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SUBHARMONICITY PROPERTIES OF THE
BERGMAN KERNEL AND SOME OTHER

FUNCTIONS ASSOCIATED TO
PSEUDOCONVEX DOMAINS

by Bo BERNDTSSON

Abstract. — Let D be a pseudoconvex domain in Ck
t × Cn

z and let φ be a
plurisubharmonic function in D. For each t we consider the n-dimensional slice
of D, Dt = {z; (t, z) ∈ D}, let φt be the restriction of φ to Dt and denote by
Kt(z, ζ) the Bergman kernel of Dt with the weight function φt. Generalizing a
recent result of Maitani and Yamaguchi (corresponding to n = 1 and φ = 0) we
prove that log Kt(z, z) is a plurisubharmonic function in D. We also generalize
an earlier results of Yamaguchi concerning the Robin function and discuss similar
results in the setting of Rn.

Résumé. — Soit D un domaine pseudoconvexe en Ck
t ×Cn

z et soit φ une fonction
plurisousharmonique dans D. Pour t fixé, soit Dt = {z; (t, z) ∈ D} la tranche
correspondante de D, φt la restriction de φ à Dt, et Kt(z, ζ) le noyau de Bergman
pour le domaine Dt et le poid φt. En généralisant un résultat récent de Maitani
et Yamaguchi (correspondant à n = 1 et φ = 0), on montre que log Kt(z, z) est
plurisousharmonique en D. On donne aussi une généralisation d’un résultat de
Yamaguchi concernant la fonction de Robin et on discute des résultats du même
style pour Rn.

1. Introduction

Let D be a pseudoconvex domain in Ckt ×Cnz and let φ be a plurisubhar-
monic function in D. For each t we consider the n-dimensional slice of D,
Dt = {z; (t, z) ∈ D}, and the restriction, φt, of φ to Dt. Denote by

A2
t = A2(Dt, e−φ

t

)

Keywords: Bergman spaces, plurisubharmonic function, ∂̄-equation, Lelong number.
Math. classification: 32A25.



1634 Bo BERNDTSSON

the Bergman space of holomorphic functions in Dt satisfying∫
Dt

|h|2e−φ
t

<∞.

The Bergman kernel Kt(ζ, z) of A2
t for a point z in Dt is the unique holo-

morphic function of ζ satisfying∫
Dt

h(ζ)Kt(ζ, z)e−φ(t,ζ) = h(z)

for all functions h in A2
t . We shall prove the following theorem.

Theorem 1.1. — With the notation above, the function logKt(z, z) is
plurisubharmonic, or identically equal to −∞ in D.

In particular logKt is plurisubharmonic in t for z fixed. Theorem 1.1 was
previously obtained in [14] in the case n = 1 and φ = 0.

Theorem 1.1 may be seen as a complex version of Prekopa’s Theorem
[15] from convex analysis. This theorem says that if φ(x, y) is a convex
function in Rmx × Rny and we define the function φ̃ in Rmx by

(1.1) e−φ̃(x) =
∫

Rn

e−φ(x,y)dy,

then φ̃ is also convex. Equivalently, we may define

φ̃(x) = log k(x),

where
k(x) =

( ∫
Rn

e−φ(x,y)dy
)−1

.

For each x fixed, k(x) can be seen as the “Bergman kernel” for the space
Ker(d) of constant functions in Rn, since the scalar product in

L2
(
Rn, e−φ(x, .)

)
of a function, u, with k(x) equals the mean value of u, i.e. the orthogonal
projection of u on the space of constants. Thus Theorem 1.1 is what we get
by replacing the convexity hypothesis in Prekopa’s theorem by plurisub-
harmonicity, and the kernel of d by the kernel of ∂̄ . (In the complex setting
we also need to pay attention to the domains involved, since a general
pseudoconvex domain cannot be defined by an inequality involving global
plurisubharmonic functions.)

One interesting case of the theorem , where the analogy to Prekopa’s
Theorem is more evident, is when (t, 0) lies in D (for t in some open set),
and Dt and φt are both for fixed t invariant under rotations rθ(z) = eiθz.

ANNALES DE L’INSTITUT FOURIER



SUBHARMONICITY OF BERGMAN KERNELS 1635

It then follows from the mean value property for holomorphic functions
that Kt(ζ, 0) is for each fixed t a constant independent of ζ,

Kt =
( ∫

Dt

e−φ
t
)−1

.

The following theorem from [2] is therefore a corollary of Theorem 1.1.

Theorem 1.2. — Assume that for each fixed t, Dt and φt are invariant
under rotations rθ(z) = eiθz. Define the function φ̃ by

e−φ̃(t) =
∫
Dt

e−φ(t,ξ).

Then φ̃ is plurisubharmonic.

In particular, taking φ = 0 it follows that under the hypothesis of The-
orem 1.2, the function

− log |Dt|,
where |V | stands for the volume of a set, is plurisubharmonic. This has
recently been used by Cordero-Erausquin [6] to give a proof of the Santaló
inequality.

Still under the hypotheses of Theorem 1.2 we can also introduce a large
parameter, p, and define a function φ̃p by

e−pφ̃p(t) =
∫
Dt

e−pφ(t,ξ).

Thus e−φ̃p(x) is the Lp-norm of e−φ(x, .). From the plurisubharmonicity
of φ̃p it is not hard to deduce that

φ̃∞ = inf
ξ
φ

is also plurisubharmonic. This is one version of Kiselman’s minimum prin-
ciple for plurisubharmonic functions, [10].

One main application of Kiselman’s minimum principle, combined with
a use of the Legendre transform, was to give a procedure to “attenuate
the singularities” of a given plurisubharmonic function: Given an arbitrary
plurisubharmonic function φ, and a number c > 0, Kiselman constructed
a new plurisubharmonic function which is finite at all points where the
Lelong number of φ is smaller that c and still has a logarithmic singularity
at points where the Lelong number of φ exceeds c. This was in turn used
to give an easy proof of Siu’s theorem on the analyticity of sets defined by
Lelong numbers (see [11]).

It is a consequence of the Hörmander L2-estimates for the ∂̄ -equation
that if a is a point in a bounded domain Ω and φ is plurisubharmonic

TOME 56 (2006), FASCICULE 6



1636 Bo BERNDTSSON

in Ω, then there is some holomorphic function in L2(Ω, e−φ) which does
not vanish at a, if and only if the function e−φ is locally integrable in
some neighbourhood of a. Using this we can prove the following theorem,
which can be seen as an alternative way of attenuating the singularities of
plurisubharmonic functions.

Theorem 1.3. — Let Ω be a pseudoconvex domain in Cn and let φ be
plurisubharmonic in Ω. Let ψ be the plurisubharmonic function in Ω × Ω
defined by

ψ(a, z) = φ(z) + (n− 1) log |z − a|.
Put

χ(a) = logKa(a, a),

where Ka is the Bergman kernel for A2(Ω, e−2ψa

). Then χ is plurisubhar-
monic in Ω, is finite at any point where the Lelong number of φ is smaller
than 1 and has a logarithmic singularity at any point where the Lelong
number of φ is larger than 1. The singularity set of χ, {a;χ(a) = −∞} is
equal to (the analytic) set where the Lelong number of φ is at least 1.

Theorem 1.3 suggests the introduction of a family of Lelong numbers,

γs(φ, a)

by replacing the function ψ by

φ(z) + s log |z − a|

for 0 6 s < n, and looking at points where the corresponding function χ is
singular. We would then get the so called integrability index (see e.g. [12])
for s = 0 and the classical Lelong numbers for s = n− 1.

Theorem 1.1 is also intimately connected with another result concerning
curvature of vector bundles. We explain this in the simplest case, when D

is the product U × Ω of two domains in Ckt and Cnz respectively. Let us
also here assume that φ is a bounded function, so that all the Bergman
spaces A2(Ω, e−φ

t

) are equal as vector spaces, but the norm varies with t.
We can then define a vector bundle E over U by taking Et = A2(Ω, e−φ

t

).
This is then a trivial vector bundle, of infinite rank, with an hermitian
metric defined by the Hilbert space norm. Our claim is that this vector
bundle is positive in the sense of Nakano. This can be proved by methods
very similar to the proof of Theorem 1.1. Such a result however seems to
be more natural in the setting of complex fibrations with compact fibers
(so that the Bergman spaces are of finite dimension) and we will come back
to it in a future publication.

