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WHITTAKER AND BESSEL FUNCTORS FOR GSp,

by Sergey LYSENKO

ABSTRACT. — The theory of Whittaker functors for GL,, is an essential techni-
cal tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geomet-
ric Langlands correspondence. We define Whittaker functors for GSps and study
their properties. These functors correspond to the maximal parabolic subgroup of
GSp4, whose unipotent radical is not commutative.

We also study similar functors corresponding to the Siegel parabolic subgroup
of GSp4, they are related with Bessel models for GSps and Waldspurger models
for GLs.

We define the Waldspurger category, which is a geometric counterpart of the
Waldspurger module over the Hecke algebra of GL2. We prove a geometric version
of the multiplicity one result for the Waldspurger models.

RESUME. — La théorie des foncteurs de Whittaker pour G Ly, est un outil tech-
nique essentiel dans la démonstration de Gaitsgory de la Conjecture d’annulation
qui apparait dans le programme de Langlands géométrique. On introduit et étudie
les foncteurs de Whittaker pour GSp4. Ces foncteurs correspondent au sous-groupe
parabolique maximal de GSp4 dont le radical unipotent n’est pas commutatif.

On étudie aussi les foncteurs similaires qui correspondent au parabolique de
Siegel de GSpa, ils sont liés aux modeles de Bessel pour GSpa et aux modeles de
Waldspurger pour GLs.

On introduit la categorie de Waldspurger qui est un analogue géométrique du
module de Waldspurger sur ’algébre de Hecke pour GL2. On démontre une version
géométrique de la multiplicité un pour les modeles de Waldspurger.

1. Introduction
1.1. Classical setting

Whittaker and Bessel models are of importance in the theory of auto-
morphic representations of GSp,. This paper is the first in a series of two,

Keywords: Geometric Langlands program, Waldspurger models, Whittaker functors.
Math. classification: 11R39, 14H60.



1506 Sergey LYSENKO

where we study some phenomena corresponding to these models in the
geometric Langlands program.

The theory of Whittaker functors for GL,, is an essential technical tool in
Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric
Langlands correspondence ([5]). First part of our results is an analog of
this theory for GSp,.

Let us first remind some facts about automorphic forms on G = Sp,. Let
X be a smooth projective absolutely irreducible curve over Fy, F' =T, (X)
and A be the adeles ring of F'. Let B be a Borel subgroup of G and U C B
its unipotent radical. For a character ¢ : U(F)\U(A) — C* one has a
global Whittaker module over G(A)

WMy ={f:UFN\G(A) = C| f(ug) = (u)f(g) foru € U(A), fis smooth}

Let Acusp(G(F)\G(A)) be the space of cusp forms on G(F)\G(A). The
usual Whittaker operator Wy, : Acysp(G(F)\G(A)) — WM, is given by

Wo(f)(g) = / F(ug)p(u)du,

U(F)\U(A)
where du is induced from a Haar measure on U(A). Whence for GL,, (and
generic ¢) the operator Wy, is an injection, this is not always the case for
more general groups. There are cuspidal automorphic representations of
Sp, that don’t admit a -Whittaker model for any .
Recall that Agysp(G(F)\G(A)) decomposes as a direct sum

(1.1) Acusp(GUFN\G(A)) = I3(Hz) © 14(H3) © I5(Ha)

in the notation of ([11], Sect. 1.3, p. 359), the summands being G(A)-
invariant™. The decomposition is orthogonal with respect to the scalar
product

(1.2) (f by = / f(x)R(@)dz,
G(F)\G(A)

where dx is induced from a Haar measure on G(A).

For any f € Acusp(G(F)\G(A)) its 6-lifting to O(2)(A) vanishes (loc.cit.,
Corolary 2 to Theorem 1.2.1). By definition, I4(H3)®I5(H4) (resp., I5(Hy))
are those cuspidal forms whose 6-lifting to Q4(A) (resp., to Q4(A) and
Og(A)) vanishes. Here Oy, is the orthogonal group defined by the hyper-
bolic quadratic form in a 2r-dimensional space.

The space I5(Hy) is also the intersection of kernels of W, for all . It is
known as the space of hyper-cuspidal forms on G(F)\G(A) ([10], Definition

M 1n loc.cit. F is a number field, but (1.1) holds also over function fields.
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WHITTAKER AND BESSEL FUNCTORS 1507

on p. 328). Another description of I5(Hy) is as follows. Let P; C G be the
parabolic preserving a 1-dimensional isotropic subspace in the standard
representation V of G, U; C P; be its unipotent radical, Uy the center of
Ui. Then f € Acusp(G(F)\G(A)) lies in I5(Hy) if and only if

/ flug)du =0
Uo(F)\Uo(A)
for all g € G(A).

If V! € V is a 2-dimensional subspace such that the symplectic form on
V restricts to a non degenerate form on V' then let H C G = Sp(V) be
the subgroup of those g € G that preserve and act trivially on V’. Then
[ € Acusp(G(F)\G(A)) lies in I4(H3) @ I5(Hy) if and only if

/ F(hg)dh =0
H(F)\H(A)

for all g € G(A) (loc.cit., Section 3). Note that H = SLs.

1.2. Geometric setting

In the geometric setting we work with G = GSp, (over an algebraically
closed field of characteristic p > 2). For a scheme (or a stack S) write D(.5)
for the derived category of ¢-adic étale sheaves on S.

Let Bung be the stack of G-bundles on X. Inside of the triangulated
category D ysp(Bung) of cuspidal sheaves on Bung we single out a full tri-
angulated subcategory Dpeysp(Bung) of hyper-cuspidal sheaves. Both they
are preserved by Hecke functors. So, a natural step in the geometric Lang-
lands program for G is to understand the Hecke action on Dpeysp(Bung)
and on Deysp(Bung)/ Dipcusp(Bung).

The category Deysp(Bung) is equiped with the ‘scalar product’, which is
an analogue of (1.2), it sends K73, K3 to RHom(K7, K3). The (left and right)
orthogonal complements + Dheusp(Bung), Dhcusp(Bung)J- C Deysp(Bung)
are also preserved by Hecke functors.

A G-bundle on X is a triple: a rank 4 vector bundle M on X, a line
bundle A on X, and a symplectic form A2M — A. Let o : Q; — Bung be
the stack over Bung whose fibre over (M, A) consists of all nonzero maps
of coherent sheaves 2 < M, where (2 is the canonical line bundle on X.

We introduce the notion of cuspidality and hyper-cuspidality on Qj,
thus leading to full triangulated subcategories Dpeysp(Q1) C Dewsp(Q1) C
D(Qy).

TOME 56 (2006), FASCICULE 5



1508 Sergey LYSENKO

Then we describe Deysp(91)/ Dhcusp(Q1) in terms of geometric Whit-
taker models. Namely, we introduce a stack Q (it was denoted by ) in
[6]) and a full triangulated subcategory D" (Q) ¢ D(Q). Our DY (Q) is a
geometric analog of the space WMy,

We define Whittaker functors that give rise to an equivalence of trian-
gulated categories

(1.3) W : Deusp(Q1)/ Dheusp(Q1) = DV(Q)

The Hecke functor H” corresponding to the standard representation of
the Langlands dual group G = GSp, acts on all the categories mentioned
in Sect. 1.2. Moreover, the equivalence (1.3) commutes with H”. The re-
striction functor

a Dcusp<BunG’)/Dhcu5p(BunG) - Dcusp(Q )/Dhcusp(Ql)

1
also commutes with H”. As in the case of GL,, ([5], Theorem 7.9), the
advantage of Q over Bung is that the functor H” : D(Q) — D(X x Q) is
right-exact for the perverse t-structures.

The essential difference with GL,, case is that the Whittaker functor W :
D(Q;) — D™(Q) is not exact for the perverse t-structures. We can only
indicate full triangulated subcategories DCVTVLSP(Ql) C Deusp(Q1) € D(Q1)
such that the restriction of W yields an equivalence

DZSp(Ql) - DW(Q)
of triangulated categories. Then (1.3) follows from the fact that the natural
inclusion functor induces an equivalence of triangulated categories

DCVZSp(Ql) = Dcusp(@l)/ Dhcusp(@l)
This is the content of Sect. 2-6

1.3. More Whittaker type functors

The stack Q; corresponds to the parabolic subgroup P; C G. In Sect. 7
we define functors similar to the Whittaker ones for the Siegel parabolic
subgroup P C G. They are related to Bessel models ([7]) for G.

The general idea behind is that various Fourier coeflicients of automor-
phic sheaves carry additional structure coming from the action of Hecke
operators.

Let az : Z; — Bung be the stack whose fibre over (M, A) is the scheme
of isotropic subsheaves Lo C M, where Ly is a locally free Ox-module of
rank 2. The open substack Bunp C Z; is given by the condition that L is

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1509

a subbundle. Then Bunp is the stack classifying: a rank 2 bundle Ly on X,
a line bundle A on X, and an exact sequence 0 — Sym? Ly —? — A — 0.

Let S¢;, denote the stack classifying: a rank 2 vector bundle Ls on X, a
line bundle A on X, and a map Sym? Ly — A®Q. Write Bun; for the stack
of rank ¢ vector bundles on X. Then Bunp and S, are dual (generalized)
vector bundles over Buny x Buny, so we have the Fourier transform functor
Four : D(Bunp) — D(Ses)-

For a complex K € D(Bung) its Fourier coefficient with respect to the
Siegel parabolic is, by definition, Fs_ (K) = Four(K |gun, ). If K is a Hecke
eigen-sheaf on Bung then Fs  (K) satisfies some additional property (cf.
Proposition 7.12), which is a consequence of the following result.

Let Z3 ¢, — 21 be the stack whose fibre over a point (Le C M, A) € Z; is
the space Hom(Sym? Ly, A® Q). We define a full triangulated subcategory
DW(ZQ£;E> C D(Z5,c,) singled out by some equivariance condition. Then
we establish an equivalence of triangulated categories

WZ:D(2)= DV (2y.00),

which is exact for perverse t-structures. The Hecke functor H” acts on both
categories and commutes with this equivalence. Our DW(ZQ,W) is a way
to think about the Fourier coefficients Fs_ (K) together with an action of
Hecke operators.

One also has a notion of hyper-cuspidality on Z; and Z3 ., leading to
full triangulated subcategories Dpcysp(Z21) C D(Z1) and D,‘fgusp(ZQ) C
DW(ZQW) preserved by H?. The functor W Z induces an equivalence

Dhcusp (Zl ) — Dthusp (ZQ)

A complex K € D(Bung) is hyper-cuspidal if and only if a% K is hyper-
cuspidal.

1.4. Waldspurger models

In a sense, Bessel models for G is a way to think about the Fourier
coefficients Fs_ (K) of automorphic sheaves K € D(Bung) in terms of the
Waldspurger models for GLy ([3]). This is our motivation for the study of
these Walspurger models in Sect. 8, which is independent of the rest of this
paper.

The following background result is due to Waldspurger ([13], Lemma 8).
Set ' = F,((t)) and O = F,[t]]. Let F be an étale F-algebra with
dimp(F) = 2 such that F, is algebraically closed in F. Let O be the
integral closure of @ in F. We have two cases:

TOME 56 (2006), FASCICULE 5



1510 Sergey LYSENKO

e FSF,((t2)) (the nonsplit case)
e FSF@F (the split case)

Write GL(F ) for the automorphism group of the F-vector space F, and
CGL(O) c GL(F) for the stabilizor of O. Fix a nonramified character x :
F*/@* — @Qj. Denote by x. : F*/O* — Q the restriction of y. The
Waldspurger module is the vector space

WA, = {f : GL(F)/GL(O) — Q¢ | f(uzx) = x(u)f(z) foru € F*,
f is of compact support modulo ]:"*}

The Hecke algebra

H,, ={h: GL(O)\ GL(F)/ GL(O) — Q¢ | h(uz)=xc(u)h(x) for u € F*,
h is of compact support}

acts on WA, via

heH, feWA = (hsf)o)= [ hia)f(ga )z,
GL(F)
where dz is the Haar measure of GL(F) such that the volume of GL(O) is
one. Then WA, is a free module of rank one over H,,, (mutilpicity one for
Waldspurger model).

We prove a categorical version of this. Namely, the affine grassmanian
Grj := GL(F)/GL(O) can be viewed as an ind-scheme over F, equiped
with an action of the group scheme F*. Pick a 1-dimensional Q-vector
space Ej for each & € Spec F. We introduce Waldspurger category of those
O*-equivariant perverse sheaves on Gr  that change under the action of
each uniformizor t; € F*/O* by Ej; (for each & € SpecF). This is a
geometric counterpart of WA, .

The nonramified Hecke algebra for GLs also admits a geometric coun-
terpart, the category Sph(Grz) of GLQ(@)—equivariant perverse sheaves on
Gr . This is a tensor category equivalent to the category of representations
of GLy ([8]). It acts on the Waldspurger category by convolutions.

Actually we work with a global version P¥(Wald®) of the Waldspurger
category (in geometric setting we replace Fy by an algebraically closed field
k of characteristic p > 2). The input data for our definition of P¥(Wald®)
is a two-sheeted covering m : X — X ramified at some divisor D, on X,
a point z € X, and a rank one local system E on X. Here X and X are
smooth projective curves over k (with X connected).

Objects of P¥(Wald®) are some perverse sheaves on a stack Wald®,
which is a global model of ‘the space’ of F*-orbits on Grz. By definition,

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1511

Wald], classifies collections: a rank 2 vector bundle L on X, a line bundle
Bon 771 (X — ), and an isomorphism 7.B= L |x_.

Our main result here is Theorem 8.5 describing the action of Sph(Gr )
on irreducible objects of P¥ (WaldZ). It implies the above cited multiplicity
one for the Waldspurger models. This circle of ideas is very much inspired
by [4]. Note that, to the difference with the case of Whittaker categories
studied in loc.cit., the category P (Wald?®) is not semi-simple.

2. Whittaker categories
2.1. Notation

Let k denote an algebraically closed field of characteristic p > 2. All the
schemes (or stacks) we consider are defined over k. Let X be a smooth
projective connected curve. Fix a prime ¢ # p. For a scheme (or stack) S
write D(S) for the bounded derived category of f-adic étale sheaves on S,
and P(S) C D(S) for the category of perverse sheaves.

Fix a nontrivial character ¢ : F, — Qj and denote by L, the corre-
sponding Artin-Shreier sheaf on A'. The Fourier transform functors will be
always normalized to preserve perversity and purity.

Let G = GSp,, so G is the quotient of G,, x Sp, by the diagonally
embedded {#1}. Denote by G the Langlands dual group to G (over Q).
We use the following notation from ([6], example 2 in the appendix). The
group G is realized as the subgroup of GL(k?*) preserving up to a scalar the
bilinear form given by the matrix

0 FEs
( —E; 0 ) ’
where Fs is the unit matrix of GLs.

Let T be the maximal torus of G given by {(y1,...,94) | ¥iy2+i does not
depend on i}. Let A (resp., A) denote the coweight (resp., weight) lattice
of T. Write V* for the irreducible representation of G of highest weight .

