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WHITTAKER AND BESSEL FUNCTORS FOR GSp4

by Sergey LYSENKO

Abstract. — The theory of Whittaker functors for GLn is an essential techni-
cal tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geomet-
ric Langlands correspondence. We define Whittaker functors for GSp4 and study
their properties. These functors correspond to the maximal parabolic subgroup of
GSp4, whose unipotent radical is not commutative.

We also study similar functors corresponding to the Siegel parabolic subgroup
of GSp4, they are related with Bessel models for GSp4 and Waldspurger models
for GL2.

We define the Waldspurger category, which is a geometric counterpart of the
Waldspurger module over the Hecke algebra of GL2. We prove a geometric version
of the multiplicity one result for the Waldspurger models.

Résumé. — La théorie des foncteurs de Whittaker pour GLn est un outil tech-
nique essentiel dans la démonstration de Gaitsgory de la Conjecture d’annulation
qui apparaît dans le programme de Langlands géométrique. On introduit et étudie
les foncteurs de Whittaker pour GSp4. Ces foncteurs correspondent au sous-groupe
parabolique maximal de GSp4 dont le radical unipotent n’est pas commutatif.

On étudie aussi les foncteurs similaires qui correspondent au parabolique de
Siegel de GSp4, ils sont liés aux modèles de Bessel pour GSp4 et aux modèles de
Waldspurger pour GL2.

On introduit la categorie de Waldspurger qui est un analogue géométrique du
module de Waldspurger sur l’algèbre de Hecke pour GL2. On démontre une version
géométrique de la multiplicité un pour les modèles de Waldspurger.

1. Introduction

1.1. Classical setting

Whittaker and Bessel models are of importance in the theory of auto-
morphic representations of GSp4. This paper is the first in a series of two,

Keywords: Geometric Langlands program, Waldspurger models, Whittaker functors.
Math. classification: 11R39, 14H60.



1506 Sergey LYSENKO

where we study some phenomena corresponding to these models in the
geometric Langlands program.

The theory of Whittaker functors for GLn is an essential technical tool in
Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric
Langlands correspondence ([5]). First part of our results is an analog of
this theory for GSp4.

Let us first remind some facts about automorphic forms on G = Sp4. Let
X be a smooth projective absolutely irreducible curve over Fq, F = Fq(X)
and A be the adeles ring of F . Let B be a Borel subgroup of G and U ⊂ B
its unipotent radical. For a character ψ : U(F )\U(A) → C∗ one has a
global Whittaker module over G(A)

WMψ={f :U(F )\G(A)→ C |f(ug)=ψ(u)f(g) foru ∈ U(A), f is smooth}

Let Acusp(G(F )\G(A)) be the space of cusp forms on G(F )\G(A). The
usual Whittaker operator Wψ : Acusp(G(F )\G(A))→WMψ is given by

Wψ(f)(g) =
∫
U(F )\U(A)

f(ug)ψ(u−1)du,

where du is induced from a Haar measure on U(A). Whence for GLn (and
generic ψ) the operator Wψ is an injection, this is not always the case for
more general groups. There are cuspidal automorphic representations of
Sp4 that don’t admit a ψ-Whittaker model for any ψ.

Recall that Acusp(G(F )\G(A)) decomposes as a direct sum

(1.1) Acusp(G(F )\G(A)) = I3(H2)⊕ I4(H3)⊕ I5(H4)

in the notation of ([11], Sect. 1.3, p. 359), the summands being G(A)-
invariant(1) . The decomposition is orthogonal with respect to the scalar
product

(1.2) 〈f, h〉 =
∫
G(F )\G(A)

f(x)h(x)dx,

where dx is induced from a Haar measure on G(A).
For any f ∈ Acusp(G(F )\G(A)) its θ-lifting to O(2)(A) vanishes (loc.cit.,

Corolary 2 to Theorem I.2.1). By definition, I4(H3)⊕I5(H4) (resp., I5(H4))
are those cuspidal forms whose θ-lifting to O4(A) (resp., to O4(A) and
O6(A)) vanishes. Here O2r is the orthogonal group defined by the hyper-
bolic quadratic form in a 2r-dimensional space.

The space I5(H4) is also the intersection of kernels of Wψ for all ψ. It is
known as the space of hyper-cuspidal forms on G(F )\G(A) ([10], Definition

(1) In loc.cit. F is a number field, but (1.1) holds also over function fields.
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WHITTAKER AND BESSEL FUNCTORS 1507

on p. 328). Another description of I5(H4) is as follows. Let P1 ⊂ G be the
parabolic preserving a 1-dimensional isotropic subspace in the standard
representation V of G, U1 ⊂ P1 be its unipotent radical, U0 the center of
U1. Then f ∈ Acusp(G(F )\G(A)) lies in I5(H4) if and only if∫

U0(F )\U0(A)

f(ug)du = 0

for all g ∈ G(A).
If V ′ ⊂ V is a 2-dimensional subspace such that the symplectic form on

V restricts to a non degenerate form on V ′ then let H ⊂ G = Sp(V ) be
the subgroup of those g ∈ G that preserve and act trivially on V ′. Then
f ∈ Acusp(G(F )\G(A)) lies in I4(H3)⊕ I5(H4) if and only if∫

H(F )\H(A)

f(hg)dh = 0

for all g ∈ G(A) (loc.cit., Section 3). Note that H →̃ SL2.

1.2. Geometric setting

In the geometric setting we work with G = GSp4 (over an algebraically
closed field of characteristic p > 2). For a scheme (or a stack S) write D(S)
for the derived category of `-adic étale sheaves on S.

Let BunG be the stack of G-bundles on X. Inside of the triangulated
category Dcusp(BunG) of cuspidal sheaves on BunG we single out a full tri-
angulated subcategory Dhcusp(BunG) of hyper-cuspidal sheaves. Both they
are preserved by Hecke functors. So, a natural step in the geometric Lang-
lands program for G is to understand the Hecke action on Dhcusp(BunG)
and on Dcusp(BunG)/Dhcusp(BunG).

The category Dcusp(BunG) is equiped with the ‘scalar product’, which is
an analogue of (1.2), it sends K1,K2 to RHom(K1,K2). The (left and right)
orthogonal complements ⊥ Dhcusp(BunG), Dhcusp(BunG)⊥ ⊂ Dcusp(BunG)
are also preserved by Hecke functors.

A G-bundle on X is a triple: a rank 4 vector bundle M on X, a line
bundle A on X, and a symplectic form ∧2M → A. Let α : Q̄1 → BunG be
the stack over BunG whose fibre over (M,A) consists of all nonzero maps
of coherent sheaves Ω ↪→M , where Ω is the canonical line bundle on X.

We introduce the notion of cuspidality and hyper-cuspidality on Q̄1,
thus leading to full triangulated subcategories Dhcusp(Q̄1) ⊂ Dcusp(Q̄1) ⊂
D(Q̄1).

TOME 56 (2006), FASCICULE 5



1508 Sergey LYSENKO

Then we describe Dcusp(Q̄1)/Dhcusp(Q̄1) in terms of geometric Whit-
taker models. Namely, we introduce a stack Q̄ (it was denoted by Y in
[6]) and a full triangulated subcategory DW (Q̄) ⊂ D(Q̄). Our DW (Q̄) is a
geometric analog of the space WMψ.

We define Whittaker functors that give rise to an equivalence of trian-
gulated categories

(1.3) W : Dcusp(Q̄1)/Dhcusp(Q̄1) →̃ DW (Q̄)

The Hecke functor Hγ corresponding to the standard representation of
the Langlands dual group Ǧ →̃ GSp4 acts on all the categories mentioned
in Sect. 1.2. Moreover, the equivalence (1.3) commutes with Hγ . The re-
striction functor

α∗ : Dcusp(BunG)/Dhcusp(BunG)→ Dcusp(Q̄1)/Dhcusp(Q̄1)

also commutes with Hγ . As in the case of GLn ([5], Theorem 7.9), the
advantage of Q̄ over BunG is that the functor Hγ : D(Q̄) → D(X × Q̄) is
right-exact for the perverse t-structures.

The essential difference with GLn case is that the Whittaker functor W :
D(Q̄1) → DW (Q̄) is not exact for the perverse t-structures. We can only
indicate full triangulated subcategories DW

cusp(Q̄1) ⊂ Dcusp(Q̄1) ⊂ D(Q̄1)
such that the restriction of W yields an equivalence

DW
cusp(Q̄1) →̃ DW (Q̄)

of triangulated categories. Then (1.3) follows from the fact that the natural
inclusion functor induces an equivalence of triangulated categories

DW
cusp(Q̄1) →̃ Dcusp(Q̄1)/Dhcusp(Q̄1)

This is the content of Sect. 2-6

1.3. More Whittaker type functors

The stack Q̄1 corresponds to the parabolic subgroup P1 ⊂ G. In Sect. 7
we define functors similar to the Whittaker ones for the Siegel parabolic
subgroup P ⊂ G. They are related to Bessel models ([7]) for G.

The general idea behind is that various Fourier coefficients of automor-
phic sheaves carry additional structure coming from the action of Hecke
operators.

Let αZ : Z1 → BunG be the stack whose fibre over (M,A) is the scheme
of isotropic subsheaves L2 ⊂ M , where L2 is a locally free OX -module of
rank 2. The open substack BunP ⊂ Z1 is given by the condition that L2 is

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1509

a subbundle. Then BunP is the stack classifying: a rank 2 bundle L2 on X,
a line bundle A on X, and an exact sequence 0→ Sym2 L2 →?→ A→ 0.

Let Sex denote the stack classifying: a rank 2 vector bundle L2 on X, a
line bundle A on X, and a map Sym2 L2 → A⊗Ω. Write Buni for the stack
of rank i vector bundles on X. Then BunP and Sex are dual (generalized)
vector bundles over Bun2×Bun1, so we have the Fourier transform functor
Four : D(BunP )→ D(Sex).

For a complex K ∈ D(BunG) its Fourier coefficient with respect to the
Siegel parabolic is, by definition, FSex(K) = Four(K |BunP

). If K is a Hecke
eigen-sheaf on BunG then FSex

(K) satisfies some additional property (cf.
Proposition 7.12), which is a consequence of the following result.

Let Z2,ex → Z1 be the stack whose fibre over a point (L2 ⊂M,A) ∈ Z1 is
the space Hom(Sym2 L2,A⊗Ω). We define a full triangulated subcategory
DW (Z2,ex) ⊂ D(Z2,ex) singled out by some equivariance condition. Then
we establish an equivalence of triangulated categories

WZ : D(Z1) →̃ DW (Z2,ex),

which is exact for perverse t-structures. The Hecke functor Hγ acts on both
categories and commutes with this equivalence. Our DW (Z2,ex) is a way
to think about the Fourier coefficients FSex

(K) together with an action of
Hecke operators.

One also has a notion of hyper-cuspidality on Z1 and Z2,ex leading to
full triangulated subcategories Dhcusp(Z1) ⊂ D(Z1) and DW

hcusp(Z2) ⊂
DW (Z2,ex) preserved by Hγ . The functor WZ induces an equivalence

Dhcusp(Z1) →̃ DW
hcusp(Z2)

A complex K ∈ D(BunG) is hyper-cuspidal if and only if α∗ZK is hyper-
cuspidal.

1.4. Waldspurger models

In a sense, Bessel models for G is a way to think about the Fourier
coefficients FSex(K) of automorphic sheaves K ∈ D(BunG) in terms of the
Waldspurger models for GL2 ([3]). This is our motivation for the study of
these Walspurger models in Sect. 8, which is independent of the rest of this
paper.

The following background result is due to Waldspurger ([13], Lemma 8).
Set F = Fq((t)) and O = Fq[[t]]. Let F̃ be an étale F -algebra with
dimF (F̃ ) = 2 such that Fq is algebraically closed in F̃ . Let Õ be the
integral closure of O in F̃ . We have two cases:

TOME 56 (2006), FASCICULE 5



1510 Sergey LYSENKO

• F̃ →̃Fq((t
1
2 )) (the nonsplit case)

• F̃ →̃F ⊕ F (the split case)
Write GL(F̃ ) for the automorphism group of the F -vector space F̃ , and

GL(Õ) ⊂ GL(F̃ ) for the stabilizor of Õ. Fix a nonramified character χ :
F̃ ∗/Õ∗ → Q̄∗

` . Denote by χc : F ∗/O∗ → Q̄∗
` the restriction of χ. The

Waldspurger module is the vector space

WAχ = {f : GL(F̃ )/GL(Õ)→ Q̄` | f(ux) = χ(u)f(x) for u ∈ F̃ ∗,

f is of compact support modulo F̃ ∗}

The Hecke algebra

Hχc ={h : GL(Õ)\GL(F̃ )/GL(Õ)→ Q̄` | h(ux)=χc(u)h(x) for u ∈ F ∗,
h is of compact support}

acts on WAχ via

h ∈ Hχc
, f ∈WAχ → (h ∗ f)(g) =

∫
GL(F̃ )

h(x)f(gx−1)dx,

where dx is the Haar measure of GL(F̃ ) such that the volume of GL(Õ) is
one. Then WAχ is a free module of rank one over Hχc

(mutilpicity one for
Waldspurger model).

We prove a categorical version of this. Namely, the affine grassmanian
GrF̃ := GL(F̃ )/GL(Õ) can be viewed as an ind-scheme over Fq equiped
with an action of the group scheme F̃ ∗. Pick a 1-dimensional Q̄`-vector
space Ẽx̃ for each x̃ ∈ Spec F̃ . We introduce Waldspurger category of those
Õ∗-equivariant perverse sheaves on GrF̃ that change under the action of
each uniformizor tx̃ ∈ F̃ ∗/Õ∗ by Ẽx̃ (for each x̃ ∈ Spec F̃ ). This is a
geometric counterpart of WAχ.

The nonramified Hecke algebra for GL2 also admits a geometric coun-
terpart, the category Sph(GrF̃ ) of GL2(Õ)-equivariant perverse sheaves on
GrF̃ . This is a tensor category equivalent to the category of representations
of GL2 ([8]). It acts on the Waldspurger category by convolutions.

Actually we work with a global version PẼ(Waldxπ) of the Waldspurger
category (in geometric setting we replace Fq by an algebraically closed field
k of characteristic p > 2). The input data for our definition of PẼ(Waldxπ)
is a two-sheeted covering π : X̃ → X ramified at some divisor Dπ on X,
a point x ∈ X, and a rank one local system Ẽ on X̃. Here X̃ and X are
smooth projective curves over k (with X connected).

Objects of PẼ(Waldxπ) are some perverse sheaves on a stack Waldxπ,
which is a global model of ‘the space’ of F̃ ∗-orbits on GrF̃ . By definition,

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1511

Waldxπ classifies collections: a rank 2 vector bundle L on X, a line bundle
B on π−1(X − x), and an isomorphism π∗B →̃L |X−x.

Our main result here is Theorem 8.5 describing the action of Sph(GrF̃ )
on irreducible objects of PẼ(Waldxπ). It implies the above cited multiplicity
one for the Waldspurger models. This circle of ideas is very much inspired
by [4]. Note that, to the difference with the case of Whittaker categories
studied in loc.cit., the category PẼ(Waldxπ) is not semi-simple.

2. Whittaker categories

2.1. Notation

Let k denote an algebraically closed field of characteristic p > 2. All the
schemes (or stacks) we consider are defined over k. Let X be a smooth
projective connected curve. Fix a prime ` 6= p. For a scheme (or stack) S
write D(S) for the bounded derived category of `-adic étale sheaves on S,
and P(S) ⊂ D(S) for the category of perverse sheaves.

Fix a nontrivial character ψ : Fp → Q̄∗
` and denote by Lψ the corre-

sponding Artin-Shreier sheaf on A1. The Fourier transform functors will be
always normalized to preserve perversity and purity.

Let G = GSp4, so G is the quotient of Gm × Sp4 by the diagonally
embedded {±1}. Denote by Ǧ the Langlands dual group to G (over Q̄`).
We use the following notation from ([6], example 2 in the appendix). The
group G is realized as the subgroup of GL(k4) preserving up to a scalar the
bilinear form given by the matrix(

0 E2

−E2 0

)
,

where E2 is the unit matrix of GL2.
Let T be the maximal torus of G given by {(y1, . . . , y4) | yiy2+i does not

depend on i}. Let Λ (resp., Λ̌) denote the coweight (resp., weight) lattice
of T . Write V λ̌ for the irreducible representation of G of highest weight λ̌.

Let ε̌i ∈ Λ̌ be the character that sends a point of T to yi. We have
Λ = {(a1, . . . , a4) ∈ Z4 | ai + a2+i does not depend on i} and

Λ̌ = Z4/{ε̌1 + ε̌3 − ε̌2 − ε̌4}

Let P1 ⊂ G be the parabolic subgroup preserving the isotropic subspace
ke1. Let P2 ⊂ G denote the Borel subgroup preserving the flag ke1 ⊂

TOME 56 (2006), FASCICULE 5



1512 Sergey LYSENKO

ke1 ⊕ ke2 of isotropic subspaces. Here {ei} is the standard basis of k4. Let
Ui be the unipotent radical of Pi and M1 = P1/U1.

The simple roots are α̌1 = ě1 − ě2 and α̌2 = ě2 − ě4. The half sum of
positive roots of G is denoted by ρ̌ ∈ Λ̌.

Let P ⊂ G denote the Siegel parabolic preserving the lagrangian sub-
space ke1 ⊕ ke2 ⊂ k4. Let U ⊂ P be its unipotent radical and M = P/U .

Set γ = (1, 1; 0, 0) ∈ Λ, this is the dominant coweight corresponding to
the standard representation of Ǧ →̃ GSp4. Fix fundamental weights ω̌1 =
(1, 0, 0, 0) and ω̌2 = (1, 1, 0, 0). So, V ω̌1 is the standard representation. The
orthogonal to the coroot lattice is Zω̌0 with ω̌0 = (1, 0, 1, 0).

Note that the symplectic form ∧2V ω̌1 → V ω̌0 induces an isomorphism
detV ω̌1 →̃ (V ω̌0)⊗2.