ANNALES DE L’INSTITUT FOURIER



SUBHARMONICITY OF BERGMAN KERNELS 1637

We shall give two proofs of Theorem 1.1. The first, and simplest, one
is modeled on one proof of Prekopa’s theorem given by Brascamp and
Lieb [3]. Brascamp and Lieb used in their proof a version of Hörmander’s
L2-estimates for the d-operator instead of ∂̄ . They also proved directly
this L2-estimate by an inductive procedure, using a version of Prekopa’s
theorem in smaller dimensions. Our first proof adapts this proof to the
complex case but starts from Hörmander’s Theorem.

The second proof does not use Hörmander’s theorem, but rather the
a priori estimates behind it. (It is somewhat similar to a recent proof
of Theorem 1.2 given by Cordero-Erausquin [7] which is in turn inspired
by [1].) Our proof is based on a representation of the Bergman kernel as the
pushforward of a subharmonic form. We have included that proof since it
seems to us that it will be useful in other similar situations. As an example
of that we give a generalization of a rather remarkable result of Yamaguchi
on the plurisubharmonicity of the Robin function [18]. We finish the paper
with a short discussion of what a real variable version of a subharmonic form
should be and how this notion can be used to prove Prekopa’s Theorem
and real variable versions of Yamaguchi’s result [18], [5].

I would like to thank Christer Borell for several interesting discussions
on the material of this paper.

2. A special case of Theorem 1.1

Let V be a smoothly bounded strictly pseudoconvex domain in Cn, with
defining function ρ so that V = {ζ, ρ(ζ) < 0}. Let U be a domain in C and
let φ be a smooth strictly plurisubharmonic function in a neighbourhood of
U×V . Fix a point z in V and let Kt(·, z) be the Bergman kernel for V with
the weight function φt.The main step in proving Theorem 1.1 is to prove
that in this situation, Kt(z, z) is a subharmonic function of t.

For any square integrable holomorphic function h in V

(2.1) h(z) =
∫
V

h(ζ)Kt(ζ, z)e−φ
t

is independent of t. We shall differentiate this relation with respect to t

and will then have use for the following lemma.

Lemma 2.1. — Let V be a smoothly bounded strictly pseudoconvex
domain in Cn, and let φ be a function in ∆ × V which is smooth up to
the boundary. Let Kt(ζ, z) be the Bergman kernel for the domain V with

TOME 56 (2006), FASCICULE 6



1638 Bo BERNDTSSON

weight function φt. Then Kt is for z fixed in V smooth up to the boundary
of V as a function of ζ, and moreover depends smoothly on t.

Proof. — Let vt be a smooth function in V supported in a small neigh-
bourhood of z, depending smoothly on t, and put ft = ∂̄vt. Let αt be the
solution of the ∂̄ -Neumann problem

tαt = (∂̄ ∂̄∗t + ∂̄∗t ∂̄)αt = ft,

where ∂̄∗t is the adjoint of ∂̄ with respect to the weight φt. Since ut = ∂̄∗tαt
is the minimal solution in L2(V, e−φ

t

) to the equation ∂̄u = ft we have

ut(ζ) = vt(ζ)−
∫
χ∈V

vt(ξ)Kt(ζ, ξ)e−φ
t

.

Choosing vt appropriately (i.e. so that vte−φ
t

is a radial function of inte-
gral 1 in a small ball with center z) we get that the last term on the right
hand side is equal to Kt(ζ, z). It is therefore enough to prove that α has
the smoothness properties stated. To see this, note that if t is close to 0

t = 0 − St,

with St an operator of order 1 with smooth coefficients which vanishes
for t = 0. Hence

(I −Rt)αt := (I − −1
0 St)αt = −1

0 ft.

For t sufficiently close to 0 we can invert the operator I − Rt and the
lemma follows from basic regularity properties of the ∂̄ -Neumann problem
in strictly pseudoconvex domains. �

We now differentiate (2.1) with respect to t̄, using the lemma. Let us
denote by ∂φt the differential operator

eφ
∂

∂t
e−φ =

∂

∂t
− ∂φ

∂t
·

It follows that the function
u = ∂φt Kt

is for fixed t orthogonal to the space of holomorphic functions in A2
t . By

the reproducing property of the Bergman kernel we have

Φ(t) := Kt(z, z) =
∫
V

Kt(ζ, z)Kt(ζ, z)e−φ
t

.

We shall use this formula to compute ∂2Φ/∂t ∂t̄. We first get, using the
notation ∂̄ t = ∂/∂t̄

∂Φ
∂t̄

=
∫
V

∂̄ tKtKt e−φ
t

+
∫
V

Kt∂
φ
t Kt e−φ

t

.

ANNALES DE L’INSTITUT FOURIER



SUBHARMONICITY OF BERGMAN KERNELS 1639

Since Kt is holomorphic and u is orthogonal to the space of holomorphic
functions, the second term vanishes. We next differentiate once more.

∂2Φ
∂t∂t̄

=
∫
V

|∂̄ tKt|2e−φ
t

+
∫
V

∂φt ∂̄ tKtKt e−φ
t

.

Using the commutation rule

(2.2) ∂φt ∂̄ t = ∂̄ t∂
φ
t + φtt̄

in the second term we get

∂2

∂t∂t̄
Φ =

∫
V

|∂̄ tKt|2e−φ
t

+
∫
V

φtt̄|Kt|2e−φ
t

+
∫
V

∂̄ t∂
φ
t KtKt e−φ

t

.

Moreover, by differentiating the relation

0 =
∫
V

∂φt KtKt e−φ
t

we find that∫
V

∂̄ t∂
φ
t KtKt e

−φ
t = −

∫
V

|∂φt Kt|2e−φ
t

= −
∫
V

|u|2e−φ
t

.

All in all we therefore have that

(2.3)
∂2Φ
∂t∂t̄

=
∫
V

|∂̄ tKt|2e−φ
t

+
∫
V

φtt̄|Kt|2e−φ
t

−
∫
V

|u|2e−φ
t

.

To estimate the last term we note that u solves the ∂̄ -equation

∂̄u := f = ∂̄ ∂φt Kt = Kt ∂̄
∂φ

∂t
,

(the last equation follows from a commutation rule similar to (2.2) since
Kt is holomorphic). Moreover, u is the minimal solution to this equation,
since u is orthogonal to the space of holomorphic functions. By Hörmander’s
theorem (see [8] for an appropriate formulation) we therefore get that∫

V

|u|2e−φ
t

6
∫
V

∑
(φt)jk̄fj f̄ke−φ

t

,

where (φt)jk̄ is the inverse of the complex Hessian of φt. Inserting this
into (2.3) and discarding the first (nonnegative) term we have

∂2Φ
∂t∂t̄

>
∫
V

|Kt|2De−φ
t

,

where
D = φtt̄ −

∑
(φzj z̄k

)−1φtz̄jφtz̄k
.

D equals precisely the determinant of the full complex Hessian of φ divided
by the determinant of the Hessian of φt. Since φ is strictly plurisubhar-
monic, this quantity is positive, and it follows that Φ is subharmonic.

TOME 56 (2006), FASCICULE 6



1640 Bo BERNDTSSON

To see that in fact even logKt is subharmonic we change the weight
function φ to φ(t, ζ) + ψ(t) where ψ is an arbitrary smooth subharmonic
function. The Bergman kernel for the new weight φ+ψ is eψKt, where Kt

is the Bergman kernel for φ. Therefore eψKt is subharmonic for any choice
of subharmonic function ψ. This implies that logKt is subharmonic.

