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RELATIVE PROPERTY (T) AND LINEAR GROUPS

by Talia FERNÓS

Abstract. — Relative property (T) has recently been used to show the exis-
tence of a variety of new rigidity phenomena, for example in von Neumann algebras
and the study of orbit-equivalence relations. However, until recently there were few
examples of group pairs with relative property (T) available through the literature.
This motivated the following result: A finitely generated group Γ admits a special
linear representation with non-amenable R-Zariski closure if and only if it acts on
an Abelian group A (of finite nonzero Q-rank) so that the corresponding group
pair (Γ n A, A) has relative property (T).

The proof is constructive. The main ingredients are Furstenberg’s celebrated
lemma about invariant measures on projective spaces and the spectral theorem
for the decomposition of unitary representations of Abelian groups. Methods from
algebraic group theory, such as the restriction of scalars functor, are also employed.

Résumé. — La propriété (T) relative a récemment été utilisée pour démontrer
l’existence de divers nouveaux phénomènes de rigidité, par exemple dans la théorie
des algèbres de von Neumann et dans l’étude des relations d’équivalence définies par
les orbites d’un groupe. Cependant, jusqu’à récemment, il n’y avait pas beaucoup
d’exemples dans la littérature de paires de groupes qui jouissent de la propriété
(T) relative. Cette situation a motivé le théorème suivant : Un groupe Γ de type
fini admet une représentation dans SLn(R) dont la fermeture de Zariski n’est pas
moyennable si et seulement si Γ agit par automorphismes sur un groupe A abélien
de rang rationnel fini et non nul, de telle façon que la paire (ΓnA, A) ait la propriété
(T) relative.

La preuve de ce théorème est constructive. Les ingrédients principaux sont le
lemme de Furstenberg sur les mesures invariantes sur l’espace projectif et le théo-
rème spectral pour la décomposition des représentations unitaires de groupes abé-
liens. Des méthodes provenant de la théorie des groupes algébriques, telles que la
restriction des scalaires, sont également employées.

1. Introduction

Recall that if Γ is a topological group and A 6 Γ is a closed subgroup
then the group pair (Γ, A) is said to have relative property (T) if every

Keywords: Relative property (T), group extensions, linear algebraic groups.
Math. classification: 20F99, 20E22, 20G25, 46G99.



1768 Talia FERNÓS

unitary representation of Γ with almost invariant vectors has A-invariant
vectors. Furthermore, Γ is said to have property (T) if (Γ,Γ) has relative
property (T)(1) .

In 1967 D. Kazhdan used the relative property (T) of the group pair
(SL2(K) n K2,K2) to show that SL3(K) has property (T), for any local
field K [13, Lemmas 2 & 3]. Later in 1973 G. A. Margulis used the relative
property (T) of (SL2(Z) n Z2,Z2) [18, Lemma 3.18] in order to construct
the first explicit examples of families of expander graphs. It was he who
later coined the term.

Recently relative property (T) has been used to show the existence of a
variety of new phenomena. Most notable is the recent work of S.Popa. He
has shown that every countable subgroup of R∗+ is the fundamental group of
some II1-factor [21], and constructed examples of II1 factors with rigid Car-
tan subalgebra inclusion [20]. Also D. Gaboriau with S. Popa constructed
uncountably many orbit inequivalent (free and ergodic measure-preserving)
actions of the free group Fn (for n > 2) on the standard probability space.
See [6] and [22] and the references contained therein.

In a completely different direction, A. Navas, extending his previous work
with property (T) groups, showed that relative property (T) group pairs
acting on the circle by C2 diffeomorphisms are trivial, in a suitable sense
[19]. Also, M. Kassabov and N. Nikolov [12, Theorem 3] used relative prop-
erty (T) to show that SLn(Z[x1, . . . , xk]) has property (τ) for n > 3.

We also refer to A. Valette’s paper [29] for more applications concerning,
for example, the Baum-Connes conjecture.

Unfortunately, until recently the examples of group pairs with relative
property (T) available in the literature were scarce:

• If n > 2 then (SLn(R)nRn,Rn) and (SLn(Z)nZn,Zn) have relative
property (T). [8, 10-Proposition]

• If Γ 6 SL2(Z) is not virtually cyclic then (Γ n Z2,Z2) has relative
property (T). [5, Example 2 Section 5]

• And, now, in a recent paper of A. Valette [29]: If Γ is an arith-
metic lattice in an absolutely simple Lie group then there exists
a homomorphism Γ → SLN (Z) such that the corresponding pair
(Γ n ZN ,ZN ) has relative property (T).

