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DIMENSION OF THE HARMONIC MEASURE OF
NON-HOMOGENEOUS CANTOR SETS

by Athanasios BATAKIS

Abstract. — We prove that the dimension of the harmonic measure of the
complementary of a translation-invariant type of Cantor sets is a continuous func-
tion of the parameters determining these sets. This results extends a previous one
of the author and do not use ergotic theoretic tools, not applicables to our case.

Résumé. — Nous montrons que la dimension de la mesure harmonique du com-
plémentaire d’ensembles de Cantor de type invariant par translation est une fonc-
tion continue des paramètres définissant ces ensembles. Ce résultat prolonge un
précédent du même auteur et n’implique pas d’outils de la théorie ergotique, non-
applicables dans notre configuration.

1. Introduction

The purpose of this work is to complement the study of the dimension of
the harmonic measure of the complementary of (not necessarily self-similar)
Cantor sets as a function of parameters assigned to these sets. In a previous
work [5] we have proved that the parameters assigned to self-similar Cantor
sets are continuity points for this function. A new method allows us to
treat the continuity over the entire family of parameters determining these
translation invariant Cantor sets. We restrain ourselves to sets in the plane
for convenience, even though the proof can be applied to all “translation-
invariant” Cantor sets in Rn, n > 2.

Let us start by recalling the definition of the Hausdorff dimension of a
measure; we will use the notation dimH for the Hausdorff dimension of sets.

Keywords: Harmonic measure, Cantor sets, fractals, Hausdorff dimension, entropy.
Math. classification: 31A15, 28A80.
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Figure 1.1. A 4-corner Cantor set and its enumeration

Definition 1.1. — If µ is a measure on K, we will denote by dim∗(µ)
the lower Hausdorff dimension of µ:

dim∗ µ = inf{dimHE ; E ⊂ K and µ(E) > 0}

and by dim∗(µ) the upper Hausdorff dimension of µ:

dim∗ µ = inf{dimHE ; E ⊂ K and µ(K \ E) = 0}.

If, for a measure µ on K, we have dim∗(µ) = dim∗(µ) then we note this
common value dim(µ). In the latter case the measure is called exact.

For convenience and in order to fix ideas we consider a particular case of
translation invariant Cantor sets; we study 4-corner Cantor sets constructed
in the following way (see also [3]): let A,A be two constants with 0 < A 6
A < 1

2 and let (an)n∈N be a sequence of real numbers with A 6 an 6 A for
all n ∈ N.

We replace the square [0, 1]2 by four squares of sidelength a1 situated at
the four corners of [0, 1]2. Each of these squares is then replaced by four
squares of sidelength a1a2 situated at its four corners. At the nth stage of
the construction every square of the (n− 1)th generation will be replaced
by four squares of sidelength a1...an situated at its four corners (see figure
1.1). Let K be the Cantor set constructed by repeating the procedure.

ANNALES DE L’INSTITUT FOURIER



DIMENSION OF THE HARMONIC MEASURE 1619

Recall that the harmonic measure of a domain is supported by its bound-
ary and can be seen as the distribution of the exit points of Brownian mo-
tion starting at some (any) point of the domain (for more details see [13],
[16] and [11]). Carleson [12] has shown that for self-similar 4-corner Can-
tor sets (the sequence (an)n∈N is constant) the dimension of the harmonic
measure of their complementary is strictly smaller than 1. His proof, in-
volving ergodic theory techniques, was improved by Makarov and Volberg
[20] who showed that the dimension of the harmonic measure of any self-
similar 4-corner Cantor set is strictly smaller than the dimension of the
Cantor set. Volberg ([23], [24]) extended these results to a class of dynamic
Cantor repellers. Other comparisons of harmonic and maximal measures
for dynamical systems are proposed in [2], [18], [22]. More recently, a mul-
tifractal study of harmonic measure on simply connected domains and on
Julia sets of polynomial mappings is carried out in [19], [10].