Let & € A be the character that sends a point of T to y;. We have
A ={(ay,...,a4) € Z* | a; + az4; does not depend on i} and

A=7'/{e1+& — & —é}
Let P; C G be the parabolic subgroup preserving the isotropic subspace
kei. Let P» C G denote the Borel subgroup preserving the flag ke; C

TOME 56 (2006), FASCICULE 5



1512 Sergey LYSENKO

ke, @ key of isotropic subspaces. Here {e;} is the standard basis of k*. Let
U; be the unipotent radical of P; and M; = Py /U;.

The simple roots are & = é; — é and &g = é3 — é4. The half sum of
positive roots of G is denoted by p € A.

Let P C G denote the Siegel parabolic preserving the lagrangian sub-
space ke; @ key C k*. Let U C P be its unipotent radical and M = P/U.

Set v = (1,1;0,0) € A, this is the dominant coweight corresponding to
the standard representation of G — GSp,. Fix fundamental weights & =
(1,0,0,0) and @y = (1,1,0,0). So, V¥ is the standard representation. The
orthogonal to the coroot lattice is Zwy with wg = (1,0, 1,0).

Note that the symplectic form A2V — V% induces an isomorphism
det V&1 = (V@0)®2,

2.2. Hecke functor

Let Bung denote the stack of G-bundles on X. For a G-bundle F¢ let
M = V}“:’é, W = V]“_-’é and A = V;_-’g In this way Bung becomes the stack
classifying the data: a line bundle A on X, a vector bundle M of rank 4 on
X with a symplectic form A2M — A. The exact sequence

0—-W—-AM->A-0

splits canonically.

Denote by H¢ the stack of collections: ¢ € X, Fg, F., € Bung and
Fa = F¢ |x—o such that F¢ is in the position v with respect to F/. In
other words, we have A" = A(x), M C M’, the diagrams commute

ANPM — A
T T
NPM — A

and
det M! = A

T 7
detM = A2
and M/M'(—x) C M'/M'(—x) is a lagrangian subspace.

We have a diagram Bung & He 5 Bung, where the map p (resp.,
q) sends the above collection to Fg (resp., F(). Let supp : Hg — X be
the map sending the above point to x. Note that q is smooth of relative
dimension 1+ (v,2p). Let

H: D(Bung) — D(X x Bung)

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1513

denote the Hecke functor corresponding to -y, that is,

H(K) = (supp xp)ig"K ® Qg(%)m@lﬂvﬂm

2.3. Drinfeld compactifications

2.3.1. We fix a particular T-torsor on X with trivial conductor (Fr,o)
by requiring E;lT =Q. The pair (Fr,®) with this property is defined up to
a unique isomorphism, and we have E;Z’T = Q and [,;"T =Ql

For k = 1,2, 3 define the stack Q as follows. It classifies a point Fg €

Bung together with sections t1, ..., t; satisfying Plucker relations, where
tl QM
t2 Q=W
t3 : Ol A4
It is understood that Plucker relations are empty for £ = 1, and for k = 2,3
they mean that, at the generic point of X, the sections ¢y, ..., t; come from

a B-structure on Fg.

Set Q = Q. Let also Q;ﬁem be the stack defined in the same way as Oy
with the only difference that the last section t; is not necessairy an inclusion
(here ‘ex’ stands for ‘extended’). So, Q) C Qj . is an open substack.

Denote by Tg41k : Qk+1 — Ok and Tei1 kex : Qrt1,ex — O the natural
forgetful maps.

For each k we have the diagram

Ok cx Pler Ok ez XBune Ha Ihge O exs
where we used the map p : Hg — Bung in the definition of the fibred
product, pi .5 is the projection, and qj ., sends a point of O co XBune Ha
to (Fg,th, ..., t),) with ¢ being the compositions
t1:Q— M — M
th : Q= W—W
t3: Q1 > A A

For k = 1,2,3 we have the functor Hkes . D(Qk.ex) — D(X X Ok ex)
given by
_ _ 1 .
H% e (K) = (Supp X Pk a1} o0 K © Qe(i)[l]@”’%>

The restriction of qj ¢ to Oy XBung Ha factors through Q) C Qk,ez. So,
we also have diagrams

2 P A K
Qk — Qk XBunG HG i Qka

TOME 56 (2006), FASCICULE 5



1514 Sergey LYSENKO

where py, (resp., qi) is the restriction of py er (resp., of qg eq). For k =1,2,3
denote by

H* : D(Qx) — D(X x Oy)
the functor given by

1 ;
(2.1) HO(K) = (supp xpi)ai K © Qe(5) 1107
The projection o : @; — Bung fits into the diagram

Ql (P_l Ql XBung HG g Ql
la 1 la

Bung £ He 4, Bung,

in which the left square is cartesian. So, (id xa)* o H = H o a*[1](3)

naturally. Over the open substack of Bung given by Ext!(Q, M) = 0, the
map « : Q1 — Bung is smooth.

2.3.2. Let mp 1,60 : Qo,w — Q; be the vector bundle with fibre consisting
of all sections ¢y : @ — A. Let ig : Q1 — Qo,m denote the zero section and
j: Qo C QO,ew its complement given by: ¢y is an inclusion.

We have the diagram

~ pO,ea: =~ qo,ex N
QO,e:c - QO,ez XBung HG - Q0,6w7

where we used p : Hg — Bung in the definition of the fibred product, pg s
is the projection, and (g ¢, sends a point of Q0.ex XBung Ha to ( Gt th)-
Here, as above, t; are the compositions

to:QHA;’AI
t1:Q— M — M’

Restricting, one gets the diagram 9 L o) XBung Ha a9 Qo,. The
functors

HQO’EI : D(QO,ex) - D(X X QO,ex)
and H D(QO) — D(X x QO) are defined as in (2.1).

Remark 2.1. — For any K € D(Q ) we have a natural isomorphism
of distinguished triangles
GHO(E) = B (K) — (i) HO (i)
S i L
G H<o.ex (K) — Hoex (K) N (ZO)*ZS H<o0.ex (K)

ANNALES DE L’INSTITUT FOURIER
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2.4. Categories to construct

2.4.1. We will introduce triangulated categories D" (Qg) (resp.,
DW(Qk,em)) of sheaves on Qy (resp., on Oy .y) for k = 0,1,2,3 (resp,
for k =0,2,3).

Each D" (Qy) will be a full triangulated subcategory of D(Qy) defined
by the condition that K € DW(Qk) if its perverse cohomology belong
to a certain Serre subcategory PW(Qk) singled out by some equivariance
condition; and similarly for DW(Qkﬂex).

Though we don’t reflect this in the notation, all our equivariant categories
(except D' (Q1)) will depend on the character .

2.4.2. Let y € X be a closed point. For k = 1,2 let QY C QO be the
open substack given by the condition that neither of the maps ¢1,...,
has zero at y.

If (Fa,ti,...,tg) is a point of QY then over the formal disk D, at y we
obtain a Pj-torsor Fp,. Let Ny, — QZ be stack whose fibre over a point
of QZ is

HO(D;, Fp, xp, Ur)
This is an ind-groupscheme over QZ, it can be represented as a union
of group schemes Ny, for i € N, where ‘Nj, — TN, is a closed
immersion, and Ny, /%Ny, is of finite type over QZ for ¢ > 0. We assume
that the fibre of °Nj, ,, — QZ is

HO(DZN ‘7:Pk X Py Uk)

Let Hy,, — QY denote the stack over QY with fibre Ny, /"Ny ,. This is
an ind-scheme over QZ, and we have

th =U thyv
2

where “pry, : “Hy, — OY is the stack with fibre ‘N ,,/O Ny .

2.5. Groupoids

2.5.1. As in ([5], sect. 4.3) one endows Hy, with the structure of a
groupoid over Q% We denote by

Yacty : "Hy,y — QF

the restriction of the action map.

TOME 56 (2006), FASCICULE 5



1516 Sergey LYSENKO

_For k = 1,2 define the open substack Q} . ., C Qir1,ex 88 Q1 oy =
Q. %o, Qk+1,ez- The groupoid Hy, — Qf “lifts" to Qf,, ., In other
words,

Hl’%y XQZ QZ+1,€Z
has a structure of a groupoid over Qg 1ex (we used the projections to
define the above fibre product). Moreover, the diagram is cartesian

B AY act Y
Hk,y XQ% Qk+1,ex - k+1,ex

l id XTk+1,k,ex l Tk+1,k,ex
act Y
Hiy - Qy
Denote by
% L . OY Y
aCtkyex . sz,y XQi Qk-‘rLew - Qk-i—l,ew
the action map.
Let Q&ew C Qo,ex be the preimage of QY under mo 1 ey @ Qoex — Q1.
The groupoid Hy,, — QY “ifts" to Qg o il the same sense as above.

2.5.2. We single out the subgroupoid Hp , C H1 4 as follows.

Let Uy C U; denote the center of U;. The exact sequence 1 — Uy —
U; — Uy /Uy — 1 does not split, we have Uy — G, and U /Uy = G2.

The stack Bunp, classifies: a G-torsor F¢ together with a line subbundle
L; C M. Note that L; is automatically isotropic and denote by L_; C
M its orthogonal complement. For such Fp, € Bunp, the vector bundle
Fp, xp, Uy is L? @ AL Tt is understood that P; acts on Uy adjointly.

By definition, the fibre of H, — QY is

HO(D;, Fp, xp, Uo)/H(Dy, Fp, xp, Up) = Q* @ A" (o0y) /0 @ A
Denote by “Ho, C Ho,, the subgroupoid with fibre
A (iy)/ P oA
We write ® prg : “Ho, — QF for the projection and ®actq : “Ho,, — QY for

the action map.

Let also

i L1 . OY Y
acto,ex HOJJ XQ%’ QO,eJc - QO,ex

denote the action map.

2.6. Characters

Let us construct a natural map

. e Y 1
X0,y - Ho:y Xsz QO,em — A
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The element tg :  — A gives rise to a morphism
0% @ A (iy)/Q* @ A7! — Q(ooy)/Q

and we take the residue of the image of g € Hy , under this map.
Let us construct for £ = 1,2 a natural map

. . OY 1
Xk,y Hk,y XQ% Qk-{-l,ez — A

Case k= 1.

If Fp, is a Pj-torsor on a scheme given by (L C L_; C M) then the
vector bundle Fp, xp, Uy /Uy is Hom(L_1/Ly, Lq).

Recall that a point of QY defines a Pi-torsor Fp, on D,. Let & — QY
be the stack whose fibre over a point of QY is

HO(D;, Fp,xpU1/Uo)/H%(Dy, Fp xp U /Us) = (L-1/9Q)*®(Q(c0y) /)

We have a natural map H,, — & over Q}. Given a point of QY ., over
D, the section ty : @ — W gives rise to a map s : O — L_;/Q such that
ta = t1 A s. By definition, x4 is the residue of the pairing of s with the
image of g € H1, in &;.

Case k = 2.

Given a point of Qg we obtain a P-torsor Fp, over D,. Let Us 4 be the
abelinization of Us then
(2.2)

H°(D;, Fp, % p,Uz,a0)/H*(Dy, Fr, % p,Us,ap) = o0y) /QABA™" (00y) /A,

where the two summands correspond to the simple roots of GG. To define
X2y, We take the image of g € Ha,, in (2.2), pair it with ¢3 : Q7! — A and
take the sum of residues.

For k = 1,2 write

%

.1 .. OY 1
Xk,y * Hk,y XQ% Qk—i—l,ez — A

for the restriction of xy ,, and similarly for “xo,,.

2.7. Categories on Qzﬂ,w.

WA _
2.7.1. For k = 1,2 define the full subcategory P™ ( iten) CP(QL 41 o)
to consist of all perverse sheaves K € P(QY +1.ez) With the property:
For any ¢ € N there is an isomorphism on in,y X gy QZH’m

iy(Lo) @ pry K = acty K

TOME 56 (2006), FASCICULE 5



1518 Sergey LYSENKO

whose restriction to the unit section Qf ., C "Hry Xgv QY4 ., is the
identity map.

Similarly, P (Qf .,) C P(Q}.,) is the full subcategory consisiting of
perverse sheaves K with the property:

For any i € N there is an isomorphism on “Ho,y X gv (0
Xoy(Ly) @ P15 K = Pact]

whose restriction to the unit section Q&ez C “Hoy X oY Q&ew is the identity
map.

For k= —1,1,2 asin (_[5}7 Sect. 4.7-4.8) one shows that PYV(QzH’ew) isa
Serre subcategory of P(Q},, .,). Then D hiten) CD(Q1 1 ,) is afull
triangulated subcategory consisting of objects whose perverse cohomology
belong to PW(Qz+1 or)-

2.7.2. In all the three cases k = —1,1,2 define P"(Qp11.cx) CP(Qpi1.cx)
as the full subcategory consisting of K € P(Qj1.,) such that

Klgn ePV(QY )

k+1,ew k+1,ex

for any y € X. Then PW(Q;HL%) is a Serre subcategory of P(Qpi1 ex)-
Set DW(QkJrLem) to be the full triangulated subcategory of D(Qki1 cx)
generated by PW(Q;CH’M;).

For k = —1,1,2 we also have the categories D" (Q41) and P (Qp41)

defined in a similar fashion, because the open substack Q1 C QkJrLex is
preserved by the action of the corresponding groupoid.

2.7.3. Recall the vector bundle 7o 1 ¢z : Qo ez — Q1. Letig : Q1 — Qg cx
denote its zero section and j : Qp < Qg e, the complement to the zero
section.

Let DY (Q;) ¢ D(Q,) be the full triangulated subcategory consisiting of
those K € D(Q;) for which (ig)iK € D" (Qps). The Serre subcategory
PY(Q,) € P(Q,) is defined by the same condition.

In other words, K € P(Q;) lies in P (Q,) if and only if it is invariant
under the action of the groupoids Hy, for all y € X.

Note that any K € DW(QQM) fits into a distinguished triangle jj*K —
K — (ighigK with i5 K € D" (Q;) and j*K € DY (Qy).

2.8. Stratifications.
2.8.1. For k = 1,2 stratify O, as follows. For a string of nonnegative

integers d= (dy,...,dg) let d_Qk C 9y, be the locally closed substack given
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by: there exist Dy € X(@) . D, e X(@) such that
ti s L5 (Dy) = V&

is a subbundle for i = 1,..., k. In other words, (D) C M is a subbundle
for k = 1; and for &k = 2 there is one more condition: (D3) C W is a
subbundle.

Let JQZ be the preimage of QZ under 9Q; — Q. The stack JQZ is
stable under the action of Hy , on Qg For k =1,2 set

ko+1,ez = ko XQk Qk+1,ex
Set also
dQO,ez = dQl X3, QO,em

For y € X denote by JQZH’m t}le preimage of QZ_H’M under d_QkH,em —
Qkt1,ex- For k =1,2 the stack dQZH’eI is stable under the action of Hy,
on Qk+1 .- The stack dQO s 18 stable under the action of Hg , on ngez.

Thus, followmg the same lines one defines the categories PW( y 41, ex)
and D" (40 hil.ex)s and further pW Q;H}’w) and DY (4Qy 11 ¢x) for k =
—1,1,2. Similarly for P (?Q,) and DV (4Qy).