(1) We will assume throughout this paper that groups are locally compact and second
countable, Hilbert spaces are separable, unitary representations are strongly continu-
ous (in the usual sense), fields are of characteristic 0, and local fields are not discrete.
Furthermore, all countable groups will be given the discrete topology, unless otherwise
specified.
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RELATIVE PROPERTY (T) AND LINEAR GROUPS 1769

We remark that SLn(R) n Rn actually has property (T) for n > 3 [30]
and so (SLn(R) n Rn, A) has relative property (T) for any closed A 6
SLn(R) n Rn. Indeed, if A 6 G 6 H are groups with A and G closed in H,
and G has property (T) then (H,A) has relative property (T).

On the other extreme, if S is an amenable group and A is a closed
subgroup of S then (S,A) has relative property (T) if and only if A is
compact. (See Lemma 8.3 in Section 8.) So, if one wants to find new ex-
amples of group pairs with relative property (T), they should not rely on
the property (T) of one of the groups in question and they should be of the
form (Γ, A) where Γ is non-amenable and A is amenable but not compact.

Using these examples as a guide, one may ask to what extent can group
pairs with relative property (T) be constructed? We offer the following as
an answer to this question:

Theorem 1. — Let Γ be a finitely generated group. The following are
equivalent:

(1) There exists a homomorphism ϕ : Γ → SLn(R) such that the R-
Zariski-closure ϕ(Γ)

Z
(R) is non-amenable.

(2) There exists an Abelian group A of nonzero finite Q-rank and a
homomorphism ϕ′ : Γ → Aut(A) such that the corresponding group
pair (Γ nϕ′ A,A) has relative property (T).

Remark. — In the direction of (1) ⇒ (2), more information can be
given. Namely, we will specifically find that A = Z[S−1]N where S is some
finite set of rational primes, as is pointed out below. Also in the direction
of (2) ⇒ (1) we will find that A can be taken to be of the form Z[S−1]N .
We also note that the assumption that Γ be finitely generated is necessary
as (SLn(Q) n Qn,Qn) does not have relative property (T) (see Section 9).

1.1. Outline of the proof of Theorem 1 in the direction (1) ⇒ (2)

Step 1: From transcendental to arithmetic. — This step is a matter of
showing that from an arbitrary representation ϕ : Γ → SLn(R), such that
the R-Zariski closure ϕ(Γ)

Z
(R) is non-amenable, we may find an arithmetic

representation ψ : Γ → SLm(Q) such that the R-Zariski closure ψ(Γ)
Z
(R)

is non-amenable.

Step 2: Relative property (T) for RN . — We establish the existence of
a subgroup Γ0 P Γ of finite index and a “nice” representation α : Γ0 →
SLN (Q) such that (Γ0 nα RN ,RN ) has relative property (T). The repre-
sentation α is a factor of ψ|Γ0 .

TOME 56 (2006), FASCICULE 6



1770 Talia FERNÓS

Step 3: Fixing the primes. — We show that, after conjugating the rep-
resentation α by an element in GLN (Q) if necessary, we may assume that
α : Γ0 → SLN (Z[S−1]) and that α(Γ0) is not Qp-precompact for each
p ∈ S. The representation α is so nice that this allows us to conclude
that (Γ0 nα QN

p ,QN
p ) has relative property (T) for each p ∈ S.

Step 4: Products and induction. — The set S of primes in Step 3 is
finite, and we show that the relative property (T) passes to finite products.
Namely, if (Γ0 nα QN

p ,QN
p ) has relative property (T) for each p ∈ S ∪

{∞} then setting V =
∏

p∈S∪{∞}
QN
p we have that (Γ0 n V, V ) has relative

property (T).
Let A = Z[S−1]N and recall that the diagonal embedding A ⊂ V is a

lattice embedding. Since α(Γ0) 6 SLN (Z[S−1]) we have that Γ0 acts on
A by automorphisms. Since Γ0 n A is a lattice in Γ0 n V we have that
(Γ0 nA,A) has relative property (T).

Step 5: Extending up from a finite index subgroup. — We show that if
k = [Γ : Γ0] then there is a homomorphism α′ : Γ → SLkN (Z[S−1]) such
that (Γ nAk, Ak) has relative property (T).

1.2. Outline of the proof of Theorem 1 in the direction (2) ⇒ (1)

Step 1: Managing A. — We choose A to be of minimal (non-zero) Q-
rank among all Abelian groups satisfying condition (2). Under the hypothe-
sis, we show that we may assume that A is torsion free and hence a subgroup
of Qn where n is the Q-rank of A. This yields that there are finite sets of
primes Si such that, up to isomorphism, A =

n
⊕
i=1

Z[S−1
i ].