2.2. Hecke functor

Let BunG denote the stack of G-bundles on X. For a G-bundle FG let
M = V ω̌1

FG
, W = V ω̌2

FG
and A = V ω̌0

FG
. In this way BunG becomes the stack

classifying the data: a line bundle A on X, a vector bundle M of rank 4 on
X with a symplectic form ∧2M → A. The exact sequence

0→W → ∧2M → A→ 0

splits canonically.
Denote by HG the stack of collections: x ∈ X,FG,F ′G ∈ BunG and
FG →̃F ′G |X−x such that FG is in the position γ with respect to F ′G. In
other words, we have A′ = A(x), M ⊂M ′, the diagrams commute

∧2M ′ → A′
↑ ↑
∧2M → A

and
detM ′ →̃ A′2

↑ ↑
detM →̃ A2

and M/M ′(−x) ⊂M ′/M ′(−x) is a lagrangian subspace.
We have a diagram BunG

p← HG
q→ BunG, where the map p (resp.,

q) sends the above collection to FG (resp., F ′G). Let supp : HG → X be
the map sending the above point to x. Note that q is smooth of relative
dimension 1 + 〈γ, 2ρ̌〉. Let

H : D(BunG)→ D(X × BunG)

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1513

denote the Hecke functor corresponding to γ, that is,

H(K) = (supp×p)!q∗K ⊗ Q̄`(
1
2
)[1]⊗1+〈γ,2ρ̌〉

2.3. Drinfeld compactifications

2.3.1. We fix a particular T -torsor on X with trivial conductor (FT , ω̃)
by requiring Lω̌1

FT
→̃Ω. The pair (FT , ω̃) with this property is defined up to

a unique isomorphism, and we have Lω̌2
FT
→̃ Ω and Lω̌0

FT
→̃ Ω−1.

For k = 1, 2, 3 define the stack Q̄k as follows. It classifies a point FG ∈
BunG together with sections t1, . . . , tk satisfying Plucker relations, where

t1 : Ω ↪→M

t2 : Ω ↪→W
t3 : Ω−1 ↪→ A

It is understood that Plucker relations are empty for k = 1, and for k = 2, 3
they mean that, at the generic point of X, the sections t1, . . . , tk come from
a B-structure on FG.

Set Q̄ = Q̄3. Let also Q̄k,ex be the stack defined in the same way as Q̄k
with the only difference that the last section tk is not necessairy an inclusion
(here ‘ex’ stands for ‘extended’). So, Q̄k ⊂ Q̄k,ex is an open substack.

Denote by πk+1,k : Q̄k+1 → Q̄k and πk+1,k,ex : Q̄k+1,ex → Q̄k the natural
forgetful maps.

For each k we have the diagram

Q̄k,ex
pk,ex← Q̄k,ex ×BunG

HG
qk,ex→ Q̄k,ex,

where we used the map p : HG → BunG in the definition of the fibred
product, pk,ex is the projection, and qk,ex sends a point of Q̄k,ex×BunG

HG
to (F ′G, t′1, . . . , t′k) with t′i being the compositions

t1 : Ω→M ↪→M ′

t2 : Ω→W ↪→W ′

t3 : Ω−1 → A ↪→ A′

For k = 1, 2, 3 we have the functor HQ̄k,ex : D(Q̄k,ex) → D(X × Q̄k,ex)
given by

HQ̄k,ex(K) = (supp×pk,ex)!q∗k,exK ⊗ Q̄`(
1
2
)[1]⊗〈γ,2ρ̌〉

The restriction of qk,ex to Q̄k×BunG
HG factors through Q̄k ⊂ Q̄k,ex. So,

we also have diagrams

Q̄k
pk← Q̄k ×BunG

HG
qk→ Q̄k,

TOME 56 (2006), FASCICULE 5



1514 Sergey LYSENKO

where pk (resp., qk) is the restriction of pk,ex (resp., of qk,ex). For k = 1, 2, 3
denote by

HQ̄k : D(Q̄k)→ D(X × Q̄k)

the functor given by

(2.1) HQ̄k(K) = (supp×pk)!q∗kK ⊗ Q̄`(
1
2
)[1]⊗〈γ,2ρ̌〉

The projection α : Q̄1 → BunG fits into the diagram

Q̄1
p1← Q̄1 ×BunG

HG
q1→ Q̄1

↓ α ↓ ↓ α
BunG

p← HG
q→ BunG,

in which the left square is cartesian. So, (id×α)∗ ◦ H →̃ HQ̄1 ◦ α∗[1](1
2 )

naturally. Over the open substack of BunG given by Ext1(Ω,M) = 0, the
map α : Q̄1 → BunG is smooth.

2.3.2. Let π0,1,ex : Q̄0,ex → Q̄1 be the vector bundle with fibre consisting
of all sections t0 : Ω→ A. Let i0 : Q̄1 → Q̄0,ex denote the zero section and
j : Q̄0 ⊂ Q̄0,ex its complement given by: t0 is an inclusion.

We have the diagram

Q̄0,ex
p0,ex→ Q̄0,ex ×BunG

HG
q0,ex→ Q̄0,ex,

where we used p : HG → BunG in the definition of the fibred product, p0,ex

is the projection, and q0,ex sends a point of Q̄0,ex×BunG
HG to (F ′G, t′0, t′1).

Here, as above, t′i are the compositions

t0 : Ω→ A ↪→ A′
t1 : Ω ↪→M ↪→M ′

Restricting, one gets the diagram Q̄0
p0→ Q̄0 ×BunG

HG
q0→ Q̄0,. The

functors
HQ̄0,ex : D(Q̄0,ex)→ D(X × Q̄0,ex)

and HQ̄0 : D(Q̄0)→ D(X × Q̄0) are defined as in (2.1).

Remark 2.1. — For any K ∈ D(Q̄0,ex) we have a natural isomorphism
of distinguished triangles

j!HQ̄0(j∗K) → HQ̄0,ex(K) → (i0)∗HQ̄1(i∗0K)
↓ ↓ id ↓

j!j
∗ HQ̄0,ex(K) → HQ̄0,ex(K) → (i0)∗i∗0 HQ̄0,ex(K)
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WHITTAKER AND BESSEL FUNCTORS 1515

2.4. Categories to construct

2.4.1. We will introduce triangulated categories DW (Q̄k) (resp.,
DW (Q̄k,ex)) of sheaves on Q̄k (resp., on Q̄k,ex) for k = 0, 1, 2, 3 (resp,
for k = 0, 2, 3).

Each DW (Q̄k) will be a full triangulated subcategory of D(Q̄k) defined
by the condition that K ∈ DW (Q̄k) if its perverse cohomology belong
to a certain Serre subcategory PW (Q̄k) singled out by some equivariance
condition; and similarly for DW (Q̄k,ex).

Though we don’t reflect this in the notation, all our equivariant categories
(except DW (Q̄1)) will depend on the character ψ.

2.4.2. Let y ∈ X be a closed point. For k = 1, 2 let Q̄yk ⊂ Q̄k be the
open substack given by the condition that neither of the maps t1, . . . , tk
has zero at y.

If (FG, t1, . . . , tk) is a point of Q̄yk then over the formal disk Dy at y we
obtain a Pk-torsor FPk

. Let Nk,y → Q̄yk be stack whose fibre over a point
of Q̄yk is

H0(D∗
y, FPk

×Pk
Uk)

This is an ind-groupscheme over Q̄yk, it can be represented as a union
of group schemes iNk,y for i ∈ N, where iNk,y ↪→ i+1Nk,y is a closed
immersion, and iNk,y/

0Nk,y is of finite type over Q̄yk for i > 0. We assume
that the fibre of 0Nk,y → Q̄yk is

H0(Dy, FPk
×Pk

Uk)

Let Hk,y → Q̄yk denote the stack over Q̄yk with fibre Nk,y/0Nk,y. This is
an ind-scheme over Q̄yk, and we have

Hk,y = ∪
i

iHk,y,

where i prk : iHk,y → Q̄yk is the stack with fibre iNk,y/
0Nk,y.

2.5. Groupoids

2.5.1. As in ([5], sect. 4.3) one endows Hk,y with the structure of a
groupoid over Q̄yk. We denote by

i actk : iHk,y → Q̄yk
the restriction of the action map.
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For k = 1, 2 define the open substack Q̄yk+1,ex ⊂ Q̄k+1,ex as Q̄yk+1,ex =
Q̄yk ×Q̄k

Q̄k+1,ex. The groupoid Hk,y → Q̄yk “lifts" to Q̄yk+1,ex. In other
words,

Hk,y ×Q̄y
k
Q̄yk+1,ex

has a structure of a groupoid over Q̄yk+1,ex (we used the projections to
define the above fibre product). Moreover, the diagram is cartesian

Hk,y ×Q̄y
k
Q̄yk+1,ex

act→ Q̄yk+1,ex

↓ id×πk+1,k,ex ↓ πk+1,k,ex

Hk,y
act→ Q̄yk

Denote by
i actk,ex : iHk,y ×Q̄y

k
Q̄yk+1,ex → Q̄

y
k+1,ex

the action map.
Let Q̄y0,ex ⊂ Q̄0,ex be the preimage of Q̄y1 under π0,1,ex : Q̄0,ex → Q̄1.

The groupoid H1,y → Q̄y1 “lifts" to Q̄y0,ex in the same sense as above.

2.5.2. We single out the subgroupoid H0,y ⊂ H1,y as follows.
Let U0 ⊂ U1 denote the center of U1. The exact sequence 1 → U0 →

U1 → U1/U0 → 1 does not split, we have U0 →̃ Ga and U1/U0 →̃ G2
a.

The stack BunP1 classifies: a G-torsor FG together with a line subbundle
L1 ⊂ M . Note that L1 is automatically isotropic and denote by L−1 ⊂
M its orthogonal complement. For such FP1 ∈ BunP1 the vector bundle
FP1 ×P1 U0 is L2

1 ⊗A−1. It is understood that P1 acts on U0 adjointly.
By definition, the fibre of H0,y → Q̄y1 is

H0(D∗
y, FP1 ×P1 U0)/H0(Dy, FP1 ×P1 U0) →̃ Ω2 ⊗A−1(∞y)/Ω2 ⊗A−1

Denote by iH0,y ⊂ H0,y the subgroupoid with fibre

Ω2 ⊗A−1(iy)/Ω2 ⊗A−1

We write i pr0 : iH0,y → Q̄y1 for the projection and i act0 : iH0,y → Q̄y1 for
the action map.

Let also
i act0,ex : iH0,y ×Q̄y

1
Q̄y0,ex → Q̄

y
0,ex

denote the action map.

2.6. Characters

Let us construct a natural map

χ0,y : H0,y ×Q̄y
1
Q̄y0,ex → A1
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The element t0 : Ω→ A gives rise to a morphism

Ω2 ⊗A−1(iy)/Ω2 ⊗A−1 → Ω(∞y)/Ω

and we take the residue of the image of g ∈ H0,y under this map.
Let us construct for k = 1, 2 a natural map

χk,y : Hk,y ×Q̄y
k
Q̄yk+1,ex → A1

Case k = 1.
If FP1 is a P1-torsor on a scheme given by (L1 ⊂ L−1 ⊂ M) then the

vector bundle FP1 ×P1 U1/U0 is Hom(L−1/L1, L1).
Recall that a point of Q̄y1 defines a P1-torsor FP1 on Dy. Let E1 → Q̄y1

be the stack whose fibre over a point of Q̄y1 is

H0(D∗
y, FP1×P1U1/U0)/H0(Dy, FP1×P1U1/U0) →̃ (L−1/Ω)∗⊗(Ω(∞y)/Ω)

We have a natural map H1,y → E1 over Q̄y1. Given a point of Q̄y2,ex, over
Dy the section t2 : Ω → W gives rise to a map s : O → L−1/Ω such that
t2 = t1 ∧ s. By definition, χ1,y is the residue of the pairing of s with the
image of g ∈ H1,y in E1.
Case k = 2.

Given a point of Q̄y2 we obtain a P2-torsor FP2 over Dy. Let U2,ab be the
abelinization of U2 then
(2.2)
H0(D∗

y, FP2×P2U2,ab)/H0(Dy, FP2×P2U2,ab) →̃Ω(∞y)/Ω⊕A−1(∞y)/A−1,

where the two summands correspond to the simple roots of G. To define
χ2,y, we take the image of g ∈ H2,y in (2.2), pair it with t3 : Ω−1 → A and
take the sum of residues.

For k = 1, 2 write
iχk,y : iHk,y ×Q̄y

k
Q̄yk+1,ex → A1

for the restriction of χk,y, and similarly for iχ0,y.

2.7. Categories on Q̄yk+1,ex.

2.7.1. For k = 1, 2 define the full subcategory PW (Q̄yk+1,ex)⊂P(Q̄yk+1,ex)
to consist of all perverse sheaves K ∈ P(Q̄yk+1,ex) with the property:

For any i ∈ N there is an isomorphism on iHk,y ×Q̄y
k
Q̄yk+1,ex

iχ∗k,y(Lψ)⊗ pr∗2K →̃ i act∗k,exK
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whose restriction to the unit section Q̄yk+1,ex ⊂ iHk,y ×Q̄y
k
Q̄yk+1,ex is the

identity map.
Similarly, PW (Q̄y0,ex) ⊂ P(Q̄y0,ex) is the full subcategory consisiting of

perverse sheaves K with the property:
For any i ∈ N there is an isomorphism on iH0,y ×Q̄y

1
Q̄y0,ex

iχ∗0,y(Lψ)⊗ pr∗2K →̃ i act∗0,exK

whose restriction to the unit section Q̄y0,ex ⊂ iH0,y×Q̄y
1
Q̄y0,ex is the identity

map.
For k = −1, 1, 2 as in ([5], Sect. 4.7-4.8) one shows that PW (Q̄yk+1,ex) is a

Serre subcategory of P(Q̄yk+1,ex). Then DW (Q̄yk+1,ex) ⊂ D(Q̄yk+1,ex) is a full
triangulated subcategory consisting of objects whose perverse cohomology
belong to PW (Q̄yk+1,ex).

2.7.2. In all the three cases k = −1, 1, 2 define PW(Q̄k+1,ex)⊂P(Q̄k+1,ex)
as the full subcategory consisting of K ∈ P(Q̄k+1,ex) such that

K |Q̄y
k+1,ex

∈ PW (Q̄yk+1,ex)

for any y ∈ X. Then PW (Q̄k+1,ex) is a Serre subcategory of P(Q̄k+1,ex).
Set DW (Q̄k+1,ex) to be the full triangulated subcategory of D(Q̄k+1,ex)
generated by PW (Q̄k+1,ex).

For k = −1, 1, 2 we also have the categories DW (Q̄k+1) and PW (Q̄k+1)
defined in a similar fashion, because the open substack Q̄k+1 ⊂ Q̄k+1,ex is
preserved by the action of the corresponding groupoid.

2.7.3. Recall the vector bundle π0,1,ex : Q̄0,ex → Q̄1. Let i0 : Q̄1 ↪→ Q̄0,ex

denote its zero section and j : Q̄0 ↪→ Q̄0,ex the complement to the zero
section.

Let DW (Q̄1) ⊂ D(Q̄1) be the full triangulated subcategory consisiting of
those K ∈ D(Q̄1) for which (i0)!K ∈ DW (Q̄0,ex). The Serre subcategory
PW (Q̄1) ⊂ P(Q̄1) is defined by the same condition.

In other words, K ∈ P(Q̄1) lies in PW (Q̄1) if and only if it is invariant
under the action of the groupoids H0,y for all y ∈ X.

Note that any K ∈ DW (Q̄0,ex) fits into a distinguished triangle j!j∗K →
K → (i0)!i∗0K with i∗0K ∈ DW (Q̄1) and j∗K ∈ DW (Q̄0).

2.8. Stratifications.

2.8.1. For k = 1, 2 stratify Q̄k as follows. For a string of nonnegative
integers d̄ = (d1, . . . , dk) let d̄Q̄k ⊂ Q̄k be the locally closed substack given
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by: there exist D1 ∈ X(d1), . . . , Dk ∈ X(dk) such that

ti : Lω̌i

FT
(Di) ↪→ V ω̌i

FG

is a subbundle for i = 1, . . . , k. In other words, Ω(D1) ⊂M is a subbundle
for k = 1; and for k = 2 there is one more condition: Ω(D2) ⊂ W is a
subbundle.

Let d̄Q̄yk be the preimage of Q̄yk under d̄Q̄k ↪→ Q̄k. The stack d̄Q̄yk is
stable under the action of Hk,y on Q̄yk. For k = 1, 2 set

d̄Q̄k+1,ex = d̄Q̄k ×Q̄k
Q̄k+1,ex

Set also
d̄Q̄0,ex = d̄Q̄1 ×Q̄1

Q̄0,ex

For y ∈ X denote by d̄Q̄yk+1,ex the preimage of Q̄yk+1,ex under d̄Q̄k+1,ex →
Q̄k+1,ex. For k = 1, 2 the stack d̄Q̄yk+1,ex is stable under the action of Hk,y
on Q̄yk+1,ex. The stack d̄Q̄y0,ex is stable under the action of H0,y on Q̄y0,ex.

Thus, following the same lines one defines the categories PW (d̄Q̄yk+1,ex)
and DW (d̄Q̄yk+1,ex), and further PW (d̄Q̄k+1,ex) and DW (d̄Q̄k+1,ex) for k =
−1, 1, 2. Similarly for PW (d̄Q̄2) and DW (d̄Q̄2).

By abuse of notation, write

i0 : d̄Q̄1 ↪→ d̄Q̄0,ex

for the natural closed immersion. Denote by DW (d̄Q̄1) ⊂ D(d̄Q̄1) the full
triangulated subcategory consisting of K ∈ D(d̄Q̄1) such that

(i0)!K ∈ DW (d̄Q̄0,ex)

As in ([5], Lemma 4.11) one shows the following (cf. also Appendix A).

Lemma 2.2. — 1) Let k = −1, 1, 2. The functors of ∗- and !-restriction
map DW (Q̄k+1,ex) to DW (d̄Q̄k+1,ex). The functors of ∗- and !-direct image
map DW (d̄Q̄k+1,ex) to DW (Q̄k+1,ex).