By abuse of notation, write

dQ dQO,ex
for the natural closed immersion. Denote by D (4Q;) c D(¢Q;) the full
triangulated subcategory consisting of K € D( Q1) such that

(i0): K € DV (?Qp.cx)
As in ([5], Lemma 4.11) one shows the following (cf. also Appendix A).

LEMMA 2.2. — 1) Let k = —1,1,2. The functors of *- and !-restriction
map DW(Q;HLGI) to DW(‘{QkJrLex). The functors of *- and !-direct image
map D" (4Qy 11 c0) to DV (Qkt1ea)-

For K € D(Qpt1.ex) we have K € D" (Qp11.c0) if and only if its -
restriction (or, equivalently, !-restriction) to d_QkH,em lies in DW(d_QkH,em)
for any d.

2) Let k = 1,2. For K € D(Qy) we have K € D"(Qy,) if and only if
its *-restriction (or, equivalently, -restriction) to *Qy, lies in D (4Qy) for
any d.

TOME 56 (2006), FASCICULE 5



1520 Sergey LYSENKO

2.8.2. For k = 1,2 define a closed substack 70}, ., < “Oji1,ex by
the conditions: t5 comes from H(X, Q™' ® W(—2D;)) in both cases, and
for k = 2 we require in addition that t3 comes from H(X, A ® Q(—2D5)),
where we have put D) = Dy — D;.

Let us define for £ = 1,2 a natural map

d . dA 1
Xk+1,ex * Qk:-‘rl,ex — A

Case k = 1. The stack JQ'Q,M classifies collections: D; € X (@) a Pj-torsor
on X given by S
(L1 cL_q,C M)

with Ly = Q(D;), and a section s : O(Dy1) — L_1/L;.

The map ng,eg; sends this collection to the class in Ext'(O(Dy), Q(D;))
=k of the pull-back of 0 — L1 — Ly — Lo/L; — 0 under s.
Case k = 2. Note that Bunp is the stack classifying: a rank 2 vector bundle
Ly on X, aline bundle A on X, and an exact sequence 0 — Sym? Ly —7 —
A — 0. For such p € Bunp the vector bundle Fp x pU is (Sym2 Ly)®A L

Therefore, the stack 4Qf ,, classifies collections: Dy € X () Dy €
X (d2—d1) with D), > Dy, two exact sequences

0—>L1—>L2—>L2/L1—>0
and
(2.3) 0 — Sym? Ly —»? — A — 0

with Ly = Q(D1) and Ly/L1 = O(Dj), and a section t3 : Q~1(2D}) — A.

The map dX37e$ sends this collection to the sum of two numbers, the first
being defined as for Zxs,¢x, and the second is the class in Ext!(Q~1(2D}),
O(2D})) = k of the pull-back of

(2.4) 0 — Sym?(Ly/L1) =7 — A —0

under t3.
Here (2.4) is the push-forward of (2.3) under Sym? Ly — Sym?(Ly/L,).

2.9. Whittaker categories on strata

2.9.1. For k = 1,2 define the stack ‘ZP;H_LW as follows.

The stack J”Pg,ex classifies: D € X(dl), a rank 2 vector bundle M5 on X
with section s : O(Dy) — Mo.

The stack Py o, classifies: Dy € X(4), D} € X(2=d1) with Dy > Dy, a
line bundle A on X with a section Q71(2D}) — A.
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In both cases we have a projection ¢py1,eq : JQ%H’%, — ‘ZPkH,ex. For
k=11itis given by M2 = L_l/Ll.

2.9.2. For d = (dy,dy) let ‘EQ’Q c 49, be the closed substack given by
D), > Dy, where D)y = Dy — D;. We have a natural map

JXQ . JQ& AL
defined in the same way as JXZ,eac-

For k =1,2and d = (dy, .. .,dy) as above define the stack d_Pk as follows.
The stack P; classifies D; € X(41) and an exact sequence of vector bundles
on X

0—>L1 —>L,1 —>L,1/L1 — 0
with L1=Q(Dy), where L_1/L; is of rank 2.

The stack 9P, classifies D; € X)) DL e X(d=d) with D) > Dy, a

line bundle A on X, and an exact sequence on X

0 — O(DL) — My — A(—D}) — 0

We have projections ¢; : 49, — 4P, and bo JQ/Q — dp,.
As in ([5], Proposition 4.13) one proves

LEMMA 2.3. — For k = 1,2 and a string of nonnegative integers d =
(d1,...,dx) we have the following.
i) Any object K € DW(JQ;CH)E:E) is supported at JQ;H’&T. The func-
tor K +— Jx’,g+17m£w ® @41 .18 provides an equivalence of categories
D(*Pri1,e0) — DV (1Qs11.e0)- i i

ii) We have an equivalence of categories D(?Py,) — DV (¢Qy). For k = 1
it is given by the functor K — ¢ K, whence for k = 2 it is given by the
functor K — ¢3K ® Jx;&;,.

3. Whittaker functors

In this section we prove the following theorem.

THEOREM 3.1. — i) There is an equivalence of categories W10 eq :
D(Q;) — DW(Qoyez), which is t-exact, and (7o 1)1 IS quasi-inverse to
it. Moreover, for any K € DW(QOME) the natural map (mo 1 ex N —
(701,62 )« is an isomorphism.

ii) For k = 1,2 there is an equivalence of categories Wi k41 eq DW(Qk)
— DW(QkHyez), which is t-exact, and (Tp41,keq)1 IS quasi-inverse to it.
Moreover, for any K € DW(Q;CHWSI) the natural map (Tpi1 kex N —
(Tk+1,k,ex)« K is an isomorphism.
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3.1. Whittaker functors on strata

3.1.1. First, we explain what the corresponding functors do on strata.
For k= 1,2 let d = (dy,...,d;) be a string of nonnegative integers. Using
Lemma 2.3, define

JWk,kJrl,ea: : DW(d—Qk) — DW(JQk+1,ez)

as the composition
o F _ . o
DY (1Q) = D("Pr) =" D(“Prirex) = DV (“Okitea)

So, JW;C,;CHM is an equivalence of triangulated categories and t-exact.
It also follows from the standard properties of the Fourier transform that
(Th+1,k,ex)! I8 quasi-inverse to de,;Hl?w, and we have (Tg41 5 ex)t K —
(7Tk+1,k,ea:)*K for any K ¢ DW(ko+1,em)~

3.1.2. For d = (d;) define the functor
dWl,O,ex : D(dgl) - DW(dQO,eac)
as follows. Let 4€ — Jél be the stack whose fibre over a point of Jél is
the stack of exact sequences 0 — Q?(2D;) ® A~ —? — O — 0. This is a
groupoid over dQl, let act : 4€ — 4Q; denote the action.

Let dQlO,ew C dQQem be the closed substack given by: ¢ty comes from
H°(X, A®Q~'(—2Dy)). Any object of DV (?Qq .) is supported on Y en-
As in Appendix A.2, let
dim. rel

JWLO’em(K) = Four(‘iact* K)[dim. rel]( ),

where dim. rel is the relz}tive dimension of € — JQL This functor satisfies
the same properties as de,k+1,ez in Sect. 3.1.1

3.2. Definition of Whittaker functors

3.2.1. For k = 1,2 we single out the subgroupoids Hj, , C Hy,y as fol-
lows.

Case k= 1.
We let Hy , = M1, and iH’l’y = "H, . Recall the map & — QY defined
in Sect. 2.6. Write & as a union of vector bundles *&; — Q? with fibre

(L-1/Q)" @ (Qiy)/Q)
The fibre of & — QY is (L_1/Q) ® (O/O(—iy)).
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Case k = 2.

A point of Qg gives rise to a Po-bundle Fp, on D, given by (L1 C Ly C
M) with Ly — Q |p, and Ly/Ly — O [p,. The P-bundle Fp, gives rise
to a P-bundle Fp = Fp, xp, P on D,,.

By definition, the fibre of Hj , — Qy is

H(Dj, Fp xp U)/H(D,, FpxpU) = (Sym® L) @ (A~} (ooy) /A7)
Let “Hy , C Hb, be the subgroupoid with fibre
(Sym?® Ly) @ (A~ (iy) /A~
Let & — QY be the stack with fibre
(Sym*(La/L1)) ® (A" (o0y)/A™) = A~ (o0y) /AT
This is a union of vector bundles ‘€y — Qf with fibre A~ (iy)/A~L. The
fibre of &5 — QY is A® (Q/Q(—iy)).

3.2.2. For k = 1,2 we have a natural map H} , — & over QY. Without
loss of generality we may assume that the image of ° ;w in & is '&,. The
corresponding map “py, : ¢ ;w — &, is smooth with contractible fibres, we
denote by d; i, its relative dimension. From ([5], Lemma 4.8) we get

LEMMA 3.2. — The functor K — ‘p;K|d; ] is t-exact and identifies
D(‘&) with a full triangulated subcategory of D(* k)

For i’ > i we have ', — & is a subbundle. Denote by pry ;¢ i/é’,j —
&% the dual map.

LEI\KIMA 3.3. — Foreachi > 0 we have a natural map f; : Q%H,ex — ic‘,’,j
over QZ. For v/ > i the composition
far 4

AY i ox Plilii jox
Qk+1,ea: - Sk - Sk

equals f;. For each open substack of finite type U C QZ there is an integer
i(U) such that over the preimage of U, the map f; : QZ_H’” — & is a
closed embedding for every i > i(U).

Proof. — Case k = 1. Given a point of Qg’em, over D, the section
to : Q — W yields a map s : O — L_1/Q such that to = t; A s. Now f;
sends a point of QY . to the image of s in ‘£;.

Let ©V — QY be the vector bundle with fibre Hom (2, W/W(—iy)). Given
a point of QY, we have a subbundle Q ® (L_1/Q) |p,C W |p, over D,.
Therefore,

(L-1/9) @ (Q/QU—iy)) — W/W(-iy)
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So, we have a natural closed embedding ‘€ — *V over QY.

Let ¢(U) be such that the vector space Hom (92, W(—iy)) is zero for any
point of U. Then for i > i(U) the natural map QY ., — "V is a closed
embedding over U. So, QY ., — ‘&f is a closed embedding over U for
i >i(U).

Case k = 2. The map f; sends a point of QY . to the image of t3 €
H (X, A® Q) in A® (2/Q(—iy)).

Let i(U) be such that the vector space H*(X, A® Q(—iy)) is zero for any
point of U. Then for i > i(U) the map f; is a closed embedding. a

8.2.3. For k = 1,2 let "act), : "M}, — Q denote the action map. It is
smooth, and we denote by a; j its relative dimension.

Define the functor

leJ:Ierl,ez : DW(Qz) - D(lS:)
as follows. Given K € D' (QY), from Lemma 3.2 we learn that there exists
K € D(?&;) and an isomorphism

i diskey ~ i 1\ @i
(3.1) b DK a)(=57) = Cacty) Klag ) (557)
The pair (K, h) is defined up to a unique isomorphism. Set W,f7’,i+l7em(K) =

Four(K).
By construction, the functor W, ., .. is t-exact.

Remark 3.4. — We could replace inw by any subgroupoid ? ky C
;c’y of finite type over QZ §uch that theﬁ image of * ;Cy in & is {&;. The
corresponding functors Wy | . - DY (QY}) — D(’€;) would be naturally
isomorphic. Thus, the functors W} 12 +1.¢c do not depend on the choice of

the group subschemes *Nj, ,, inside of Ny .

Using the above remark together with appendix A.3, one shows that for
i" > i we have an isomorphism of functors (pr; ;)io Wy 4 o0 = Wiy o

LEMMA 3.5. — For k = 1,2 let K € D(QY). For any open substack
of finite type U C QZ and any integer i large enough (in particular, i >
i(U) of Lemma 3.3), over the preimage of U, the complex W,€y7’,i+1’ez(K) is
supported on Qj |, ., C .

Proof. — Since U is contained in a finite number of strata ‘ZQ;C, we are
easily reduced to the case where U C d@% for some d, and K is the extension
by zero from U.
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Case k =1.
There is i'(U) such that for any point of U given by D; € (X — y)(@1),
(Q(Dy1) C Ly C M) € Bunp, we have

HY(X, (L_1/QD1))* ® Q(D; + iy)) = 0.
So, for any i > ¢/(U) the natural map
&) — Ext'(L_1/Q(D1), UDy))

is surjective over U. If i > i(U),#(U) then legem(K) is supported at
EQg&w and is isomorphic to Wy 5 ¢, (K).
Case k = 2.

Recall that a point of U is given by a collection: D; € (X — y)(@),
D} € (X —y)@~4) with D} > Dy and (L; C Ly € L_y C M) € Bunp,
with Ly = Q(D;) and Lo/L; = O(DY)). There is ¢/(U) such that for any
point of U as above we have

H'(X, (Sym*(Ly/L1)) © A™'(iy)) = 0
This implies that for ¢ > ¢/(U) the natural map
iy — Extl(A, Sym2(L2/L1))

is surjective over U. If i > i(U),#(U) then Wé’;ex(K) is supported at
4Q¥ . and is isomorphic to 1Wa 3 ¢, (K). O

3,ex

Thus, we get a well-defined functor W/, ., .. : DY (QY) — D(9Q} 11 ca)s
it is t-exact by construction. .

Given K € DW(Q%)7 the +-restriction of W/, ., .. (K)to Q) _ isnat-
urally isomorphic to W k1., applied to the *-restriction K ‘d’Q%. By 1) of

Lemma 2.2, we conclude that the image of W/, ., ., lies in DY ( Y 11 en)-

PROPOSITION 3.6. — For k = 1,2 the functor K — (Tj41 ke )1 /X maps
DY ( _‘ZH{I) to DV(QY) and is quasi-inverse to WY 141,00 Moreover, for
K € DW( Z+1,ea:) the natural map (741 kex VK — (Tht1 kex)« K IS an
isomorphism.

Proof. — First, let us show that for K € DW(QZ) we have
(ﬂk+1’k,ew)gWé’7k+1’ex(K):?K naturally. Indeed, over an open substack of
finite type U C Q) and i large enough we have W/, ., (K) = Four(K)
and
dip — Qi

(Tt 1 ea IV i1 oo (K) = i K [di i — ai k] ( 5 )
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where K is that of (3.1), and iy : U — &, is the zero section. The equivari-
ance property of K implies that the RHS of the above formula is identified
with K |U-

The fact that K +— (11,5 es )1 K maps DW(QZH,W) to D(Q}) follows
from Appendix A.1.

Now let us show that for K € D" ( {1 1.0a) We have

(32) W]g7k+17ex(7rk+1,k,em)!K = K

naturally. To establish this isomorphism over the preimage of an open sub-
stack of finite type U C QZ, fix an integer 7 large enough with respect to
U.
The groupoid zHﬁw — QZ lifts to ‘&; in the sense of A.1. In particular,
we have a cartesian square
My xoy & g
\L id XTe l e
’ ;C,y Z aﬁ;ﬂ _Z’
where we used the projections to define the fibred product, and ¢ also
denotes the projection. We may start with K € D(ig,z‘) that satisfies the
equivariance property act* K — prj K ® x*L,, where x is the composition
"Hioy X oy "Ep — &k gy €L = AL

(Actually, for k = 2 the complex K satisfies a stronger equivariance prop-
erty with respect to the action of Hy ,, which we don’t need for the mo-
ment.)