Step 2: An invariant subgroup of A. — We choose m ∈ {1, . . . , n} such
that |Sm| > |Si| for each i ∈ {1, . . . , n}. Letting Im = {i : Si = Sm} we get
that Am = ⊕

i∈Im

Z[S−1
m ] is Γ-invariant. By minimality of A it follows that

A = Am ∼= Z[S−1
m ]n. Set S = Sm.

Step 3: A is a lattice. — Let V = Rn ×
∏
p∈S

Qn
p . Since A ⊂ V is a

co-compact lattice it follows that (Γ n V, V ) has relative property (T).

Step 4: The R-component. — Since
∏
p∈S

Qn
p ⊂ V is Γ-invariant we have

that (Γ n Rn,Rn) has relative property (T).

ANNALES DE L’INSTITUT FOURIER



RELATIVE PROPERTY (T) AND LINEAR GROUPS 1771

Step 5: The image of Γ. — If ϕ : Γ → GLn(Q) is the corresponding
homomorphism, then ker(ϕ) P ΓnRn so that (ϕ(Γ)nRn,Rn) has relative
property (T).

Step 5: The Zariski closure. — If (ϕ(Γ) n Rn,Rn) has relative property
(T) then (ϕ(Γ)

Z
(R) n Rn,Rn) has relative property (T). It is shown that

this implies that ϕ(Γ)
Z
(R) is not amenable.

1.3. Organization of the paper

We present the paper in the following order:
In Section 2 we discuss some algebraic preliminaries in order to make the

rest of the exposition consistent and coherent.
In Section 3 we state and discuss the main theorems (Theorem 2 and

Theorem 3) that will be used in the proof of Theorem 1 in the direction of
(1) ⇒ (2). Their roles are:

Theorem 2: To give a criterion on a group Γ (we will call it Property
(Fp)) for which we may construct group pairs (Γ n Qn

p ,Qn
p ) having

relative property (T).
Theorem 3: To give a criterion on a group Γ for which there is a finite

set of primes S such that we may construct group pairs (ΓnZ[S−1]n,
Z[S−1]n) having relative property (T).

In Section 4 we prove Theorem 2.
In Section 5 we prove Theorem 3 using Theorem 2.
In Section 6 we prove an algebro-geometric specialization proposition

(Proposition 4). It exactly yields step 1 in the proof of Theorem 1 for the
direction (1) ⇒ (2).

In Section 7 we prove Theorem 1 in the direction of (1) ⇒ (2) essentially
as a consequence of Proposition 6.1 and Theorem 3.

In Section 8, we prove Theorem 1 in the direction of (2) ⇒ (1). The
proof is simple, and is pretty much self contained.

In Section 9, we discuss some related questions. In particular, we remark
that Theorem 1 does not apply to all nonamenable linear groups and show
that the action of Γ on A is not always faithful.

Acknowledgments. — I’d like to thank Alex Furman for being a truly
excellent advisor. In particular he deserves a great deal of thanks for his
many detailed readings of this paper and his instructive comments and
suggestions. He also proposed the original idea behind this work. I’d also
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like to thank Alain Valette for sending me a preprint of his paper [29]. It
came at an opportune time as it allowed for the generalization of the work
I had in progress. I’d also like to thank him for his comments on this work.

This work is a part of my doctoral thesis.

2. Algebraic preliminaries

2.1. A word about Zariski closure
([4, Section AG.13], [32, Section 3.1])

Let k be a field and K an algebraically closed field containing k. Re-
call that to every subset V ⊂ K

n
there corresponds an ideal IK(V ) ⊂

K[x1, . . . , xn] such that p ∈ IK(V ) if and only if p|V ≡ 0. The set V is said
to be Zariski closed if V =

{
a ∈ Kn

: p(a) = 0 for every p ∈ IK(V )
}

, that
is, if it is exactly the zero-set of its ideal.

Furthermore, V is said to be defined over k if there exists an ideal Ik(V ) ⊂
k[x1, . . . , xn] such that Ik(V )·K[x1, . . . , xn] = IK(V ). In such a case we
write

V (k) := {a ∈ kn : p(a) = 0 for every p ∈ Ik(V )}
to denote the k-points of V . Observe that it could happen that V (k) = φ

despite the fact that Ik(V ) 6= k[x1, . . . , xn]. (Take for example K = C and
k = R and V = {i,−i} ⊂ K

1
. Then IR(V ) = (x2 +1) is defined over Q and

V (R) = φ. This is why we need to work with algebraically closed fields to
begin with!) Fortunately, the situation for groups is significantly better.

Recall that GLn(K) is an algebraic (i.e., Zariski closed) group defined
over Q.