For K ∈ D(Q̄k+1,ex) we have K ∈ DW (Q̄k+1,ex) if and only if its ∗-
restriction (or, equivalently, !-restriction) to d̄Q̄k+1,ex lies in DW (d̄Q̄k+1,ex)
for any d̄.

2) Let k = 1, 2. For K ∈ D(Q̄k) we have K ∈ DW (Q̄k) if and only if
its ∗-restriction (or, equivalently, !-restriction) to d̄Q̄k lies in DW (d̄Q̄k) for
any d̄.
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2.8.2. For k = 1, 2 define a closed substack d̄Q̄′k+1,ex ↪→ d̄Q̄k+1,ex by
the conditions: t2 comes from H0(X,Ω−1 ⊗W(−2D1)) in both cases, and
for k = 2 we require in addition that t3 comes from H0(X,A⊗Ω(−2D′

2)),
where we have put D′

2 = D2 −D1.
Let us define for k = 1, 2 a natural map

d̄χk+1,ex : d̄Q̄′k+1,ex → A1

Case k = 1. The stack d̄Q̄′2,ex classifies collections: D1 ∈ X(d1), a P1-torsor
on X given by S

(L1 ⊂ L−1 ⊂M)

with L1 →̃ Ω(D1), and a section s : O(D1)→ L−1/L1.
The map d̄χ2,ex sends this collection to the class in Ext1(O(D1),Ω(D1))

→̃ k of the pull-back of 0→ L1 → L2 → L2/L1 → 0 under s.
Case k = 2. Note that BunP is the stack classifying: a rank 2 vector bundle
L2 on X, a line bundle A on X, and an exact sequence 0→ Sym2 L2 →?→
A→ 0. For such FP ∈ BunP the vector bundle FP×PU is (Sym2 L2)⊗A−1.

Therefore, the stack d̄Q̄′3,ex classifies collections: D1 ∈ X(d1), D′
2 ∈

X(d2−d1) with D′
2 > D1, two exact sequences

0→ L1 → L2 → L2/L1 → 0

and

(2.3) 0→ Sym2 L2 →?→ A→ 0

with L1 →̃ Ω(D1) and L2/L1 →̃ O(D′
2), and a section t3 : Ω−1(2D′

2)→ A.
The map d̄χ3,ex sends this collection to the sum of two numbers, the first

being defined as for d̄χ2,ex, and the second is the class in Ext1(Ω−1(2D′
2),

O(2D′
2)) →̃ k of the pull-back of

(2.4) 0→ Sym2(L2/L1)→?→ A→ 0

under t3.
Here (2.4) is the push-forward of (2.3) under Sym2 L2 → Sym2(L2/L1).

2.9. Whittaker categories on strata

2.9.1. For k = 1, 2 define the stack d̄Pk+1,ex as follows.
The stack d̄P2,ex classifies: D1 ∈ X(d1), a rank 2 vector bundle M2 on X

with section s : O(D1)→M2.
The stack d̄P3,ex classifies: D1 ∈ X(d1), D′

2 ∈ X(d2−d1) with D′
2 > D1, a

line bundle A on X with a section Ω−1(2D′
2)→ A.
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In both cases we have a projection φk+1,ex : d̄Q̄′k+1,ex → d̄Pk+1,ex. For
k = 1 it is given by M2 = L−1/L1.

2.9.2. For d̄ = (d1, d2) let d̄Q̄′2 ⊂ d̄Q̄2 be the closed substack given by
D′

2 > D1, where D′
2 = D2 −D1. We have a natural map

d̄χ2 : d̄Q̄′2 → A1

defined in the same way as d̄χ2,ex.
For k = 1, 2 and d̄ = (d1, . . . , dk) as above define the stack d̄Pk as follows.

The stack d̄P1 classifies D1 ∈ X(d1) and an exact sequence of vector bundles
on X

0→ L1 → L−1 → L−1/L1 → 0

with L1→̃Ω(D1), where L−1/L1 is of rank 2.
The stack d̄P2 classifies D1 ∈ X(d1), D′

2 ∈ X(d2−d1) with D′
2 > D1, a

line bundle A on X, and an exact sequence on X

0→ O(D′
2)→M2 → A(−D′

2)→ 0

We have projections φ1 : d̄Q̄1 → d̄P1 and φ2 : d̄Q̄′2 → d̄P2.
As in ([5], Proposition 4.13) one proves

Lemma 2.3. — For k = 1, 2 and a string of nonnegative integers d̄ =
(d1, . . . , dk) we have the following.
i) Any object K ∈ DW (d̄Q̄k+1,ex) is supported at d̄Q̄′k+1,ex. The func-
tor K 7→ d̄χ∗k+1,exLψ ⊗ φ∗k+1,exK provides an equivalence of categories
D(d̄Pk+1,ex)→ DW (d̄Q̄k+1,ex).

ii) We have an equivalence of categories D(d̄Pk)→ DW (d̄Q̄k). For k = 1
it is given by the functor K 7→ φ∗1K, whence for k = 2 it is given by the
functor K 7→ φ∗2K ⊗ d̄χ∗2Lψ.

3. Whittaker functors

In this section we prove the following theorem.

Theorem 3.1. — i) There is an equivalence of categories W1,0,ex :
D(Q̄1) → DW (Q̄0,ex), which is t-exact, and (π0,1,ex)! is quasi-inverse to
it. Moreover, for any K ∈ DW (Q̄0,ex) the natural map (π0,1,ex)!K →
(π0,1,ex)∗K is an isomorphism.

ii) For k = 1, 2 there is an equivalence of categories Wk,k+1,ex : DW (Q̄k)
→ DW (Q̄k+1,ex), which is t-exact, and (πk+1,k,ex)! is quasi-inverse to it.
Moreover, for any K ∈ DW (Q̄k+1,ex) the natural map (πk+1,k,ex)!K →
(πk+1,k,ex)∗K is an isomorphism.
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3.1. Whittaker functors on strata

3.1.1. First, we explain what the corresponding functors do on strata.
For k = 1, 2 let d̄ = (d1, . . . , dk) be a string of nonnegative integers. Using
Lemma 2.3, define

d̄Wk,k+1,ex : DW (d̄Q̄k)→ DW (d̄Q̄k+1,ex)

as the composition

DW (d̄Q̄k) →̃ D(d̄Pk)
Four→ D(d̄Pk+1,ex) →̃ DW (d̄Q̄k+1,ex)

So, d̄Wk,k+1,ex is an equivalence of triangulated categories and t-exact.
It also follows from the standard properties of the Fourier transform that
(πk+1,k,ex)! is quasi-inverse to d̄Wk,k+1,ex, and we have (πk+1,k,ex)!K →̃
(πk+1,k,ex)∗K for any K ∈ DW (d̄Q̄k+1,ex).

3.1.2. For d̄ = (d1) define the functor
d̄W1,0,ex : D(d̄Q̄1)→ DW (d̄Q̄0,ex)

as follows. Let d̄E → d̄Q̄1 be the stack whose fibre over a point of d̄Q̄1 is
the stack of exact sequences 0 → Ω2(2D1)⊗A−1 →? → O → 0. This is a
groupoid over d̄Q̄1, let d̄ act : d̄E → d̄Q̄1 denote the action.

Let d̄Q̄′0,ex ⊂ d̄Q̄0,ex be the closed substack given by: t0 comes from
H0(X,A⊗Ω−1(−2D1)). Any object of DW (d̄Q̄0,ex) is supported on d̄Q̄′0,ex.
As in Appendix A.2, let

d̄W1,0,ex(K) = Four(d̄act∗K)[dim. rel](
dim. rel

2
),

where dim. rel is the relative dimension of d̄E → d̄Q̄1. This functor satisfies
the same properties as d̄Wk,k+1,ex in Sect. 3.1.1

3.2. Definition of Whittaker functors

3.2.1. For k = 1, 2 we single out the subgroupoids H′k,y ⊂ Hk,y as fol-
lows.

Case k = 1.
We let H′1,y = H1,y and iH′1,y = iH1,y. Recall the map E1 → Q̄y1 defined

in Sect. 2.6. Write E1 as a union of vector bundles iE1 → Q̄y1 with fibre

(L−1/Ω)∗ ⊗ (Ω(iy)/Ω)

The fibre of iE∗1 → Q̄
y
1 is (L−1/Ω)⊗ (O/O(−iy)).
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Case k = 2.
A point of Q̄y2 gives rise to a P2-bundle FP2 on Dy given by (L1 ⊂ L2 ⊂

M) with L1 →̃ Ω |Dy
and L2/L1 →̃ O |Dy

. The P2-bundle FP2 gives rise
to a P -bundle FP = FP2 ×P2 P on Dy.

By definition, the fibre of H′2,y → Q̄
y
2 is

H0(D∗
y, FP ×P U)/H0(Dy, FP ×P U) →̃ (Sym2 L2)⊗ (A−1(∞y)/A−1)

Let iH′2,y ⊂ H′2,y be the subgroupoid with fibre

(Sym2 L2)⊗ (A−1(iy)/A−1)

Let E2 → Q̄y2 be the stack with fibre

(Sym2(L2/L1))⊗ (A−1(∞y)/A−1) →̃ A−1(∞y)/A−1

This is a union of vector bundles iE2 → Q̄y2 with fibre A−1(iy)/A−1. The
fibre of iE∗2 → Q̄

y
2 is A⊗ (Ω/Ω(−iy)).

3.2.2. For k = 1, 2 we have a natural map H′k,y → Ek over Q̄yk. Without
loss of generality we may assume that the image of iH′k,y in Ek is iEk. The
corresponding map ipk : iH′k,y → iEk is smooth with contractible fibres, we
denote by di,k its relative dimension. From ([5], Lemma 4.8) we get

Lemma 3.2. — The functor K 7→ ip∗kK[di,k] is t-exact and identifies
D(iEk) with a full triangulated subcategory of D(iH′k,y).

For i′ > i we have iEk ↪→ i′Ek is a subbundle. Denote by pri′,i : i′E∗k →
iE∗k the dual map.

Lemma 3.3. — For each i > 0 we have a natural map fi : Q̄yk+1,ex → iE∗k
over Q̄yk. For i′ > i the composition

Q̄yk+1,ex

fi′→ i′E∗k
pri′,i→ iE∗k

equals fi. For each open substack of finite type U ⊂ Q̄yk there is an integer
i(U) such that over the preimage of U , the map fi : Q̄yk+1,ex → iE∗k is a
closed embedding for every i > i(U).

Proof. — Case k = 1. Given a point of Q̄y2,ex, over Dy the section
t2 : Ω → W yields a map s : O → L−1/Ω such that t2 = t1 ∧ s. Now fi
sends a point of Q̄y2,ex to the image of s in iE∗1 .

Let iV → Q̄y1 be the vector bundle with fibre Hom(Ω,W/W(−iy)). Given
a point of Q̄y1, we have a subbundle Ω ⊗ (L−1/Ω) |Dy⊂ W |Dy over Dy.
Therefore,

(L−1/Ω)⊗ (Ω/Ω(−iy)) ↪→W/W(−iy)
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So, we have a natural closed embedding iE∗1 → iV over Q̄y1.
Let i(U) be such that the vector space Hom(Ω,W(−iy)) is zero for any

point of U . Then for i > i(U) the natural map Q̄y2,ex → iV is a closed
embedding over U . So, Q̄y2,ex → iE∗1 is a closed embedding over U for
i > i(U).

Case k = 2. The map fi sends a point of Q̄y3,ex to the image of t3 ∈
H0(X,A⊗ Ω) in A⊗ (Ω/Ω(−iy)).

Let i(U) be such that the vector space H0(X,A⊗Ω(−iy)) is zero for any
point of U . Then for i > i(U) the map fi is a closed embedding. �

3.2.3. For k = 1, 2 let i act′k : iH′k,y → Q̄
y
k denote the action map. It is

smooth, and we denote by ai,k its relative dimension.
Define the functor

W y,i
k,k+1,ex : DW (Q̄yk)→ D(iE∗k )

as follows. Given K ∈ DW (Q̄yk), from Lemma 3.2 we learn that there exists
K̃ ∈ D(iEk) and an isomorphism

(3.1) h : ip∗kK̃[di,k](
di,k
2

) →̃ (iact′k)
∗K[ai,k](

ai,k
2

)

The pair (K̃, h) is defined up to a unique isomorphism. Set W y,i
k,k+1,ex(K) =

Four(K̃).
By construction, the functor W y,i

k,k+1,ex is t-exact.

Remark 3.4. — We could replace iH′k,y by any subgroupoid iH′k,y ⊂
H′k,y of finite type over Q̄yk such that the image of iH′k,y in Ek is iEk. The
corresponding functors W y,i

k,k+1,ex : DW (Q̄yk) → D(iE∗k ) would be naturally
isomorphic. Thus, the functors W y,i

k,k+1,ex do not depend on the choice of
the group subschemes iNk,y inside of Nk,y.

Using the above remark together with appendix A.3, one shows that for
i′ > i we have an isomorphism of functors (pri′,i)! ◦W

y,i′

k,k+1,ex →̃W y,i
k;k+1,ex.

Lemma 3.5. — For k = 1, 2 let K ∈ DW (Q̄yk). For any open substack
of finite type U ⊂ Q̄yk and any integer i large enough (in particular, i >
i(U) of Lemma 3.3), over the preimage of U , the complex W y,i

k,k+1,ex(K) is
supported on Q̄yk+1,ex ⊂ iE∗k .

Proof. — Since U is contained in a finite number of strata d̄Q̄k, we are
easily reduced to the case where U ⊂ d̄Q̄yk for some d̄, andK is the extension
by zero from U .
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Case k = 1.
There is i′(U) such that for any point of U given by D1 ∈ (X − y)(d1),

(Ω(D1) ⊂ L−1 ⊂M) ∈ BunP1 we have

H1(X, (L−1/Ω(D1))∗ ⊗ Ω(D1 + iy)) = 0.

So, for any i > i′(U) the natural map

iE1 → Ext1(L−1/Ω(D1),Ω(D1))

is surjective over U . If i > i(U), i′(U) then W y,i
1,2,ex(K) is supported at

d̄Q̄y2,ex and is isomorphic to d̄W1,2,ex(K).
Case k = 2.

Recall that a point of U is given by a collection: D1 ∈ (X − y)(d1),
D′

2 ∈ (X − y)(d2−d1) with D′
2 > D1 and (L1 ⊂ L2 ⊂ L−1 ⊂ M) ∈ BunP2

with L1 →̃Ω(D1) and L2/L1 →̃O(D′
2). There is i′(U) such that for any

point of U as above we have

H1(X, (Sym2(L2/L1))⊗A−1(iy)) = 0

This implies that for i > i′(U) the natural map

iE2 → Ext1(A, Sym2(L2/L1))

is surjective over U . If i > i(U), i′(U) then W y,i
2,3,ex(K) is supported at

d̄Q̄y3,ex and is isomorphic to d̄W2,3,ex(K). �

Thus, we get a well-defined functor W y
k,k+1,ex : DW (Q̄yk)→ D(Q̄yk+1,ex),

it is t-exact by construction.
GivenK ∈ DW (Q̄yk), the ∗-restriction ofW y

k,k+1,ex(K) to d̄Q̄yk+1,ex is nat-
urally isomorphic to d̄Wk,k+1,ex applied to the ∗-restriction K |d̄Q̄y

k
. By 1) of

Lemma 2.2, we conclude that the image of W y
k,k+1,ex lies in DW (Q̄yk+1,ex).

Proposition 3.6. — For k = 1, 2 the functor K 7→ (πk+1,k,ex)!K maps
DW (Q̄yk+1,ex) to DW (Q̄yk) and is quasi-inverse to W y

k,k+1,ex. Moreover, for
K ∈ DW (Q̄yk+1,ex) the natural map (πk+1,k,ex)!K → (πk+1,k,ex)∗K is an
isomorphism.

Proof. — First, let us show that for K ∈ DW (Q̄yk) we have
(πk+1,k,ex)!W

y
k,k+1,ex(K) →̃K naturally. Indeed, over an open substack of

finite type U ⊂ Q̄yk and i large enough we have W y
k,k+1,ex(K) = Four(K̃)

and

(πk+1,k,ex)!W
y
k,k+1,ex(K) →̃ i∗UK̃[di,k − ai,k](

di,k − ai,k
2

),

TOME 56 (2006), FASCICULE 5



1526 Sergey LYSENKO

where K̃ is that of (3.1), and iU : U → iEk is the zero section. The equivari-
ance property of K implies that the RHS of the above formula is identified
with K |U .

The fact that K 7→ (πk+1,k,ex)!K maps DW (Q̄yk+1,ex) to DW (Q̄yk) follows
from Appendix A.1.

Now let us show that for K ∈ DW (Q̄yk+1,ex) we have

(3.2) W y
k,k+1,ex(πk+1,k,ex)!K →̃ K

naturally. To establish this isomorphism over the preimage of an open sub-
stack of finite type U ⊂ Q̄yk, fix an integer i large enough with respect to
U .

The groupoid iH′k,y → Q̄
y
k lifts to iE∗k in the sense of A.1. In particular,

we have a cartesian square
iH′k,y ×Q̄y

k

iE∗k
act→ iE∗k

↓ id×πE ↓ πE
iH′k,y

i act′k→ Q̄yk,

where we used the projections to define the fibred product, and πE also
denotes the projection. We may start with K ∈ D(iE∗k ) that satisfies the
equivariance property act∗K →̃ pr∗2K⊗χ∗Lψ, where χ is the composition

iH′k,y ×Q̄y
k

iE∗k → iEk ×Q̄y
k

iE∗k
ev→ A1

(Actually, for k = 2 the complex K satisfies a stronger equivariance prop-
erty with respect to the action of H2,y, which we don’t need for the mo-
ment.)

Looking at one more cartesian square
iH′k,y ×Q̄y

k

iE∗k → iEk ×Q̄y
k

iE∗k
↓ id×πE ↓

iH′k,y
ipk→ iEk

we obtain

(iact′k)
∗(πE)!K →̃ ip∗k Four(K)[di,k − ai,k](

di,k − ai,k
2

)

We have used the fact that the rank of the vector bundle iEk → Q̄yk is
ai,k − di,k. The isomorphism (3.2) over the preimage of U follows.