In [3] it is shown that the dimension of the harmonic measure of the
complementary of 4-corner Cantor sets is strictly smaller than the Haus-
dorff dimension of the Cantor set, even when the sequence (an)n∈N is not
constant. In [4] we prove that small perturbations of the sidelength of the
squares of the construction of K do not alterate this property. This last
result can also be seen as an immediate consequence of the following theo-
rem.

Theorem 1.2. — Let K = K(an) be the 4-corners Cantor set associated
to a sequence an and K′ = K(a′n) a second Cantor set of the same type
associated to the sequence (a′n)n∈N. Let ω and ω′ be the harmonic mea-
sures of R2 \K and R2 \K′ respectively. Then for all ε > 0 there exists a
δ = δ(ε, A,A) > 0 such that if |a′n − an| < δ for all n ∈ N then
|dim ω − dim ω′| < ε.

When the sequence (an)n∈N is constant the partial result is already es-
tablished in [5] using ergodic theoretic tools, which are not applicables in
the general case.

Remark 1.3. — Let D : `∞([A,A]) → [0, 1] be the function that assigns
to a sequence (an)n∈N ⊂ [A,A] the dimension of harmonic measure of the
Cantor set associated to (an)n∈N. By refining the estimations in the demon-
stration of the theorem, we can even show that D is a Lipschitz continuous
function. The proof of this statement is very technical but straightforward
and therefore ommited.
In particular this refinement implies that if

∑
n∈N

|an − a′n| < ∞ then the

harmonique measures of the corresponding Cantor sets are of the same

TOME 56 (2006), FASCICULE 6
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dimension, and even equivalent when we report them onto the abstract
Cantor set {1, 2, 3, 4}N.

2. Notations and Preliminary results

In this section we establish some estimates on the harmonic measure
of a Cantor set under perturbation, and recall some known results on the
harmonic measure of Cantor-type sets. We also introduce the tools needed,
such as the Hausdorff dimension and the entropy of a probability measure
on a Cantor set.

Let K be a 4-corner Cantor set as described in the introduction. We
enumerate K by identifying it to the abstract Cantor set {1, ..., 4}N. We
denote Ii1...in , where ij ∈ {1, 2, 3, 4} for 1 6 j 6 n, the 4n squares of the
n-th generation of the construction of K with the enumeration shown in
the figure 1.1 and the usual condition that Ii1...in is the “father” of the sets

Ii1...ini , i ∈ {1, 2, 3, 4}. It is clear that A >
diamIi1...ini

diamIi1...in

= an+1 > A, i =

1, ..., 4.
The collection of the squares of the n-th generation of the construction of

K will be Fn = {Ii1...in ; i1, ..., in = 1, ..., 4}, for n ∈ N. For a square I ∈ Fn

we note Î the “father” of I, i.e. the unique square of Fn−1 containing I.
If I = Ii1...ik

∈ Fk and J = Ij1...jn
∈ Fn we will note IJ = Ii1...ikj1...jn

∈
Fn+k. Finally, for x ∈ K and n ∈ N let In(x) be the unique square of Fn−1

containing x.
For a domain Ω, a point x ∈ Ω and a Borel set F ⊂ R2 we denote by

ω(x, F,Ω) the harmonic measure of F ∩ ∂Ω (for the domain Ω) assigned
to the point x. Clearly, F carries no measure if it does not intersect ∂Ω.
If Ω is not specified it will be R2 \ K and if x is the point at infinity we
will simply note ω(F ). Finally, for a Borel set E ⊂ R2 we note dim E the
Hausdorff dimension of the set E.

2.1. Dimension of measures

In this section we recall some known results on the dimensions of mea-
sures (see also [21], [9], [14], [25]). One can prove (see for instance [14], [17],
[7]) that if µ is exact, i.e. if dim∗ µ = dim∗ µ, then

(2.1) dim µ = lim inf
r→0

log µB(x, r)
log r

, µ-almost everywhere.