Proposition 2.1 ([32], Proposition 3.1.8). — Suppose that G(K) 6
GLn(K) is an algebraic group such that G(k) := GLn(k)∩G(K) is Zariski
dense in G(K). Then G(K) is defined over k.

Proposition 2.2 (Chevalley, [32], Theorem 3.1.9). — If G(K) is an
algebraic group defined over k then G(k) is Zariski dense in G(K).

Note that this means in particular, that if G(K) 6 GLn(K) is Zariski
closed, nontrivial, and defined over k then G(k) is nontrivial as well!

Now, if Γ 6 GLn(k) is any subgroup, then the K-Zariski closure is de-
noted by Γ

Z
(K). We say K-Zariski closure since this depends on the alge-

braically closed field K. Indeed, if K
′

is another algebraically closed field
containing k, then by the above propositions, Γ is also Zariski dense in
Γ
Z
(K

′
).

ANNALES DE L’INSTITUT FOURIER
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Observe that this notion is well defined even if the field is not alge-
braically closed. Namely, let F be a field containing k and let F be its
algebraic closure. We define the F -Zariski closure of Γ to be Γ

Z
(F ) :=

Γ
Z
(F ) ∩ GLn(F ). In general we make use of this when it has additional

topological content. For example if k = Q and F = Qp for some prime p.
Then the group Γ

Z
(F ) is a p-adic group and has a lot of nice additional

structure.

2.2. Restriction of scalars

Let K be a finite separable extension of a field k (of any characteristic)
and Σ := {σ : K → k} be the set of k-linear embeddings of K into k

a fixed separable closure of k. There is a functor called the restriction
of scalars functor which maps the category of linear algebraic K-groups
and K-morphisms into the category of linear algebraic k-groups and k-
morphisms. Namely, let H be an algebraic K-group defined by the ideal
I ⊂ K[X]. Then, for each σ ∈ Σ the algebraic group σH is defined by
σ(I) ⊂ σ(K)[X], the ideal obtained by applying σ to the coefficients of the
polynomials in I. The restriction of scalars of H is RK/kH ∼=

∏
σ∈G

σ
H. It

has the following properties [3, Section 6.17], [32, Proposition 6.1.3], [25,
Section 12.4 ]:

(1) There is a K-morphism α : RK/kH → H such that the pair
(RK/kH,α) is unique up to k-isomorphism.

(2) If H ′ is a k-group and β : H ′ → H is a K-morphism then there
exists a unique k-morphism β′ : H ′ → RK/kH such that β = α◦β′.

(3) If K ′ is any field containing K then RK/kH(K ′) ∼=
∏
σ∈G

σ
H(K ′).

(4) The algebraic type of the group is respected. Namely, if H has the
property of being reductive (respectively semi-simple, parabolic, or
Cartan) then RK/kH is reductive (respectively semi-simple, para-
bolic, or Cartan).

(5) The algebraic type of subgroups is respected. Namely, if P 6 H is
a K-Cartan subgroup (respectively K-maximal torus, K-parabolic
subgroup) then RK/kP 6 RK/kH is a k-Cartan subgroup (respec-
tively k-maximal torus, k-parabolic subgroup).

(6) There is a correspondence of rational points: Consider the diago-
nal embedding ∆: H(K) →

∏
σ∈Σ

σ
H(K) defined pointwise by h 7→∏

σ∈Σ

σ(h). Then we have the correspondenceRK/kH(k) ∼= ∆(H(K)).

TOME 56 (2006), FASCICULE 6



1774 Talia FERNÓS

Disclaimer. — In the sequel we consider the isomorphism RK/kH ∼=∏
σ∈Σ

σ
H as equality.

3. The main Theorems 2 and 3

Note that if Γ is a finitely generated group and ϕ : Γ → SLn(Q) is an
algebraic representation, then there is a field Kϕ which is a normal finite
extension of Q such that ϕ(Γ) 6 SLn(Kϕ). (Take for example, the normal
field generated by the entries of some finite generating set for ϕ(Γ).)

With this notation in place, we give the following definition, which will
be used to find group pairs with relative property (T).

Definition 3.1. — Let Γ be a finitely generated non-amenable group
and p ∈ {2, 3, 5, . . . ,∞} a rational prime. Then Γ is said to satisfy property
(Fp) (after Furstenberg) if there exists an algebraic homomorphism ϕ : Γ →
SLn(Q) satisfying the following conditions:

(1) The Q-Zariski closure H = ϕ(Γ)
Z
(Q) is Q-simple.

(2) There are no ϕ(Γ)-fixed vectors.
(3) The natural diagonal embedding ∆ : ϕ(Γ) → RKϕ/QH(Q) is not

pre-compact in the p-adic topology.
In such a case, we say that the representation ϕ realizes property (Fp)

for Γ.