The above diagrams also show that

(iact′k)
∗(πE)!K →̃ (iact′k)

∗(πE)∗K,

because !- and ∗-Fourier transforms coincide.
So, (πk+1,k,ex)!K → (πk+1,k,ex)∗K is an isomorphism. �
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Now arguing as in ([5], 5.11) one finishes the proof of Theorem 3.1 ii).

3.2.4. The proof of Theorem 3.1 i) is similar. First, let iE0 = iH0,y.
The action map i act0 : iH0,y → Q̄y1 is smooth, denote by ai,0 its relative
dimension. For i > 0 define the functors

W y,i
1,0,ex : D(Q̄y1)→ D(iE∗0 )

by W y,i
1,0,ex(K) = Four(iact∗0K)[ai,0](

ai,0
2 ). As in Sect. 3.2.3, this gives rise

to a functor W y
1,0,ex : D(Q̄y1) → DW (Q̄y0,ex) and so on. The details are left

to the reader. �

4. Cuspidality

4.1. Definition of cuspidality

4.1.1. Recall the notion of cuspidality on BunG. For a proper parabolic
Q ⊂ G let MQ be its Levi quotient. We have a diagram of natural maps

BunMQ

αQ← BunQ
βQ→ BunG

The constant term functor CTQ : D(BunG) → D(BunMQ
) is defined as

CTQ(K) = (αQ)!β∗QK.
A complex K ∈ D(BunG) is cuspidal if CTQ(K) = 0 for any standard

proper parabolic P2 ⊂ Q ⊂ G. It suffices to check this condition for Q = P1

and Q = P .
Denote by Dcusp(BunG) ⊂ D(BunG) the full triangulated subcategory

consisting of cuspidal objects. Similarly, for a scheme of parameters S, one
defines Dcusp(S × BunG).

4.1.2. Let us introduce the notion of cuspidality on Q̄k for k = 1, 2, 3.
The stack BunM1 classifies pairs: a line bundle L1 on X and a rank 2

bundle M2 on X. The projection BunP1 → BunM1 sends (L1 ⊂ L−1 ⊂
M) ∈ BunP1 to (L1,M2 = L−1/L1).

The stack BunM classifies pairs: a line bundleA onX and a rank 2 bundle
L2 on X. The projection BunP → BunM sends a collection (A, L2, 0 →
Sym2 L2 →?→ A→ 0) to (A, L2).

For k = 1, 2 consider the natural diagram

Q̄k
βk

P← Q̄Pk
αk

P→ Q̄Mk
↓ ↓ ↓

BunG
βP← BunP

αP→ BunM ,
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where the right square is cartesian, and the stack Q̄Mk classifies collections:
an M -torsor (A, L2) on X together with sections t1, . . . , tk, where

t1 : Ω ↪→ L2

t2 : Ω ↪→ ∧2L2

The constant term functor CTQ̄k

P : D(Q̄k) → D(Q̄Mk ) is defined as
CTQ̄k

P (K) = (αkP )!(βkP )∗K.
Consider the natural diagram

Q̄1

β1
P1← Q̄P1

1

α1
P1→ Q̄M1

1

↓ ↓ ↓
BunG

βP1← BunP1

αP1→ BunM1 ,

where the right square is cartesian, and the stack Q̄M1
1 classifies collections:

a M1-torsor (L1,M2) on X together with section t1 : Ω ↪→ L1.
The constant term functor CTQ̄1

P1
: D(Q̄1) → D(Q̄M1

1 ) is defined as
CTQ̄1

P1
(K) = (α1

P1
)!(β1

P1
)∗K.

Definition 4.1. — i) An object K ∈ D(Q̄1) is cuspidal if CTQ̄1
P (K) = 0

and CTQ̄1
P1

(K) = 0.
ii) An object K ∈ D(Q̄2) is cuspidal if CTQ̄2

P (K) = 0.
iii) Any object K ∈ D(Q̄3) is cuspidal.

4.2. Whittaker functors and cuspidality

4.2.1. For k = 1, 2 denote by Wk,k+1 : DW (Q̄k)→ DW (Q̄k+1) the func-
tor Wk,k+1,ex followed by the restriction to Q̄k+1 ⊂ Q̄k+1,ex.

Proposition 4.2. — i) The functor Wk,k+1 : DW (Q̄k) → DW (Q̄k+1)
maps cuspidal objects to cuspidal.
ii) If K ∈ DW (Q̄k) is cuspidal then the ∗-restriction of Wk,k+1,ex(K) to
Q̄k+1,ex − Q̄k+1 vanishes.

Proof. — ii) Note that Q̄k+1,ex − Q̄k+1 is isomorphic to Q̄k, the zero
section of the bundle πk+1,k,ex : Q̄k+1,ex → Q̄k. We will calculate the
∗-restriction Wk,k+1,ex(K) |d̄Q̄k

for any stratum d̄Q̄k ⊂ Q̄k.

Let ψ1 : d̄Q̄1 → Q̄M1
1 be the map that sends ((L1 ⊂ L−1 ⊂M), Ω

t1
↪→ L1)

to
(M2 = L−1/L1, Ω

t1
↪→ L1)
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Let ψ2 : d̄Q̄2 → Q̄M2 be the map that sends ((L1 ⊂ L2 ⊂ L−1 ⊂M), Ω
t1
↪→

L1, Ω
t2
↪→ ∧2L2) to

(A, L2, Ω
t1
↪→ L2, Ω

t2
↪→ ∧2L2)

Using Lemma 2.3, one shows the following:
• for K ∈ DW (Q̄1) we have W1,2,ex(K) |d̄Q̄1

→̃ ψ∗1 CTQ̄1
P1

(K) up to a
cohomological shift and a twist;

• for K ∈ DW (Q̄2) we have W2,3,ex(K) |d̄Q̄2
→̃ ψ∗2 CTQ̄2

P (K) up to a
cohomological shift and a twist.

Part ii) follows.

Remark 4.3. — Actually, we showed that forK ∈ DW (Q̄k) the condition
Wk,k+1,ex(K) |Q̄k

= 0 is equivalent to CTQ̄1
P1

(K) = 0 for k = 1 (resp., to
CTQ̄2

P (K) = 0 for k = 2). Indeed, as d̄ ranges over strings of nonnegative
integers d̄ = (d1, . . . , dk), the images of ψk form a stratification of the
corresponding stack.

i) Let Q̄M2,ex denote the stack classifying (A, L2) ∈ BunM and sections

Ω
t1
↪→ L2, Ω t2→ ∧2L2. As in Sect. 4.1.2, we have the diagram

Q̄2,ex

β2,ex
P← Q̄P2,ex

α2,ex
P→ Q̄M2,ex

↓ ↓ ↓
BunG

βP← BunP
αP→ BunM ,

where the right square is cartesian. Let CTQ̄2,ex

P : D(Q̄2,ex) → D(Q̄M2,ex)
denote the functor K 7→ (α2,ex

P )!(β
2,ex
P )∗K. Proceeding as in Sect. 2-3, one

introduces the category DW (Q̄M2,ex) and the functor

WM
1,2,ex : D(Q̄M1 )→ DW (Q̄M2,ex),

which is also an equivalence of categories.
One checks that CTQ̄2,ex

P sends DW (Q̄2,ex) to DW (Q̄M2,ex). Let us only
indicate that the groupoid H1,y ×Q̄y

1
Q̄y2,ex → Q̄

y
2,ex lifts to

Q̄P,y2,ex = Q̄P2,ex ×Q̄2,ex
Q̄y2,ex

We claim that there is a natural isomorphism of functors from DW (Q̄1) to
DW (Q̄M2,ex)

(4.1) CTQ̄2,ex

P ◦W1,2,ex →̃WM
1,2,ex ◦ CTQ̄1

P

The functor CTQ̄1
P admits a right adjoint, which will be denoted by EisQ̄1

P ,
it sends K to (β1

P )∗(α1
P )!K. Actually, CTQ̄1

P maps D(Q̄M1 ) to DW (Q̄1).
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Similarly, CTQ̄2,ex

P admits a right adjoint functor

EisQ̄2,ex

P : DW (Q̄M2,ex)→ DW (Q̄2,ex)

that sends K to (β2,ex
P )∗(α

2,ex
P )!K.

We have the following diagram, where the right square is cartesian

Q̄1
β1

P← Q̄P1
α1

P→ Q̄M1
↑ π2,1,ex ↑ ↑ πM

2,1,ex

Q̄2,ex

β2,ex
P← Q̄P2,ex

α2,ex
P→ Q̄M2,ex

It follows that (π2,1,ex)∗ ◦ EisQ̄2,ex

P →̃ EisQ̄1
P ◦ (πM2,1,ex)∗ naturally. Passing

to left adjoint functors, we get the isomorphism (4.1).
So, if K ∈ DW (Q̄1) is cuspidal then CTQ̄2,ex

P W1,2,ex(K) = 0. By i), the
complexW1,2,ex(K) is the extension by zero from Q̄2, so CTQ̄2

P W1,2(K) = 0
and W1,2(K) is cuspidal. �

Recall the notation Q̄ = Q̄3. Let W : DW (Q̄1)→ DW (Q̄) be the functor
W2,3 ◦W1,2. Exactly as in ([5], Theorem 6.4), one derives from Proposi-
tion 4.2 the following corolary.

Corollary 4.4. — For k = 1, 2 let K1,K2 ∈ DW (Q̄k) be two objects
with K1 cuspidal. Then the map HomDW (Q̄k)(K1,K2) → HomDW (Q̄k+1)

(Wk,k+1(K1), Wk,k+1(K2)) is an isomorphism. So, for k = 1

HomDW (Q̄1)(K1,K2)→ HomDW (Q̄)(W (K1), W (K2))

is also an isomorphism.

4.2.2. We also have the following analog of ([5], Theorem 6.9). For k =
1, 2, 3 let DW

cusp(Q̄k) ⊂ DW (Q̄k) denote the full subcategory consisting of
cuspidal objects. This is a triangulated subcategory.

Theorem 4.5. — For k = 1, 2 the functor Wk,k+1 induces an equiva-
lence of triangulated categories DW

cusp(Q̄k) → DW
cusp(Q̄k+1). In particular,

W : DW
cusp(Q̄1)→ DW (Q̄) is an equivalence.

Proof. — We know by Proposition 4.2 thatWk,k+1 maps cuspidal objects
to cuspidal. Let

W−1
k,k+1 : DW

cusp(Q̄k+1)→ DW (Q̄k)

be the functor sending K to (πk+1,k,ex)!K ′, where K ′ is the extension by
zero of K to Q̄k+1,ex.

If K ∈ DW
cusp(Q̄k+1) then the complex W−1

k,k+1(K) is cuspidal. Indeed, for
k = 2 the assertion follows from Remark 4.3. For k = 1 set F = W−1

1,2 (K).
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We have CTQ̄1
P1
F = 0 by Remark 4.3. Further, WM

1,2,ex CTQ̄1
P (F ) = 0 by

(4.1). Since the functor WM
1,2,ex is an equivalence, we get CTQ̄1

P (F ) = 0.
Let us show that W−1

k,k+1 : DW
cusp(Q̄k+1) → DW

cusp(Q̄k) is quasi-inverse
to Wk,k+1. From ii) of Theorem 3.1 we conclude that Wk,k+1 ◦W−1

k,k+1 →̃
idDW

cusp(Q̄k+1) naturally, and there is a natural adjunction map W−1
k,k+1 ◦

Wk,k+1 → idDW
cusp(Q̄k).

For K ∈ DW
cusp(Q̄k) consider a distinguished triangle

W−1
k,k+1Wk,k+1(K)→ K → K ′

We have Wk,k+1(K ′) = 0 and K ′ is cuspidal. Hence, K ′ = 0 by Corol-
lary 4.4. �

5. Hecke functors

5.1. Relation with Whittaker categories

Recall the Hecke functors H,HQ̄k,ex and HQ̄k introduced in Sect. 2.2-
2.3.2.

Proposition 5.1. — The functor HQ̄k,ex sends DW (Q̄k,ex) to DW (X×
Q̄k,ex). The functor HQ̄k sends DW (Q̄k) to DW (X × Q̄k).

Proof. — Let xHQ̄k,ex denote the functor HQ̄k,ex followed by ∗-restriction
to x × Q̄k,ex ⊂ X × Q̄k,ex. To simplify the notation, we will show that
xHQ̄k+1,ex preserves the category DW (Q̄k+1,ex) for k = 1, 2. The other
cases are treated similarly.

Let y ∈ X be distinct from x. Let xHG be the preimage of x under
supp : HG → X. We have a well-defined functor xHQ̄y

k+1,ex : D(Q̄yk+1,ex)→
D(Q̄yk+1,ex). Let us show that it preserves the subcategory DW (Q̄yk+1,ex).
Indeed, the groupoid

Hk,y ×Q̄y
k
Q̄yk+1,ex → Q̄

y
k+1,ex

lifts to Q̄yk+1,ex ×BunG xHG with respect to both pk+1,ex and qk+1,ex, so
that we have diagrams

Hk,y ×Q̄y
k
Q̄y

k+1,ex

pZ← Z qZ→ Hk,y ×Q̄y
k
Q̄y

k+1,ex

↓ pr ↓ pr ↓ pr

Q̄y
k+1,ex

pk+1,ex← Q̄k+1,ex ×BunG xHG

qk+1,ex→ Qy
k+1,ex
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and
Hk,y ×Q̄y

k
Q̄y

k+1,ex

pZ← Z qZ→ Hk,y ×Q̄y
k
Q̄y

k+1,ex

↓ act ↓ act ↓ act

Q̄y
k+1,ex

pk+1,ex← Q̄k+1,ex ×BunG xHG

qk+1,ex→ Qy
k+1,ex

in both of which both squares are cartesian. Moreover, the compositions

Z pZ→ Hk,y ×Q̄y
k
Q̄yk+1,ex

χk,y→ A1

and
Z qZ→ Hk,y ×Q̄y

k
Q̄yk+1,ex

χk,y→ A1

coincide. Thus, xHQ̄y
k+1,ex preserves the equivariance condition. Using the

following remark, one finishes the proof.

Remark 5.2. — Let x1, . . . , xn be a finite collection of points of X. Let
K ∈ D(Q̄k,ex) be such that its restriction to Q̄yk,ex lies in DW (Q̄yk,ex) for
any y 6= xi. Then K ∈ DW (Q̄k,ex). Indeed, as y ranges over points of X
different from xi, the union of Q̄yk,ex is Q̄k,ex. Similar statement for DW (Q̄k)
holds. �

5.2. Relation with Whittaker functors

Similarly to the GLn case, Hecke functors and Whittaker functors com-
mute with each other. The proof of the following result mimics that of ([5],
Proposition 7.6).

Proposition 5.3. — i) For k= 1, 2 there is a natural isomorphism of
functors

HQ̄k+1,ex◦Wk,k+1,ex→̃(id×Wk,k+1,ex)◦HQ̄k : DW (Q̄k)→ DW (X×Q̄k+1,ex)

ii) There is a natural isomorphism of functors

HQ̄0,ex ◦W1,0,ex →̃ (id×W1,0,ex) ◦HQ̄1 : D(Q̄1)→ DW (X × Q̄0,ex)

Proof. — i) To simplify the notation, we replace the functors HQ̄k ,HQ̄k,ex

by xHQ̄k , xHQ̄k,ex . In view of Theorem 3.1, it suffices to show that for
K ∈ DW (Q̄k+1,ex) we have

xHQ̄k((πk+1,k,ex)!K) →̃ (πk+1,k,ex)!xHQ̄k+1,ex(K)

For x ∈ X let Q̄k+1,ex,x be the stack defined in the same way as Q̄k+1,ex

with the difference that the last map tk+1 is allowed to have a pole of order
2 at x for k = 1 (resp., of order 1 at x for k = 2).
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Write xHQ̄k for the preimage of x×Q̄k under supp×pk : Q̄k×BunG
HG →

X × Q̄k. We have a diagram

Q̄k+1,ex,x
pk+1,ex,x← xHQ̄k+1,ex,x

qk+1,ex→ Q̄k+1,ex

↓ ↓ ↓ πk+1,k,ex

Q̄k
pk← xHQ̄k

qk→ Q̄k,

where the stack xHQ̄k+1,ex,x is defined by the condition that the right square
is cartesian, and pk+1,ex,x is the natural map.

It suffices to show that for K ∈ DW (Q̄k+1,ex) the complex (pk+1,ex,x)!
q∗k+1,exK is supported on Q̄k+1,ex ⊂ Q̄k+1,ex,x. This direct image will verify
an appropriate equivariance condition on Q̄k+1,ex,x. So, our assertion is
verified stratum by stratum using an analog of Lemma 2.3.

Part ii) is proved similarly. �

6. Hyper-cuspidality

6.1. Definition

Recall that U0 denotes the center of U1. Set P0 = P1/U0. We have a

diagram of natural maps BunP0

αP0← BunP1

βP1→ BunG. Define the constant
term functor

CTP0 : D(BunG)→ D(BunP0)

as CTP0(K) = (αP0)!β
∗
P1

(K). The following is a geometric version of ([10],
Definition on p. 328).

Definition 6.1. — i) A complex K ∈ D(BunG) is hyper-cuspidal if
CTP0(K) = 0.
ii) A complex K ∈ D(Q̄1) is hyper-cuspidal if W1,0,ex(K) is the extension
by zero from Q̄0.

Denote by Dhcusp(BunG) ⊂ D(BunG) and by Dhcusp(Q̄1) ⊂ D(Q̄1) the
full triangulated subcategories consisting of hyper-cuspidal objects. Simi-
larly, we have Dhcusp(S × BunG) for a scheme of parameters S.

If f : S1 → S2 is a morphism of schemes then for the map f × id :
S1 × BunG → S2 × BunG the functors (f × id)! and (f × id)∗ preserve
hyper-cuspidality (and cuspidality). The same is true for the functor D(S)×
D(S × BunG)→ D(S × BunG) of the tensor product along S.