ANNALES DE L’INSTITUT FOURIER
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If the probability measure µ is supported by a 4-corner Cantor set, the balls
B(x, r) can be replaced by the squares of the construction of the Cantor
set (see [8], [4]):

(2.2) dim µ = lim inf
n→∞

log µ
(
In(x)

)
log l

(
In(x)

) , µ-almost everywhere,

where l
(
In(x)

)
is the sidelength of the square In(x) and An 6 l(In) 6 A

n
.

Remark 2.1. — If µ is an arbitrary (not necessarily monodimensional)
probability measure we get

(2.3) dim∗ µ 6 lim inf
r→0

log µ
(
B(x, r)

)
log r

6 dim∗ µ µ-almost everywhere.

Moreover dim∗ µ = supessµ lim inf
r→0

log µ
(
B(x, r)

)
log r

and dim∗ µ = infessµ

lim infr→0
log µ

(
B(x,r)

)
log r .

Some results of the following section are stated without demonstration
since they are already proved in [3] and in [5].

2.2. Estimating perturbations of the harmonic measure

Suppose that the 4-corner Cantor set K is associated to the sequence
(an)n∈N and letK′ be another Cantor set associated to the sequence (a′n)n∈N.
Let (Fn)n∈N be the collections of squares associated to K and (F ′n)n∈N those
associated to K′.

For I ∈ Fn and I ′ ∈ F ′m we will write I
cod∼ I ′ if n = m and if I and I ′

have the same encoding (with respect to the identification to the abstract
Cantor set {1, 2, 3, 4}N).

Finally, if I ⊂ R2 is a square of sidelength ` and c is a positive number
we note cİ the square of sidelength c` having the same barycenter as I.
If ω is the harmonic measure of R2 \ K and ω′ the harmonic measure of
R2 \K′ we have established the following theorem.

Theorem 2.2. — (cf. [5]) For all ε > 0 there exists a δ = δ(ε, A,A) > 0
such that

(2.4) sup
n∈N

|an − a′n| < δ ⇒

∣∣∣∣∣ω(I)

ω(Î)
:

ω′(I ′)

ω′(Î ′)
− 1

∣∣∣∣∣ < ε,

for all I ∈
⋃
n∈N

Fn and I ′ ∈
⋃
n∈N

F ′n with I
cod∼ I ′.

TOME 56 (2006), FASCICULE 6
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Figure 2.1. A different type of translation-invariant Cantor set

We will also need the following estimations of the harmonic measure of
cylinders (see also [12] and [20] for a version adapted to self-similar sets).
The proof uses the ideas already explored in [5].

Lemma 2.3. — For every I, I ′ ∈ Fn, J ∈ Fk and every L ∈ Fm, n, k,
m ∈ N

(2.5)
∣∣∣∣ω(IJL)

ω(IJ)
:

ω(I ′JL)
ω(I ′J)

− 1
∣∣∣∣ < C qk

where the constants C > 0 and q ∈ (0, 1), depend only on A,A.

Let us give the proof of this statement.
Proof of lemma 2.3. — To begin with we need the following Harnack

principle (see also [4], [1]).

Lemma 2.4. — (cf. [12], [20]) Let Ω be a domain containing ∞ and let
A1 ⊂ B1 ⊂ A2 ⊂ B2 ⊂ ... ⊂ An ⊂ Bn be conformal discs such that the
annuli Bi \Ai are contained in Ω, for 1 6 i 6 n. If the moduli of the annuli
are uniformly bounded away from zero and if ∞ ∈ Ω \ Bn then, for all
pairs of positive harmonic functions u, v vanishing on ∂Ω \ A1 and for all
x ∈ Ω \Bn we have

(2.6)

∣∣∣∣∣u(x)
v(x)

:
u(∞)
v(∞)

− 1

∣∣∣∣∣ 6 Kqn

ANNALES DE L’INSTITUT FOURIER
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where q < 1 and K are two constants that depend only on the lower bound
of the moduli of the annuli.