Recall that the archimedean valuation on Q is called the prime at infinity.
So, according to convenience, we use both notations R and Q∞ to denote
the completion of Q with respect to the archimedean valuation.

Theorem 2. — Let Γ be a group satisfying property (Fp). Then, there
exists a rational representation ϕ′ : Γ → SLN (Q) such that (Γnϕ′ QN

p ,QN
p )

has relative property (T).

Theorem 3. — Suppose that Γ is a group with property (F∞). Then
there exists a finite set of primes S ⊂ Z and a representation ρ : Γ →
SLN (Z[S−1]) such that, if A = Z[S−1]N then (Γ nρ A,A) has relative
property (T).

Remark. — Conditions (1) and (2) of property (Fp) can be seen as an
irreducibility requirement. With this in mind, we see that Theorems 2 and
3 say that irreducibility and unboundedness are sufficient ingredients to
cook up a relative property (T) group pair.
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4. Theorem 2

4.1. How to find relative property (T)

Our first task is to establish a sufficient condition for the presence of
relative property (T); one that lends itself to the present context. The
following is due to M. Burger [Propositions 2 and 7][5]. We also cite Y.
Shalom’s discrete versions [24, Theorems 2.1 and 3.1]. The proof given
here is somewhere in between Burger’s and Shalom’s.

In what follows K is a local field and K̂ ∼= Hom(K, S1) is the unitary
dual. Recall that K̂ is topologically isomorphic to K [7, Theorem 7-1-10 ].
As such we will often not distinguish between GLn(K) and GLn(K̂).

Proposition 4.1 (Burger’s Criterion for relative property (T)). — Sup-
pose that ϕ : Γ → GLN (K) is such that there is no Γ-invariant probability
measures on P(K̂N ). Then, (Γ nϕ KN ,KN ) has relative property (T).

Proof. — Let ρ : Γ n KN → U(H) be a unitary representation with Γ-
almost invariant vectors and P : B(K̂N ) → Proj(H) the projection valued
measure associated to ρ|KN , where B(K̂N ) denotes the Borel σ-algebra of
K̂N . Recall that P has the following properties:

(1) P(K̂N ) = Id.
(2) For every v ∈ H the measure B 7→ 〈P(B)v, v〉 is a positive Borel

measure on K̂N with total mass ‖v‖2.
(3) For every γ ∈ Γ we have that

ρ(γ−1)P(B)ρ(γ) = P(γ∗B).

(4) The projection onto the subspace of KN -invariant vectors is P({0}).
Let vn ∈ H be a sequence of (εn, FΓ)-almost invariant unit vectors where

εn → 0 and FΓ is a finite generating set for Γ. Define the probability
measures µn(B) := 〈P(B)vn, vn〉.

Observe that the sequence of measures {µn} is almost Γ-invariant: In-
deed, as is pointed out in [5, p 62], Property (3) above gives us the following
for each γ ∈ Γ

‖γ∗µn − µn‖ 6 2‖ρ(γ)vn − vn‖ 6 2εn.

(See [24, Claim 2, p. 153] for a detailed proof of a similar statement.)
Suppose by contradiction that the group pair (ΓnKN ,KN ) fails to have

relative property (T). Then for each n, µn({0}) = 0. This allows us to pass
to the associated projective space.

TOME 56 (2006), FASCICULE 6
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Let p : K̂N\{0} → P(K̂N ) be the natural projection. Define the proba-
bility measures νn := p∗µn. It is clear that they also satisfy the following
inequality for any γ ∈ FΓ:

‖γ∗νn − νn‖ 6 2εn.

Exploiting the compactness of P(K̂N ), we get that a weak-∗ limit point
of {νn} will necessarily be Γ-invariant, a contradiction of the hypothesis
that there are no Γ-invariant probability measures on P(K̂N ). �

This is a powerful criterion when taken together with the following:

Lemma 4.1 (Furstenberg’s Lemma, [32], Lemma 3.2.1, Corollary 3.2.2).
Let µ be a Borel probability measure on P(KN ). Suppose that Γ6PGLN (K)
leaves µ invariant. If Γ is not precompact then there exists a nonzero sub-
space V ( KN which is invariant under a finite index subgroup of Γ and
such that µ[V ] > 0.

These two statements will be used to show the presence of relative prop-
erty (T) once we have a nice representation to work with. The representa-
tion will be provided by the following considerations.