Looking at one more cartesian square

i/ 1Ok 7 I ¥l
ky XQZ gk — gk XQZ Sk

l id x7ge l
iH;w/ = &
we obtain
; ~ dik — ai
(Cacth)" (ne) K = ‘i Four(K)[dy . — (25 405

We have used the fact that the rank of the vector bundle &, — Q% is
a; 1 — d; ;. The isomorphism (3.2) over the preimage of U follows.
The above diagrams also show that

(‘acty,)"(me) K = (‘acty,)" (me). K,

because !- and *-Fourier transforms coincide.
So, (Mkt1,k,ex 1K — (Tht1,ke)« K is an isomorphism. d
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Now arguing as in ([5], 5.11) one finishes the proof of Theorem 3.1 ii).

3.2.4. The proof of Theorem 3.1 i) is similar. First, let ‘€ = iHoyy.
The action map ?actg : iHOW — Qzl’ is smooth, denote by a; ¢ its relative
dimension. For 7 > 0 define the functors

W5 ea : D(QT) — D(E)
by W5 o (K) = Four(facty K)[a;,0](“5%). As in Sect. 3.2.3, this gives rise
to a functor W¢, , : D(QY) — D" (Q},) and so on. The details are left
to the reader. O

4. Cuspidality
4.1. Definition of cuspidality

4.1.1. Recall the notion of cuspidality on Bung. For a proper parabolic
Q C G let Mg be its Levi quotient. We have a diagram of natural maps

Bunyy, p Bung 'Bﬁi Bung

The constant term functor CTq : D(Bung) — D(Bunyy,) is defined as
CTo(K) = (aghB5 K.

A complex K € D(Bung) is cuspidal if CTg(K) = 0 for any standard
proper parabolic P, C Q C G. It suffices to check this condition for Q = P;
and Q = P.

Denote by Deysp(Bung) € D(Bung) the full triangulated subcategory
consisting of cuspidal objects. Similarly, for a scheme of parameters S, one
defines D.ysp (S % Bung).

4.1.2. Let us introduce the notion of cuspidality on Qy, for k = 1,2, 3.

The stack Bunjy,, classifies pairs: a line bundle L; on X and a rank 2
bundle My on X. The projection Bunp, — Buny, sends (Ly € L_q C
M) € Bunp, to (L1, My = L_1/Ly).

The stack Bun), classifies pairs: a line bundle A on X and a rank 2 bundle
Ly on X. The projection Bunp — Bunj; sends a collection (A, Ls,0 —
Sym? Ly —? — A — 0) to (A, La).

For k = 1,2 consider the natural diagram

o T oop % gy
! ! !

B «
Bung < Bunp =% Bunj,,
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where the right square is cartesian, and the stack QM classifies collections:
an M-torsor (A, L) on X together with sections ¢4, ...,t;, where

tl Q) — L2

t2 Q) — /\2L2

The constant term functor CTIQ;k : D(Qk) — D(QM) is defined as
CTE (K) = (ab)i(85) K.
Consider the natural diagram

1 1
’BPl Py

o o o
! ! !

Bung Bil Bunp, i} Bunyy,,
where the right square is cartesian, and the stack Qi\/[ ! classifies collections:
a My-torsor (L1, Ms) on X together with section 1 : Q2 — Lj.
The constant term functor CT%1 : D(Q1) — D(QM) is defined as
TS (K) = (b, 1 (8h,) K.

DEFINITION 4.1. — i) An object K € D(Q4) is cuspidal 1'fCTg1 (K)=0
and CT! (K) = 0.
ii) An object K € D(Qy) is cuspidal if CT2?(K) = 0.
iii) Any object K € D(Qs3) is cuspidal.

4.2. Whittaker functors and cuspidality

4.2.1. For k = 1,2 denote by Wy, x41 : D" (Q) — D" (Qp41) the func-
tor Wi k41.c followed by the restriction to Qry1 C Qi1 ex-

PROPOSITION 4.2. — i) The functor Wy, 11 : D (Qx) — D" (Qry1)
maps cuspidal objects to cuspidal.

i) If K € DY(Qy) is cuspidal then the %-restriction of Wy, g11 e (K) to
Ok+1,ex — Q41 vanishes.

Proof. — ii) Note that Qk+17e$ — Qk+1 is isomorphic to Qy, the zero
section of the bundle mp41 kex : Qk+1,ez — Q_k. We will calculate the
s-restriction Wy, k41, es(K) |3Qk for any stratum ?Qy, C Q.

Let 47 : 19, — inl be the map that sends ((L; C L_; C M), Q N Ly)

to
(M = L_y/L1, Q35 L)
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Let 15 : 19, — 9 be the map that sends ((L; C Ly C L1 C M), &
Li, Q2 A%Ly) to
(A, Ly, Q5 Ly, Q3 A2L)
Using Lemma 2.3, one shows the following:
o for K € D (Q1) we have Wi 2o (K) |ag, — 9} CTE! (K) up to a
cohomological shift and a twist; B
o for K € D(Qy) we have Wa 3 ¢, (K) lag, — V3 CTS2(K) up to a
cohomological shift and a twist.

Part ii) follows.

Remark 4.3. — Actually, we showed that for K € D" (Qy) the condition
Wi kt1,e2(K) |g,= 0 is equivalent to CT%1 (K) =0 for k =1 (resp., to
CTL2(K) = 0 for k = 2). Indeed, as d ranges over strings of nonnegative

integers d = (d,...,dg), the images of vy form a stratification of the
corresponding stack.

i) Let Q3% denote the stack classifying (A, L) € Bunys and sections
o Lo, Q% A2L,. As in Sect. 4.1.2, we have the diagram

— — @ —
QQ,@Q? = Qg),ez i Qé\,del
l | l

B o
Bung <  Bunp =X Bunj,,

612:;8.17 2,ex

where the right square is cartesian. Let CT%Z’” : D(Q2,e) — D(Q,)
denote the functor K — (a%°),(67°)* K. Proceeding as in Sect. 2-3, one
introduces the category DW(QQ{QI) and the functor
Wi e 1 D(QY) — DY (Q3L,),
which is also an equivalence of categories.
One checks that CTIQDZ’” sends D" (93 ..) to DV(QLL ). Let us only

2,ex

indicate that the groupoid Hiy X g ng — QY lifts to

2,ex
~Py _ Ap . _
QQ,gx - 92761 XQg,m g,ez
We claim that there is a natural isomorphism of functors from D' (Q;) to
W AM
D ( 2,61)

(41) CT§2H oWl,Z,em — Wl,]v[2,eac © CTgl

The functor CT%1 admits a right adjoint, which will be denoted by Eisg1 ,
it sends K to (8b)«(ah) K. Actually, CTS* maps D(QM) to D"(Q)).
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Similarly, CT%'” admits a right adjoint functor
Eisp>** : DV(Q) ) — DV (Qs..)

that sends K to (85°").(ap")'K.
We have the following diagram, where the right square is cartesian

o & or = o
T T2,1,ex T T Wé\,{I,Ez

B Ber B Q2w B
Q2,ew & Qg,ex = Q%{ex

It follows that (721 eq)s © Eis%’”’ = Eisg' o (73]} o)+ naturally. Passing

to left adjoint functors, we get the isomorphism (4.1).

So, if K € DV(Qy) is cuspidal then CTE>** W) 5 .o(K) = 0. By i), the
complex W1 s ¢, (K) is the extension by zero from Q,, 50 CT%2 Wi2(K)=0
and Wi o(K) is cuspidal. O

Recall the notation Q = Os. Let W : DW(Ql) — DW(Q) be the functor
Wa 3 0 Wi 9. Exactly as in ([5], Theorem 6.4), one derives from Proposi-
tion 4.2 the following corolary.

COROLLARY 4.4. — For k =1,2 let K, K, € DY(Q4) be two objects
with K cuspidal. Then the map Home(Qk)(Kl,Kg) — Hompw (g, )
(Wi k+1 (K1), Wi k+1(K2)) is an isomorphism. So, for k =1

HomDW(Ql)(Kl, KQ) — HOHIDW(Q) (W(Kl), W(KQ))

is also an isomorphism.

4.2.2. We also have the following analog of ([5], Theorem 6.9). For k =
1,2,3 let D}, (Qr) € DY (Qx) denote the full subcategory consisting of
cuspidal objects. This is a triangulated subcategory.

THEOREM 4.5. — For k = 1,2 the functor Wy, ;41 induces an equiva-
lence of triangulated categories Dchsp(Qk) — DZZSP(Q;CH). In particular,
W :DY_ (Q:) — DY (Q) is an equivalence.

cusp

Proof. — We know by Proposition 4.2 that W, ;11 maps cuspidal objects
to cuspidal. Let

Wiy i Dy (Qrr1) — DY(Q)
be the functor sending K t0 (mg+41,ke)1K’, where K’ is the extension by
zero of K to Qk+1’ez.
If K € DY _ (Qpy1) then the complex W,;;H(K) is cuspidal. Indeed, for

cusp

k = 2 the assertion follows from Remark 4.3. For k =1 set F' = Wf;(K)
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We have CT®! F = 0 by Remark 4.3. Further, W% ., CTS!(F) = 0 by

1,2,ex >
(4.1). Since the functor W%, is an equivalence, we get CTS (F)=0.
Let us show that W ., : Doy (Qrt1) — DUy, (Qk) is quasi-inverse
to W k+1. From ii) of Theorem 3.1 we conclude that Wi 41 © Wk—li—&-l =
idDX‘ﬁsp(Qkﬂ) naturally, and there is a natural adjunction map Wki,li+1 o

Wi k1 — idpw (5,)-
For K € DV

eusp(Qk) consider a distinguished triangle

Wi rs Wik (K) = K — K’

We have Wy, ,4+1(K’) = 0 and K’ is cuspidal. Hence, K’ = 0 by Corol-
lary 4.4. O

5. Hecke functors
5.1. Relation with Whittaker categories

Recall the Hecke functors H,HQ’“*” and H2* introduced in Sect. 2.2-
2.3.2.

PROPOSITION 5.1. — The functor H e+ sends D" (Qp.cx) to DV (X x
Ok cx). The functor HS* sends DV (Qy.) to DV (X x Qy).

Proof. — Let wHQ’“'“’ denote the functor H2*<* followed by #-restriction
to x x Qk’w C X x Qk,m. To simplify the notation, we will show that
mHQ’““” preserves the category DW(Q;CH,W) for k = 1,2. The other
cases are treated similarly.

Let y € X be distinct from z. Let ,Hg be the preimage of z under

] O
supp : Hg — X. We have a well-defined functor wHQHl»w - D( Zﬂ’m) —
D(Q}, cp)- Let us show that it preserves the subcategory DW(QZH,GE).
Indeed, the groupoid

e Y
H]%Z/ XQZ QkJrl,e:v - Qk:JrLea:

lifts to QZ+L% XBung zHae With respect to both prii1 e and qri1,ex, SO
that we have diagrams

_ Ay Pz qz _AY
He,y X gy Qter z = Hiy XY Qht1,ex
L pr Lopr Lopr
= Pk+l,ec = Ak+1,ex
z+1,egc — Qlﬂ»l,ez XBung +Ha - Z-&-l,ew
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and
~ Ay Pz qz _ Ay
Hi,y Xy Qk+1,ez — z - Hi,y Xy Qk+1,ez
l act l act l act
Y Pkt+lez = Ak+1,ex
Yy § Y
k+1,ex A Qk+1,ea XBung 2 Ha - Qk+1,e:c

in both of which both squares are cartesian. Moreover, the compositions
25 My gy Qg ' A

and
z 3 Hiy Xy QZ+1,&1 Al

coincide. Thus, zHQZHw preserves the equivariance condition. Using the
following remark, one finishes the proof.

Remark 5.2. — Let x1,...,x, be a finite collection of points of X. Let
K € D(Qk,e.) be such that its restriction to QY _ lies in D(QY ) for

any y # x;. Then K € DW(Qk,W). Indeed, as y ranges over points of X
different from x;, the union of QZ’M is Qk,ez- Similar statement for DW(Qk)
holds. O

5.2. Relation with Whittaker functors

Similarly to the GL,, case, Hecke functors and Whittaker functors com-
mute with each other. The proof of the following result mimics that of ([5],
Proposition 7.6).

PROPOSITION 5.3. — i) For k=1,2 there is a natural isomorphism of
functors

HO 1 0 Wi oy 1ea 3 (id X Wi ey 1,60) o HO - DV (Qg) — DV (X % Q)
ii) There is a natural isomorphism of functors
H2 0 Wi 0,0 = (id X Wi ,60) 0 HE : D(Q1) = DY (X x Qo.ca)
Proof. — i) To simplify the notation, we replace the functors H* , H ks

by J3HQ’“, JH@* e In view of Theorem 3.1, it suffices to show that for
K e DW(Q,H_L&T) we have

:vHQk ((Wk:-&-l,k’ez)!K) = (ﬂ-k—i—l,k,ew)!xHQkJA’w (K)

For x € X let Q;HLQWE be the stack defined in the same way as QkJr]’em
with the difference that the last map tx; is allowed to have a pole of order
2 at x for k =1 (resp., of order 1 at z for k = 2).
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Write mHQ’C for the preimage of = x Qy, under supp xp : Qg XBung Ha —
X x Q. We have a diagram

S Pk+1,ex,z 5 Qk+1,ex =

Qk+1,ez,z — mHQk_H’em’m i QkJrl,ex
l« l l Th41,k,ex
A Pk o Ik S
Qk — IHQk - Qka

where the stack xHQk“vww is defined by the condition that the right square
is cartesian, and Pyy1,eq,« is the natural map.

It suffices to show that for K € DW(Qk_H_yem) the complex (Pr41,ex,2)!
q,’;HMK is supported on Qk+1,em C Qk.i,_l’eium. This direct image will verify
an appropriate equivariance condition on QkJrLeCE,Z' So, our assertion is
verified stratum by stratum using an analog of Lemma 2.3.

Part ii) is proved similarly. O

6. Hyper-cuspidality
6.1. Definition

Recall that Uy denotes the center of Uj. Set Py = P;/Uy. We have a

diagram of natural maps Bunp, Lo Bunp, ﬁ—P; Bung. Define the constant
term functor

CTp, : D(Bung) — D(Bunp,)
as CTp,(K) = (ap, 18p, (K). The following is a geometric version of ([10],
Definition on p. 328).

DEFINITION 6.1. — i) A complex K € D(Bung) is hyper-cuspidal if
CTp,(K)=0.
ii) A complex K € D(Q) is hyper-cuspidal if W1 ¢ ¢, (K) is the extension
by zero from Q.

Denote by Djeusp(Bung) € D(Bung) and by Dpeusp(Q1) € D(Q1) the
full triangulated subcategories consisting of hyper-cuspidal objects. Simi-
larly, we have Dpcysp(S X Bung) for a scheme of parameters S.

If f:S — S5 is a morphism of schemes then for the map f x id :
S1 X Bung — S2 x Bung the functors (f x id)y and (f x id)* preserve
hyper-cuspidality (and cuspidality). The same is true for the functor D(.S) x
D(S x Bung) — D(S x Bung) of the tensor product along S.