We use this result to prove the following:

Lemma 2.5. — There are constants K > 0 and 0 < q < 1 depending
only on A,A such that for all i, j, k ∈ N and for all squares I ∈ Fi, J ∈
Fj ,K ∈ Fk of the construction of K, if Q = c0 · I,
(2.7)∣∣∣∣ω(x, IJK,Q \K)

ω(x, IJ,Q \K)
:

ω(IJK)
ω(IJ)

− 1
∣∣∣∣ < Kqj for all x ∈ ∂

{
1 + c0

2
· I
}

.

The result applies also to the Cantor set K′.

Proof. — By lemma 2.4,

(2.8)
∣∣∣∣ω(x, IJK)

ω(x, IJ)
:

ω(IJK)
ω(IJ)

− 1
∣∣∣∣ < Kqj , for x /∈ 1 + c0

2
· I

Let A =
ω(IJK)
ω(IJ)

. We have

ω(x, IJK,Q \K) = ω(x, IJK)−
∫

∂Q

ω(z, IJK)ω(x, dz, Q \K),

for x ∈ ∂
{

1+c0
2 · I

}
.

By the equation (2.8),

Aω(x, IJ)−KqjAω(x, IJ) 6 ω(x, IJK) 6 Aω(x, IJ) + KqjAω(x, IJ).

We get

ω(x, IJK,Q \K) 6 Aω(x, IJ) + KqjAω(x, IJ)−

−
∫

∂Q

(
Aω(z, IJ)−KqjAω(z, IJ)

)
ω(x, dz, Q \K)

= Aω(x, IJ)−
∫

∂Q

Aω(z, IJ)ω(x, dz, Q \K) +

+ Kqj
(
Aω(x, IJ) +

∫
∂Q

Aω(z, IJ)ω(x, dz, Q \K)
)

= Aω(x, IJ,Q \K) + Kqj
(
Aω(x, IJ) +

+
∫

∂Q

Aω(z, IJ)ω(x, dz, Q \K)
)

(2.9)

Therefore,
(2.10)

ω(x, IJK,Q \K)
ω(x, IJ,Q \K)

6 A + KqjA
ω(x, IJ) +

∫
∂Q

ω(z, IJ)ω(x, dz, Q \K)

ω(x, IJ,Q \K)

TOME 56 (2006), FASCICULE 6



1624 Athanasios BATAKIS

It suffices now to show that the quantity

ω(x, IJ) +
∫

∂Q
ω(z, IJ)ω(x, dz, Q \K)

ω(x, IJ,Q \K)

is smaller that a given constant. Take x0 ∈ ∂
{

1+c0
2 · I

}
such that

ω(x0, IJ) = max
{

ω(x, IJ) ; x /∈
{

1 + c0

2
· I
}}

.

Using the maximum principle we get

ω(x0, IJ, Q \K) = ω(x0, IJ)−
∫

∂Q

ω(z, IJ)ω(x0, dz,Q \K)

> ω(x0, IJ)−
∫

∂Q

ω(x0, IJ)ω(x0, dz,Q \K)

= ω(x0, IJ)
(
1− ω(x0, ∂Q, Q \K)

)
By standard capacitary techniques one can verify (see [3]) that 1−ω(x0, ∂Q,
Q \K) is greater that a constant c > 0 depending only on A,A.

By using Harnack’s principle we get

1− ω(x, ∂Q,Q \K) > c , for all x ∈ ∂

{
1 + c0

2
· I
}

,

for a new constant c > 0.

Hence,
ω(x, IJ) +

∫
∂Q

ω(z, IJ)ω(x, dz, Q \K)

ω(x, IJ,Q \K)
6

2
c

and therefore, by

relation (2.10),

(2.11)
ω(x, IJK,Q \K)
ω(x, IJ,Q \K)

6 A(1 +
2
c
Kqj)

On the other hand A =
ω(IJK)
ω(IJ)

; we obtain

ω(x, IJK,Q \K)
ω(x, IJ,Q \K)

:
ω(IJK)
ω(IJ)

− 1 <
2
c
Kqj , for all x ∈ ∂

{
1 + c0

2
· I
}

,

The left hand inequality and hence the lemma 2.5 is established in the
same way. �

It is now evident that
ω(x, IJK,Q \K)
ω(x, IJ,Q \K)

=
ω(x, I ′JK,Q′ \K)
ω(x, I ′J,Q′ \K)

,

for any square I ′ ∈ Fn, where Q′ = c0 · I ′. The proof of lemma 2.3 is
complete. �

ANNALES DE L’INSTITUT FOURIER
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Corollary 2.6. — There is a constant C̃ > 1 such that for any n, k ∈
N, all I, I ′ ∈ Fn and every J ∈ Fk we have

(2.12)
ω(IJ)
ω(I)

6 C̃
ω(I ′J)
ω(I ′)

where the constant C̃ > 0 depends only on A,A.

The proof of the corollary is an easy application of lemma 2.3.

3. Proof of the main result

This section is dedicated to the proof of theorem 1.2. We will make use
of the following known version of the theorem of large numbers (see for
instance [15]).

Lemma 3.1. — Let Xn be a sequence of uniformly bounded real random
variables on a probability space (X,B, P ) and let (Fn)n∈N be an increasing
sequence of σ-subalgebra of B such that Xn is measurable with respect to
Fn for all n ∈ N. Then

(3.1) lim
n→∞

1
n

n∑
k=1

(Xk − E(Xk|Fk−1)) = 0 P -almost surely

The following elementary lemma is also useful; the proof is left to the
reader.

Lemma 3.2. — Let α1, ..., αn be real numbers such that
n∑

i=1

αi = 0.

Then, for any choice of real values h1, ..., hn, we have

|
∑n

i=1 αihi|

6 max

 ∑
{i ; αi>0}

αi , −
∑

{i ; αi<0}

αi


(

max
16i6n

hi − min
16i6n

hi

)
=

∑
{i ; αi>0}

αi

(
max

16i6n
hi − min

16i6n
hi

)
.

Proof of theorem 1.2. — For p ∈ N consider the sequence of σ-algebras
(Rn)n∈N where Rn is generated by Fnp.

The hypothesis of lemma 3.1 can be easily verified to hold for the se-
quence of random variables (Xp

n)n∈N given by

Xp
n(x) =

1
p

TOME 56 (2006), FASCICULE 6
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(

ω(Inp(x))

ω(I(n−1)p(x))

)∣∣∣∣ and the sequence of σ-algebras (Rn)n∈N.

We get

(3.2) lim
n→∞

1
n

n∑
k=1

[
Xp

k − Eω(Xp
k |Rk−1)

]
= 0 ω-almost everywhere.

On the other hand, on I ∈ Rn−1, n ∈ N,

Eω(Xp
n|Rn−1) =

1
p

∑
J∈Fp

ω(IJ)
ω(I)

∣∣∣∣log
(

ω(IJ)
ω(I)

)∣∣∣∣ .
We show that this quantity is almost constant on x ∈ K if p is taken
sufficiently large.

Take ε > 0, n ∈ N and I ∈ Fn. For j, k ∈ N we have∑
J∈Fj+k

ω(IJ)
ω(I)

log
(

ω(IJ)
ω(I)

)
=
∑

J∈Fj

∑
K∈Fk

ω(IJK)
ω(I)

log
(

ω(IJK)
ω(I)

)
=
∑

J∈Fj

∑
K∈Fk

ω(IJK)
ω(IJ)

log
(

ω(IJK)
ω(IJ)

)
ω(IJ)
ω(I)

+
∑

J∈Fj

ω(IJ)
ω(I)

log
(

ω(IJ)
ω(I)

)
(3.3)

For L ∈ Fn and k, n, j ∈ N we note

hk(L) = −1
k

∑
K∈Fk

ω(LK)
ω(L)

log
(

ω(LK)
ω(L)

)
.

In particular, we put

hk(IJ)=−1
k

∑
K∈Fk

ω(IJK)
ω(IJ)

log
(

ω(IJK)
ω(IJ)

)
and ∆k

j (I) = max
J∈Fj

hk(IJ)− min
J∈Fj

hk(IJ).