4.2. The tensor representation

Let K be a finite normal extension of Q with Galois group G. Consider
the vector spaceW (K) = ⊗

σ∈G
Kn and the representation ofRK/QSLn(K) ∼=∏

σ∈G

σSLn(K) on W (K), defined by τ :
∏
σ∈G

gσ 7→ ⊗
σ∈G

gσ. This induces a rep-

resentation ∆τ : SLn(K) → SL(W (K)) defined by ∆τ = τ ◦∆.
There are two reasons which make this an excellent representation to

work with. The first is due to Y. Benoist and is taken from [29, Lemma 1].

Lemma 4.2. — The faithful representation ∆τ : SLn(K) → SL(W (K))
is defined over Q and there is a Q-subspace W (Q) of W (K) such that the
map K ⊗W (Q) →W (K) is an SLn(K)-equivariant isomorphism.

The second reason is observed in [29, Item 1, page 9]:

Lemma 4.3. — If H(K) 6 SLn(K) is a K-algebraic group without fixed
vectors in Kn then for each σ0 ∈ G the restricted representation τ0 =
τ

∣∣σ0H(K) : σ0H(K) → SL(W (K)) also has no invariant vectors.

Proof. — Although we are thinking of σ0H(K) as being a subgroup of
SLn(K), for the sake of clarity it is necessary to denote by ρ0 : σ0H(K) →
SLn(K) the identity representation, so that ρ0(σ0H(K)) = σ0H(K).
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With this notation, it is clear that τ0 : σ0H(K) → SL(W (K)) is given
by τ0 = ρ0 ⊗

σ 6=σ0

1, where 1 denotes the trivial representation. Namely,
σ0H(K) acts trivially on each tensor-factor except the one corresponding
to σ0, where it acts via ρ0.

Also recall the fact that

⊗
σ∈G

Kn ∼=
(
⊗

σ 6=σ0

Kn
)
⊗Kn ∼= Hom

((
⊗

σ 6=σ0

Kn
)∗
,Kn

)
.

Under this isomorphism, a vector which is σ0H(K)-invariant corresponds
to a K-linear map which intertwines ( ⊗

σ 6=σ0

1∗, ( ⊗
σ 6=σ0

Kn)∗) with (τ0,Kn).

Since the dual of a trivial representation is trivial, it follows that the image
of such a map consists of ρ0(σ0H)-invariant vectors.

We then have that (τ0, ⊗
σ∈G

Kn) contains a non-zero σ0H(K)-invariant

vector if and only if (ρ0,K
n) contains the trivial representation; that is, if

and only if (ρ0,K
n) contains a σ0H(K)-invariant vector. And, since H(K)

does not have invariant vectors in Kn neither does σ0H(K). �

Before the proof of Theorem 2, we establish a little more notation: Let F
be a field containing Q. Then we write W (F ) = W (Q)⊗ F . If F contains
K then naturally W (F ) ∼= ⊗

σ∈G
Fn.

4.3. The proof of Theorem 2

We retain the notation established above. Recall that if Γ is a group
satisfying property (Fp) then there is a field K which is a finite normal
extension of Q and a representation ϕ : Γ → SLn(K) such that

(1) The Zariski-closure H = ϕ(Γ)
Z

is Q-simple.
(2) There are no ϕ(Γ)-fixed vectors.
(3) The natural diagonal embedding ∆: ϕ(Γ) → RK/QH(Q) is not pre-

compact in the p-adic topology.

Proof. — Consider the representation of ϕ′ : Γ → SL(W (Q)) which is
defined as ϕ′ = τ ◦∆◦ϕ. We claim that (Γnϕ′W (Qp),W (Qp)) has relative
property (T).

If not then by Burger’s Criterion (Proposition 4.1) there exists a Γ-
invariant probability measure µ on P(W (Q̂p)). Since ϕ′ factors through the
diagonal embedding in item (3) above, it follows that ϕ′(Γ)6SL(W (Qp)) is
not pre-compact, and hence the corresponding projective image in
PGL(W (Q̂p)) is also not pre-compact (since SL(W (Q̂p)) has finite center).
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By Furstenberg’s Lemma, there exists a non-trivial subspace V ( W (Q̂p)
such that

(1) There is a subgroup of finite index in Γ which preserves V .
(2) The mass µ[V ] > 0.
(3) V is of minimal dimension among all subspaces satisfying (1)

and (2).

We aim to show that this is impossible:
Observe that V is actually RK/QH(Qp)-invariant. Indeed, since preserv-

ing a subspace is a Zariski-closed condition (consider the corresponding
parabolic subgroup), if Γ has a finite index subgroup which preserves V
then so must the Zariski-closure RK/QH(Qp). Since H is Q-simple, it is
Zariski-connected and therefore so is RK/QH(Qp). It follows that all of
RK/QH(Qp), and in particular Γ, preserves V .