PROPOSITION 6.2. — In both cases Djcysp(Bung) C Deysp(Bung) and
Dheusp(Q1) € Dewsp(Q1) is a full triangulated subcategory.
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Proof. — Let K € Dpeysp(Bung). It is clear that CTp, (K) = 0. Let us
show that CTp(K) = 0. We have a diagram

Bung « Bunp <« Bunp,

! !

Buny < Bunp),

where B(M) C M is a Borel subgroup, the square is cartesian, and the com-
position in the top line is Bp,. The right vertical arrow factors as Bunp, 3,
Bunp, /i, — Bung(ar). So, it is enough to show that 685, (K) = 0.

Since we have the following diagram, where the square is cartesian

Bung « Bunp, <« Bunp,

! Lo

Bunp, <« Bunp,,y,,

the first assertion follows.
For sheaves on Q; the proof is similar. OJ

6.2. Equivalence of categories

6.2.1. Recall that for each dominant coweight A of G we have the Hecke
functor HY : D(Bung) — D(X x Bung) normalized to commute with
Verdier duality (cf. [2], Sect. 2.1.4 for the precise definition). In our notation
H}, = H. Tt is well-known that the subcategory Dcysp(Bung) C D(Bung)
is preserved by Hecke functors. That is, each Hg sends Deysp(Bung) to the
category D ysp(X x Bung).

PROPOSITION 6.3. — The subcategory Djeysp(Bung) € D(Bung) is
preserved by Hecke functors.

Proof. — Step 1. Let us show that H preserves Dpeysp(Bung). One
may introduce a version of stacks Q; and Qo,qu, where instead of a fixed
T-torsor with trivial conductor (Fr,®) one considers all of them as addi-
tional parameter. In other words, the stack Q; would classify F¢ € Bung,
a line bundle B on X and a section t; : B — M; the stack QO,em would
classify the data just above together with B2 ® Q! — A.

An analog of Theorem 3.1 would hold in this setting. Then for
K € D(Bung) hyper-cuspidality would be equivalent to requiring that
W1 0,ex(a* K) is the extension by zero from Q,. Our assertion follows from
an analog of Proposition 5.3 ii) in this situation.
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Step 2. Recall that Hecke functors can be composed in the following
way. For G-dominant coweights A1, Ay the functor

H)} « HY? : D(Bung) — D(X x Bung)

is defined as
A1 A2 * : . A Ao -1
HY « Y (K) = (8% Bid) (A BHY) 0 HY (K)[-1)(51)
It is known ([2] Sect. 2.1.6 and [1]) that there is a canonical isomorphism
functorial in K
HY » HY? (K) = 2, HY(K) ® Homg (VA VM @ VA2)
The group of coweight of G orthogonal to all roots is free abelian of rank
1. It is easy to see that Hecke functors corresponding to both generators
+w of this group preserve Dj,cysp(Bung). One checks that any irreducible
representation V> of G appears in (V?)®* @ V' for some k > 0 and
r € Z. Thus, our assertion follows from the fact that the subcategory
D cusp(Bung) is saturated: a direct summand of an object of Dpcysp (Bung)
is again an object of Dpcysp(Bung). O

Clearly, the functor 0 preserves the subcategory Dpeusp(Q1), and o*
sends Dpeysp(Bung) t0 Dacusp(Q1).

PROPOSITION 6.4. — We have equivalences of triangulated categories
1) D(Ql)/phcusp(gl) ’—:; DW(QI) B
ii) Deusp(Q1)/ Dhcusp(Q1) = Dyl (Q1)-

Remark 6.5. — Let F : D — D’ be a triangulated functor between
triangulated categories. If F' admits a fully faithfull right adjoint functor
F' : D' — D then F induces an equivalence of triangulated categories
D/KerF — D'

Proof of Proposition 6.4. —

i) Recall the closed immersion ig : Q, — QO,eaz and its complement
j: Qo = Qo.ex- The functor if : DW(QO’EI) — DW(Ql) admits a right
adjoint (ig)., which is fully faithfull. The category D" (Qy) is embedded in
DW(QU’SI) fully faithfully by j. By Remark 6.5, ¢* induces an equivalence
of triangulated categories

D" (Qo,e)/ D" (Qo) = DV (Q1)

So, the functor if o Wy 1 ., induces an equivalence i).
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ii) For K € Deysp(Q1) let us show that i W 1 e, (K) is cuspidal. We have
a distinguished triangle in D(Q;)

(0,1 )17 Wo 1,60 () = K — igWo 1,60 (K)

Since (70,1)17*Wo,1,e2 () is hyper-cuspidal, it is cuspidal by Proposition 6.2.
S0, i§Wo 1,62 (K) is also cuspidal.

We conclude that i§oW)y ; ¢, induces a functor F : Dcusp(Ql)/ Dhcusp(Q1)
— DY (Q1). Let F~! denote the composition

cusp
Dchsp(Ql) - Dcusp(@l) - Dcusp(Ql)/Dhcusp(Ql)
We claim that F' and F~! are quasi-inverse to each other. Indeed, the above

distinguished triangle shows that id = F~!o F. Since for K € D" (Q;) we
have Wo 1 ¢ (K)= (i)« K naturally, it follows that id = F o F~1. O

6.2.2. If D’ is a triangulated category and D C D’ is a full triangulated
subcategory, we write D+ C D’ for the full subcategory consisting of K €
D’ such that Homp/(L,K) = 0 for all L € D. Then D+ C D’ is a full
triangulated subcategory, and the composition D+ — D’ — D'/D is fully
faithfull (cf. [12], Proposition 2.3.3, p.128).

Consider the subcategory Dpeusp(Bung)t C Deysp(Bung). Let ng :
D(Bung) — D(Bung) denote the functor Hgy followed by *-restriction to
x X Bung < X X Bung. Since Hecke functors admit left and right adjoint
functors (cf.[2], 3.2.4), it follows that Djcysp(Bung)® is preserved by all
functors , He.

7. More Whittaker type functors
7.1. Whittaker categories on Z

7.1.1. Let Z; be the stack of collections: (M, A) € Bung together with
an isgtvropic subsheaf Lo C M, where Lo € Buns. The stack Z; is nothing
but Bunp in the notation of ([2], 1.3.6).

Let 72 1,c : 22,62 — Z1 be the stack over Z; with fibre consisting of all
maps
(7.1) s: Q71 - A®Sym? L3
Let mg,1 : Zo — Z; be the open substack of Z; ., given by the condition: s
is injective.

For k = 1,2 we have the diagram

Pr qr
2y Zj XBung Ha — Zk,
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where we used the map p : Hg — Bung in the definition of the fibred
product, py is the projection, and g sends a point of Z; Xgung He to F§
equiped with an isotropic subsheaf (and for k = 2 a section s’) that are the
compositions

Ly — M — M’
s Q' A®Sym?® L — A’ ® Sym? L}

For k = 1,2 we have the functor H* : D(Z},) — D(X x 2Z) given by
_ 1 -
H# (K) = (supp xpr)iai K @ Qu(5) (1%

Similarly, one defines the functor HZ2<= : D(Z2.e4) = D(X X Z3.¢5).
The projection az : Z; — Bung fits into the diagram

Z B ZogueHe B 2
Loz 1 Loz
Bung & Ha 4, Bung
So, (id xaz)* o H=H?' o a[1](3) naturally.
In this normalization the Hecke property on Zj, (for k = 1,2) with respect
to H®* and a given local system W on X writes

H% (K)S WK K[3](g)

7.1.2. One defines the category DW(ZQ,M;) as in Sect. 2.7-2.7.2. Let us
just indicate its description on strata (they are equivariant under the cor-
responding groupoids).

For d > 0let “Z; C Z; be the locally closed substack given by: there is a
subbundle L) C M such that Ly C Lf is a subsheaf with d = deg(L%/Ls2).
The stack ¢Z; classifies collections: a modification of rank 2 bundles Ly C
L} on X, and an exact sequence 0 — Sym? Ly —? — A — 0, where A is a
line bundle on X.

Let ng,eg; = Zoer Xz, dz,. An analog of Lemma 2.2 holds for this
stratification of Z5 ., so it suffices to describe the categories DW(dZZew)
for each d.

Let dZé,w — 42, ., be the closed substack given by the condition: s
factors as

QO - A®Sym? Ly — A® Sym? L}

Let Yxg.ex : dZéyez — Al be the map that pairs s with the extension
0 — Sym? Ly, —»? — A — 0.
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Let Py, be the stack classifying: a modification of rank 2 bundles
Ly C LYy on X with d = deg(L%/Ls), a line bundle A on X and a section
s:Sym? Ly — Q® A. Let

¢2,em : dzé’ex - dPZ,em
be the projection.

LEMMA 7.1. — Any object of DV (42, .,) is supported at 42} .- The
functor

* * 1 im.r
UI(K) = X5 en Ly ® 05,0, K [1)(5) 7

provides an equivalence of categories *.J : D(Py .,) = DW(dZZew). Here
dim. rel is a function of a connected component of *Z} ,, given by dim. rel =
—Xx(A™' ® Sym? LY).

One mimics the proof of Theorem 3.1 to get

THEOREM 7.2. — There is an equivalence of categories WZi 3 ¢y
D(Z,)= DW(ZZW), which is t-exact, and (ma1.e5)1 IS quasi-inverse to
it. Moreover, for any K € DW(ZZW) the natural map (m21,ex) K —
(72,1 62 )+ I is an isomorphism.

Let us just explain what this functor does on strata. We have the functor
W21 2,00 : D(“21) — DV (1 25,c,)
defined as the composition
d
D(42)) " D(*Paee) 4 DV (425.00)

If K € D(2,) is the extension by zero from ¢Z; then WZ1 9,e5(K) is the
extension by zero of WZ 5 ., (K) under 425 o, — Zo ¢s.

7.2. Relation to hyper-cuspidality

Denote by Zf © the stack of collections: Py-torsor on X, that is, an exact
sequence 0 — Ly — Ly — L_1/Ly — 0 on X with L; € Buny, L_; €
Bung; and an isotropic subsheaf Lo C L_; with Ly € Bunsy. Here ‘isotropic’
means that the composition A2Ly — A2L_; — A2(L_1/L;) vanishes.

Denote by

Py . ZPO

Py
7T2,1,ez 2,ex - Zl

the stack over Z[® with fibre consisting of all maps (7.1), where A =
det(L,l/Ll).
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We have a natural diagram

2,ex 2,ex

fp P *p P
ZQ,EI - 22,2:1: 3 22,21
! ! L35,
31 ol
2 & Z & zZ[
! ! !
Bp ap

Bung Bunp, = Bunp,,

where both right squares are cartesian (thus defining the stacks in the
middle column).
The constant term functor

CT7! : D(Z1) — D(Z/{°)

is defined by CT%&(K) = (ag,)1(BE,)* K. Similarly, CTIZJE'ez i D(23,e0) —

D(Zi‘éx) is defined as
pt ex LET ,EX N\ %k
CTpy ™ (K) = (o n(Bp") K

DEFINITION 7.3. — A complex K € D(Z,) (resp., K € DY (Z23.,)) is
hyper-cuspidal if CT% (K) = 0 (resp., CTij’” (K) = 0). We denote by
Dhcusp(Z21) € D(21) and DY, (25) € DV (24,.,) the full triangulated

hcusp
subcategories of hyper-cuspidal objects.

Clearly, K € D(Bung) is hyper-cuspidal iff a3 K € D(Z;) is hyper-
cuspidal. The following is easy to prove.

PROPOSITION 7.4. — 1) A complex K € DW(ZZQI) is hyper-cuspidal if
and only if the following holds: for any k-point z = (Ly C M, s : Sym? Ly —
A ® Q) such that Ly has a rank 1 isotropic subbundle (with respect to the
form s) we have K, = 0.

2) The functor WZ1 9.e, : D(Z1) = DW(ZQ,W) induces an equivalence
of triangulated categories

Dhcusp(zl) = Dmusp(z2) 0

Remarks 7.5. — 1) For each integer d we have a closed substack Yy —
Z3 ¢ given by the condition that L, admits an isotropic rank 1 subbundle
(with respect to s) of degree > d. We have Y; C Y1 C .... A complex
K e DW(ZQ’QI) is hyper-cuspidal if and only if its *-restriction to each Yy
vanishes.

i) If s : Sym? Ly — A®Q is such that Ly has no rank 1 isotropic subbundles
then the form s is generically nondegenerate, that is, Ly — L5 @ A® ) is
an inclusion.
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Hecke functors preserve our equivariance conditions as well as hyper-
cuspidality. Moreover, they commute with W Z; 3 ., namely as in Sect. 5
one proves

PROPOSITION 7.6. — 1) The functor H®2¢* sends DV (Zy.,) to
DY(X x Z3.¢,) and D}, (Z2) to Dy, (X x 23).

2) The functor H*' sends Dpeusp(Z1) t0 Dpeusp(X X 21).
3) We have a canonical isomorphism of functors HZ2e o WZ1 2,60 —
(id xWZ1 2.e2) o H* from D(2;) to DV (X x Z5.,). O

7.3. Hecke functors on Z

In this subsection we prove the following generalization of ([5], Theo-
rem 7.9).

PROPOSITION 7.7. — The functor H?? : D(Z5) — D(X x Zj) is right-
exact for the perverse t-structures.

Let m32 : Z3 — Z5 denote the stack classifying (Ly C M, s : Q7! —
A ® Sym? L3}) € Z, together with a line subbundle L; C Lo such that

H'(X,Li' ® (L2/L1)) =0
The projection 73 2 is smooth and surjective. Consider the diagram

Zs B ZixpmeHe B 2
lﬂ's,2 i l7r372

p2 q2
ZZ — ZQ XBung HG - ZQ ’

where the left square is cartesian. Define H?* : D(Z3) — D(X x Z3) by
* B 1 ]
HZ*(K) = (supp xp3hai K ® Qg(i)m@)(vap)

For K € D(Z3) we have 7r§‘)2HZ2 (K)[dim] = HZ* (73 o K)[dim], where dim
is a funtion of a connected component of Z3, namely the relative dimension
of the corresponding component over Z,. Since 73 ,[dim] is exact, it suffices
to show that H?* is right-exact. )

For d = (dy,ds) with 0 < d; < do denote by 923 C Z3 the locally closed
substack given by the condition that there exist a diagram

L1 C EQ c M
@] U
Ll C LQ;
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where Lj, C M is a subbundle of rank k with deg(Ly /L) = d. The stacks
JZg form a stratification of Zs.

For x € X let ,Hg C Hg denote the preimage of x under supp : Hg —
X. The following is straightforward.

LEMMA 7.8. — For a k-point of Z3 let D be the effective divisor such
that s : Q~Y(D) — A ® Sym? L} is a subbundle. Then the fibre of q3 :
Z3 XBung Ha — Z3 over this point is contained in

ZB XBung acHG O

z€supp(D)

Given d = (dy,dy) and d' = (d,d}) denote by 4% Z5 C Z5 Xpune Ha
the intersection

(p3)"1(%25) N (a5) "1 (¢ 25)

For z € X let ng/Zg denote the intersection of ’i‘i/Zg with Z3 XBung 2Ha-
Combining Lemma 7.8 with ([5], Lemma 7.11), we are reduced to the fol-
lowing statement.