Proposition 6.2. — In both cases Dhcusp(BunG) ⊂ Dcusp(BunG) and
Dhcusp(Q̄1) ⊂ Dcusp(Q̄1) is a full triangulated subcategory.
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Proof. — Let K ∈ Dhcusp(BunG). It is clear that CTP1(K) = 0. Let us
show that CTP (K) = 0. We have a diagram

BunG ← BunP ← BunP2

↓ ↓
BunM ← BunB(M),

where B(M) ⊂M is a Borel subgroup, the square is cartesian, and the com-
position in the top line is βP2 . The right vertical arrow factors as BunP2

δ→
BunP2/U0 → BunB(M). So, it is enough to show that δ!β∗P2

(K) = 0.
Since we have the following diagram, where the square is cartesian

BunG ← BunP1 ← BunP2

↓ ↓ δ
BunP0 ← BunP2/U0 ,

the first assertion follows.
For sheaves on Q̄1 the proof is similar. �

6.2. Equivalence of categories

6.2.1. Recall that for each dominant coweight λ of G we have the Hecke
functor Hλ

G : D(BunG) → D(X × BunG) normalized to commute with
Verdier duality (cf. [2], Sect. 2.1.4 for the precise definition). In our notation
Hγ
G = H. It is well-known that the subcategory Dcusp(BunG) ⊂ D(BunG)

is preserved by Hecke functors. That is, each Hλ
G sends Dcusp(BunG) to the

category Dcusp(X × BunG).

Proposition 6.3. — The subcategory Dhcusp(BunG) ⊂ D(BunG) is
preserved by Hecke functors.

Proof. — Step 1. Let us show that H preserves Dhcusp(BunG). One
may introduce a version of stacks Q̄1 and Q̄0,ex, where instead of a fixed
T -torsor with trivial conductor (FT , ω̃) one considers all of them as addi-
tional parameter. In other words, the stack Q̄1 would classify FG ∈ BunG,
a line bundle B on X and a section t1 : B ↪→ M ; the stack Q̄0,ex would
classify the data just above together with B2 ⊗ Ω−1 → A.

An analog of Theorem 3.1 would hold in this setting. Then for
K ∈ D(BunG) hyper-cuspidality would be equivalent to requiring that
W1,0,ex(α∗K) is the extension by zero from Q̄0. Our assertion follows from
an analog of Proposition 5.3 ii) in this situation.
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Step 2. Recall that Hecke functors can be composed in the following
way. For G-dominant coweights λ1, λ2 the functor

Hλ1
G ?Hλ2

G : D(BunG)→ D(X × BunG)

is defined as

Hλ1
G ?Hλ2

G (K) = (M∗X � id)((id�Hλ1) ◦Hλ2
G (K))[−1](

−1
2

)

It is known ([2] Sect. 2.1.6 and [1]) that there is a canonical isomorphism
functorial in K

Hλ1
G ?Hλ2

G (K) →̃ ⊕
λ∈Λ+

Hλ
G(K)⊗HomǦ(V λ, V λ1 ⊗ V λ2)

The group of coweight of G orthogonal to all roots is free abelian of rank
1. It is easy to see that Hecke functors corresponding to both generators
±ω of this group preserve Dhcusp(BunG). One checks that any irreducible
representation V λ of Ǧ appears in (V γ)⊗k ⊗ V rω for some k > 0 and
r ∈ Z. Thus, our assertion follows from the fact that the subcategory
Dhcusp(BunG) is saturated: a direct summand of an object of Dhcusp(BunG)
is again an object of Dhcusp(BunG). �

Clearly, the functor HQ̄1 preserves the subcategory Dhcusp(Q̄1), and α∗

sends Dhcusp(BunG) to Dhcusp(Q̄1).

Proposition 6.4. — We have equivalences of triangulated categories
i) D(Q̄1)/Dhcusp(Q̄1) →̃ DW (Q̄1)
ii) Dcusp(Q̄1)/Dhcusp(Q̄1) →̃ DW

cusp(Q̄1).

Remark 6.5. — Let F : D → D′ be a triangulated functor between
triangulated categories. If F admits a fully faithfull right adjoint functor
F ′ : D′ → D then F induces an equivalence of triangulated categories
D/KerF → D′.

Proof of Proposition 6.4. —
i) Recall the closed immersion i0 : Q̄1 ↪→ Q̄0,ex and its complement

j : Q̄0 ↪→ Q̄0,ex. The functor i∗0 : DW (Q̄0,ex) → DW (Q̄1) admits a right
adjoint (i0)∗, which is fully faithfull. The category DW (Q̄0) is embedded in
DW (Q̄0,ex) fully faithfully by j!. By Remark 6.5, i∗ induces an equivalence
of triangulated categories

DW (Q̄0,ex)/DW (Q̄0) →̃ DW (Q̄1)

So, the functor i∗0 ◦W0,1,ex induces an equivalence i).
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ii) For K ∈ Dcusp(Q̄1) let us show that i∗0W0,1,ex(K) is cuspidal. We have
a distinguished triangle in D(Q̄1)

(π0,1)!j∗W0,1,ex(K)→ K → i∗0W0,1,ex(K)

Since (π0,1)!j∗W0,1,ex(K) is hyper-cuspidal, it is cuspidal by Proposition 6.2.
So, i∗0W0,1,ex(K) is also cuspidal.

We conclude that i∗0◦W0,1,ex induces a functor F :Dcusp(Q̄1)/Dhcusp(Q̄1)
→ DW

cusp(Q̄1). Let F−1 denote the composition

DW
cusp(Q̄1)→ Dcusp(Q̄1)→ Dcusp(Q̄1)/Dhcusp(Q̄1)

We claim that F and F−1 are quasi-inverse to each other. Indeed, the above
distinguished triangle shows that id →̃F−1 ◦F . Since for K ∈ DW (Q̄1) we
have W0,1,ex(K)→̃(i0)∗K naturally, it follows that id →̃F ◦ F−1. �

6.2.2. If D′ is a triangulated category and D ⊂ D′ is a full triangulated
subcategory, we write D⊥ ⊂ D′ for the full subcategory consisting of K ∈
D′ such that HomD′(L,K) = 0 for all L ∈ D. Then D⊥ ⊂ D′ is a full
triangulated subcategory, and the composition D⊥ → D′ → D′/D is fully
faithfull (cf. [12], Proposition 2.3.3, p.128).

Consider the subcategory Dhcusp(BunG)⊥ ⊂ Dcusp(BunG). Let xHλ
G :

D(BunG) → D(BunG) denote the functor Hλ
G followed by ∗-restriction to

x×BunG ↪→ X ×BunG. Since Hecke functors admit left and right adjoint
functors (cf.[2], 3.2.4), it follows that Dhcusp(BunG)⊥ is preserved by all
functors xHλ

G.

7. More Whittaker type functors

7.1. Whittaker categories on Z

7.1.1. Let Z1 be the stack of collections: (M,A) ∈ BunG together with
an isotropic subsheaf L2 ⊂ M , where L2 ∈ Bun2. The stack Z1 is nothing
but B̃unP in the notation of ([2], 1.3.6).

Let π2,1,ex : Z2,ex → Z1 be the stack over Z1 with fibre consisting of all
maps

(7.1) s : Ω−1 → A⊗ Sym2 L∗2

Let π2,1 : Z2 → Z1 be the open substack of Z2,ex given by the condition: s
is injective.

For k = 1, 2 we have the diagram

Zk
pk← Zk ×BunG

HG
qk→ Zk,
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where we used the map p : HG → BunG in the definition of the fibred
product, pk is the projection, and qk sends a point of Zk ×BunG

HG to F ′G
equiped with an isotropic subsheaf (and for k = 2 a section s′) that are the
compositions

L2 ↪→M ↪→M ′

s′ : Ω−1 ↪→ A⊗ Sym2 L∗2 ↪→ A′ ⊗ Sym2 L∗2

For k = 1, 2 we have the functor HZk : D(Zk)→ D(X ×Zk) given by

HZk(K) = (supp×pk)!q∗kK ⊗ Q̄`(
1
2
)[1]⊗〈γ,2ρ̌〉

Similarly, one defines the functor HZ2,ex : D(Z2,ex)→ D(X ×Z2,ex).
The projection αZ : Z1 → BunG fits into the diagram

Z1
p1← Z1 ×BunG

HG
q1→ Z1

↓ αZ ↓ ↓ αZ
BunG

p← HG
q→ BunG

So, (id×αZ)∗ ◦H →̃HZ1 ◦ α∗Z [1](1
2 ) naturally.

In this normalization the Hecke property on Zk (for k = 1, 2) with respect
to HZk and a given local system W on X writes

HZk(K) →̃W �K[3](
3
2
)

7.1.2. One defines the category DW (Z2,ex) as in Sect. 2.7-2.7.2. Let us
just indicate its description on strata (they are equivariant under the cor-
responding groupoids).

For d > 0 let dZ1 ⊂ Z1 be the locally closed substack given by: there is a
subbundle L′2 ⊂M such that L2 ⊂ L′2 is a subsheaf with d = deg(L′2/L2).
The stack dZ1 classifies collections: a modification of rank 2 bundles L2 ⊂
L′2 on X, and an exact sequence 0→ Sym2 L′2 →?→ A→ 0, where A is a
line bundle on X.

Let dZ2,ex = Z2,ex ×Z1
dZ1. An analog of Lemma 2.2 holds for this

stratification of Z2,ex, so it suffices to describe the categories DW (dZ2,ex)
for each d.

Let dZ ′2,ex ↪→ dZ2,ex be the closed substack given by the condition: s
factors as

Ω−1 → A⊗ Sym2 L′∗2 ↪→ A⊗ Sym2 L∗2

Let dχ2,ex : dZ ′2,ex → A1 be the map that pairs s with the extension
0→ Sym2 L′2 →?→ A→ 0.
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Let dP2,ex be the stack classifying: a modification of rank 2 bundles
L2 ⊂ L′2 on X with d = deg(L′2/L2), a line bundle A on X and a section
s : Sym2 L′2 → Ω⊗A. Let

φ2,ex : dZ ′2,ex → dP2,ex

be the projection.

Lemma 7.1. — Any object of DW (dZ2,ex) is supported at dZ ′2,ex. The
functor

dJ(K) = dχ∗2,exLψ ⊗ φ∗2,exK[1](
1
2
)⊗ dim.rel

provides an equivalence of categories dJ : D(dP2,ex) →̃ DW (dZ2,ex). Here
dim. rel is a function of a connected component of dZ ′2,ex given by dim. rel =
−χ(A−1 ⊗ Sym2 L′2).

One mimics the proof of Theorem 3.1 to get

Theorem 7.2. — There is an equivalence of categories WZ1,2,ex :
D(Z1) →̃ DW (Z2,ex), which is t-exact, and (π2,1,ex)! is quasi-inverse to
it. Moreover, for any K ∈ DW (Z2,ex) the natural map (π2,1,ex)!K →
(π2,1,ex)∗K is an isomorphism.

Let us just explain what this functor does on strata. We have the functor
dWZ1,2,ex : D(dZ1)→ DW (dZ2,ex)

defined as the composition

D(dZ1)
Four→ D(dP2,ex)

dJ→ DW (dZ2,ex)

If K ∈ D(Z1) is the extension by zero from dZ1 then WZ1,2,ex(K) is the
extension by zero of dWZ1,2,ex(K) under dZ2,ex ↪→ Z2,ex.

7.2. Relation to hyper-cuspidality

Denote by ZP0
1 the stack of collections: P0-torsor on X, that is, an exact

sequence 0 → L1 → L−1 → L−1/L1 → 0 on X with L1 ∈ Bun1, L−1 ∈
Bun3; and an isotropic subsheaf L2 ⊂ L−1 with L2 ∈ Bun2. Here ‘isotropic’
means that the composition ∧2L2 → ∧2L−1 → ∧2(L−1/L1) vanishes.

Denote by
πP0

2,1,ex : ZP0
2,ex → Z

P0
1

the stack over ZP0
1 with fibre consisting of all maps (7.1), where A =

det(L−1/L1).
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We have a natural diagram

Z2,ex

β2,ex
P1← ZP1

2,ex

α2,ex
P0→ ZP0

2,ex

↓ ↓ ↓ πP0
2,1,ex

Z1

β1
P1← ZP1

1

α1
P0→ ZP0

1

↓ ↓ ↓
BunG

βP1← BunP1

αP0→ BunP0 ,

where both right squares are cartesian (thus defining the stacks in the
middle column).

The constant term functor

CTZ1
P0

: D(Z1)→ D(ZP0
1 )

is defined by CTZ1
P0

(K) = (αZP0
)!(βZP1

)∗K. Similarly, CTZ2,ex

P0
: D(Z2,ex) →

D(ZP0
2,ex) is defined as

CTZ2,ex

P0
(K) = (α2,ex

P0
)!(β

2,ex
P1

)∗K

Definition 7.3. — A complex K ∈ D(Z1) (resp., K ∈ DW (Z2,ex)) is
hyper-cuspidal if CTZ1

P0
(K) = 0 (resp., CTZ2,ex

P0
(K) = 0). We denote by

Dhcusp(Z1) ⊂ D(Z1) and DW
hcusp(Z2) ⊂ DW (Z2,ex) the full triangulated

subcategories of hyper-cuspidal objects.

Clearly, K ∈ D(BunG) is hyper-cuspidal iff α∗ZK ∈ D(Z1) is hyper-
cuspidal. The following is easy to prove.

Proposition 7.4. — 1) A complex K ∈ DW (Z2,ex) is hyper-cuspidal if
and only if the following holds: for any k-point z = (L2 ⊂M, s : Sym2 L2 →
A⊗Ω) such that L2 has a rank 1 isotropic subbundle (with respect to the
form s) we have Kz = 0.

2) The functor WZ1,2,ex : D(Z1) →̃ DW (Z2,ex) induces an equivalence
of triangulated categories

Dhcusp(Z1) →̃ DW
hcusp(Z2) �

Remarks 7.5. — i) For each integer d we have a closed substack Yd ↪→
Z2,ex given by the condition that L2 admits an isotropic rank 1 subbundle
(with respect to s) of degree > d. We have Yd ⊂ Yd−1 ⊂ . . .. A complex
K ∈ DW (Z2,ex) is hyper-cuspidal if and only if its ∗-restriction to each Yd
vanishes.
ii) If s : Sym2 L2 → A⊗Ω is such that L2 has no rank 1 isotropic subbundles
then the form s is generically nondegenerate, that is, L2 ↪→ L∗2 ⊗A⊗ Ω is
an inclusion.
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Hecke functors preserve our equivariance conditions as well as hyper-
cuspidality. Moreover, they commute with WZ1,2,ex, namely as in Sect. 5
one proves

Proposition 7.6. — 1) The functor HZ2,ex sends DW (Z2,ex) to
DW (X ×Z2,ex) and DW

hcusp(Z2) to DW
hcusp(X ×Z2).

2) The functor HZ1 sends Dhcusp(Z1) to Dhcusp(X ×Z1).
3) We have a canonical isomorphism of functors HZ2,ex ◦ WZ1,2,ex →̃

(id×WZ1,2,ex) ◦HZ1 from D(Z1) to DW (X ×Z2,ex). �

7.3. Hecke functors on Z

In this subsection we prove the following generalization of ([5], Theo-
rem 7.9).

Proposition 7.7. — The functor HZ2 : D(Z2) → D(X × Z2) is right-
exact for the perverse t-structures.

Let π3,2 : Z3 → Z2 denote the stack classifying (L2 ⊂ M, s : Ω−1 ↪→
A⊗ Sym2 L∗2) ∈ Z2 together with a line subbundle L1 ⊂ L2 such that

H1(X,L−1
1 ⊗ (L2/L1)) = 0

The projection π3,2 is smooth and surjective. Consider the diagram

Z3
p3← Z3 ×BunG

HG
q3→ Z3

↓ π3,2 ↓ ↓ π3,2

Z2
p2← Z2 ×BunG

HG
q2→ Z2,

where the left square is cartesian. Define HZ3 : D(Z3)→ D(X ×Z3) by

HZ3(K) = (supp×p3)!q∗3K ⊗ Q̄`(
1
2
)[1]⊗〈γ,2ρ̌〉

For K ∈ D(Z2) we have π∗3,2H
Z2(K)[dim] →̃ HZ3(π∗3,2K)[dim], where dim

is a funtion of a connected component of Z3, namely the relative dimension
of the corresponding component over Z2. Since π∗3,2[dim] is exact, it suffices
to show that HZ3 is right-exact.

For d̄ = (d1, d2) with 0 6 d1 6 d2 denote by d̄Z3 ⊂ Z3 the locally closed
substack given by the condition that there exist a diagram

L̄1 ⊂ L̄2 ⊂ M

∪ ∪
L1 ⊂ L2,
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where L̄k ⊂M is a subbundle of rank k with deg(L̄k/Lk) = dk. The stacks
d̄Z3 form a stratification of Z3.

For x ∈ X let xHG ⊂ HG denote the preimage of x under supp : HG →
X. The following is straightforward.

Lemma 7.8. — For a k-point of Z3 let D be the effective divisor such
that s : Ω−1(D) ↪→ A ⊗ Sym2 L∗2 is a subbundle. Then the fibre of q3 :
Z3 ×BunG

HG → Z3 over this point is contained in

∪
x∈supp(D)

Z3 ×BunG xHG �

Given d̄ = (d1, d2) and d̄′ = (d′1, d
′
2) denote by d̄,d̄′Z3 ⊂ Z3 ×BunG

HG
the intersection

(p3)−1(d̄Z3) ∩ (q3)−1(d̄
′
Z3)

For x ∈ X let d̄,d̄
′

x Z3 denote the intersection of d̄,d̄
′Z3 with Z3 ×BunG xHG.

Combining Lemma 7.8 with ([5], Lemma 7.11), we are reduced to the fol-
lowing statement.

Lemma 7.9. — For any d̄, d̄′ and x ∈ X the sum of (the maximum of)
the dimensions of fibres of maps in the diagram

(7.2) Z3
p3← d̄,d̄′

x Z3
q3→ Z3

does not exceed 〈γ, 2ρ̌〉 = 3.

