) of Lemma 3.3, with
N replaced by N +α/2. Moreover, by assumption on Wh

+ and construction
of vN , xα/2r(x, h) → 0, xα/2r′(x, h) → 0 if x → +∞. We deduce from
(3.30) the estimate (3.53). �

Proof of Proposition 3.2. — We shall prove that ϕh
+(θ) has asymptotics

given by (3.28). Remind that we defined wh
+(x) = ϕh

+(hx). This is a solution
of (3.20). Since Wh

+,Wh
− of Lemma 3.3 are a basis of solutions to this

equation, there are constants α±(h) with

(3.59) wh
+(x) = α+(h)Wh

+(x) + α−(h)Wh
−(x).

Denote by Ωh the Wronskian of (Wh
+,Wh

−). By Lemma 3.3,

xα/2e∓iφ+(hx)/hWh
±(x) → 1

and
(xα/2e∓iφ+(hx)/hWh

±(x))′ → 0

when x → +∞. This implies

lim
x→+∞

xαΩh(x) = −2ib(+∞).

Thus, as Wh
+ and Wh

− are solutions of (3.20), we have

xαΩh(x) = −2ib(+∞) exp
(∫ +∞

hx

g1(t)dt

)
.

Therefore, if we fix x = x0 with x0 > 0, the Wronskian of (Wh
+,Wh

−)
computed at x0, as well as its inverse, will be a smooth function of h. We
then deduce from (3.59), and from the fact that wh

+(x0), d
dxwh

+(x0) are, by
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Proposition 3.1, smooth functions of h in a neighborhood of 0, that α±(h)
are smooth functions of h when h is close to 0. Plugging the expansion
(3.53) in (3.59) we obtain (3.28), setting x = θ/h. �

Proof of Proposition 1.7. — Remind that α = d − 2 and h = 1/λ. As
d > 3 by (1.10), we have α > 1.

We first show that λ2 is an eigenvalue of (3.14) if and only if the functions
ϕh
±(θ) of Proposition 3.1 are linearly dependent. Since an eigenfunction

ϕ satisfies −∆gϕ(x) + V (x)ϕ(x) = λ2ϕ(x) on M , multiplying by ϕ and
integrating by parts yields

(3.60)
∫

M

(|∇gϕ(x)|2 + V (x)ϕ(x)2)dvolg(x) = λ2

∫
M

ϕ(x)2dvolg(x).

As ϕ only depends on θ, (3.60) implies
(3.61)∫ 1

0

b(θ)−1r(θ)d−2|∂θϕ(θ)|2dθ =
∫ 1

0

(λ2 − V (θ))b(θ)r(θ)d−2|ϕ(θ)|2dθ.

The right hand side of (3.61) is bounded using (3.13) and so

(3.62)
∫ 1

0

b(θ)−1r(θ)d−2|∂θϕ(θ)|2dθ < +∞

which yields in particular

(3.63)
∫ 1

0

|∂θϕ(θ)|2θd−2dθ < +∞.

Assume that ϕ(θ) does not belong to the vector space spanned by ϕh
+(θ).

Then, ∂θϕ(θ) ∼ cθ−α when θ → 0+ by Proposition 3.1 which is in con-
tradiction with (3.63) as α = d − 2 > 1. Thus, ϕ(θ) belongs to the vector
space spanned by ϕh

+(θ). Looking at θ → 1− we deduce in the same man-
ner that ϕ(θ) belongs to the vector space spanned by ϕh

−(θ). Therefore, the
eigenvalues of P |W are simple and λ2 is an eigenvalue of (3.14) if and only
if ϕh

±(θ) are linearly dependent.
It remains to prove that the λ2 such that ϕh

±(θ) are linearly dependent
satisfy (1.2). Let θ0 ∈]0, 1[ be determined by

∫ θ0

0
b(θ′)dθ′ = 1/2

∫ 1

0
b(θ′)dθ′

so that φ+(θ0) + φ−(θ0) = 0. By Proposition 3.2, we have an expansion

(3.64) ϕ±h (θ) = h
d−2
2

(
2 Re[eiφ±(θ)/hM±(θ, h)] + hNR±(θ, h)

)
where M±(θ, h) =

∑N
k=0 hkMk

±(θ) and where R±(θ, h) is smooth for h ∈
]0, 1] and satisfies when ` ∈ N,m ∈ N,m < N/2 + 1/2,

(3.65) |∂m
h ∂`

θR
k
±(θ, h)| 6 C`mh−`−2m+1
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uniformly for θ ∈ [δ, 1− δ]. Define

Φ±(h) = h−
d−2
2

(
ϕ±h (θ0)

h d
dθϕ±h (θ)|θ=θ0

)
.

By (3.64) we may write
(3.66)

Φ±(h) = e±iφ+(θ0)/h

(
M±(θ0, h)
M ′
±(θ0, h)

)
+ e∓iφ+(θ0)/h

(
M±(θ0, h)
M ′
±(θ0, h)

)
+ hR̃±(h)

where

(3.67) M ′
±(θ0, h) = ib(θ0)M±(θ0, h) + h

d

dθ
M±(θ0, h),

and where by (3.65) R̃± is a Cβ function of h for any integer β < N/2.
The Wronskian of (ϕ+

h (θ), ϕ−h (θ)) at θ = θ0 multiplied by h−(d−3) may be
written

(3.68) det[Φ+(h),Φ−(h)] = Re µ(h) + Re(e2iφ+(θ0)/hν(h)) + hr(h),

where r is a Cβ function of h for any integer β < N/2, and

(3.69) µ(h) =
∣∣∣∣M+(θ0, h) M−(θ0, h)
M ′

+(θ0, h) M ′
−(θ0, h)

∣∣∣∣ , ν(h) =
∣∣∣∣M+(θ0, h) M−(θ0, h)
M ′

+(θ0, h) M ′
−(θ0, h)

∣∣∣∣ .
These are smooth functions of h and by (3.67) µ(0) = 0. Moreover, since
when h stays small |M±(θ0, h)| remains between two positive constants,
(3.67) shows that ν(h) stays also between two positive constants. Conse-
quently we can find a smooth real valued function ω of h, defined on a
neighborhood of 0, a Cβ function σ of h for any integer β < N/2, such that
(3.68) vanishes if and only if

(3.70) cos
[
2
φ+(θ0)

h
+ ω(h)

]
= hσ(h).

But λ2 = h−2 is an eigenvalue if and only if the Wronskian of (ϕ+
h , ϕ−h )

vanishes at θ0 i.e., if and only if (3.70) holds true. The set of all small
positive solutions of this equation is given by two families h±(k) indexed
by large enough k ∈ N and satisfying

(3.71)
1

h±(k)
=

2kπ

a0
± π

2a0
+ a1 +O

(1
k

)
, k → +∞

for convenient a0 > 0, a1 ∈ R. This concludes the proof. �
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