LEMMA 7.9. — For any d,d’ and v € X the sum of (the maximum of)
the dimensions of fibres of maps in the diagram

(7.2) zy, B oddz 3z
does not exceed {7y, 2p) = 3.
Proof. — A point of fgvd_/ Z3 gives rise to the diagram

Ly ¢ Ly ¢ M

U U U
Z/]_ (- Eg c M
U U

Ly C Lo,

with dj, = deg(Ly/Ly) and dj, = deg(L},/Ly). We must examine the cases:

1) d = d'. In this case a fibre of g3 is a point, because L/, generates a
lagrangian subspace in M'/M’'(—x). A fibre of p3 is 3-dimensional.

2) dy =dy, dy = d2 + 1. Then a fibre of g3 is 1-dimensional, becuase M
must contain L}. A fibre of p3 is 2-dimensional.

3)d) =d;+1,dy,=dy+1. Then L}, = Ly + L} and L} = Ly(z). A fibre
of q3 is 2-dimensional, a fibre of p3 is 1-dimensional.

4) dy =dy + 1, dy = da + 2. Then E'z = Eg(x). A fibre of p3 is a point,
because M’ = M + L). A fibre of g3 is 3-dimenisonal. O
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7.4. Hecke functors on P,

7.4.1. Recall the stack ¥P, classifying collections: a modification of rank
2 bundles (Le C L) on X with d = deg(L5/L2), A € Buny, and a section
5: 07! — A®Sym? LY. Lemma 7.1 yields the equivalence of categories
4] :D(4Py) = DV (12y).
We are going to define for ¢ = 0,1, 2 the functors
AP D(TPy) — D(X x “Py)

which, by construction, will satisfy the following property.

PROPOSITION 7.10. — Let K € DY(2,), 4K € D(“P,) and oF ¢
D(X x 4Py). Assume given for each d isomorphisms
YJ(K) S K |azy and “J(“F) = H?(K) |xxaz;,
where we used the x-restrictions. Then *F is an extension of objects
HP (K (i = 0,1,2) in the triangulated category D(X x 9Py). More
precisely, there exist distinguished triangles in D(X x 4Py)

C —9F - ,HP(“*?K) and (H"(‘K)— C — H"("K)

7.4.2. Let §g : X x 9Py — 9P, be the map sending (v € X, Ly C L}, A, s)

to (Ly C L}, A(z), s"), where s is the composition
Sym* L 5 A®Q — A(z) @ Q
Set OHP(S) = §3S. Since §p is quasi-finite, oH? is right exact for the
perverse t-structures. Consider the diagram
X x dpg idé(;o X x dpg g d+2732,
where d3 sends (x € X, Ly C L}, A, s) to (La C Ly(z), A(2x), s). Note that
id xdg is a closed immersion. Set
2H”(8) = (id x80)105S

Since &, is quasi-finite, ;H” is right exact for the perverse t-structures.
Let “Hp denote the stack of collections: A € Bun;, modifications of

rank 2 vector bundles Ly C Ly € LY with d = deg(L%/Ls), where LY /L)
is a torsion sheaf of length one supported at z € X, and a commutative
diagram

Sym? LY — A®Q(z)
(7.3) U U

Sym*Ly = A®Q
with s # 0.

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1543

The existence of the latter diagram means that L5 /LY is an isotropic
subspace of Lj(z)/L% equiped with the form s : Sym?(Lj(z)/L}) —
(A2z)/ A(z)) ® Q.

We have the diagram

supp Xpp ap
X X dPQ — de — d+1732,

where pp sends a point of “Hp to (Ly C L}, A,s). The map qp sends a
point of “Hp to
(L2 - L/2l7-A('r)a 8)
The map supp : “Hp — X sends a point of “Hp as above to z. We set
. 1
1H”(S) = (supp xpp)iapS[(5)

Proof of Proposition 7.10. — Recall the diagram we used to define the

functor H=?
X x 2y " 2y xpung Ho B 2,

Given d < d' set ¥4 2, = q;(¥245)Np5 L (42}). We will calculate the direct
image under supp xXps with respect to the corresponding stratification of
Z9 XBung Ha- Let u, v denote the maps in the induced diagram

’ ’
X xdzy & ddz, b dzl

Let K be the #-restriction of q5K to dd' z, A point of dd z, gives rise to
the diagram

Ly ¢ M
U U

L, ¢ M
U

Ly

with d = deg(L4/L2) and d’' = deg(L5/L2). We must examine three cases:

1) d=4d'. Then L) = L}, and a fibre of u admits a free transitive action
of the geometric fibre (A~ ® Sym? L%),. The complex K is constant along
the fibres of u. So, gH” (“K) is the contribution in ?F of the stratum %42,

2) d’' = d + 2. For a k-point of X x ¢Z} we have LY = Ly(z) and M' =
LY + M in the above diagram. If Sym? L, — A®Q does not factor through
A® Q(—x) then the fibre of u over this point is empty, otherwise this fibre
is a point scheme. In the second case the extension 0 — Sym? Ly -7 —
A(x) — 0 is the push-forward of 0 — (Sym? L})(z) —? — A(x) — 0 under

(Sym® Ly)(x) < (Sym® Lj)(2x)

So, the contribution of »4+22, in 4F is ,H” (412 K).
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3) d’ = d+1. Fix a k-point of X x¢Z} and denote by Y the corresponding
fibre of u.

Let Y be the scheme of LY such that L), C LY C Li(x) gives rise to
the diagram (7.3). Note that Y = P! if the form on L} (z)/L} is zero, Y
is a point if the kernel of the corresponding form is 1-dimensional, and Y
consists of two points if the form on L} (x)/L} is non degenerate.

The fibres of the projection ¥ — Y are isomorphic to A'. More precisely,
the 1-dimensional space A, ' ® Sym?(Lj/L4(—x)) acts on a fibre freely and
transitively.

To see that the restriction K |y is constant along the fibres of Y — Y,
note that the morphism A~! @ (Sym? LY)(—z) — Q factors as

A1 @ (Sym? LY)(—z) = N — Q,

where A is the upper modification of A~! ® (Sym? L4)(—x) defined by the
I-dimensional subspace A;' ® Sym?(L,/LY(—x)) in the geometric fibre
A1 ® Sym?(LY),.
It easily follows that the contribution of %4+ 2, in 4F is {H” (*t1K). O
COROLLARY 7.11. — Let K € DY (2,) and K € D(?P,) equipped
with isomorphisms ?J(1K) = K |az;. Assume

H*(K)S WK K[B}(%)

for a local system W on X. Then for each d the complex W K 9K [3](2) is
an extension of objects ;H” (*+K) (i = 0,1,2) in the triangulated category
D(X x 9Py).

7.5. Hecke functors on S

7.5.1. Let S denote the stack classifying Lo € Bunsy, A € Bun; and an
inclusion of coherent sheaves s : Q~! < A ® Sym? L5. Define the following
Hecke operators for ¢ = 0,1,2

HS :D(S) - D(X x 8)

Let 6o : X xS — & be the map sending (z € X, Lo, A, 5) to (L2, A(z), s'),
where s’ is the composition

Sym? Ly 5 A®Q — A(z) @ Q

Set OHS(K) = 03 K. Since d¢ is quasi-finite, oHS s right exact for the
perverse t-structures.
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Consider the diagram

X xS W xx§ 2 g,

where d5 sends (z € X, La, A, s) to (La(z), A(22), s). Note that id xJp is a
closed immersion. Set
LHS(K) = (id x 6 105 K

Let Hz denote the stack of collections: A € Bun;, modifications of rank 2
vector bundles Ly C L}, with div(L}/Ls) = x, and a commutative diagram

Sym*L, — A®Q(z)
(7.4) U U
Sym?’Ly, =  A®Q
with s # 0. The existence of the latter diagram means that L/Lo is an

isotropic subspace of Lo(x)/Ly equiped with the form
s : Sym*(La(2)/La) — (A(22)/A(z)) @ Q

We have the diagram

X x 8 TP 1 15§
where pg sends a point of Hg to (Lz2,.A, s). The map qg sends a point of
Hs to (LY, A(z), s). The map supp : Hg — X sends a point (7.4) to z. Set
1
3)

7.5.2. Define the functor Fg : D(Bung) — D(S) as follows. Given K €
D(Bung) set

1HY(K) = (supp xps)as K [1(

dim. rel
(7.5) K = a% K[dim. rel] (S22

),

where dim.rel is the relative dimension of the corresponding connected
component of Z; over Bung. Let Kp denote the restriction of Ky to the
open substack Bunp C Z;. Set

Fs(K) = Four(Kp) |5

PROPOSITION 7.12. — Let K € D(Bung) be a Hecke eigen-sheaf cor-
responding to a G-local system W on X. Set F' = F5(K). Consider the
local systems W = ng and W0 = Wg“ Then
1) there exist distinguished triangles in D(X x §)

CoWRE - 2HS(F)[?,](%) and OHS(F)[—?)](%?)) L O H(F)
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2) For 63: X xS — & we have 55 F S WOK F.

Proof. — 1) Let K1 € D(Z24) be given by (7.5). Recall that a point of
4Z, is given by

AeBuny, Ly C L), 0 — Sym? L) -7 — A — 0
2 2

Let 77 : 12, — Bunp be the map forgetting L. Calculation of dimensions
shows that for the *-restriction
3d
)
canonically. Recall that a point of 9Py is given by (A € Buny, Ly C L), s :
Sym? L) — A® Q). Let 7 : “Py — S be the map forgetting Ly.

Set Ky = W Zy5(Ky). For each d set Ky = 7*F5(K)[3d](3%). Then for
the *-restriction we have canonically

Ky |az, = “J(1K>)

Ky laz, = (77)" Kp[3d)(

One easily checks that for ¢ = 0,1,2 we have canonical isomorphisms of
functors
(id x7)* o ;HS = ,H? o 7*
from D(S) to D(X x 9Py).
By Corollary 7.11, for each d the complex WK 9K5[3](2) is an extension
of objects ;H” (*7K5) (i = 0,1,2) in D(X x 4Py). Specifying to d = 0, one
gets the desired assertion. O

7.6. The stacks ™S cSc S

7.6.1. Let S denote the stack classifying L € Bung, C € Bun; and a map
Sym? L — C inducing an inclusion of coherent sheaves L < L* ® C. The
map S — S given by Ly = L, A=C ® Q™! is an open immersion.

Since the open substack S C S is defined by a condition at the generic
point of X, the Hecke operators HS preserve this open substack, we denote
the corresponding functors by

HS:D(S) = DX x8) (i=0,1,2)

Let S; denote the union of those components of S for which 2degC —
2deg L = d. Note that d > 0 is even.

The nonramified two-sheeted Galois coverings X — X are in bijection
with H!,(X,Z/2Z), and also in bijection with the isomorphism classes of
pairs (&, k), where £ is a line bundle on X and x : £92 = 0.
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LEMMA 7.13. — The stack Sy classifies pairs: a two-sheeted nonramified
covering X — X and a line bundle B on X.

Proof. — 1) Given a Galois covering  : X — X of degree 2 and a line
bundle B on X set I = w.B. Let ¢ be the nontrivial automorphism of X
over X. Let £ denote the anti-invariants of 7.0 ¢ under o, so 7,0 =0x®
E. Note that 7*€ = Oy is equiped with the nontrivial descent data

O'*OX = OX _—1> OX

Set C = (det L) ® €, so ©*C identifies with B ® 0*B equiped with the
natural descent data

c*(B®o*B)=B®o*"BS BwoB
We have canonically 7*L = B @ ¢*B, where ¢ acts on B @ ¢*B naturally.
The projection
Sym?*(B® o*B) — B® o*B
with the natural descent data gives rise to a map Sym? L — C, which is a
point of Sp.

2) On the other side, let s : Sym? L — C be a point of Sy. Let X € P(L)
be the two-sheeted covering of X whose fibre over z € X is the set of
isotropic subspaces in (L),. Let B be the line bundle on X whose fibre at
V C L, is V itself. For 7 : X — X we get 7,8~ L canonically.

Let o be the nontrivial automorphism of X over X. Let £ denote the
o-anti-invariants in 7,0. By 1), we have the symmetric form Sym? L —
€ ®@det L, which is also a point of Sy. Let F denote the kernel of Sym? L —
€ ® det L. Let us show that the composition

FE—Sym’L —C

vanishes. It suffices to prove this after applying 7*, but 7* E = B®2@o*BY2.
So, we get a map 7y, included into the commutative diagram

Sym’L — E®detL

! s
C
Since both symmetric forms on L are everywhere nondegenerate, 7z, is an
isomorphism. O
Remark 7.14. — i) A version holds for a curve which may be not com-
plete.

ii) If in the above lemma B = O on X then Z/2Z acts on m.B = L.
So, L= 0O ® &, where £ is the line bundle of anti-invariants. The map
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Sym? L — £ ® det L becomes O @ £ ® £%? — O, it is given by (1,0, —k).
The curve X can be recovered from (&, k) as {e € £ | k(e?) = 1}.

7.6.2. Let "5 X (4 « X (d) he the open subscheme of divisors of the form
T1+...+x4 with z; pairwise distinct. Denote by "**S; C Sy the preimage of
755 X (4 ynder the map Sy — X4 sending a point of Sy to div(L* ® C/L).
Set

RCOVd = Bun1 XBunlrssX(d)’
where the map "** X (4 — Bun; sends D to Ox(—D), and the map Bun; —
Bun; takes a line bundle to its tensor square.

It is understood that "**X(?) = Spec k and the point "**X () — Bun; is

Ox.

PROPOSITION 7.15. — The two-sheeted coverings 7 : X — X ramified
exactly at D € "X (4) (with X assumed smooth) form an algebraic stack
that can be identified with RCov?.

The stack "3Sy classifies collections: D € "5 X (%) | a two-sheeted covering
7 : X — X ramified exactly at D, and a line bundle B on X.

Proof. — 1) Given a two-sheeted (ramified) covering 7 : X — X and a
line bundle B on X set L = m,.B. Let ¢ be the nontrivial automorphism
of X over X. Let #1,...,24 € X be the points of the ramification and
Z1,...,Tq their preimages.

We have a canonical inclusion 7*L — B & ¢* B, actually

7L ={veB@oc*B| the image of vin (B® c*B)z, lies in Bg,
dizg (B® oc*B)z, for all i}

In particular, 7*(det L) = B ® 0*B(—%1 — ... — Zq).