We will use the following lemma.

Lemma 3.3. — For all ε > 0, if j, k ∈ N are big enough (depending only
on A and A) then for all n ∈ N and I ∈ Fn we have ∆k

j (I) < ε.

We first proceed with the proof of this sub-lemma.

Proof of lemma 3.3. — We can rewrite formula (3.3):

(3.4) (j + k)hj+k(I) =
∑

J∈Fj

k
ω(IJ)
ω(I)

hk(IJ) + jhj(I)

ANNALES DE L’INSTITUT FOURIER



DIMENSION OF THE HARMONIC MEASURE 1627

By applying formula (3.4) to a cylinder I = I1I2 with I1 ∈ Fi1 and
I2 ∈ Fi2 we have

(j + k)hj+k(I1I2) =
∑

J∈Fj

k
ω(I1I2J)
ω(I1I2)

hk(I1I2J) + jhj(I1I2)

Now take j big enough to have Kqj < ε and afterwards choose k in order

to have that
j

k + j
< ε . Remark that, by lemma 2.3, hk(I1I

′
2J)−hk(I1I2J)

< 2ε. We have

∆k+j
i2

(I1) = max
I2∈Fi2

hk+j(I1I2)− min
I2∈Fi2

hk+j(I1I2)

6 5ε + max
I2,I′2∈Fi2

∑
J∈Fj

ω(I1I2J)
ω(I1I2)

hk(I1I2J)

−
∑

J∈Fj

ω(I1I
′
2J)

ω(I1I ′2)
hk(I1I

′
2J)


6 10ε + max

I2,I′2∈Fi2

∑
J∈Fj

(
ω(I1I2J)
ω(I1I2)

− ω(I1I
′
2J)

ω(I1I ′2)

)
hk(I1I2J).(3.5)

We can now apply lemma 3.2 to get
(3.6)

∆k+j
i2

(I1) 6 10ε + max
I2,I′2∈Fi2

∑
J∈Sj

i1
(I2,I′2)

(
ω(I1I2J)
ω(I1I2)

− ω(I1I
′
2J)

ω(I1I ′2)

)
∆k

j (I1I2)

where Sj
I1

(I2, I
′
2) is the set of cylinders J ∈ Fj such that

ω(I1I2J)
ω(I1I2)

>
ω(I1I

′
2J)

ω(I1I ′2)
. The following lemma is easy to prove:

Lemma 3.4. — There is a constant 0 < ζ < 1 such that for all i1, i2,
j ∈ N , all I1 ∈ Fi1 and all I2,I ′2 ∈ Fi2 we have∑

J∈Sj
I1

(I2,I′2)

(
ω(I1I2J)
ω(I1I2)

− ω(I1I
′
2J)

ω(I1I ′2)

)
< ζ

where Sj
I1

(I2, I
′
2) is the set of cylinders J ∈ Fj such that

ω(I1I2J)
ω(I1I2)

>
ω(I1I

′
2J)

ω(I1I ′2)
.

The proof follows from the translation invariance of ω (corollary 2.6).

TOME 56 (2006), FASCICULE 6



1628 Athanasios BATAKIS

Proof of lemma 3.4. — Remark that by lemma 2.3, if C =
K

1− q
, we

have
ω(IJ)
ω(I ′J)

6 C for all I, I ′ ∈ Fn , n ∈ N, and all J ∈
⋃

n∈N Fn. Hence,

∑
J∈Sj

I1
(I2,I′2)

(
ω(I1I2J)
ω(I1I2)

− ω(I1I
′
2J)

ω(I1I ′2)

)
6

(
1− 1

C

) ∑
J∈Sj

I1
(I2,I′2)

ω(I1I2J)
ω(I1I2)

61− 1
C

,

which is the lemma conclusion for ζ = 1− 1
C

. �

By applying lemma 3.4 to relation (3.6) we conclude that there is 0 <

ζ < 1 depending only on A,A such that

(3.7) ∆k+j
i2

(I1) 6 10ε + ζ∆k
j (I1I2)

By repeating the same reasoning if we write k = k1 + k2 we can establish
the inequalities

(3.8) ∆k1+k2
j (I1I2) < 10ε + ζ∆k2

k1
(I1I2J).