3. The general case of Theorem 1.1

In the previous section we have proved Theorem 1.1 when the domainsDt

are smoothly bounded and do not depend on t, under the extra assumption
that φ is smooth up to the boundary. The general case is in principle a
rather straightforward consequence of this special case. There is however
one subtility, arising from the fact that some of the fiber domains Dt may
not be smoothly bounded. This happens at points where the topology of the
fiber changes, something which is not at all excluded by our hypotheses.
(The simplest such example is when Dt = {ψ(z) < Re t} where ψ is a
subharmonic function of one variable with two logarithmic poles.When Re t
is large negative, Dt is a union of two disjoint islands around the poles. The
two islands come closer as Re t increases and eventually touch in a figure
eight, after which they join to one single domain.)

Lemma 3.1. — Let Ω0 and Ω1 be bounded domains in Cn, with Ω0 com-
pactly included in Ω1. Let φj be a sequence of continuous weight functions
in Ω1 such that

φj = φ

in Ω0 and that φj increases and tends to to infinity almost everywhere in
Ω1 \ Ω0. Assume that the space of holomorphic functions in L2(Ω1, e−φ0)
is dense in the space of holomorphic functions in L2(Ω0, e−φ0). Fix a point
z in Ω0 and let Kj be the Bergman kernel for z in L2(Ω1, φj). Let K be
the Bergman kernel for z in L2(Ω0, φ). Then Kj(z, z) increases to K(z, z).

Proof. — The extremal characterisation of Bergman kernels,

K(z, z) = sup
∣∣h(z)∣∣2,

where the supremum is taken over all holomorphic functions of L2-norm
at most 1 makes it clear that Kj(z, z) is an increasing sequence and that
each Kj(z, z) is smaller than K(z, z). Since

Kj(z, z) =
∫

Ω1

|Kj |2e−φj

ANNALES DE L’INSTITUT FOURIER



SUBHARMONICITY OF BERGMAN KERNELS 1641

it follows in particular thatKj has uniformly bounded norm in L2(Ω1, e−φj ).
The sequence Kj therefore has a weakly convergent subsequence in
L2(Ω0, e−φ). Let k be the limit of some weakly convergent subsequence.
If h lies in L2(Ω1, e−φ0) we have that∣∣∣ ∫

Ω1\Ω0

hKj e−φj

∣∣∣2 6
∫

Ω1\Ω0

|h|2e−φj‖Kj‖2
φj

tends to zero. It follows that any weak limit k satisfies

h(z) =
∫

Ω0

h k̄e−φ.

Since holomorphic functions in L2(Ω1, e−φ0) are dense in L2(Ω0, e−φ0), the
same relation holds for any h in L2(Ω0, e

−φ0). Since k is necessarily also
holomorphic, k = K and the limit is in fact uniform on compact subsets
of Ω0. In particular

limKj(z) = K(z).

�

The proofs of the next two lemmas is similar but simpler and is therefore
omitted.

Lemma 3.2. — Let Ω be a bounded domain and φ a plurisubharmonic
weight function. Let Ωj be an increasing family of subdomains with union
equal to Ω. Let z be a fixed point in Ω0 and let Kj and K be the Bergman
kernels for Ωj and Ω (with weight function φ) respectively. Then Kj(z, z)
decreases to K(z, z).

Lemma 3.3. — Let Ω be a bounded domain and φj a decreasing se-
quence of plurisubharmonic weight functions. Let z be a fixed point in Ω
and let Kj and K be the Bergman kernels for the weight functions φj and φ
respectively. Then Kj(z, z) decreases to K(z, z).

To verify one of the hypotheses in Lemma 3.1 we need an approximation
result.

Lemma 3.4. — Let Ω0 and Ω1 be smoothly bounded pseudoconvex do-
mains in Cn with Ω0 compactly included in Ω1. Assume there is a smooth
plurisubharmonic function ρ in Ω1 such that Ω0 = {z ∈ Ω1, ρ(z) < 0}.
Then holomorphic functions in L2(Ω1) are dense in the space of holomor-
phic functions in L2(Ω0).

Proof. — Let h be a square integrable holomorphic function in Ω0. The
crux of the proof is to approximate h by functions holomorphic in a neigh-
bourhood of the set X = {ρ 6 0}. This can be done by standard L2-theory

TOME 56 (2006), FASCICULE 6



1642 Bo BERNDTSSON

if 0 is a regular value of ρ so that the boundary of Ω0 is smooth. In the
non-smooth case, the possibility to approximate with function holomorphic
near X follows from a result by Bruna and Burgues, cf. Theorem B in [4].

Next, we let h be holomorphic near X and show how to approximate h
with functions holomorphic in Ω1. LetH be an arbitrary extension of h from
a neighbourhood of X to a smooth function with compact support in Ω1

and put f = ∂̄H. Let kj(s) be a sequence of increasing convex functions
that vanish for s < 0 and tend to infinity for s > 0 and set φj = kj ◦ ρ.
By Hörmander’s theorem, [9], we can solve the equation ∂̄vj = f with
estimates in L2(Ω1, e−φj ). Since f is supported in the complement of Ω0 it
follows that vj tends to zero in L2(Ω0). Hence H − vj is an approximating
sequence. �

The final lemma gives the semicontinuity of Kt.

Lemma 3.5. — Let D = {(t, z); ρ(t, z) < 0} where ρ is smooth and
strictly plurisubharmonic near the closure of D and moreover has non-
vanishing gradient on ∂D. Assume φ is smooth and plurisubharmonic near
the closure of D. Then Kt(z, z) is for fixed z upper semicontinuous as a
function of t.

Proof. — Consider a point t and let s be nearby points tending to t. We
may choose ε > 0 so that all fibers Ds are contained in the open set V
where ρ(t, z) < ε. Note that the set-valued function t → Dt is lower semi-
continuous, in the sense that if Dt contains a compact set K, then K is
contained in all Ds for s sufficiently close to t. Let Ks(ζ, z) be the Bergman
kernel of Ds for a fixed point z. Since the domains Ds all contain a fixed
open neighbourhood of z the L2-norms of Ks are bounded. Any sequence
of Ks therefore has a subsequence weakly convergent on any compact sub-
set of Dt. The L2-norm of any weak limit k can not exceed the liminf of
the L2-norms of Ks over Ds. By the extremal characterization of Bergman
kernels it follows that

lim supKs(z, z) 6 Kt(z, z),

so we are done. �

We can now complete the proof of Theorem 1.1, and start by proving
that logKt is plurisubharmonic in t for z fixed. We first assume that D is
smoothly bounded, defined as

D =
{
(t, z); ρ(t, z) < 0

}
where ρ is smooth and strictly plurisubharmonic near the closure of D.
We also assume that φ is smooth and plurisubharmonic near the closure

ANNALES DE L’INSTITUT FOURIER



SUBHARMONICITY OF BERGMAN KERNELS 1643

of D. Assume first k = 1 and fix a point t in C, say t = 0. If U is a suffi-
ciently small neighbourhood of 0 all the fibers Dt are contained in a fixed
pseudoconvex domain V = {ρ(0, ζ) < ε}. In U × V we can compose ρ

with an increasing sequence of smooth convex functions kj that tend to
infinity when ρ is positive. We can now apply the result from Section 3 to
U × V with φ replaced by φj = φ+ kj ◦ ρ and let j tend to infinity. Since
the set where a smooth strictly subharmonic function equals zero has zero
measure, φj tends to infinity a e in Ω1 \ Ω0 By Lemma 4.1 it follows that
logKt can be written as an increasing limit of functions subharmonic with
respect to t. Since, by the last lemma, logKt is also upper semicontinuous
it follows that it is subharmonic. Again by the upper semicontinuity we get
that logKt is plurisubharmonic if k > 1 since its restriction to any line is
subharmonic.

It is now easy to remove the extra hypothesis on D and φ. If D is an arbi-
trary pseudoconvex open set it has a smooth strictly plurisubharmonic ex-
haustion function, and so can be written as an increasing union of domains
of the type satisfying the extra hypotheses. Near each such domain we can
regularize φ by convolution. From Lemmas 4.2 and 4.3 we get that logKt

is a decreasing limit of plurisubharmonic functions, and so is plurisubhar-
monic, or identically equal to minus infinity.