Let £ denote the o-anti-invariants in 7,0, so 7,0 — O @ £. Clearly,
TS O(—%1 —...—Z4), and o acts on 7*E as —1. This yields an isomor-
phism

K g®230(—$1 — ... — .’Ed>

The diagram
™ Sym*L  C B®2q (B®o*B) @ (0" B)%?
1
T (E®detL) C B®o*B

shows that 7* Sym? L — 7*(€ @ det L)(2&, + ... + 2&,) is regular and
surjective. This map is compatible with the descent data, so gives rise to a
regular surjective map

(7.6) s:Sym? L — (E@det L)(z1 + ... 4 z4)
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For each z; on the fibre L,, = B/B(—2%;) we get a symmetric form whose
kernel is exactly B(—%;)/B(—2%;). Further, s induces an inclusion

L—(E@L*®@detL)(z1+...4+2q) = L®E(x1+ ...+ x4)

and the quotient (L ® E(z1 + ...+ zq))/L is of length d.
For each x; there is a base in L& O, and in £€RO,, such that the matrix
of s: Sym*(02) — O,,(;) over the formal disk at x; becomes

t=1 0
o 1)’

where t € @zi is a local parameter. In other words,
(EQL(x1+...424)) /L= O0/O(—21)® ... 2 O/O(—x4)

2) On the other side, let s : Sym® L — C be a k-point of S with (L* ®
C)/JL=0p @...00Oy,. Set D =11 + ...+ x4. Note that s is surjective.
Let Z C Sym™ L denote the homogeneous ideal generated by the image of
s* : C* ® (det L)? < Sym? L. Let X C P(L) denote the closed subscheme
given by Z. Over X — D this is exactly the curve of isotropic subspaces in
L, as in Lemma 7.13. Write 7 : X — X for the projection.

We claim that X is smooth. To check this in the neighbourhood of z;,
pick a base ej,es in L ® @w and e € C® C’ja: such that the matrix of
s:Sym?*(L ® O,,) — C® O,, in these bases becomes

(0 1)

where t € @T7 is a local parameter. Then X X x Spec @T identifies with the

closed subscheme Y <= P! x Spec (’}I given by u? + tu? = 0, where uy, u;
are the homogeneous coordinates on P'. The ring

O, [u1/uz]/((u /uz)? + 1)

is a standard ramified extension of @Tz of degree 2. The scheme X x X
Spec @rt is regular, so X is smooth. Note that 7—!(x;) =: Z; are exactly
the ramification points of 7.

Let B be the restriction of Op(z)(1) to X, it is equiped with 7*L — B.
Let us check that the induced map L — 7,3 is an isomorphism. This is easy
over X — D. Let i : Y < P! x Spec @I be as above, ¢ : P! x Spec @x —
Spec @I be the projection. We must check that

§&O0(1) — &iyi*O(1)

TOME 56 (2006), FASCICULE 5



1550 Sergey LYSENKO

is an isomorphism. Define V by the exact sequence 0 — V — O(1) —
i.i*O(1) — 0 on P! x Spec @u It suffices to show that R!¢,V = 0. But
this is easily checked fibrewise over O,,.

Let o be the nontrivial automorphism of X over X. Let £ denote the
o-anti-invariants in 7,0, so 7.0 = O @ E. By 1), we have £92 = O(—x; —
...—x4) canonically, and L is equiped with the form (7.6). Define the vector
bundle E on X by the exact sequence

0—E—Sym*L % (E@det L)(z1 + ...+ x4)

As in Lemma 7.13, one checks that the composition £ — Sym?L — C
vanishes, and the induced map (£ ® det L)(z1 + ... + z4) — C is an iso-
morphism. O

7.7. Local version S'¢ of the stack S

7.7.1. Set O = k[[t]] and F = k((t)). Let S'°° denote the stack classify-
ing: a free O-module L of rank 2, a free O-module C of rank 1, and a map
s:Sym? L — C inducing an inclusion L — L* ® C.

Set Sym_ (O) = {B € Maty(O) | 'B = B, det B # 0}. This is a k-scheme
not of finite type. Further, GL(2, O) x O* is a group scheme over k (not of
finite type), and S'°¢ identifies with the stack quotient of Sym, (O) by the
action of GL(2,0) x O* given by B — AB(*A)e, (A, ¢) € GL(2,0) x O*.

Given a k-point (L,C, s) of ¢, there exist bases e1,es € L and e € C
such that the matrix of s in these bases is diag(t%,t") for some a > b > 0
and

L*®@C/L=0/t"O® 0/t*O
It follows that two k-points (L,C,s) and (L’,C’,s’) are isomorphic if and
only if the O-modules L*®C/L and L"™* ®C’/L’ are isomorphic. We identify
the set of isomorphism classes of k-points of S'¢ with

®={(a,b)€Z?|a>=b>0}

For a closed point € X a choice of an isomorphism 0=0 x,z yields a
map S — 8¢ given by the restriction of (L,C, s) under Spec Ox , — X.

7.7.2. Denote by Covp the k-stack associating to a scheme S the group—
oid of pairs (S’, ), where S’ is a scheme, and 7 : S’ — S X Spec F' is an
étale covering of degree 2.

The stack Cov g has (up to isomorphism) two k-points (Spec F, ), where
the F-algebra F” is one of the following
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e F' S k((t2)) (anisotropic case)
o F' = F®F (hyperbolic case)

Given an S-point (S’,7) of Covp, consider the rank 2 vector bundle
L =m,0g on S x Spec F. Let o be the nontrivial automorphism of S” over
S x Spec F'. We have L = Og @ &, where £ denotes g-anti-invariants in L.
We have a canonical isomorphism « : £82 = Osxspec F- As in Remark 7.14,
L is equiped with a symmetric form

SmeL = OSXSpecF®g@g®2
l s |/ (1,0,—.‘1)

OSXSpec F,

The form s in non degenerate, that is, induces an isomorphism L= L* of
Osxspec F-modules.

For a k-point of Covp, the symmetric form on L is either hyperbolic or
anisotropic, this explains our terminology ([9], ch. 1). In the anisotrpic case
K(t2 @17) =t.

It is easy to find a Al-point of Covp such that over G,, C A! we get the
hyperbolic point of Covy and over 0 € Al we get the anisotropic point.

We have a morphism of stacks S'°¢ — Covp defined as follows. If
(L,C,Sym* L > () is a S-point of S'° then we have an isomorphism
of vector bundles L= (L* ® C) |sxspecr Over S x Spec F. Define S’ C
P(L) |sxspec F as the closed subscheme corresponding to the homogeneous
ideal in Sym?(L ® F) generated by the image of

C*® (det L)? ® F — Sym*(L ® F)

Then 7 : S" — S x Spec F' is a point of Covp.
The image of the k-point (a,b) € ® under §'°¢ — Covp is anysotropic if
a — b is odd and hyperbolic otherwise.

7.8. Stratification of S

For d,k > 0 let
€d7k . TSSSd7k N TSSSd

denote the stack over ™S, classifying: a point of "*S,; given by (L,C,
Sym? L % (), a subsheaf L' C L, where L/L’ is a torsion sheaf of length k
on X, such that the composition

Sym? L' — Sym?L 5 C

is surjective.
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We have a morphism of stack "°Sy  x X(m) — 8 sending (L' C L,C,
Sym?L % C, D' € X(™) to (L',C(D’),s'), where s is the composition

Sym? L' — Sym? L % C — C(D')

PROPOSITION 7.16. — The stacks "°Sq j x XM form a stratification
of §.

Proof. — Recall that a point of S is given by (L,C,Sym? L > C). Let
S% C S be the open substack given by the condition that s is surjective.
Sratifying S by length of the cokernel of s, we are reduced to show that
%5841, form a stratification of S°.

Let (L',C,s) be a k-point of SY. Set D = div((L™ ® C)/L’) and write
D = Y. d,x. The restriction of (L* ® C)/L’ to Spec O, is isomorphic to
O/t O, where t, is a local parameter at z. There is a unique subsheaf
L' ¢ L C L' ®C such that s extends to a map Sym? L — C yielding

L'cLcL*®CcL*®C,

and

— [ 0, if d; is even
L L lgpec & o
(L*®C)/ |SpeCoX,m - { k, if d, is odd

Our assertion follows. O

7.9. The stack S,

7.9.1. Fix a k-point of RCov? given by D, € "X and 7 : X — X
ramified exactly at D,.
Given a point (L,C,Sym? L > C) of S, set

D =div(L* ® C/L)

and let 7 : X1 — X — D denote the corresponding two-sheeted covering
defined as in Lemma 7.13. Denote by S, the stack classifying: a point
(L,C,Sym? L = C) of S together with an isomorphism over X — D
X, = o Y(X-D)
IR
X—-D

(note that D, does not intersect X — D, because 7y, is unramified).
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7.9.2. Let Elbe a rank one local system on X. We are going to define
the category pE (Sx) of E-equivariant perverse sheaves on Sj.

Let (X x 8;)° C X x S, be the open substack of those » € X, (L,C,
Sym?® L — C) € S, for which the map L — L* ® C is an isomorphism over
the formal disk around = € X.

Let (X x S;)° denote the preimage of (X x S;)° under

71'><id:)~(><S7THX><$7r

Write Hs, for the stack classifying: a point of (X x S;)° given by (L,C,
Sym? L > C) € Sy, z € X together with a commutative diagram
Sym? L' — C(x)
U U

S

Sym*L 5 ¢,

where L C L’ C L(z) is an upper modification of L with = = div(L’/L).
We have a diagram

s sSupp Xps, qs,
(X x8;)° 7T Hs, =S,

where supp Xps_ sends a point of Hs,_ to (L,C, Sym? L > C) € S, together
with the point ¥ € X corresponding to the isotropic subspace L'/L C
L(z)/L, so (%) = x. Actually, supp xps,_ is an isomorphism. The map qs,
sends the above point to

(L',C(z),Sym2 L' — C(z)) € Sx

The following is a version of the Waldspurger category that will be intro-
duced in Sect. 8.

DEFINITION 7.17. — Let PE(SW) be the category, whose objects are
pairs: a perverse sheaf F' on S, and an isomorphism

(supp xpsﬂ)lq’gﬂFzE X F

over (X x 8;)°. The morphisms in P(S;) are the maps of the corresponding
perverse sheaves compatible with the equivariance isomorphisms.
8. Waldspurger model for Gl
8.1. Local model
Fix a k-point of RCov? given by D, € "X (@ and 7 : X — X ramified

exactly at D,. Denote by o the nontrivial automorphism of X over X, let
€ be the o-anti-invariants in 7,0 ;.
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Fix a k-point = € X, write O, for the completed local ring of X at x
and F, for its fraction field. Write F, for the étale F,-algebra of regular
functions on X x x Spec F,. If x € D, then ﬁ'x is anysotropic otherwise it
is hyperbolic (cf. Sect. 7.7.2). Denote by O, the ring of regular functions
on X Xy Spec O,.

DEFINITION 8.1. — Let Wald®!°® denote the stack classifying: a free
O,-module L of rank 2, a free F,-module B of rank 1 together with an
isomorphism ¢ : L ®o, F, = B of F,-modules.

Let GL( ») denote the group of automorphisms of the F;-linear vector
space F, let GL(O,) C GL(F,) be the stabilizor of O,. Then Wald®"'*
identifies With the stack quotient of the affine grassmanian
Grgz = GL(F;)/ GL(O,) by the group ind-scheme F*.

A choice of a base in the free Oy-module O, yields isomorphisms
GL(F,)= GLy(F,), GL(O,) = GLy(O,), and an inclusion F* < GLy(F},).

For a k-point of Wald:> o¢ consider the set of free O,-submodules of rank
one B., C B such that {(L) C B,. This set contains a unique minimal
element that we denote by Be,.

In both split (z ¢ D,) and nonsplit (z € D) case the isomorphism
classes of k-points of Wald®'°® are indexed by non negative integers m > 0,
the corresponding point is given by deg(B.,/L) = m. Denote by Gr% the
F;—orbit on Gr 7, corresponding to m > 0.

In matrix terms, in the split case O, = O, ® O, has a distinguished
(defined up to permutation) base {(1,0),(0,1)} over O,. This base yields
an inclusion F* < GLy(F,) whose image is the set of diagonal matrices.
Then F*-orbit on GLy(F,)/ GLy(O,) corresponding to m > 0 is given by

the matrix
tm 1
0o 1)’

where t € O, is a local parameter (cf. [3], Sect. 1).

In the nonsplit case the lattice O, ® (%t"”‘% c F,isa representative
for the ﬁ‘;‘-orbit on GIFT corresponding to m > 0. Here ¢t € O, is a local
parameter. 4

8.2. Global model

8.2.1. In the same manner as in [4] we can consider the following global
model of Wald®*¢.
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DEFINITION 8.2. — Let Wald] denote the stack classifying: a rank 2
vector bundle L on X, a line bundle B on 7~*(X — z) and an isomorphism
L=n.B over X — z.

As in Proposition 7.15, a point of Wald? gives rise to a map
s:Sym? L — (€ @ det L)(Dy + oox)

Write Wald®'S™ < Wald? for the closed substack given by the condition
that

(8.1) s:Sym? L — (€ @ det L)(Dy + mx)
is regular.
LEMMA 8.3. — The stack Wald®'S™ is algebraic, so Wald® is an induc-

tive limit of algebraic stacks.

Proof. — Set md = Bun; xBuan(d), where the map X4 — Bun,
sends D to Ox(—D) and Bun; — Bun; takes a line bundle to its tensor
square. We have a map Sg — RCov" sending (L, Sym? L — C) to (det L) ®
C~! equiped with (det L)®? @ C®~2=0O(-D), D € X,

For d = deg D, + 2m consider the k-point (£(—mz), (E(—mz))®?=
O(—D, — 2mx)) of RCov". Then Wald®S™ is the fibre of Sy — RCov"
over this k-point. O

Denote by
(8.2) Wald®™ < Wald® <™

the open substack given by the condition that (8.1) is surjective. The stack
Wald>’™ classifies collections: a line bundle B., on X , for which we set
L., = mBez, and a lower modification L C L., of vector bundles on X
such that the composition is surjective

Sym? L — Sym? Le, = C

and div(Les/L) = mx. Here we have denoted C = (€ @ det Ly ) (D), so
(Lew,C,Sym? L., = C) is the point of "**S corresponding to Beg.

Another way to say is that the stratum Wald>™ is given by fixing an
extension of B to a line bundle B, on X such that for L., := m.Be, we have
L C L., and B, is the smallest with this property. Then L.,/L= O, /t™,
where t € O, is a local parameter.

Denote by pryy, : Wald®™ — Pic X the map sending the above point to
Bex.
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8.2.2. Here is one more description. Denote by (Pic X)* the scheme clas-
sifying a line bundle B, on X together with a trivialization B ® 0,=0,.
The group OF acts on (Pic X)* by changing the trivialization. It is well-
known that this action extends to an action of the group ind-scheme F*
on (Pic X)*.

Consider the action of F* on (Pic X)* x Gr 7, which is the product of
natural actions on the factors. Then Wald; identifies with the stack quo-
tient of (Pic X)* x Grg by F*. Let fyy : (Pic X)* x Grz — Wald be the
corresponding map.

8.3. Waldspurger category

Fix a rank one local system E on X. The @;—orbits on Gry are finite-
dimensional. So, we have the category of @;—equivariant perverse sheaves
on Grg .

DEFINITION 8.4. — Waldspurger category PE(GrFm) is the category of
those O -equivariant perverse sheaves on Gr 7, that
e (the nonsplit case) under the action of a uniformizer € F}/O
change by Ez, where (%) = .
e (the split case) under the action of a uniformizer t; € F; /O% change
by E; for both & € 7~ 1(x).