Proof. — A point of d̄,d̄
′

x Z3 gives rise to the diagram

L̄′1 ⊂ L̄′2 ⊂ M ′

∪ ∪ ∪
L̄1 ⊂ L̄2 ⊂ M

∪ ∪
L1 ⊂ L2,

with dk = deg(L̄k/Lk) and d′k = deg(L̄′k/Lk). We must examine the cases:
1) d̄ = d̄′. In this case a fibre of q3 is a point, because L̄′2 generates a

lagrangian subspace in M ′/M ′(−x). A fibre of p3 is 3-dimensional.
2) d′1 = d1, d′2 = d2 + 1. Then a fibre of q3 is 1-dimensional, becuase M

must contain L̄′1. A fibre of p3 is 2-dimensional.
3) d′1 = d1 + 1, d′2 = d2 + 1. Then L̄′2 = L̄2 + L̄′1 and L̄′1 = L̄1(x). A fibre

of q3 is 2-dimensional, a fibre of p3 is 1-dimensional.
4) d′1 = d1 + 1, d′2 = d2 + 2. Then L̄′2 = L̄2(x). A fibre of p3 is a point,

because M ′ = M + L̄′2. A fibre of q3 is 3-dimenisonal. �
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7.4. Hecke functors on P2

7.4.1. Recall the stack dP2 classifying collections: a modification of rank
2 bundles (L2 ⊂ L′2) on X with d = deg(L′2/L2), A ∈ Bun1, and a section
s : Ω−1 ↪→ A ⊗ Sym2 L′∗2 . Lemma 7.1 yields the equivalence of categories
dJ : D(dP2) →̃ DW (dZ2).

We are going to define for i = 0, 1, 2 the functors

iHP : D(d+iP2)→ D(X × dP2)

which, by construction, will satisfy the following property.

Proposition 7.10. — Let K ∈ DW (Z2), dK ∈ D(dP2) and dF ∈
D(X × dP2). Assume given for each d isomorphisms

dJ(dK) →̃ K |dZ′2 and dJ(dF ) →̃ HZ2(K) |X×dZ′2 ,

where we used the ∗-restrictions. Then dF is an extension of objects
iHP(d+iK) (i = 0, 1, 2) in the triangulated category D(X× dP2). More
precisely, there exist distinguished triangles in D(X × dP2)

C → dF → 2HP(d+2K) and 0HP(dK)→ C → 1HP(d+1K)

7.4.2. Let δ0 : X×dP2 → dP2 be the map sending (x ∈ X,L2 ⊂ L′2,A, s)
to (L2 ⊂ L′2,A(x), s′), where s′ is the composition

Sym2 L′2
s→ A⊗ Ω ↪→ A(x)⊗ Ω

Set 0HP(S) = δ∗0S. Since δ0 is quasi-finite, 0HP is right exact for the
perverse t-structures. Consider the diagram

X × dP2
id×δ0← X × dP2

δ2→ d+2P2,

where δ2 sends (x ∈ X,L2 ⊂ L′2,A, s) to (L2 ⊂ L′2(x),A(2x), s). Note that
id×δ0 is a closed immersion. Set

2HP(S) = (id×δ0)!δ∗2S

Since δ2 is quasi-finite, 2HP is right exact for the perverse t-structures.
Let dHP denote the stack of collections: A ∈ Bun1, modifications of

rank 2 vector bundles L2 ⊂ L′2 ⊂ L′′2 with d = deg(L′2/L2), where L′′2/L′2
is a torsion sheaf of length one supported at x ∈ X, and a commutative
diagram

(7.3)
Sym2 L′′2 → A⊗ Ω(x)
∪ ∪

Sym2 L′2
s→ A⊗ Ω

with s 6= 0.
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The existence of the latter diagram means that L′′2/L′2 is an isotropic
subspace of L′2(x)/L′2 equiped with the form s : Sym2(L′2(x)/L

′
2) →

(A(2x)/A(x))⊗ Ω.
We have the diagram

X × dP2
supp×pP← dHP

qP→ d+1P2,

where pP sends a point of dHP to (L2 ⊂ L′2,A, s). The map qP sends a
point of dHP to

(L2 ⊂ L′′2 ,A(x), s)

The map supp : dHP → X sends a point of dHP as above to x. We set

1HP(S) = (supp×pP)!q∗PS[1](
1
2
)

Proof of Proposition 7.10. — Recall the diagram we used to define the
functor HZ2

X ×Z2
supp×p2← Z2 ×BunG

HG
q2→ Z2

Given d 6 d′ set d,d
′Z2 = q−1

2 (d
′Z ′2)∩p−1

2 (dZ ′2). We will calculate the direct
image under supp×p2 with respect to the corresponding stratification of
Z2 ×BunG

HG. Let u, v denote the maps in the induced diagram

X × dZ ′2
u← d,d′Z2

v→ d′Z ′2
Let K̃ be the ∗-restriction of q∗2K to d,d′Z2. A point of d,d

′Z2 gives rise to
the diagram

L′′2 ⊂ M ′

∪ ∪
L′2 ⊂ M

∪
L2

with d = deg(L′2/L2) and d′ = deg(L′′2/L2). We must examine three cases:
1) d = d′. Then L′′2 = L′2, and a fibre of u admits a free transitive action

of the geometric fibre (A−1⊗Sym2 L′2)x. The complex K̃ is constant along
the fibres of u. So, 0HP(dK) is the contribution in dF of the stratum d,dZ2

2) d′ = d+ 2. For a k-point of X × dZ ′2 we have L′′2 = L2(x) and M ′ =
L′′2 +M in the above diagram. If Sym2 L′2 → A⊗Ω does not factor through
A⊗Ω(−x) then the fibre of u over this point is empty, otherwise this fibre
is a point scheme. In the second case the extension 0 → Sym2 L′′2 →? →
A(x)→ 0 is the push-forward of 0→ (Sym2 L′2)(x)→?→ A(x)→ 0 under

(Sym2 L′2)(x) ↪→ (Sym2 L′2)(2x)

So, the contribution of d,d+2Z2 in dF is 2HP(d+2K).
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3) d′ = d+1. Fix a k-point of X×dZ ′2 and denote by Ȳ the corresponding
fibre of u.

Let Y be the scheme of L′′2 such that L′2 ⊂ L′′2 ⊂ L′2(x) gives rise to
the diagram (7.3). Note that Y →̃P1 if the form on L′2(x)/L

′
2 is zero, Y

is a point if the kernel of the corresponding form is 1-dimensional, and Y

consists of two points if the form on L′2(x)/L
′
2 is non degenerate.

The fibres of the projection Ȳ → Y are isomorphic to A1. More precisely,
the 1-dimensional space A−1

x ⊗Sym2(L′2/L
′′
2(−x)) acts on a fibre freely and

transitively.
To see that the restriction K̃ |Ȳ is constant along the fibres of Ȳ → Y ,

note that the morphism A−1 ⊗ (Sym2 L′′2)(−x)→ Ω factors as

A−1 ⊗ (Sym2 L′′2)(−x) ↪→ N → Ω,

where N is the upper modification of A−1⊗ (Sym2 L′′2)(−x) defined by the
1-dimensional subspace A−1

x ⊗ Sym2(L′2/L
′′
2(−x)) in the geometric fibre

A−1 ⊗ Sym2(L′′2)x.
It easily follows that the contribution of d,d+1Z2 in dF is 1HP(d+1K). �

Corollary 7.11. — Let K ∈ DW (Z2) and dK ∈ D(dP2) equipped
with isomorphisms dJ(dK) →̃K |dZ′2 . Assume

HZ2(K) →̃W �K[3](
3
2
)

for a local system W on X. Then for each d the complex W � dK[3](3
2 ) is

an extension of objects iHP(d+iK) (i = 0, 1, 2) in the triangulated category
D(X × dP2).

7.5. Hecke functors on S̄

7.5.1. Let S̄ denote the stack classifying L2 ∈ Bun2, A ∈ Bun1 and an
inclusion of coherent sheaves s : Ω−1 ↪→ A⊗ Sym2 L∗2. Define the following
Hecke operators for i = 0, 1, 2

iHS̄ : D(S̄)→ D(X × S̄)

Let δ0 : X×S̄ → S̄ be the map sending (x ∈ X,L2,A, s) to (L2,A(x), s′),
where s′ is the composition

Sym2 L2
s→ A⊗ Ω ↪→ A(x)⊗ Ω

Set 0HS̄(K) = δ∗0K. Since δ0 is quasi-finite, 0HS̄ is right exact for the
perverse t-structures.
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Consider the diagram

X × S̄ id×δ0← X × S̄ δ2→ S̄,

where δ2 sends (x ∈ X,L2,A, s) to (L2(x),A(2x), s). Note that id×δ0 is a
closed immersion. Set

2HS̄(K) = (id×δ0)!δ∗2K

LetHS̄ denote the stack of collections: A ∈ Bun1, modifications of rank 2
vector bundles L2 ⊂ L′2, with div(L′2/L2) = x, and a commutative diagram

(7.4)
Sym2 L′2 → A⊗ Ω(x)
∪ ∪

Sym2 L2
s→ A⊗ Ω

with s 6= 0. The existence of the latter diagram means that L′2/L2 is an
isotropic subspace of L2(x)/L2 equiped with the form

s : Sym2(L2(x)/L2) → (A(2x)/A(x))⊗ Ω

.
We have the diagram

X × S̄ supp×pS̄← HS̄
qS̄→ S̄,

where pS̄ sends a point of HS̄ to (L2,A, s). The map qS̄ sends a point of
HS̄ to (L′2,A(x), s). The map supp : HS̄ → X sends a point (7.4) to x. Set

1HS̄(K) = (supp×pS̄)!q∗S̄K[1](
1
2
)

7.5.2. Define the functor FS̄ : D(BunG) → D(S̄) as follows. Given K ∈
D(BunG) set

(7.5) K1 = α∗ZK[dim. rel](
dim. rel

2
),

where dim. rel is the relative dimension of the corresponding connected
component of Z1 over BunG. Let KP denote the restriction of K1 to the
open substack BunP ⊂ Z1. Set

FS̄(K) = Four(KP ) |S̄

Proposition 7.12. — Let K ∈ D(BunG) be a Hecke eigen-sheaf cor-
responding to a Ǧ-local system WǦ on X. Set F = FS̄(K). Consider the
local systems W = W ω̌1

Ǧ
and W 0 = W ω̌0

Ǧ
. Then

1) there exist distinguished triangles in D(X × S̄)

C →W � F → 2HS̄(F )[3](
3
2
) and 0HS̄(F )[−3](

−3
2

)→ C → 1HS̄(F )
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2) For δ2 : X × S̄ → S̄ we have δ∗2F →̃W 0 � F .

Proof. — 1) Let K1 ∈ D(Z1) be given by (7.5). Recall that a point of
dZ1 is given by

(A ∈ Bun2, L2 ⊂ L′2, 0→ Sym2 L′2 →?→ A→ 0)

Let τP : dZ1 → BunP be the map forgetting L2. Calculation of dimensions
shows that for the ∗-restriction

K1 |dZ1 →̃ (τP )∗KP [3d](
3d
2

)

canonically. Recall that a point of dP2 is given by (A ∈ Bun1, L2 ⊂ L′2, s :
Sym2 L′2 → A⊗ Ω). Let τ : dP2 → S̄ be the map forgetting L2.

Set K2 = WZ1,2(K1). For each d set dK2 = τ∗FS̄(K)[3d]( 3d
2 ). Then for

the ∗-restriction we have canonically

K2 |dZ2 →̃
dJ(dK2)

One easily checks that for i = 0, 1, 2 we have canonical isomorphisms of
functors

(id×τ)∗ ◦ iHS̄ →̃ iHP ◦ τ∗

from D(S̄) to D(X × dP2).
By Corollary 7.11, for each d the complex W � dK2[3](3

2 ) is an extension
of objects iHP(d+iK2) (i = 0, 1, 2) in D(X × dP2). Specifying to d = 0, one
gets the desired assertion. �

7.6. The stacks rssS ⊂ S ⊂ S̄

7.6.1. Let S denote the stack classifying L ∈ Bun2, C ∈ Bun1 and a map
Sym2 L → C inducing an inclusion of coherent sheaves L ↪→ L∗ ⊗ C. The
map S → S̄ given by L2 = L, A = C ⊗ Ω−1 is an open immersion.

Since the open substack S ⊂ S̄ is defined by a condition at the generic
point of X, the Hecke operators iHS̄ preserve this open substack, we denote
the corresponding functors by

iHS : D(S)→ D(X × S) (i = 0, 1, 2)

Let Sd denote the union of those components of S for which 2 deg C −
2 degL = d. Note that d > 0 is even.

The nonramified two-sheeted Galois coverings X̃ → X are in bĳection
with H1

et(X,Z/2Z), and also in bĳection with the isomorphism classes of
pairs (E , κ), where E is a line bundle on X and κ : E⊗2 →̃O.
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Lemma 7.13. — The stack S0 classifies pairs: a two-sheeted nonramified
covering X̃ → X and a line bundle B on X̃.

Proof. — 1) Given a Galois covering π : X̃ → X of degree 2 and a line
bundle B on X̃ set L = π∗B. Let σ be the nontrivial automorphism of X̃
over X. Let E denote the anti-invariants of π∗OX̃ under σ, so π∗OX̃ →̃OX⊕
E . Note that π∗E →̃OX̃ is equiped with the nontrivial descent data

σ∗OX̃ = OX̃
−1→ OX̃

Set C = (detL) ⊗ E , so π∗C identifies with B ⊗ σ∗B equiped with the
natural descent data

σ∗(B ⊗ σ∗B) = B ⊗ σ∗B id→ B ⊗ σ∗B

We have canonically π∗L →̃B ⊕ σ∗B, where σ acts on B ⊕ σ∗B naturally.
The projection

Sym2(B ⊕ σ∗B)→ B ⊗ σ∗B
with the natural descent data gives rise to a map Sym2 L→ C, which is a
point of S0.

2) On the other side, let s : Sym2 L→ C be a point of S0. Let X̃ ⊂ P(L)
be the two-sheeted covering of X whose fibre over x ∈ X is the set of
isotropic subspaces in (L)x. Let B be the line bundle on X̃ whose fibre at
V ⊂ Lx is V itself. For π : X̃ → X we get π∗B →̃L canonically.

Let σ be the nontrivial automorphism of X̃ over X. Let E denote the
σ-anti-invariants in π∗O. By 1), we have the symmetric form Sym2 L →
E⊗detL, which is also a point of S0. Let E denote the kernel of Sym2 L→
E ⊗ detL. Let us show that the composition

E → Sym2 L→ C

vanishes. It suffices to prove this after applying π∗, but π∗E →̃B⊗2⊕σ∗B⊗2.
So, we get a map τL included into the commutative diagram

Sym2 L → E ⊗ detL
↓ ↙ τL

C

Since both symmetric forms on L are everywhere nondegenerate, τL is an
isomorphism. �

Remark 7.14. — i) A version holds for a curve which may be not com-
plete.
ii) If in the above lemma B = O on X̃ then Z/2Z acts on π∗B = L.
So, L →̃O ⊕ E , where E is the line bundle of anti-invariants. The map

TOME 56 (2006), FASCICULE 5



1548 Sergey LYSENKO

Sym2 L → E ⊗ detL becomes O ⊕ E ⊕ E⊗2 → O, it is given by (1, 0,−κ).
The curve X̃ can be recovered from (E , κ) as {e ∈ E | κ(e2) = 1}.

7.6.2. Let rssX(d) ⊂ X(d) be the open subscheme of divisors of the form
x1+. . .+xd with xi pairwise distinct. Denote by rssSd ⊂ Sd the preimage of
rssX(d) under the map Sd → X(d) sending a point of Sd to div(L∗ ⊗C/L).
Set

RCovd = Bun1×Bun1
rssX(d),

where the map rssX(d) → Bun1 sends D to OX(−D), and the map Bun1 →
Bun1 takes a line bundle to its tensor square.

It is understood that rssX(0) = Spec k and the point rssX(0) → Bun1 is
OX .

Proposition 7.15. — The two-sheeted coverings π : X̃ → X ramified
exactly at D ∈ rssX(d) (with X̃ assumed smooth) form an algebraic stack
that can be identified with RCovd.

The stack rssSd classifies collections: D ∈ rssX(d), a two-sheeted covering
π : X̃ → X ramified exactly at D, and a line bundle B on X̃.

Proof. — 1) Given a two-sheeted (ramified) covering π : X̃ → X and a
line bundle B on X̃ set L = π∗B. Let σ be the nontrivial automorphism
of X̃ over X. Let x1, . . . , xd ∈ X be the points of the ramification and
x̃1, . . . , x̃d their preimages.

We have a canonical inclusion π∗L ↪→ B ⊕ σ∗B, actually

π∗L = {v ∈ B ⊕ σ∗B | the image of v in (B ⊕ σ∗B)x̃i lies in Bx̃i

diag→ (B ⊕ σ∗B)x̃i for all i}
In particular, π∗(detL) →̃B ⊗ σ∗B(−x̃1 − . . .− x̃d).