We have thus proved that, under the hypotheses of Theorem 1.1, logKt is
subharmonic as a function of t for z fixed. To see that it is plurisubharmonic
in t and z jointly we use, as in [18], the Oka trick of variation of the domain.
We need to prove that, for any choice of a in Cn, the function

logKt(z + ta, z + ta)

is subharmonic in t. But, this is precisely the Bergman kernel at z for the
domain

Dt − ta

with the weight function translated similarily. Since the translated domains
are also pseudoconvex, and the translated weight function is still plurisub-
harmonic, it follows that logKt(z + ta, z + ta) is subharmonic in t and we
are done.

4. Subharmonic currents

We shall next give an alternate proof of Theorem 1.1 which is based on a
representation of the Bergman kernel as the pushforward of a subharmonic
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1644 Bo BERNDTSSON

form. To prepare for this we give in this section some general facts on
subharmonic forms or currents.

Let T be a current of bidimension (1, 1), i.e. of bidegree (n, n) in U ×Cn
where U is an open set in C. We say that T is subharmonic if

i∂ ∂̄ T > 0.

Let π be the projection from Ct×Cnz to Ct. If T is compactly supported in
the fiber direction, so that the support of T is included in U ×K with K a
compact subset of Cn the pushforward π∗(T ) of T to U is the distribution
in U defined by

π∗(T ).χ = T.π∗χ

for any smooth compactly supported (1, 1) form χ in U . Similarily, if T is
a current of bidegree (n+ 1, n+ 1) we define the pushforward of T by the
same formula, but taking χ to be a function. Since

i∂ ∂̄ π∗(T ) = π∗(i∂ ∂̄ T )

it is clear that π∗(T ) is subharmonic if T is a subharmonic current of
bidegree (n, n).

If T is an (n, n)-differential form with, say, bounded coefficients, the
pushforward of T is a function whose value at a point t equals∫

{t}×Cn
z

T.

Clearly, the pushforward only depends on the component of T of bidegree
(n, n) in z. Conversely, let κ be a form of bidegree (n, n) in z, with coef-
ficients depending on t. It follows from the above that to prove that the
function ∫

{t}×Cn
z

κ

is subharmonic it suffices to find a subharmonic form T of bidimension (1, 1)
which is compactly supported in the fiber direction and whose component
of bidegree (n, n) in z equals κ.

In order for this argument to work it is crucial that T be globally defined
and compactly supported in the fiber direction (or at least satisfies inte-
grablility conditions). The currents that we will encounter later are however
only defined in some pseudoconvex domain. To get globally defined currents
we extend by 0 in the complement of the pseudoconvex domain. This of
course introduces a discontinuity which gives an extra contribution to take
into account when computing i∂ ∂̄ T in the sense of distributions. The local
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calculations needed are summarized in the following lemma, which is a vari-
ant of a by now standard method to prove L2-estimates for the ∂̄ -equation,
see [9, p. 103].

Lemma 4.1. — Let ρ be a smooth real valued function in an open set U
in Cn. Assume that ∂ρ 6= 0 on S = {z, ρ(z) = 0}, so that S is a smooth real
hypersurface. Let T be a real differential form of bidimension (1, 1) defined
where ρ < 0, with coefficients extending smoothly up to S. Assume that

• ∂ρ ∧ T vanishes on S, and that
• ∂ρ ∧ ∂̄ρ ∧ T vanishes to second order on S.
Extend T to a current T̃ in U by putting T̃ = 0 where ρ > 0. Then

(4.1) i∂ ∂̄ T̃ = χρ<0 i∂ ∂̄ T +
i∂ ∂̄ ρ ∧ T dS

|∂ρ|
,

where dS is surface measure on S and χ is a characteristic function.

In particular, even though it is not assumed that all of T , but only
certain components of T , vanish on S, the contribution coming from the
discontinuity is a measure, and not, as might be expected, a current of
order 1.

Proof. — The hypotheses on T mean that

(4.2)
∑

ρjTjk̄ = ρck,

where
∑
ckρk̄ vanishes on S. Therefore, on S,

0 =
∑ ∂

∂z̄k
(ρck) =

∑
ρj
∂Tjk̄
∂z̄k

+
∑

ρjk̄Tjk̄

so

(4.3) −
∑

ρj
∂Tjk̄
∂z̄k

=
∑

ρjk̄Tjk̄.

Let w be a smooth function of compact support in U . Then, using the
divergence theorem and writing Tjk̄ for the components of T , we find that∫

ρ<0

i∂ ∂̄ w ∧ T =
∫
ρ<0

∑
wjk̄Tjk̄

=
∫
ρ=0

∑
ρjwk̄Tjk̄dS/|∂ρ| −

∫
ρ<0

∑ ∂w

∂zj

∂Tjk̄
∂z̄k

·

By equation (4.2) the boundary integral vanishes. Applying the divergence
theorem once more to the second integral we get∫

ρ<0

w
∑ ∂2Tjk̄

∂zj∂z̄k
−

∫
ρ=0

w
∑

ρj
∂Tjk̄
∂z̄k

dS/|∂ρ|.
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We then use (4.3) in the new boundary integral and find∫
ρ<0

i∂ ∂̄ w ∧ T =
∫
ρ<0

wi∂∂̄ T +
∫
ρ=0

∑
ρjk̄Tjk̄dS/|∂ρ|.

This completes the proof of the lemma. �

5. Second proof of Theorem 1.1

Again, we first consider the situation described at the beginning of Sec-
tion 2. As before, our starting point is the fact that the function

u = ∂φt Kt

is for fixed t orthogonal to the space of holomorphic functions in A2
t . We

now put
kt = Ktdζ1 ∧ . . . ∧ dζn,

so that kt is Kt interpreted as an (n, 0)-form and, slightly abusively, define

∂φt kt = ∂φt Ktdζ1 ∧ . . . ∧ dζn.

Since ∂̄ has closed range, the orthogonal complement of the kernel of ∂̄
equals the range of ∂̄∗. Therefore ∂φt kt = ∂̄∗α for some form α (in ζ) of
bidegree (n, 1) which can also be taken to be ∂̄ -closed (and is then uniquely
determined). By an argument similar to Lemma 2.1, α depends smoothly
on t. Write α =

∑
αjdζ̄j ∧ dζ. Since α lies in the domain of ∂̄∗, α satisfies

the ∂̄ -Neumann boundary condition
∑
αjρj = 0 on the boundary of V .

Put γ =
∑
αjdζ̂j , where dζ̂j stands for the wedge product of all dζk’s

except dζj , with a sign so that

dζj ∧ dζ̂j = dζ1 ∧ . . . ∧ dζn.

For later reference we note that the ∂̄ -Neumann boundary condition on α

translates to ∂ρ ∧ γ = 0 on ∂V . Put g = dt ∧ γ + kt and let ∂φ = eφ∂e−φ

be a twisted ∂-operator. The equation

∂φt kt = ∂̄∗α

is equivalent to
∂φg = 0.

We claim that the form T defined as

T = cng ∧ ḡe−φ,
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where cn is a constant of modulus 1 chosen so that T is positive, for ζ in V
and T = 0 for ζ outside of V is a subharmonic form. Since the component
of T of bidegree (n, n) in ζ equals

κt = cnkt ∧ k̄t

it then follows that

Kt(z, z) =
∫
κt

is a subharmonic function of t.
To prove the subharmonicity of T we first compute i∂ ∂̄ T for ζ inside

of V . We use the product rule

∂(a ∧ b̄e−φ) = ∂φa ∧ b̄e−φ + (−1)deg aa ∧ ∂̄ be−φ,

and a similar rule for applying ∂̄ . Remembering that ∂φg = 0 we get

(5.1) i∂ ∂̄ T = cni∂
φ ∂̄g ∧ ḡ e−φ + cni∂̄g ∧ ∂̄g e−φ.

From the commutation rule

(∂φ ∂̄ + ∂̄∂φ)g = ∂∂̄ φ ∧ g,

together with ∂φg = 0 it follows that the first term on the right hand side
can be written

i∂ ∂̄ φ ∧ T.
This term is therefore nonnegative since φ is plurisubharmonic. To analyse
the second term we introduce the notation ζ0 for t and α0 for −Kt, so
that g can be written

−
n∑
0

αjdζ̂j .