One should be carefull about the following. Though P*(Gr 7,) is a full
subcategory of the category P(Gr 13}) of perverse sheaves on Gr I%}’ the Ext
groups in these two categories may be different. This is due to the fact that
the @;—orbits on Gry are not contractible.

Denote by AE the automorphic local system on Pic X corresponding to
E. For d > 0 its inverse image under X@ — Pic? X identifies with the
symmetric power E(@ of E. Define the perverse sheaf W,, on Waldy as
the Goresky-MacPherson extension of

~ _ 1 . z,m
pr% AE ® Qé[l](§>®dlm Waldy
under (8.2).
For any k-point of Gry its stabilizor in F is connected. So, the irre-

ducible objects of pE (Gr I:“T) are indexed by m > 0, the irreducibe object

Win € PE(Gr Fz)’ defined up to a scalar automorphism, can be described
by the following property: for the diagram

WwaldZ & (Pic X)* x Grp, P25 Pic X x Grj,
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we have (pr* AE) KW, = oy Wm.
The group scheme (Pic E)* acts on Wald;, as follows. The action map

act : (Pic E)® x Wald® — Wald®

sends (B, v: B'®0, = 0,) € (Pic E)* and (B, L, m.B= L |x_,) € Wald®
to
BoB ,m(BeB)=L' |x_z) € WaldL,

where the vector bundle L’ on X is the gluing of m,(B ® B') |x_, and
L |spec 0, via the isomorphism (7,.(B ® B')) ® F, = L ® F, induced by v.

Let PP(Wald®) be the category of perverse sheaves on Wald® that
change by pr* E under the action of (Pic E)*, where pr : (Pic E)* — Pic E
is the projection.

Here is one more description of this category. Let

Gwald : T (X — x) x Wald®: — Wald®

be the map sending (Z,B,mB—=L |x_z) to (B(Z),mB(Z)—=L" |x_a),
where the vector bundle L’ on X is the gluing of 7,.B(Z) |x—, and L® O,
via the isomorphism (7.B(Z)) ® F, = L ® F,, which is due to the fact that
m(Z) # x.

Then P¥(Wald?) is equivalent to the category of pairs: a perverse sheaf
F on Wald® and an isomorphism g, F — EX F.

The irreducible objects of P¥(Wald?®) are exactly W,, m > 0.

8.4. Hecke operators on the Waldspurger category

Let Sph(Grgar,) be the category of GL2(O,)-equivariant (spherical) per-
verse sheaves on the affine grassmanian Grgar,. This is a tensor category
equivalent to the category of representations of GLy over Qg ([8]). It acts
on D(Wald) by Hecke functors as follows.

Let ,Hqr, denote the Hecke stack classifying vector bundles L, L' on X
together with an isomorphism 3 : L= L’ |x_, over X — z. Consider the
diagram

Wald? % Wald® Xpun, v Har, 2 Wald?,
where pyy sends a collection (L, L', 3, B, m.B=1L |x_,) to (L,B,mB=
L |x—.) and qyy sends this collection to (L', B,m.B= L' |x_z).

Let Bunj be the stack classifying L € Buns together with its trivializa-
tion over Spec O,. The projection qgr, : »Har, — Bung forgetting L can
be realized as a fibration

Bunj xgr,(0,) GraL, — Buny,
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so for K € D(Wald}.) and A € Sph(Grgr,) we may form the corresponding
twisted exterior product KXA. It is normilized so that it is perverse for K
perverse and

D(KXA) = D(K)XD(A)
Let H(A,-) : DOWald}) — D(Wald}) be the functor given by
H(A, K) = (pw)i(KRA)

These functors are compatible with the tensor structure on Sph(Grgr,) in
the sense that we have isomorphisms

(83) H(.Al,H(.AQ,K)):H(Al *AQ,K),
where A; Az € Sph(Grar, ) is the convolution (cf. [4], Sect. 5). One checks
that P¥(Wald®) is preserved by Hecke functors.

THEOREM 8.5. — 1) For d > 0 let A = (d,0) € AJCELQ. We have a
canonical isomorphism

H(Ax, Wo) = Wy
2) For A = (1,1) and d > 0 we have canonically
Wi ® E?Q, the nonsplit case, 7(&) = x

H(Ax, Wa) =
W, ® Ez, ® Ez,, the split case, 7~ 1(z) = {x1, 22}

8.5. Proofs

Set AELz ={(a1 = ag) | a; € Z}. We view Ang as the set of dominant
coweights for GLg. For A\ = (a1, as) € AELQ denote by Gr%m C Grpw the
locally closed subscheme classifying O,-sublattices L C t*2O,, such that

1920, /L= O, )t

as Oz-modules. Let @}l denote the closure of Grj‘;ﬁ in Grp .
Our proof of Theorem 8.5 is inspired by ([4], Theorem 4), the following
is a key point.

PROPOSITION 8.6. — For m > 0 and a dominant coweight A\ = (a; >
. L= . .
az) of GLy the intersection Grz N Gr is non empty iff 0 < m < ay — az
and has pure dimension m.
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Proof. — 1) (the split case). Use the matrix realization of Grz as in
Sect. 8.1. Using the action of the center of GLy, we may reduce to the
case A = (a,0). Stratify GrGL2 by intersecting with N (F,)-orbits on the
affine grassmanian, where N C Gl is the standard maximal unipotent
subgroup. For all strata the argument is the same, let us explain it for the
open stratum

o 1) oeof (s 1) eor)

t* b

which we identify with O, /t* via the map ( 0 1

) — b. The point

be O/t lies in Grf iff b€ t*~™O;.

2) (the nonsplit case) Let t € O, be a local parameter. Multiplying by
an appropiate power of ¢t we are reduced to the case A = (a,0). Then @%T
is the scheme of O,-sublattices L C O, such that dim(O,/L) = d. The

. . A . .
intersection Gr N Gr’z is then the scheme of sublattices

Lctile-m@, c O,

such that dim(¢z(*=™@®,)/L = m and L ¢t 5= 0,. Our assertion fol-
lows. g
Remark 8.7. — In the nonsplit case the schemes @j\:ﬂm N Gr'z are con-

nected, whence in the split case they admit several connected components.

Actually, we need the following a bit different result. Given A € AJCSL
and O,-lattice L C F), denote by ﬁ%m (L) C Grg, the closed subscheme
of O,-lattices L' C F, such that

(L', L, Lo F, S L' ® F,) € Grey, (L)
More precisely, for any isomorphism L= O, & O, of O, -modules the cor-
responding point

(L', L' @ F, S F, @ F,) € Gray,

PROPOSITION 8.8. — Let m > 0 and L C E, be a O,-lattice lying in
Gr'2 . For a dominant coweight A = (d,0) of GLy the intersection @?51 (L)N
Gr~ is empty unless d > m. For d > m it is a point (resp., a union of
d—m + 1 points) in the nonsplit case (resp., in the split case).

Proof. — 1) (the nonsplit case). Multiplying by a suitable element of
F*, we may assume L = O, & Oyt™2. The scheme ng (L) classifies
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O, -sublattices L’ C L such that dim(L/L") = d. A point L’ of this scheme
o O,. Our assertion follows.

lies in Gr%v if and only if L/ = ¢
2) (the split case). Choose a base {e1, ey} in O, over O, as in 8.1. Mul-
tiplying by an suitable element of F); we may assume

L=t"0.e1 @ (’)x(el + 62)

The scheme @}L (L) classifies O,-sublattices L' C L such that dim(L/L")=
d. A point L' of this scheme lies in Gr% if and only if I/ = t" O e1 &
t*2 (O, es for some ay,as > 0 such that d+m = ay 4+ as. So, the intersection
in question identifies with the set of pairs {(ai,a2) | a; = m, d+m =
ay +as}. ]
Proof of Theorem 8.5. — 2) is easy and left to the reader.
1) We change the notation letting A = (0, —d) € Ang for given d > 0.
We will establish canonical isomorphisms
W@ ES724 the nonsplit case, 7(Z) =«
H(AN, Wo) =
Wy ® E?l_d ® E?;_d, the split case, 771 (x) = {z1, 22}
Denote by K, the s-restriction of H(Ax, Wy) to Wald®™. Since Wald®"

is closed in Wald” and W, is self-dual (up to replacing E by E*), our
assertion is reduced to the following lemma. O

LEMMA 8.9. — We have K,, = 0 unless m < d. The complex K,, is
placed in non positive (resp., strictly negative) perverse degrees for m = d
(resp., for m < d). We have canonically

. N S o o
Kd‘) (pr% AE) QR® Qz[l](i)@)dlml/\lald7r d7
where pry, : Waldfr’d — Pic X is the projection and
ES—2d the nonsplit case, (i) = x
R=
E?;d ® E?;d, the split case, 7~ '(z) = {x1, 22}
Proof. — Consider a point ) = (Bez, L C Loy = miBes) of Waldl™,
so mz = div(Le,/L). Write xﬁgb for the closed substack of ,Har, that
under the projection qgr, identifies with

==
x
Bunj xqr,(0,)Grgr, — Bung

Choose a trivialization of Be, over Spec®,. The fibre of pyy

Waldy X Bun, IﬁéLz — Wald] over 7 identifies with @éf;(A)(L), where
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we have set —wo(A) = (d,0). For the diagram
Wald? 2 Wald® x g, o Hor, % Wald?
we get H(Ay, ) = (pw)1a3y (1) [d](£). Only the stratum
Gror™M (L) nary
contributes to K,,. By Proposition 8.8, for m = d this is a point whose
image under qyy is
I Tw(Bez (—2d7)), the nonsplit case, 7(Z) =
| me(Bex(—d¥, — dy)), the split case, 771 (z) = {1, 72}
Since dim Wald®*™ = m + dim Pic X, our assertion follows from the auto-

morphic property of AE. Namely, for the map m; : Pic X — Pic X sending
B to B(Z) we have canonically mAF = AE ® E;. O

Remarks 8.10. — i) Our proof of Theorem 8.5 also shows the following.
The stratum Wald®? is dense in Wald®<%. Besides, Wy[— dim Wald®]
is a constructable sheaf on Wald? placed in usual cohomological degree
zero. Its fibres over points of Wald.™ are 1-dimensional (resp., d — m + 1-
dimensional) in the non split (resp., split) case for m < d.

ii) The category P¥(Wald?) is not semisimple. Indeed, for A = (0, —1)
consider the finite map

,0 A <1
qw Waldi X Bun, Q;HGLQ — Waldfr

It is an isomorphism over the open substack Waldfr’l. Since the open im-

. A . . .
mersion Wald®! < Wald®* xpp, «Hgy, is affine, the open immersion
Wald®! < Wald®S! is also affine. Let W, denote the l-extension of
Win | walazm under (8.2). Then Wy € P¥(Wald®). So, if this category
was semisimple, the exact sequence of perverse sheaves

0—-K—=W,—=W —0

would split, which contradicts the fact that the x-restriction Wy |}, qz.0 is
Nnon zero.

8.6. Casselman-Shalika formula

For \ € AJéLz write U? for the irreducible representation of the Langlands
dual group GL, over Q;. Let E be a GLy-local system on X equiped with
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an isomorphism
EgQ, the nonsplit case, 7(Z) =«
Uélal) =
Ez, ® Ez,, the split case, 771 (x) = {21,202}

We associate to E the ind-object K of pE (Waldy) given by
Kp= & WU
d=0

For a representation U of GLy write Ay for the object of Sph(Grar,)
corresponding to U via the Satake equivalence Rep(GLy) = Sph(Grgr,)-
One formally derives from Theorem 8.5 the following.

COROLLARY 8.11. — For any U € Rep(GLs) there is an isomorphism
ay : H(Ay, Kp) = Kp®Ug. For U, U’ € Rep(GLy) the diagram commutes

H(AU’7H(AU7KE)) X H(AU/,KE®UE)
LA | apr®id

Aygu’

H(Avgu, Ki) —  KpeUeU)g,

where 7y is the isomorphism (8.3).

Remark 8.12. — One may view Grj as the ind-scheme classifying a
rank 2 vector bundle L on X together with an isomorphism L—=m,03% |x—z.
This yields a natural map Grz — Waldj.

The results of Sect. 8 hold also in the case of a finite base field k = F,.
In this case we have the Waldpurger module WA, introduced in 1.4. For
d > 0 consider the function trace of Frobenius of Wy on Wald (k), let Wy
be its restriction to Grz . Then {Wy, d > 0} is a base of the vector space
WA,,.

The space WA, also has the base (indexed by d > 0) consisting of
functions supported over the F;—orbit corresponding to d. The Casselman-
Shalika formula in this base is given by ([3], Theorem 1.1), it involves some
nontrivial denominators. This corresponds to the fact that our ind-object
K is not locally finite on Wald}.
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Appendix A. Fourier transforms

For the convenience of the reader, we collect some well-known observa-
tions about equivariant categories and Fourier transforms that we need.
The proofs are omitted.

A.l.

Let S be a scheme of finite type and pr: G — S be a groupoid. Assume
that pr is of finite type, with contractible fibres and smooth of relative
dimension k. Assume also that act : G — S is smooth of relative dimension
k. Let L be a local system on G whose restriction to the unit section S — G
is trivialized.

By ([5], Lemma 4.8), we have the Serre subcategory P (S) c P(S)
of perverse sheaves K € P(S) such that there exists an isomorphism
act* K ® L= pr* K whose restriction to the unit section is the identity.
Let DY (S) ¢ D(S) denote the full triangulated subcategory generated by
P (9).

We write DZV (S) if we need to express the dependence on L. For K €
D(S) we have K € DY (S) if and only if D(K) € DY.(S).

Let 8:S" — S be an S-scheme of finite type. The groupoid G “lifts" to
S’ if we have two cartesian squares

G 2 g

T T8

@ =g
and

G % g

16 e}

el ag’ I

that make G’ a groupoid over S’.

For the local system (*£ we get the category D" (S’). The functors 3,
and G, send DV (S") to D" (S). The functors 3* and ' send D" (S) to
DY (8.

A.2.
Let Y — Z be a morphism of schemes of finite type and £ — Z be a

vector bundle over Z. Assume that F acts on Y over Z, and act : E Xz
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Y — Y is smooth of relative dimension rk E. We have a natural pairing
X : E*xz ExzY — Al For the local system £ = x*L, we get the
category DY (E* x 7 Y) as in A.1.
Let F: D(Y) — D" (E* x2 Y) be the functor
rk B

F(K) = Four(act™ K)[rk E]( )

Then F' is an equivalence of triangulated categories, t-exact and commutes
with Verdier duality (up to replacing 1 by 1 ~!). The quasi-inverse functor
is given by K — pr|(K), where pr: E* xz Y — Y is the projection.

Moreover, for any K € D" (E* x ;) the natural map pr,(K)= pr, (K)
is an isomorphism.

A.3.

Suppose we are in the situation of A.2. Assume in addition that p : ' —
FE is a morphism of vector bundles over Z. Then E’ also acts on Y over Z
(via E), and we have the functor F’ : D(Y) — DV (E™* x; Y) defined as
in A.2.

Then we have an isomorphism of functors F/ = (p x id), o F', where
pxid: E* xz Y — E™ xz Y is the dual map (cf. [5], 5.16).
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