Hence,

∆k+j
i2

(I1)−
10ε

1− ζ
6 ζ

(
∆k2

k1
(I1I2J)− 10ε

1− ζ

)
6 ζ2

(
∆k2

k1
(I1I2J)− 10ε

1− ζ

)
.

The sequence ∆m
l (I) being uniformly bounded we get, by decomposing

again k2 and repeating the procedure, that if k is big enough, ∆k+j
i2

<
20ε

1− ζ
.

The real constant ζ depending only on A, A, the proof is complete. �

We now apply lemma 3.1 to an adapted filtration Rn : By the previous
lemma we can choose j, k such that ∆k

j (I) < ε. By formula (3.4), for this
choice of j and k and for all n ∈ N there are constants cn such that∣∣∣∣∣ 1

k + j
E

{
k+j∑
`=1

X1
n+`

∣∣∣Fn

}
− cn

∣∣∣∣∣ < ε.

By lemma 3.1 and the relation (3.2) following it we then deduce
(for p = k + j)∣∣∣∣∣∣lim inf

n→∞

1
n(k + j)

n(k+j)∑
`=1

X1
` − lim inf

n→∞

1
n

n∑
`=1

c`

∣∣∣∣∣∣ < ε, ω - a.e. on K
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This implies that∣∣∣∣∣∣lim inf
n→∞

∣∣∣∣∣∣ log ω(In(k+j)(x))

log
(∏n(k+j)

i=1 ai

)
∣∣∣∣∣∣−lim inf

n→∞

∣∣∣∣∣∣ k + j

log
(∏n(k+j)

i=1 ai

) n∑
`=1

c`

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε ,

ω - a.e. on K.

On the other hand, once we have fixed k, j we can use lemma 2.2 to choose
δ in a way that, for all n ∈ N,

|cn − c′n| < ε, and
1
n

∣∣∣∣∣log

(
n∏

i=1

ai

)
− log

(
n∏

i=1

a′i

)∣∣∣∣∣ < ε,

where c′n is the same sequence associated to the harmonique measure ω′.
We can finally use relation (2.2) to conclude that |dim ω−dim ω′| < 4ε. �

4. Consequences and remarks

It is implicitely proved that the harmonic measure of the sets K studied
here satisfy the relationship dim∗ ω = hK

∗ (ω), where

hK
∗ (ω) = lim inf

n→∞

1

log
n∏

i=1

ai

∑
I∈Fn

log ω(I)ω(I),

and (an)n∈N is the construction sequence associated to K. This fact is a
consequence of the space invariance of ω and is a key factor in the proof of
our results.

It is natural to ask whether the relation (2.4) suffices to conclude that
the dimensions of two measures ω and ω′ (not necessarily harmonic) are
close. This is not the case. There are counterexemples (see [4]) even when
the measures are doubling on (Fn)n∈N and exact (cf [6]).

Even if the equality between the Hausdorff dimension and the entropy of
the harmonic measure of the complementary of Cantor sets plays a crucial
role in the proof of theorem 1.2, we would like to point out that the measures
constructed µ and ν in the example of [6] satisfy the relation∣∣∣∣∣µ(I)

µ(Î)
:

µ(I)

µ(Î)
− 1

∣∣∣∣∣ < δ,

with δ as small as we want, as well as the the equalities h∗(µ) = dim µ and

h∗(ν) = dim ν. Nevertheless |dim µ− dim ν| > 1
2

.
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To establish the result claimed in remark 1.3 we first need a fine preci-
sion of inequalities in theorem 2.2 and secondly we need to quantify the
dependance on ε of the choice of k. In fact, we can find suitable k’s that
are bounded by −C log(ε), where C is a positive constant depending on A,
A, which is sufficient in order to prove the claim.
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