The second term equals ∑
jk

∂αj
∂ζ̄k

∂αk
∂ζ̄j

·

Here the indices run from 0 to n. Consider first the part of the sum where
both indices are greater than 0. Since the form α is ∂̄ -closed for fixed t this
part equals

n∑
1

∣∣∣∂αj
∂ζ̄k

∣∣∣2
multiplied by the volume form dλ. Evidently, the part of the sum where
both indices are 0 equals

|∂α0

∂ζ̄0
|2dλ.
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Finally, the terms in the sum when precisely one of the indices are 0 vanish
since α0 = Kt is a holomorphic function of ζ.

In conclusion, i∂ ∂̄ T > 0 for ζ in V . It now remains to compute the
contribution to i∂ ∂̄ T which comes from cutting off T outside of V . We
apply Lemma 4.1 to our current T = cng∧ ḡe−φ and ρ equal to the defining
function of V . Then ρ is independent of t = ζ0, so

∂ρ ∧ g = ∂ρ ∧ dt ∧ γ = 0

on U × ∂V since ∂ρ ∧ γ = 0 on ∂V . Hence the hypotheses of Lemma 4.1
are fulfilled. Since V is pseudoconvex it follows that icn∂∂̄ ρ ∧ g ∧ ḡ is
non-negative on ∂V so

i∂ ∂̄ T > 0.

In conclusion, T is a subharmonic current and it follows that Kt is a sub-
harmonic function of t for z fixed. The rest of the proof of Theorem 1.1
runs as before.

6. Singularities of plurisubharmonic functions

We first recall the definitions and basic properties of Lelong numbers
(our basic reference for these matters is [12]). If φ is a plurisubharmonic
function in an open set U in Cn and a is a point in U , the Lelong number
of φ at a is

(6.1) γ(φ, a) = lim
r→0

(log r)−1 sup
|z−a|=r

φ(z).

Equivalently (see [12, p. 176]) we may introduce the mean value of φ over
the sphere centered at a with radius r, M(φ, a, r) and put

(6.2) γ(φ, a) = lim
r→0

(log r)−1M(φ, a, r).

The Lelong number measures the strength of the singularity of φ at a.
If γ(φ, a) > τ then

φ(z) 6 τ log |z − a|
for z close to a.

In the one variable case we can decompose a subharmonic function locally
as a sum of a harmonic part and a potential

p(z) =
∫

log |z − ζ|dµ(ζ)

where µ = 1/(2π)∆φ. It is easy to verify that the Lelong number is then
equal to µ({a}). Using the potential it is also easy to see that, in the one
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variable case, the Lelong number at a is greater than or equal to one if and
only if e−2φ is not integrable over any neighbourhood of a.

In any dimension one defines ι(φ, a), the integrability index of φ at a, as
the infimum of all positive numbers t such that

e−2φ/t

is locally integrable in some neighbourhood of a. By a theorem of Skoda
[17], the inequality

ι(φ, a) 6 γ(φ, a) 6 nι(φ, a)

holds in any dimension. The left inequality here (which is the hard part)
says that if the Lelong number of φ at a is strictly smaller than 1, then e−2φ

is locally integrable near a.
Let Ω be a domain in Cn and let φ be a plurisubharmonic function

in Ω. We consider the Bergman kernel K(z, z) for A2(Ω, φ). It is clear
that if a is a point Ω and e−φ is not integrable in any neighbourhood
of a, then any holomorphic function in A2(Ω, φ) must vanish at a, so in
particular K(a, a) = 0. Conversely, if Ω is bounded and e−φ is integrable in
some neighbourhood of a then a standard application of Hörmander’s L2-
estimates shows that there exists some function in A2(Ω, φ) which does not
vanish at a. Since K(a, a) equals the supremum of the modulus squared of
all functions in A2(Ω, φ) of norm 1, it follows that K(a, a) > 0 in that case.
Thus, at least if Ω is bounded, the set where logK = −∞ is precisely equal
to the nonintegrability locus of e−φ.

For z in Ω and w in Cn we now consider the restriction of φ to the
complex line through z determined by w

φz,w(λ) = φ(z + λw).

For any fixed z in Ω φz,w is defined for λ in the unit disk, if w is small
enough. Let Kz,w(0, 0) be the Bergman kernel for the unit disk, with
Lebesgue measure normalized so that the total area is one, equipped with
the weight function 2φz,w. By the above, Kz,w(0, 0) = 0 if and only if the
Lelong number of φz,w at the origin is at least 1. By Theorem 1.1, logKz,w is
a plurisubharmonic function, so for fixed z the set of w where it equals −∞
is either pluripolar or contains a neighbourhood of the origin. Thus, if the
Lelong number at the origin of one single slice function is smaller than 1,
it must be smaller than 1 for all slices outside a pluripolar set.

It follows that the Lelong numbers of all slices outside a pluripolar set are
equal. This common value also equals the Lelong number of φ at z. To see
this, first note that by the first definition of Lelong number in terms of
supremum over spheres, it follows that the Lelong number for the restriction
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of φ to any line through z must be at least as big as the n-dimensional
Lelong number at z. The converse inequality follows if we use the second
definition of Lelong numbers in terms of mean values over spheres, and
apply Fatou’s Lemma. To avoid the consideration of exceptional lines we
now introduce the function

φε(z) =
1
2

∫
|w|=ε

logKz,w(0, 0)dS(w),

where the surface measure dS is normalized so that the sphere has total
measure equal to 1.

Theorem 6.1. — The function φε is well defined and plurisubharmonic
in the open set Ωε of points of Ω whose distance to the boundary is greater
than ε. The sequence φε decreases to φ as ε decreases to 0. The singularity
set S where φε = −∞ is for any ε > 0 equal to the analytic set where the
Lelong number of φ is at least 1. If the Lelong number of φ at z equals τ > 1,
the Lelong number of φε at z is at least equal to τ − 1.

Proof. — Since logKz,w is subharmonic with respect to w t is clear that
φε decreases with ε to logKz,0. But Kz,0 is the Bergman kernel at the origin
for a normalized disk with a constant weight, e−2φ(z), and so equals e2φ(z).
Hence the limit of φε is equal to φ. If the Lelong number of φ at z is smaller
than 1 we have seen above that logKz,w(0, 0) is not identically equal to −∞
so its mean value over a sphere, φε is not equal to −∞. On the other hand
we have also seen above that if γ(φ, z) > 1, then logKz,w = −∞ for w
in a full neighbourhod of 0, so φε(z) = −∞. Hence S is equal to the set
where γ(φ, z) > 1, which by Siu’s Analyticity Theorem, [16], is analytic.

It remains only to prove the last statement of the theorem, so assume 0
lies in Ω and that γ(φ, 0) = τ > 1. Then, if τ ′ < τ ,

e−φ(z) > 1/|z|τ
′

if |z| is small enough. For w fixed and h(λ) holomorphic we get∫
|λ|<1

|h|2e−2φ(z+λw)dm(λ) >
∫
|λw|<|z|

|h|2e−2φ(z+λw)dm(λ)

>
∫
|λ|<1

|h|2/(|2z|2τ
′
)dm(λ) >

C|h(0)|2

|z|2(τ ′−1)
·

Hence
Kz,w(0, 0) 6 C1|z|2(τ

′−1)

where the constant can be taken uniform for all w of fixed modulus equal
to ε > 0. It follows that the Lelong number of φε at z is at least τ ′− 1, and
therefore at least τ − 1 since τ ′ is an arbitrary number smaller than τ . �
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The function φε thus “attenuates the singularities” of φ in much the
same way as Kiselman’s construction [12]. (Kiselman even gets that the
Lelong number of the constructed function equals τ − 1.) In precisely the
same way as in Kiselman [11], this construction can be used to prove the
Siu Analyticity Theorem. Let

Eτ = {z; γ(φ, z) > τ}.

First, it follows from the Hörmander-Bombieri theorem that the noninte-
grability locus of any plurisubharmonic function is always analytic. For a
given plurisubharmonic function, φ, and δ > 0 we put, for some choice
of ε > 0

ψ = 3nφε/δ.