We claim that the map RK/QH(Qp) → SL(V ) is a faithful continuous
homomorphism. Continuity is automatic because the representation is lin-
ear. (Observe that the semisimplicity of RK/QH(Qp) guarantees that the
image is in SL(V ) versus GL(V ).)

Since ϕ′(Γ) 6 SL(W (Q)) it follows that the subspace V is defined over
an algebraic field F ⊂ Q, and we may as well assume that K ⊂ F . Let
V (F ) be the F -span of an F -basis of V . Then, we have the representation
RK/QH(F ) → SL(V (F )).

Recall that property (3) of the restriction of scalars says that
RK/QH(F ) ∼=

∏
σ∈G

σ
H(F ), where G is the Galois group of K/Q. Now ob-

serve that since each σH is Q-simple, the kernel is either trivial, or contains
σ0H(F ) for some σ0 ∈ G. Assume that the kernel is not trivial. This means
that σ0H(F ) acts trivially on V (F ), i.e., that each vector in V (F ) is fixed
by σ0H(F ). We claim that this is impossible:

Indeed, by Lemma 4.3, there are no σ0H(K)-invariant vectors in W (K).
This means that W (F ) cannot have σ0H(F )-invariant vectors. This is be-
cause if v ∈ W (F ) is σ0H(F )-invariant then it is σ0H(K)-invariant which
means that v ∈W (K) (since the equations for v are linear with coefficients
in K), a contradiction.

Thus, the representation RK/QH(Qp) → SL(V ) is faithful and continu-
ous. Since ∆ ◦ ϕ(Γ) 6 RK/QH(Qp) is not precompact, it follows that the
corresponding representation Γ → SL(V ) is also not precompact.

Now, consider the induced measure:

µ0(B) = µ(B ∩ [V ])/µ[V ].
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It is clearly Γ-invariant. Furthermore, since V was chosen to be of min-
imal dimension by Furstenberg’s lemma, it follows that the image of Γ in
PGL(V ) is pre-compact, which is a contradiction.

Thus, there are no Γ-invariant probability measures on P(W (Q̂p)) and
so by Burger’s Criterion, the group pair (Γ nW (Qp),W (Qp)) has relative
property (T). �

5. Theorem 3

We now turn to the proof of Theorem 3:
Let N = nd, where n is as above, and d = [K : Q]. We retain the notation

from the proof of Theorem 2 and set QN ∼= W (Q). Recall that this gives
rise to:

ϕ′ : Γ
ϕ→ H(K)

∆
↪→ RK/QH(Q)

τ
↪→ SLN (Q)

and (Γ nϕ′ RN ,RN ) has relative property (T) by Theorem 2.
Note that the proof of Theorem 2 also shows that if there exists a prime

p such that condition (3) of property (Fp) holds (that is if ∆ ◦ϕ(Γ) is also
not precompact in the p-adic topology) then (Γ nϕ′ QN

p ,QN
p ) has relative

property (T). (This is for the same ϕ′!) Let S ⊂ Z be the set of primes
such that if p ∈ S then condition (3) of property (Fp) holds.

Next, let S0 ⊂ Z be the set of primes such that if p ∈ S0 then p appears
as a denominator in some entry of ϕ′(Γ). Since Γ is finitely generated, S0

is finite and by definition ϕ′(Γ) 6 SLN (Z[S−1
0 ]).

Recall that, for a prime p ∈ Z, going to infinity in the p-adic topol-
ogy amounts to being “increasingly divided by p”. By observing that τ is
faithful, we see that S ⊂ S0 and so S is also finite. Consider the following:

Lemma 5.1. — Let S and S0 = S ∪ {p} be two distinct sets of primes.
If Γ 6 SLN (Z[S−1

0 ]) is such that the natural embedding Γ 6 SLn(Qp)
is precompact, then there exists an element g ∈ GLn(Z[p−1]) such that
gΓg−1 6 SLn(Z[S−1]).

Proof. — Recall that all maximal compact subgroups of GLn(Qp) are
conjugate and that GLn(Zp) 6 GLn(Qp) is one such subgroup. The fact
that it is both compact and open means that Bv := GLn(Qp)/GLn(Zp)
is discrete. (The notation Bv is intended to remind the reader familiar
with the Bruhat-Tits building for GLn(Qp) that Bv is the vertex set of the
building, though we will not make use of that here.)

Also recall that the subgroup GLn(Z[p−1]) 6 GLn(Qp) is dense, and
since Bv is discrete, it follows that Bv = GLn(Z[p−1])/GLn(Z). (Observe
that GLn(Z) = GLn(Z[p−1]) ∩GLn(Zp).)
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Now since the maximal compact subgroups of GLn(Qp) are in one to
one correspondence with Bv, we see that if K 6 GLn(Qp) is a maximal
compact subgroup, then there exists an element g ∈ GLn(Z[p−1]) such
that K = g−1GLn(Zp)g.