Let E denote the σ-anti-invariants in π∗O, so π∗O →̃ O ⊕ E . Clearly,
π∗E →̃O(−x̃1− . . .− x̃d), and σ acts on π∗E as −1. This yields an isomor-
phism

κ : E⊗2 →̃O(−x1 − . . .− xd)
The diagram

π∗ Sym2 L ⊂ B⊗2 ⊕ (B ⊗ σ∗B)⊕ (σ∗B)⊗2

↓
π∗(E ⊗ detL) ⊂ B ⊗ σ∗B

shows that π∗ Sym2 L → π∗(E ⊗ detL)(2x̃1 + . . . + 2x̃d) is regular and
surjective. This map is compatible with the descent data, so gives rise to a
regular surjective map

(7.6) s : Sym2 L→ (E ⊗ detL)(x1 + . . .+ xd)
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For each xi on the fibre Lxi = B/B(−2x̃i) we get a symmetric form whose
kernel is exactly B(−x̃i)/B(−2x̃i). Further, s induces an inclusion

L ↪→ (E ⊗ L∗ ⊗ detL)(x1 + . . .+ xd) →̃L⊗ E(x1 + . . .+ xd)

and the quotient (L⊗ E(x1 + . . .+ xd))/L is of length d.
For each xi there is a base in L⊗Ôxi

and in E⊗Ôxi
such that the matrix

of s : Sym2(Ô2
xi

)→ Ôxi
(xi) over the formal disk at xi becomes(

t−1 0
0 1

)
,

where t ∈ Ôxi is a local parameter. In other words,

(E ⊗ L(x1 + . . .+ xd))/L →̃ O/O(−x1)⊕ . . .⊕O/O(−xd)

2) On the other side, let s : Sym2 L → C be a k-point of S with (L∗ ⊗
C)/L →̃Ox1 ⊕ . . . ⊕Oxd

. Set D = x1 + . . . + xd. Note that s is surjective.
Let I ⊂ Sym∗ L denote the homogeneous ideal generated by the image of
s∗ : C∗ ⊗ (detL)2 ↪→ Sym2 L. Let X̃ ⊂ P(L) denote the closed subscheme
given by I. Over X −D this is exactly the curve of isotropic subspaces in
L, as in Lemma 7.13. Write π : X̃ → X for the projection.

We claim that X̃ is smooth. To check this in the neighbourhood of xi,
pick a base e1, e2 in L ⊗ Ôxi

and e ∈ C ⊗ Ôxi
such that the matrix of

s : Sym2(L⊗ Ôxi
)→ C ⊗ Ôxi

in these bases becomes(
1 0
0 t

)
,

where t ∈ Ôxi is a local parameter. Then X̃×X Spec Ôxi identifies with the

closed subscheme Y
i
↪→ P1 × Spec Ôxi given by u2

1 + tu2
2 = 0, where u1, u1

are the homogeneous coordinates on P1. The ring

Ôxi
[u1/u2]/((u1/u2)2 + t)

is a standard ramified extension of Ôxi of degree 2. The scheme X̃ ×X
Spec Ôxi

is regular, so X̃ is smooth. Note that π−1(xi) =: x̃i are exactly
the ramification points of π.

Let B be the restriction of OP(L)(1) to X̃, it is equiped with π∗L → B.
Let us check that the induced map L→ π∗B is an isomorphism. This is easy
over X −D. Let i : Y ↪→ P1 × Spec Ôxi be as above, ξ : P1 × Spec Ôxi →
Spec Ôxi

be the projection. We must check that

ξ∗O(1)→ ξ∗i∗i
∗O(1)
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is an isomorphism. Define V by the exact sequence 0 → V → O(1) →
i∗i

∗O(1) → 0 on P1 × Spec Ôxi
. It suffices to show that R1ξ∗V = 0. But

this is easily checked fibrewise over Ôxi
.

Let σ be the nontrivial automorphism of X̃ over X. Let E denote the
σ-anti-invariants in π∗O, so π∗O →̃O⊕E . By 1), we have E⊗2 →̃O(−x1−
. . .−xd) canonically, and L is equiped with the form (7.6). Define the vector
bundle E on X by the exact sequence

0→ E → Sym2 L
s→ (E ⊗ detL)(x1 + . . .+ xd)

As in Lemma 7.13, one checks that the composition E → Sym2 L → C
vanishes, and the induced map (E ⊗ detL)(x1 + . . . + xd) → C is an iso-
morphism. �

7.7. Local version Sloc of the stack S

7.7.1. Set O = k[[t]] and F = k((t)). Let Sloc denote the stack classify-
ing: a free O-module L of rank 2, a free O-module C of rank 1, and a map
s : Sym2 L→ C inducing an inclusion L ↪→ L∗ ⊗ C.

Set Sym+(O) = {B ∈ Mat2(O) | tB = B, detB 6= 0}. This is a k-scheme
not of finite type. Further, GL(2,O)×O∗ is a group scheme over k (not of
finite type), and Sloc identifies with the stack quotient of Sym+(O) by the
action of GL(2,O)×O∗ given by B 7→ AB(tA)ε, (A, ε) ∈ GL(2,O)×O∗.

Given a k-point (L, C, s) of Sloc, there exist bases e1, e2 ∈ L and e ∈ C
such that the matrix of s in these bases is diag(ta, tb) for some a > b > 0
and

L∗ ⊗ C/L →̃O/taO ⊕O/tbO
It follows that two k-points (L, C, s) and (L′, C′, s′) are isomorphic if and
only if the O-modules L∗⊗C/L and L′∗⊗C′/L′ are isomorphic. We identify
the set of isomorphism classes of k-points of Sloc with

Φ = {(a, b) ∈ Z2 | a > b > 0}

For a closed point x ∈ X a choice of an isomorphism O →̃ ÔX,x yields a
map S → Sloc given by the restriction of (L, C, s) under Spec ÔX,x → X.

7.7.2. Denote by CovF the k-stack associating to a scheme S the group–
oid of pairs (S′, π), where S′ is a scheme, and π : S′ → S × SpecF is an
étale covering of degree 2.

The stack CovF has (up to isomorphism) two k-points (SpecF ′, π), where
the F -algebra F ′ is one of the following
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• F ′ →̃ k((t
1
2 )) (anisotropic case)

• F ′ →̃ F ⊕ F (hyperbolic case)
Given an S-point (S′, π) of CovF , consider the rank 2 vector bundle

L = π∗OS′ on S×SpecF . Let σ be the nontrivial automorphism of S′ over
S × SpecF . We have L = OS ⊕ E , where E denotes σ-anti-invariants in L.
We have a canonical isomorphism κ : E⊗2 →̃ OS×SpecF . As in Remark 7.14,
L is equiped with a symmetric form

Sym2 L →̃ OS×SpecF ⊕ E ⊕ E⊗2

↓ s ↙ (1,0,−κ)

OS×SpecF ,

The form s in non degenerate, that is, induces an isomorphism L →̃L∗ of
OS×SpecF -modules.

For a k-point of CovF , the symmetric form on L is either hyperbolic or
anisotropic, this explains our terminology ([9], ch. 1). In the anisotrpic case
κ(t

1
2 ⊗ t 1

2 ) = t.
It is easy to find a A1-point of CovF such that over Gm ⊂ A1 we get the

hyperbolic point of CovF and over 0 ∈ A1 we get the anisotropic point.
We have a morphism of stacks Sloc → CovF defined as follows. If

(L, C,Sym2 L
s→ C) is a S-point of Sloc then we have an isomorphism

of vector bundles L →̃ (L∗ ⊗ C) |S×SpecF over S × SpecF . Define S′ ⊂
P(L) |S×SpecF as the closed subscheme corresponding to the homogeneous
ideal in Sym2(L⊗ F ) generated by the image of

C∗ ⊗ (detL)2 ⊗ F → Sym2(L⊗ F )

Then π : S′ → S × SpecF is a point of CovF .
The image of the k-point (a, b) ∈ Φ under Sloc → CovF is anysotropic if

a− b is odd and hyperbolic otherwise.

7.8. Stratification of S

For d, k > 0 let
ξd,k : rssSd,k → rssSd

denote the stack over rssSd classifying: a point of rssSd given by (L, C,
Sym2 L

s→ C), a subsheaf L′ ⊂ L, where L/L′ is a torsion sheaf of length k
on X, such that the composition

Sym2 L′ → Sym2 L
s→ C

is surjective.
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We have a morphism of stack rssSd,k × X(m) → S sending (L′ ⊂ L, C,
Sym2 L

s→ C, D′ ∈ X(m)) to (L′, C(D′), s′), where s′ is the composition

Sym2 L′ → Sym2 L
s→ C ↪→ C(D′)

Proposition 7.16. — The stacks rssSd,k ×X(m) form a stratification
of S.

Proof. — Recall that a point of S is given by (L, C,Sym2 L
s→ C). Let

S0 ⊂ S be the open substack given by the condition that s is surjective.
Sratifying S by length of the cokernel of s, we are reduced to show that
rssSd,k form a stratification of S0.

Let (L′, C, s) be a k-point of S0. Set D = div((L′∗ ⊗ C)/L′) and write
D =

∑
dxx. The restriction of (L′∗ ⊗ C)/L′ to Spec ÔX,x is isomorphic to

O/tdx
x O, where tx is a local parameter at x. There is a unique subsheaf

L′ ⊂ L ⊂ L′∗ ⊗ C such that s extends to a map Sym2 L→ C yielding

L′ ⊂ L ⊂ L∗ ⊗ C ⊂ L′∗ ⊗ C,

and

(L∗ ⊗ C)/L |Spec ÔX,x
→̃

{
0, if dx is even
k, if dx is odd

Our assertion follows. �

7.9. The stack Sπ

7.9.1. Fix a k-point of RCovd given by Dπ ∈ rssX(d) and π : X̃ → X

ramified exactly at Dπ.
Given a point (L, C,Sym2 L

s→ C) of S, set

D = div(L∗ ⊗ C/L)

and let πL : X̃L → X −D denote the corresponding two-sheeted covering
defined as in Lemma 7.13. Denote by Sπ the stack classifying: a point
(L, C,Sym2 L

s→ C) of S together with an isomorphism over X −D

X̃L →̃ π−1(X −D)
↓ πL ↙

X −D

(note that Dπ does not intersect X −D, because πL is unramified).
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7.9.2. Let Ẽ be a rank one local system on X̃. We are going to define
the category PẼ(Sπ) of Ẽ-equivariant perverse sheaves on Sπ.

Let (X × Sπ)0 ⊂ X × Sπ be the open substack of those x ∈ X, (L, C,
Sym2 L→ C) ∈ Sπ, for which the map L→ L∗ ⊗C is an isomorphism over
the formal disk around x ∈ X.

Let (X̃ × Sπ)0 denote the preimage of (X × Sπ)0 under

π × id : X̃ × Sπ → X × Sπ
Write HSπ for the stack classifying: a point of (X × Sπ)0 given by (L, C,
Sym2 L

s→ C) ∈ Sπ, x ∈ X together with a commutative diagram

Sym2 L′ → C(x)
∪ ∪

Sym2 L
s→ C,

where L ⊂ L′ ⊂ L(x) is an upper modification of L with x = div(L′/L).
We have a diagram

(X̃ × Sπ)0
supp×pSπ← HSπ

qSπ→ Sπ,

where supp×pSπ
sends a point of HSπ

to (L, C,Sym2 L
s→ C) ∈ Sπ together

with the point x̃ ∈ X̃ corresponding to the isotropic subspace L′/L ⊂
L(x)/L, so π(x̃) = x. Actually, supp×pSπ is an isomorphism. The map qSπ

sends the above point to

(L′, C(x),Sym2 L′ → C(x)) ∈ Sπ
The following is a version of the Waldspurger category that will be intro-

duced in Sect. 8.

Definition 7.17. — Let PẼ(Sπ) be the category, whose objects are
pairs: a perverse sheaf F on Sπ and an isomorphism

(supp×pSπ
)!q∗Sπ

F →̃ Ẽ � F

over (X̃×Sπ)0. The morphisms in P(Sπ) are the maps of the corresponding
perverse sheaves compatible with the equivariance isomorphisms.

8. Waldspurger model for GL2

8.1. Local model

Fix a k-point of RCovd given by Dπ ∈ rssX(d) and π : X̃ → X ramified
exactly at Dπ. Denote by σ the nontrivial automorphism of X̃ over X, let
E be the σ-anti-invariants in π∗OX̃ .
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Fix a k-point x ∈ X, write Ox for the completed local ring of X at x
and Fx for its fraction field. Write F̃x for the étale Fx-algebra of regular
functions on X̃ ×X SpecFx. If x ∈ Dπ then F̃x is anysotropic otherwise it
is hyperbolic (cf. Sect. 7.7.2). Denote by Õx the ring of regular functions
on X̃ ×X SpecOx.

Definition 8.1. — Let Waldx,locπ denote the stack classifying: a free
Ox-module L of rank 2, a free F̃x-module B of rank 1 together with an
isomorphism ξ : L⊗Ox

Fx →̃B of Fx-modules.

Let GL(F̃x) denote the group of automorphisms of the Fx-linear vector
space F̃x, let GL(Õx) ⊂ GL(F̃x) be the stabilizor of Õx. Then Waldx,locπ

identifies with the stack quotient of the affine grassmanian
GrF̃x

:= GL(F̃x)/GL(Õx) by the group ind-scheme F̃ ∗x .
A choice of a base in the free Ox-module Õx yields isomorphisms

GL(F̃x) →̃ GL2(Fx), GL(Õx) →̃ GL2(Ox), and an inclusion F̃ ∗x ↪→GL2(Fx).
For a k-point ofWaldx,locπ consider the set of free Õx-submodules of rank

one Bex ⊂ B such that ξ(L) ⊂ Bex. This set contains a unique minimal
element that we denote by Bex.

In both split (x /∈ Dπ) and nonsplit (x ∈ Dπ) case the isomorphism
classes of k-points ofWaldx,locπ are indexed by non negative integers m > 0,
the corresponding point is given by deg(Bex/L) = m. Denote by Grm

F̃x
the

F̃ ∗x -orbit on GrF̃x
corresponding to m > 0.

In matrix terms, in the split case Õx →̃Ox ⊕ Ox has a distinguished
(defined up to permutation) base {(1, 0), (0, 1)} over Ox. This base yields
an inclusion F̃ ∗x ↪→ GL2(Fx) whose image is the set of diagonal matrices.
Then F̃ ∗x -orbit on GL2(Fx)/GL2(Ox) corresponding to m > 0 is given by
the matrix (

tm 1
0 1

)
,

where t ∈ Ox is a local parameter (cf. [3], Sect. 1).
In the nonsplit case the lattice Ox ⊕ Oxtm+ 1

2 ⊂ F̃x is a representative
for the F̃ ∗x -orbit on GrF̃x

corresponding to m > 0. Here t ∈ Ox is a local
parameter.

8.2. Global model

8.2.1. In the same manner as in [4] we can consider the following global
model of Waldx,locπ .

ANNALES DE L’INSTITUT FOURIER



WHITTAKER AND BESSEL FUNCTORS 1555

Definition 8.2. — Let Waldxπ denote the stack classifying: a rank 2
vector bundle L on X, a line bundle B on π−1(X −x) and an isomorphism
L →̃π∗B over X − x.

As in Proposition 7.15, a point of Waldxπ gives rise to a map

s : Sym2 L→ (E ⊗ detL)(Dπ +∞x)

Write Waldx,6mπ ↪→Waldxπ for the closed substack given by the condition
that

(8.1) s : Sym2 L→ (E ⊗ detL)(Dπ +mx)

is regular.

Lemma 8.3. — The stackWaldx,6mπ is algebraic, soWaldxπ is an induc-
tive limit of algebraic stacks.

Proof. — Set RCov
d

= Bun1×Bun1X
(d), where the map X(d) → Bun1

sends D to OX(−D) and Bun1 → Bun1 takes a line bundle to its tensor
square. We have a map Sd → RCov

d
sending (L,Sym2 L→ C) to (detL)⊗

C−1 equiped with (detL)⊗2 ⊗ C⊗−2 →̃O(−D), D ∈ X(d).
For d = degDπ + 2m consider the k-point (E(−mx), (E(−mx))⊗2 →̃

O(−Dπ − 2mx)) of RCov
d
. Then Waldx,6mπ is the fibre of Sd → RCov

d

over this k-point. �

Denote by

(8.2) Waldx,mπ ↪→Waldx,6mπ

the open substack given by the condition that (8.1) is surjective. The stack
Waldx,mπ classifies collections: a line bundle Bex on X̃, for which we set
Lex = π∗Bex, and a lower modification L ⊂ Lex of vector bundles on X

such that the composition is surjective

Sym2 L→ Sym2 Lex
s→ C

and div(Lex/L) = mx. Here we have denoted C = (E ⊗ detLex)(Dπ), so
(Lex, C,Sym2 Lex

s→ C) is the point of rssS corresponding to Bex.
Another way to say is that the stratum Waldx,mπ is given by fixing an

extension of B to a line bundle Bex on X̃ such that for Lex := π∗Bex we have
L ⊂ Lex and Bex is the smallest with this property. Then Lex/L →̃Ox/tm,
where t ∈ Ox is a local parameter.

Denote by prW :Waldx,mπ → Pic X̃ the map sending the above point to
Bex.
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8.2.2. Here is one more description. Denote by (Pic X̃)x the scheme clas-
sifying a line bundle Bex on X̃ together with a trivialization B⊗ Õx →̃ Õx.
The group Õ∗x acts on (Pic X̃)x by changing the trivialization. It is well-
known that this action extends to an action of the group ind-scheme F̃ ∗x
on (Pic X̃)x.

Consider the action of F̃ ∗x on (Pic X̃)x × GrF̃x
which is the product of

natural actions on the factors. Then Waldxπ identifies with the stack quo-
tient of (Pic X̃)x×GrF̃x

by F̃ ∗x . Let fW : (Pic X̃)x×GrF̃x
→Waldxπ be the

corresponding map.

8.3. Waldspurger category

Fix a rank one local system Ẽ on X̃. The Õ∗x-orbits on GrF̃x
are finite-

dimensional. So, we have the category of Õ∗x-equivariant perverse sheaves
on GrF̃x

.

Definition 8.4. — Waldspurger category PẼ(GrF̃x
) is the category of

those Õ∗x-equivariant perverse sheaves on GrF̃x
that

• (the nonsplit case) under the action of a uniformizer ∈ F̃ ∗x/Õ∗x
change by Ẽx̃, where π(x̃) = x.

• (the split case) under the action of a uniformizer tx̃ ∈ F̃ ∗x/Õ∗x change
by Ẽx̃ for both x̃ ∈ π−1(x).