By Theorem 6.1, ψ is finite at any point where γ(φ, z) < 1, and therefore
(see [9]) e−ψ is locally integrable near any such point. On the other hand
e−ψ is not locally integrable near a point where γ(φ, z) > (1 + δ) since the
Lelong number of ψ at such a point is at least 3n. Therefore we have, if Z
denotes the nonintegrability locus of e−ψ, that

E1+δ ⊂ Z ⊂ E1.

Rescaling, we may of course for any τ > 0 and δ > 0 in a similar way find
an analytic set Zτ,δ such that

Eτ ⊂ Zτ,δ ⊂ Eτ−δ.

Hence Eτ equals the intersection of the analytic sets Zτ,δ for δ > 0 and is
therefore analytic.

In a similar way we can consider, instead of restrictions of φ to lines,
the restriction of φ to k-dimensional subspaces. This will give us a scale
of “Lelong numbers” for k = 1, . . . , n that starts with the classical Lelong
number and ends with the integrability index.

We close this section by sketching an alternative way of relating Lelong
numbers to Bergman kernels, leading up to Theorem 1.3 of the introduc-
tion. In [17] it is proved that if the Lelong number of φ at a is strictly
smaller than 1, then e−2φ is locally integrable in some neighbourhood of
a. Actually, Skoda’s proof of this fact gives a bit more, namely that

I(a) :=
∫
|z−a|<δ

e−2φ(z)

|z − a|2n−2
dm(z)
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is also finite, if δ is small enough. (The same argument as in Section 7
of [17] gives, with dσ = ∆φ that∫

|z|<r

e−2φ(z)

|z|2n−2
6 C

∫
|z|<r,|x|<R

|z|−2n−2|z − x|−2n+εdσ(x)dm(z),

which is finite since
∫

dσ(x)/|x|2n−2−ε is finite.) On the other hand, I(a)
is comparable to the average of∫

e−2φ(a+λw)dm(λ)

over all w on a sphere, so I(a) must be infinite if the Lelong number of φ
at a is larger than or equal to 1. In conclusion{

a; I(a) = ∞
}
=

{
a, γ(φ, a) > 1

}
.

We now introduce the plurisubharmonic function

ψ(z, a) = φ(z) + (n− 1) log |z − a|

and let Ka be the Bergman kernel for Ω with weight 2ψa(z) = 2ψ(z, a).
It then follows that χ(a) = logKa(a, a) is plurisubharmonic and equal
to −∞ precisely where γ(φ, .) > 1, so we have proved the first part of
Theorem 1.3 from the introduction. The last part of Theorem 1.3 follows
from an argument similar to the last part of the proof of Theorem 6.1.

7. Plurisubharmonicity of potentials.

In this section we shall prove a generalization of an earlier result of Yam-
aguchi on the Robin function. Let D be a smoothly bounded pseudoconvex
set in Ckt × Cnζ and let as before Dt be the n-dimensional slices of D.
In this section we assume D has a smooth defining function ρ(t, ζ) such
that ∂ζρ 6= 0 on the boundary of D. In particular all the fiber domains are
smoothly bounded and have the same topology.

Theorem 7.1. — Let K be a compact subset of Cn that is contained
in Dt for all t in an open set U . Let µ be a positive measure with sup-
port in K. Let u(t) be the negative of the energy of µ with respect to the
Green function Gt of Dt

u(t) =
∫
Dt

Gt(z, ζ)dµ(z)dµ(ζ).

Then u is plurisubharmonic in U .
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Here we mean by the Green function the unique function vanishing on
the boundary and satisfying that ∆ζG is a unit point mass at z.

The Green function G of a domain Ω with pole at z can be written as
the Newton kernel plus a smooth term

G(z, ζ) = − cn
|z − ζ|2n−2

+ ψ(z, ζ)

where ψ is harmonic in z and in ζ. The function

Λ(z) = ψ(z, z)

is called the Robin function of the domain Ω. Let the measure µ in The-
orem 7.1 be a uniform mass distribution on a small ball centered at the
point z. u is then equal to (the negative of) the energy of µ with respect to
the Newton kernel plus the Robin function at z of the domain Dt. Since the
Newtonian energy is independent of t it follows that Λ is plurisubharmonic
as a function of t. Just like in the case of Bergman kernels this implies that
even log Λ is subharmonic, if n > 1. To see this, let a be some complex
number and consider the domain D(a) with fibers

D(a)t = eatDt,

which, being a biholomorphic image if D, is still pseudoconvex. The Robin
function of D(a) equals e−(2n−2) Re(at)Λ, so these functions are subhar-
monic for any choice of a. It follows that log Λ is subharmonic if 2n−2 6= 0,
i.e. if n > 1. Finally, we can again apply the Oka technique of variation of
the domain (cf. the end of Section 3) to conclude that if Λ is the Robin
function of a fixed domain Ω, log Λ(z) is plurisubharmonic as a function
of z in Ω.

Proof. — We consider the Green function Gt of Dt and let g(t, z) = gt(z)
be the Green potential of µ in Dt. We may assume that µ is given by a
smooth density and it is then not hard to see that g is smooth up to the
boundary in D. Let β be the standard Euclidean Kähler form in Cn and set

T = i∂g ∧ ∂̄g ∧ βn−1

in D and T = 0 outside of D. (Here we use the notation ωp = ωp/p !
for (1, 1)-forms ω.) Notice that T is a nonnegative form and that π∗(T ) is
given by

π∗(T )(t) =
∫
Dt

|∂gt|2 = −
∫
Dt

∆gt gt = −u(t),

where, as in Theorem 7.1, u is the energy of µ. Since g vanishes on the
boundary of D, T satisfies the hypotheses of Lemma 4.1. By Lemma 4.1

(7.1) i∂ ∂̄ T > χDi∂ ∂̄ T
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if D is pseudoconvex. In D we get

(7.2) i∂ ∂̄ T = −(i∂ ∂̄ g)2 ∧ βn−1.

Write
i∂ ∂̄g = i∂z ∂̄zg + i∂t ∂̄ tg + i∂t ∂̄zg + i∂z ∂̄ tg.

Hence

(i∂ ∂̄ g)2 ∧ βn−1

= 2Re(i∂t ∂̄ tg ∧ i∂z ∂̄zg) ∧ βn−1 + 2 Re(i∂t ∂̄zg ∧ i∂z ∂̄ tg) ∧ βn−1

=
(
2∆tg∆zg − 2

∑ ∣∣∣ ∂2g

∂zj∂t̄

∣∣∣2)dλ.

We thus find

−i∂ ∂̄ u = π∗(i∂ ∂̄ T )

> 2
( ∫

Dt

−∆tg∆zg + 2
∫
Dt

∑ ∣∣∣ ∂2g

∂zj∂t̄

∣∣∣2)idt ∧ d t̄

> 2
(
−∆t

∫
Dt

gtdµ
)
idt ∧ d t̄ = −2i∂ ∂̄ u.

(Notice that we may move the Laplacian with respect to t outside the inte-
gral sign since µ is independent of t and compactly supported inside Dt.)
Thus i∂ ∂̄ u > 0, so u is subharmonic and the proof of Theorem 7.1 is com-
plete. �

Notice that the statement in Theorem 7.1 may be generalized to Green
functions for other elliptic equations, besides the Euclidean Laplacian (see
also Yamaguchi and Levenberg [13]). First, we may replace the Euclidean
metric by an arbitrary Kähler metric, with Kähler form ω, on Cn, and
consider the Laplacian with respect to this metric. The same proof as above
applies if we only replace the Euclidean Kähler form β by ω. We may even
go one step further and consider elliptic operators of the form

Lu = i∂ ∂̄ u ∧ Ω

where Ω is a closed positive form of bidegree (n− 1, n− 1).
It is also worth pointing out that the assumption on pseudoconvexity

in Theorem 7.1 can be relaxed. In the proof, convexity properties of the
boundary of D only intervene in the application of Lemma 4.1, to conclude
that the form

F = i∂ ∂̄ ρ ∧ i∂g ∧ ∂̄g ∧ βn−1

is nonnegative on the boundary of D. Therefore we may replace the hy-
pothesis of pseudoconvexity in Theorem 7.1 by the hypothesis “F > 0”.
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This is of course rather implicit, but to get an idea of how that condition
relates to pseudoconvexity we can consider domains D in C×Cn of a spe-
cial form. Let us assume e g that the slices Dt only depend on Re t and
form an increasing family with respect to Re t, so that they are defined by
inequalities

Dt =
{
z; v(z) < Re t

}
.

When checking the positivity of the form F above one may then replace
both ρ and g by r = v−Re t, since ρ and g are positive multiples of r. We
then see that, whereas the pseudoconvexity of D is equivalent to v being
plurisubharmonic, F is positive if and only if v is subharmonic. In particular
this is a condition that also makes sense in Rn. In the next section we shall
briefly discuss analogs of the formalism of the last four sections in Rn.

8. Convexity properties of fiber integrals in Rn

We consider Rn+1 with the coordinates (x0, . . . , xn). When κ is a function
with compact support or satisfying suitable integrability conditions, we
want to study convexity properties of the fiber integral

Φ(t) =
∫
x0=t

κdx1 · · · dxn =
∫
x0=t

κ.

Just like in section 4 we shall arrange things so that

κ = T00

where (Tjk) is a matrix of functions. The basic fact of Section 4, that the
operation of pushforward of a form commutes with the i∂ ∂̄ -operator, is
now replaced by the following lemma.

Lemma 8.1. — Let T = (Tjk) be a matrix of L∞ functions in Rn+1.
Suppose that for some R > 0, T vanishes when |(x1, . . . , xn)| > R. Put

Φ(t) =
∫
x0=t

T00.

If T is smooth then

Φ′′(t) =
∫
x0=t

n∑
0

∂2Tjk
∂xj∂xk

·

If T is not smooth the same formula holds in the sense of distributions, if
the right hand side is interpreted as the distribution, S, whose action on a
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test function α is

S.α =
∫

Rn+1

n∑
0

∂2Tjk
∂xj∂xk

α(x0).

Proof. — If T is smooth the first formula is clear since the integral of
any term involving a derivative with respect to a variable different from x0

vanishes. Hence∫
x0=t

n∑
0

∂2Tjk
∂xj∂xk

=
∫
x0=t

∂2T00

∂x0∂x0
= Φ′′(t).

The non-smooth case follows from the definition of distributional deriva-
tives. �

It is clear that the lemma holds even if T does not necessarily have
compact support. It suffices that first and second order derivatives of the
coefficients of T are integrable. Later on we will also have use for a gener-
alization of Lemma 4.1.

Lemma 8.2. — Let T = (Tjk) be a matrix of functions that are smooth
up to the boundary in a smoothly bounded domain Ω = {ρ < 0} in RN .
Assume that ∑

j

Tjkρj = O(ρ) and
∑
j

Tjkρjρk = O(ρ2)

at the boundary of D. Extend the definition of T to a matrix T̃ in all of RN
by putting T̃ equal to 0 in the complement of D. Then we have in the sense
of distributions∑ ∂2T̃jk

∂xj∂xk
= χD

∑ ∂2Tjk
∂xj∂xk

+
∑

Tjkρjk
dS
|dρ|

·

The proof is essentially the same as the proof of Lemma 4.1. Let us now
consider in particular matrices of the form

Tjk = γjγke
−φ.

To compute derivatives of Tjk we use the notations

dj =
∂

∂xj
and dφj = eφdje−φ.

We get

(8.1)
∂2Tjk
∂xj∂xk

=
(
dkγjdjγk + dφj dk(γj)γk + dφj γjd

φ
kγk + γjdjd

φ
kγk

)
e−φ

=
(
dkγjdjγk + dkd

φ
j (γj)γk + dφj γjd

φ
kγk + γjdjd

φ
kγk + φjkγjγk

)
e−φ,
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where in the last line we have used the commutation relation dφj dk =
dkd

φ
j + φjk. It follows that if we assume∑

dφkγk = 0

then
n∑
0

∂2Tjk
∂xj∂xk

=
( ∑

dkγjdjγk +
∣∣∣ ∑

dφkγk
∣∣∣2 + φjkγjγk

)
e−φ.

This identity can be used exactly as in Section 5 to prove the real Prekopa
Theorem. Let φ be a convex function and put

k(t) = γ0(t) =
( ∫

x0=t

e−φ
)−1

.

Since
∫
x0=t

γ0(x0)e−φ = 1 it follows that∫
x0=t

dφ0 (γ0)e−φ = 0

for any t. This implies that we can solve

dφ0γ0 = −
n∑
1

dφj γj e
−φ and djγk = dkγj

with γ and its first derivatives going rapidly to zero at infinity (this is easiest
to see for n = 1, which is all that is needed for the Prekopa Theorem). If we
then define Tjk = γjγke−φ as above it follows by Lemma 8.1 that

k′′(t) =
d2

dt2

∫
x0=t

k2(x0)e−φ =
∫
x0=t

( ∑
dkγjdjγk + φjkγjγk

)
e−φ.

But, since γ0 only depends on x0, it follows just as in the complex case
that ∑

dkγjdjγk = |d0γ0|2 +
n∑
1

|dkγj |2 > 0.

Hence k(t) is convex and it follows just like in Section 3 that even log c is
convex, since replacing φ by φ+ ax0 we see that k(t)eat is convex for any
choice of a.

In the same way we can adapt the argument of Section 7 to prove con-
vexity of Green potentials (and hence the Robin function, see also [5] who
prove a stronger convexity property of the Robin function), but in that
case it is a little bit less evident what the choice of T should be. To explain
this we shall first discuss a general notion of subharmonic form in Rn.
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Consider the space, F , of differential forms on RNx ×RNy whose coefficients
depend only on x. The usual exterior derivative, d, preserves this space of
forms. We introduce a new exterior derivative, d# on F as

d# =
∑

dyj ∧
∂

∂xj
,

where the partial derivative acts on the coefficients of a form (this operator
and the space F are not invariantly defined under changes of coordinates).
If we introduce the operator τ on F by letting it change dxj to dyj and
vice versa, then d# = τ dτ and it is clear that (d#)2 = 0. We say that a
form in F is of bidegree (p, q) if its respective degrees in dx and dy are p
and q. A (p, p)-form η =

∑
ηIJ dxI ∧ dyJ is symmetric if ηIJ = ηJI , or

equivalently τη = (−1)pη. Put

ω =
∑

dxj ∧ dyj .

A form of bidegree (N,N) is positive if it is a nonnegative multiple of
ωN := ωN/N !, and a general symmetric form, η, of bidegree (p, p) is posi-
tive if

a1 ∧ τa1 ∧ . . . ∧ aN−p ∧ τaN−p ∧ η
is positive for any choice of forms aj of bidegree (1, 0). It is not hard to
check that a form ∑

aijdxi ∧ dyj

is positive if and only if the matrix (aij) is positively semidefinite. A smooth
function φ is therefore convex precisely when dd#φ is a positive form.
It also follows that a positive (1, 1)-form can be written as a sum of forms
of the type

a ∧ τa,
with a of type (1, 0). Therefore the wedge product of a positive form with
a positive (1, 1)-form is again positive. Similarily if we define dvjk as the
wedge product of all differentials except dxj and dyk, ordered so that
dxj ∧ dyk ∧ dvjk = ωN , then

µ =
∑

ajkdvjk

is also positive exactly when (ajk) is nonnegative as a matrix. A form
T =

∑
Tjkdvjk in F of bidegree (N − 1, N − 1) is subharmonic if

dd#T =
n∑
0

∂2Tjk
∂xj∂xk

ωN

is positive.
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With these definitions it is clear that to apply Lemma 8.1 to prove con-
vexity of fiber integrals, we must look for subharmonic forms of bidegree
(n, n) in Rn+1. Let D be a smoothly bounded domain in Rn+1 defined by
an inequality D = {ρ < 0} where the gradient of ρ does not vanish on the
boundary of D and let Dt be the n-dimensional slices. We say that such a
domain satisfies condition (C) if

dρ ∧ d#ρ ∧ dd#ρ ∧ ω′n−1

is positive for x on the boundary of D. This condition is clearly satisfied
if D is convex and it also holds if the fibers Dt are of the form

Dt =
{
x′ = (x1, . . . , xn); v(x′) < x0

}
where v is subharmonic. As in the case of Theorem 7.1 we assume that the
gradient of ρ with respect to x′ is never 0 for x0 in an open set U , so that
all the slices are smoothly bounded and have the same topology. Let Gt be
the Green function of Dt. We then have

Theorem 8.3. — Assume that D satisfies condition (C). Let K be a
compact subset of Rn that is contained in Dt for all t in U . Let µ be a
positive measure with support in K. Let u(t) be the negative of the energy
of µ with respect to the Green function Gt of Dt

u(t) =
∫
Dt

Gt(x, ξ)dµ(x)dµ(ξ).