One should be carefull about the following. Though PẼ(GrF̃x
) is a full

subcategory of the category P(GrF̃x
) of perverse sheaves on GrF̃x

, the Ext
groups in these two categories may be different. This is due to the fact that
the Õ∗x-orbits on GrF̃x

are not contractible.
Denote by AẼ the automorphic local system on Pic X̃ corresponding to

Ẽ. For d > 0 its inverse image under X̃(d) → Picd X̃ identifies with the
symmetric power Ẽ(d) of Ẽ. Define the perverse sheaf Wm on Waldxπ as
the Goresky-MacPherson extension of

pr∗W AẼ ⊗ Q̄`[1](
1
2
)⊗ dimWaldx,m

π

under (8.2).
For any k-point of GrF̃x

its stabilizor in F̃ ∗x is connected. So, the irre-

ducible objects of PẼ(GrF̃x
) are indexed by m > 0, the irreducibe object

W̃m ∈ PẼ(GrF̃x
), defined up to a scalar automorphism, can be described

by the following property: for the diagram

Waldxπ
fW← (Pic X̃)x ×GrF̃x

pr× id→ Pic X̃ ×GrF̃x
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we have (pr∗AẼ) � W̃m →̃ f∗WWm.
The group scheme (Pic Ẽ)x acts on Waldxπ as follows. The action map

act : (Pic Ẽ)x ×Waldxπ →Waldxπ
sends (B′, ν : B′⊗Õx →̃ Õx) ∈ (Pic Ẽ)x and (B, L, π∗B →̃L |X−x) ∈ Waldxπ
to

(B ⊗ B′, π∗(B ⊗ B′) →̃L′ |X−x) ∈ Waldxπ,

where the vector bundle L′ on X is the gluing of π∗(B ⊗ B′) |X−x and
L |SpecOx

via the isomorphism (π∗(B ⊗ B′))⊗ Fx →̃L⊗ Fx induced by ν.
Let PẼ(Waldxπ) be the category of perverse sheaves on Waldxπ that

change by pr∗ Ẽ under the action of (Pic Ẽ)x, where pr : (Pic Ẽ)x → Pic Ẽ
is the projection.

Here is one more description of this category. Let

qWald : π−1(X − x)×Waldxπ →Waldxπ
be the map sending (x̃,B, π∗B →̃L |X−x) to (B(x̃), π∗B(x̃) →̃L′ |X−x),
where the vector bundle L′ on X is the gluing of π∗B(x̃) |X−x and L⊗Ox
via the isomorphism (π∗B(x̃))⊗Fx →̃L⊗Fx, which is due to the fact that
π(x̃) 6= x.

Then PẼ(Waldxπ) is equivalent to the category of pairs: a perverse sheaf
F on Waldxπ and an isomorphism q∗WaldF →̃ Ẽ � F .

The irreducible objects of PẼ(Waldxπ) are exactly Wm, m > 0.

8.4. Hecke operators on the Waldspurger category

Let Sph(GrGL2) be the category of GL2(Ox)-equivariant (spherical) per-
verse sheaves on the affine grassmanian GrGL2 . This is a tensor category
equivalent to the category of representations of GL2 over Q̄` ([8]). It acts
on D(Waldxπ) by Hecke functors as follows.

Let xHGL2 denote the Hecke stack classifying vector bundles L,L′ on X
together with an isomorphism β : L →̃L′ |X−x over X − x. Consider the
diagram

Waldxπ
pW← Waldxπ ×Bun2 xHGL2

qW→ Waldxπ,

where pW sends a collection (L,L′, β,B, π∗B →̃L |X−x) to (L,B, π∗B →̃
L |X−x) and qW sends this collection to (L′,B, π∗B →̃L′ |X−x).

Let Bunx2 be the stack classifying L ∈ Bun2 together with its trivializa-
tion over SpecOx. The projection qGL2 : xHGL2 → Bun2 forgetting L can
be realized as a fibration

Bunx2 ×GL2(Ox) GrGL2 → Bun2,
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so for K ∈ D(Waldxπ) and A ∈ Sph(GrGL2) we may form the corresponding
twisted exterior product K�̃A. It is normilized so that it is perverse for K
perverse and

D(K�̃A) →̃D(K)�̃ D(A)

Let H(A, ·) : D(Waldxπ)→ D(Waldxπ) be the functor given by

H(A,K) = (pW)!(K�̃A)

These functors are compatible with the tensor structure on Sph(GrGL2) in
the sense that we have isomorphisms

(8.3) H(A1,H(A2,K)) →̃H(A1 ∗ A2,K),

where A1∗A2 ∈ Sph(GrGL2) is the convolution (cf. [4], Sect. 5). One checks
that PẼ(Waldxπ) is preserved by Hecke functors.

Theorem 8.5. — 1) For d > 0 let λ = (d, 0) ∈ Λ+
GL2

. We have a
canonical isomorphism

H(Aλ,W0) →̃Wd

2) For λ = (1, 1) and d > 0 we have canonically

H(Aλ,Wd) →̃


Wd ⊗ Ẽ⊗2

x̃ , the nonsplit case, π(x̃) = x

Wd ⊗ Ẽx̃1 ⊗ Ẽx̃2 , the split case, π−1(x) = {x1, x2}

8.5. Proofs

Set Λ+
GL2

= {(a1 > a2) | ai ∈ Z}. We view Λ+
GL2

as the set of dominant
coweights for GL2. For λ = (a1, a2) ∈ Λ+

GL2
denote by Grλ

F̃x
⊂ GrF̃x

the
locally closed subscheme classifying Ox-sublattices L ⊂ ta2Õx such that

ta2Õx/L →̃Ox/ta1−a2

as Ox-modules. Let Gr
λ

F̃x
denote the closure of Grλ

F̃x
in GrF̃x

.
Our proof of Theorem 8.5 is inspired by ([4], Theorem 4), the following

is a key point.

Proposition 8.6. — For m > 0 and a dominant coweight λ = (a1 >

a2) of GL2 the intersection Gr
λ

F̃x
∩Grm

F̃x
is non empty iff 0 6 m 6 a1 − a2

and has pure dimension m.
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Proof. — 1) (the split case). Use the matrix realization of GrF̃x
as in

Sect. 8.1. Using the action of the center of GL2, we may reduce to the
case λ = (a, 0). Stratify Gr

λ

GL2
by intersecting with N(Fx)-orbits on the

affine grassmanian, where N ⊂ GL2 is the standard maximal unipotent
subgroup. For all strata the argument is the same, let us explain it for the
open stratum{(

ta b

0 1

)
, b ∈ Ox

}
/

{(
1 c

0 1

)
, c ∈ Ox

}
,

which we identify with Ox/ta via the map
(
ta b

0 1

)
7→ b. The point

b ∈ O/ta lies in Grm
F̃x

iff b ∈ ta−mO∗x.
2) (the nonsplit case). Let t ∈ Ox be a local parameter. Multiplying by

an appropiate power of t we are reduced to the case λ = (a, 0). Then Gr
λ

F̃x

is the scheme of Ox-sublattices L ⊂ Õx such that dim(Õx/L) = d. The
intersection Gr

λ

F̃x
∩Grm

F̃x
is then the scheme of sublattices

L ⊂ t 1
2 (a−m)Õx ⊂ Õx

such that dim(t
1
2 (a−m)Õx)/L = m and L * t

a−m+1
2 Õx. Our assertion fol-

lows. �

Remark 8.7. — In the nonsplit case the schemes Gr
λ

F̃x
∩Grm

F̃x
are con-

nected, whence in the split case they admit several connected components.

Actually, we need the following a bit different result. Given λ ∈ Λ+
GL2

and Ox-lattice L ⊂ F̃x, denote by Gr
λ

F̃x
(L) ⊂ GrF̃x

the closed subscheme
of Ox-lattices L′ ⊂ F̃x such that

(L′, L, L⊗ Fx →̃L′ ⊗ Fx) ∈ Gr
λ

GL2
(L)

More precisely, for any isomorphism L →̃Ox ⊕Ox of Ox-modules the cor-
responding point

(L′, L′ ⊗ Fx →̃Fx ⊕ Fx) ∈ Gr
λ

GL2

Proposition 8.8. — Let m > 0 and L ⊂ F̃x be a Ox-lattice lying in
Grm

F̃x
. For a dominant coweight λ = (d, 0) of GL2 the intersection Gr

λ

F̃x
(L)∩

Gr0
F̃x

is empty unless d > m. For d > m it is a point (resp., a union of
d−m+ 1 points) in the nonsplit case (resp., in the split case).

Proof. — 1) (the nonsplit case). Multiplying by a suitable element of
F̃ ∗x , we may assume L = Ox ⊕ Oxtm+ 1

2 . The scheme Gr
λ

F̃x
(L) classifies
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Ox-sublattices L′ ⊂ L such that dim(L/L′) = d. A point L′ of this scheme
lies in Gr0

F̃x
if and only if L′ = t

d+m
2 Õx. Our assertion follows.

2) (the split case). Choose a base {e1, e2} in Õx over Ox as in 8.1. Mul-
tiplying by an suitable element of F̃ ∗x we may assume

L = tmOxe1 ⊕Ox(e1 + e2)

The scheme Gr
λ

F̃x
(L) classifies Ox-sublattices L′⊂L such that dim(L/L′)=

d. A point L′ of this scheme lies in Gr0
F̃x

if and only if L′ = ta1Oxe1 ⊕
ta2Oxe2 for some a1, a2 > 0 such that d+m = a1 +a2. So, the intersection
in question identifies with the set of pairs {(a1, a2) | ai > m, d + m =
a1 + a2}. �

Proof of Theorem 8.5. — 2) is easy and left to the reader.
1) We change the notation letting λ = (0,−d) ∈ Λ+

GL2
for given d > 0.

We will establish canonical isomorphisms

H(Aλ,W0) →̃


Wd ⊗ Ẽ⊗−2d

x̃ , the nonsplit case, π(x̃) = x

Wd ⊗ Ẽ⊗−dx̃1
⊗ Ẽ⊗−dx̃2

, the split case, π−1(x) = {x1, x2}

Denote by Km the ∗-restriction of H(Aλ,W0) to Waldx,mπ . Since Waldx,0π
is closed in Waldxπ and W0 is self-dual (up to replacing Ẽ by Ẽ∗), our
assertion is reduced to the following lemma. �

Lemma 8.9. — We have Km = 0 unless m 6 d. The complex Km is
placed in non positive (resp., strictly negative) perverse degrees for m = d

(resp., for m < d). We have canonically

Kd →̃ (pr∗W AẼ)⊗R⊗ Q̄`[1](
1
2
)⊗ dimWaldx,d

π ,

where prW :Waldx,dπ → Pic X̃ is the projection and

R →̃


Ẽ⊗−2d
x̃ , the nonsplit case, π(x̃) = x

Ẽ⊗−dx̃1
⊗ Ẽ⊗−dx̃2

, the split case, π−1(x) = {x1, x2}

Proof. — Consider a point η = (Bex, L ⊂ Lex = π∗Bex) of Waldx,mπ ,
so mx = div(Lex/L). Write xH

λ

GL2
for the closed substack of xHGL2 that

under the projection qGL2 identifies with

Bunx2 ×GL2(Ox)Gr
λ

GL2
→ Bun2

Choose a trivialization of Bex over Spec Õx. The fibre of pW :
Waldxπ ×Bun2 xH

λ

GL2
→ Waldxπ over η identifies with Gr

−w0(λ)

GL2
(L), where
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we have set −w0(λ) = (d, 0). For the diagram

Waldxπ
pW← Waldxπ ×Bun2 xH

λ

GL2

qW→ Waldxπ

we get H(Aλ, ·) = (pW)!q∗W(·)[d](d2 ). Only the stratum

Gr
−w0(λ)

GL2
(L) ∩Gr0

F̃x

contributes to Km. By Proposition 8.8, for m = d this is a point whose
image under qW is

L′ =
{
π∗(Bex(−2dx̃)), the nonsplit case, π(x̃) = x

π∗(Bex(−dx̃1 − dx̃2)), the split case, π−1(x) = {x̃1, x̃2}

Since dimWaldx,mπ = m+ dim Pic X̃, our assertion follows from the auto-
morphic property of AẼ. Namely, for the map mx̃ : Pic X̃ → Pic X̃ sending
B to B(x̃) we have canonically m∗

x̃AẼ →̃AẼ ⊗ Ẽx̃. �

Remarks 8.10. — i) Our proof of Theorem 8.5 also shows the following.
The stratum Waldx,dπ is dense in Waldx,6dπ . Besides, Wd[−dimWaldx,dπ ]
is a constructable sheaf on Waldxπ placed in usual cohomological degree
zero. Its fibres over points of Waldx,mπ are 1-dimensional (resp., d−m+ 1-
dimensional) in the non split (resp., split) case for m 6 d.

ii) The category PẼ(Waldxπ) is not semisimple. Indeed, for λ = (0,−1)
consider the finite map

qW :Waldx,0π ×Bun2 xH
λ

GL2
→Waldx,61

π

It is an isomorphism over the open substack Waldx,1π . Since the open im-
mersion Waldx,1π ↪→ Waldx,0π ×Bun2 xH

λ

GL2
is affine, the open immersion

Waldx,1π ↪→ Waldx,61
π is also affine. Let Wm,! denote the !-extension of

Wm |Waldx,m
π

under (8.2). Then W1,! ∈ PẼ(Waldxπ). So, if this category
was semisimple, the exact sequence of perverse sheaves

0→ K →W1,! →W1 → 0

would split, which contradicts the fact that the ∗-restriction W1 |Waldx,0
π

is
non zero.

8.6. Casselman-Shalika formula

For λ ∈ Λ+
GL2

write Uλ for the irreducible representation of the Langlands
dual group ǦL2 over Q̄`. Let E be a ǦL2-local system on X equiped with
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an isomorphism

U
(1,1)
E →̃


Ẽ⊗2
x̃ , the nonsplit case, π(x̃) = x

Ẽx̃1 ⊗ Ẽx̃2 , the split case, π−1(x) = {x1, x2}

We associate to E the ind-object KE of PẼ(Waldxπ) given by

KE = ⊕
d>0
Wd ⊗ U (0,−d)

E

For a representation U of ǦL2 write AU for the object of Sph(GrGL2)
corresponding to U via the Satake equivalence Rep(ǦL2) →̃ Sph(GrGL2).

One formally derives from Theorem 8.5 the following.

Corollary 8.11. — For any U ∈ Rep(ǦL2) there is an isomorphism
αU : H(AU ,KE) →̃KE⊗UE . For U,U ′ ∈ Rep(ǦL2) the diagram commutes

H(AU ′ ,H(AU ,KE)) αU→ H(AU ′ ,KE ⊗ UE)
↓ γ ↓ αU′⊗id

H(AU⊗U ′ ,KE)
αU⊗U′→ KE ⊗ (U ⊗ U ′)E ,

where γ is the isomorphism (8.3).

Remark 8.12. — One may view GrF̃x
as the ind-scheme classifying a

rank 2 vector bundle L on X together with an isomorphism L→̃π∗OX̃ |X−x.
This yields a natural map GrF̃x

→Waldxπ.
The results of Sect. 8 hold also in the case of a finite base field k = Fq.

In this case we have the Waldpurger module WAχ introduced in 1.4. For
d > 0 consider the function trace of Frobenius of Wd on Waldxπ(k), let Wd

be its restriction to GrF̃x
. Then {Wd, d > 0} is a base of the vector space

WAχ.
The space WAχ also has the base (indexed by d > 0) consisting of

functions supported over the F̃ ∗x -orbit corresponding to d. The Casselman-
Shalika formula in this base is given by ([3], Theorem 1.1), it involves some
nontrivial denominators. This corresponds to the fact that our ind-object
KE is not locally finite on Waldxπ.
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Appendix A. Fourier transforms

For the convenience of the reader, we collect some well-known observa-
tions about equivariant categories and Fourier transforms that we need.
The proofs are omitted.

A.1.

Let S be a scheme of finite type and pr : G→ S be a groupoid. Assume
that pr is of finite type, with contractible fibres and smooth of relative
dimension k. Assume also that act : G→ S is smooth of relative dimension
k. Let L be a local system on G whose restriction to the unit section S → G

is trivialized.
By ([5], Lemma 4.8), we have the Serre subcategory PW (S) ⊂ P(S)

of perverse sheaves K ∈ P(S) such that there exists an isomorphism
act∗K ⊗ L→̃ pr∗K whose restriction to the unit section is the identity.
Let DW (S) ⊂ D(S) denote the full triangulated subcategory generated by
PW (S).

We write DW
L (S) if we need to express the dependence on L. For K ∈

D(S) we have K ∈ DW
L (S) if and only if D(K) ∈ DW

L∗(S).
Let β : S′ → S be an S-scheme of finite type. The groupoid G “lifts" to

S′ if we have two cartesian squares

G
pr→ S

↑ β′ ↑ β
G′

pr′→ S′

and
G

act→ S

↑ β′ ↑ β
G′

act′→ S′

that make G′ a groupoid over S′.
For the local system β′∗L we get the category DW (S′). The functors β!

and β∗ send DW (S′) to DW (S). The functors β∗ and β! send DW (S) to
DW (S′).

A.2.

Let Y → Z be a morphism of schemes of finite type and E → Z be a
vector bundle over Z. Assume that E acts on Y over Z, and act : E ×Z
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Y → Y is smooth of relative dimension rkE. We have a natural pairing
χ : E∗ ×Z E ×Z Y → A1. For the local system L = χ∗Lψ we get the
category DW (E∗ ×Z Y ) as in A.1.

Let F : D(Y )→ DW (E∗ ×Z Y ) be the functor

F (K) = Four(act∗K)[rkE](
rkE

2
)

Then F is an equivalence of triangulated categories, t-exact and commutes
with Verdier duality (up to replacing ψ by ψ−1). The quasi-inverse functor
is given by K 7→ pr!(K), where pr : E∗ ×Z Y → Y is the projection.

Moreover, for any K ∈ DW (E∗×Z Y ) the natural map pr!(K) →̃ pr∗(K)
is an isomorphism.

A.3.

Suppose we are in the situation of A.2. Assume in addition that p : E′ →
E is a morphism of vector bundles over Z. Then E′ also acts on Y over Z
(via E), and we have the functor F ′ : D(Y ) → DW (E′∗ ×Z Y ) defined as
in A.2.

Then we have an isomorphism of functors F ′ →̃ (p̌ × id)! ◦ F , where
p̌× id : E∗ ×Z Y → E′∗ ×Z Y is the dual map (cf. [5], 5.16).
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