Then u is convex in U .

The proof of Theorem 8.3 runs in much the same way as the proof of The-
orem 7.1. Let gt be the Green potential of µ in Dt and put

g(x0, x
′) = gx0(x

′).

Let

ω′ =
n∑
1

dxj ∧ dyj ,

and put

T = dg ∧ d#g ∧ ω′n−1 =
n∑
0

Tjkdvjk,

for x in D, and T = 0 outside of D. Then T00 = |dgx0 |2, so that∫
x0=t

T00 = −u(t).
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By Lemma 4.1 the contribution we get from the discontinuity at the bound-
ary of D when we compute dd#T equals

dd#ρ ∧ T dS/|dρ|.

If D satisfies condition (C), this expression is nonnegative (since dg is a
positive multiple of dρ at the boundary of D). By Lemma 8.2 we therefore
have (using dω′ = d#ω′ = 0) that∑ ∂2Tjk

∂xj∂xk
ωn+1 = dd#T > −(dd#g)2 ∧ ω′n−1.

Applying Lemma 8.1 we now get as in the complex case

−u′′(t) >
∫
x0=t

n∑
1

∣∣∣ ∂2g

∂xj∂x0

∣∣∣2 − 2u′′(t),

and it follows that u is convex.
Let us finally consider the implications of Theorem 8.3 for the Robin

function. Again as in Section 7 we take µ to be a positive measure of total
mass 1 which is given by a constant density on a small ball centered at a
fixed point x that we assume to be contained in all the fibers Dt, for t in
some open set U . The energy integral u(t) then equals Λt(x) − c where Λ
is the Robin function for Dt and c is a constant. It follows that the Robin
function is a convex function of t if D satisfies condition (C). Moreover,
Λ is strictly convex at any point t such that the expression

dd#ρ ∧ T

is strictly positive at some point of the boundary of Dt. Consider now the
situation when all the fibers are translates of one fixed domain Ω in Rn

Dt = Ω + ta

with a a fixed direction in Rn. Then ρ(x0, x) = r(x − x0a) where r is a
defining function for Ω. It follows from the Hopf lemma that dg is a strictly
positive multiple of dρ at the boundary of D, so

dd#ρ ∧ T

is a strictly positive multiple of

ν = dd#ρ ∧ dρ ∧ d#ρ ∧ ω′n−1.

To check the positivity of this (n+1, n+1)-form, we pull it back under the
map (x0, x, y0, y) 7→ (x0, x − x0a, y0, y − y0a). It is then not hard to see ν
is positive for any choice of a if ρ is convex and that moreover ν is strictly
positive at any point where the Hessian of r restricted to the null space
of dr is strictly positive. If Ω is smoothly bounded and convex there will
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always be at least some such point at the boundary and the Robin function
is therefore strictly convex. We have therefore proved a special case of a
result from [18] and [5]:

Theorem 8.4. — Let Ω be a smoothly bounded convex domain in Rn
and let Λ be the Robin function of Ω. Then Λ is strictly convex.

In [5] a stronger convexity of the Robin function is proved (namely the
harmonic radius, Λ−1/(n−2), is strongly concave), but Theorem 8.4 is al-
ready sufficient to prove the unicity of the harmonic center of Ω, i.e. the
point where Λ attains its minimum.

BIBLIOGRAPHY

[1] K. Ball, F. Barthe & A. Naor, “Entropy jumps in the presence of a spectral
gap”, Duke Math. J. 119 (2003), p. 41-63.

[2] B. Berndtsson, “Prekopa’s theorem and Kiselman’s minimum principle for pluri-
subharmonic functions”, Math. Ann. 312 (1998), p. 785-792.

[3] H. J. Brascamp & E. H. Lieb, “On extensions of the Brunn-Minkowski and
Prekopa-Leindler theorems, including inequalities for log concave functions, and
with an application to the diffusion equation”, J. Funct. Anal. 22 (1976), p. 366-
389.

[4] J. Bruna & J. Burgués, “Holomorphic approximation and estimates for the ∂-
equation on strictly pseudoconvex nonsmooth domains”, Duke Math. J. 55 (1987),
p. 539-596.

[5] P. Cardaliaguet & R. Tahraoui, “On the strict concavity of the harmonic radius
in dimension N > 3”, J. Math. Pures Appl. (9) 81 (2002), p. 223-240.

[6] D. Cordero-Erausquin, “Santaló’s inequality on Cn by complex interpolation”,
C. R. Math. Acad. Sci. Paris 334 (2002), p. 767-772.

[7] ——— , “On Berndtsson’s generalization of Prekopa’s theorem”, Math. Z. 249
(2005), p. 401-410.

[8] J.-P. Demailly, “Estimations L2 pour l’opérateur ∂̄ d’un fibré vectoriel holomorphe
semi-positif au-dessus d’une variété kählérienne complète”, Ann. Sci. École Norm.
Sup. (4) 15 (1982), p. 457-511.

[9] L. Hörmander, “L2-estimates and existence theorems for the ∂̄ -operator”, Acta
Math. 113 (1965), p. 89-152.

[10] C. O. Kiselman, “The partial Legendre transformation for plurisubharmonic func-
tions”, Invent. Math. 49 (1978), p. 137-148.

[11] ——— , “Densité des fonctions plurisousharmoniques”, Bull. Soc. Math. France.
107 (1979), p. 295-304.

[12] ——— , “Attenuating the singularities of plurisubharmonic functions”, Ann. Polon.
Math. 60 (1994), p. 173-197.

[13] N. Levenberg & H. Yamaguchi, “Robin functions for complex manifolds and
applications”, Manuscript, 2004.

[14] F. Maitani & H. Yamaguchi, “Variation of Bergman metrics on Riemann sur-
faces”, Math. Annal. 330 (2004), p. 477-489.

[15] A. Prekopa, “On logarithmic concave measures and functions”, Acad. Sci. Math.
(Szeged) 34 (1973), p. 335-343.

TOME 56 (2006), FASCICULE 6



1662 Bo BERNDTSSON

[16] Y.-T. Siu, “Analyticity of sets associated to Lelong numbers and the extension of
closed positive currents”, Invent. Math. 27 (1974), p. 53-156.

[17] H. Skoda, “Sous-ensembles analytiques d’ordre fini ou infini dans Cn”, Bull. Soc.
Math. France 100 (1972), p. 353-408.

[18] H. Yamaguchi, “Variations of pseudoconvex domains over Cn”, Michigan Math. J.
36 (1989), p. 415-457.

Manuscrit reçu le 23 mars 2005,
accepté le 21 novembre 2005.

Bo BERNDTSSON
Chalmers University of Technology and the
University of Göteborg
Department of Mathematics
412 96 Göteborg (Sweden)
bob@math.chalmers.se

ANNALES DE L’INSTITUT FOURIER

mailto:bob@math.chalmers.se

	 1. Introduction
	 2. A special case of Theorem 1.1
	 3. The general case of Theorem 1.1
	 4.  Subharmonic currents
	 5. Second proof of Theorem 1.1
	 6. Singularities of plurisubharmonic functions
	 7. Plurisubharmonicity of potentials.
	 8. Convexity properties of fiber integrals in Rn
	 . BIBLIOGRAPHY