So, if Γ 6 SLn(Z[S−1
0 ]) 6 GLn(Qp) is precompact then Γ 6 K for some

maximal compact subgroup K of GLn(Qp) and by the above argument,
there exists an element g ∈ GLn(Z[p−1]) such that

gΓg−1 6 GLn(Zp) ∩ SLn(Z[S−1
0 ]) = SLn(Z[S−1]).

Remark. — Lemma 5.1 can be obtained in two other ways. One is a
similar argument appealing to the CAT(0) structure of the Bruhat-Tits
building for GLn(Qp) via a center of mass construction. Another is to
observe that two maximal compact-open subgroups of GLn(Qp) are com-
mensurable in the sense that their common intersection is a finite index
subgroup in each. So, we may assume the result after passing to a finite
index subgroup of Γ.

Now note that conjugation, as in Lemma 5.1, amounts to a change of
basis. It is clear that if (Γ nϕ′ QN

p ,QN
p ) has relative property (T) then

so does (Γ nϕ′′ QN
p ,QN

p ) where ϕ′′ is a conjugate representation of ϕ′.
So, by Lemma 5.1, after conjugating if necessary, we may assume that
ϕ′(Γ) 6 SLN (Z[S−1]) and that (Γ nϕ′ QN

p ,QN
p ) has relative property (T)

for each p ∈ S ∪ {∞}.
By Lemma 5.2 (below), we have that the following group pair has relative

property (T): (
Γ n

( ∏
p∈S∪{∞}

QN
p

)
,

∏
p∈S∪{∞}

QN
p

)
.

Finally, recall that the diagonal embedding Z[S−1]N ⊂
∏

p∈S∪{∞}
QN
p is a

co-compact lattice embedding. And, since ϕ′(Γ) 6 SLN (Z[S−1]) it follows
that this lattice is preserved by Γ. Therefore, Γ n Z[S−1]N is a lattice in
Γ n (

∏
p∈S∪{∞}

QN
p ). Since lattices of this type inherit relative property (T)

[11, Proposition 3.1] this means that (Γnϕ′ Z[S−1]N ,Z[S−1]N ) has relative
property (T). �

In the above proof, we made use of the following handy lemma:

Lemma 5.2. — Suppose that Γ is a group acting by automorphisms on
two groups V1 and V2. If (Γ n V1, V1) and (Γ n V2, V2) both have relative
property (T) then (Γ n (V1× V2), V1× V2) also have relative property (T).
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This is a corollary to the following general fact. The reader may notice
the similarity between it and an analogous well known result about groups
with property (T) and exact sequences.

Lemma 5.3. — Suppose that 0 → A0 → A → A1 → 0 is an exact
sequence and that Γ acts by automorphisms on A and leaves A0-invariant.
If (Γ n A0, A0) and (Γ n A1, A1) have relative property (T) then so does
(Γ nA,A).

Proof. — Let π : ΓnA→ U(H) be a unitary representation with almost
invariant unit vectors {vn} ⊂ H. Then the space of A0-invariant vectors
H0 is non-trivial. Let P : H → H0 and P⊥ : H → H⊥

0 be the corresponding
orthogonal projections. Observe that, since A0 P Γ nA, the subspaces H0

and H⊥
0 are Γ n A-invariant and the corresponding projections commute

with π(Γ nA).
We claim that for n sufficiently large ‖P (vn)‖2 > 1/2. Otherwise, there

is a subsequence nj such that ‖P⊥(vnj )‖2 = 1− ‖P (vnj )‖2 > 1/2. Then

‖π(γ)P⊥(vnj )− P⊥(vnj )‖2 = ‖P⊥(π(γ)vnj − vnj )‖2

6 ‖π(γ)vnj − vnj‖2 < 2‖π(γ)vnj − vnj‖2· ‖P⊥(vnj )‖2.

This of course means that if vnj
is (K, ε) invariant then P⊥(vnj

) is (K,
√

2ε)-
invariant. So, {P⊥(vnj

)} ∈ H⊥
0 is a sequence of almost-invariant vectors,

which is of course a contradiction: Indeed,H⊥
0 does not containA0-invariant

vectors, so it can not contain Γ nA0-almost invariant vectors.
Therefore, for n sufficiently large, ‖P (vn)‖2 > 1/2. The same argument

above shows that the restricted homomorphism π0 : Γ n A → U(H0) has
almost invariant vectors {P (vn)}. And since this homomorphism factors
through ΓnA1 we obtain the existence of a nonzero A1-invariant vector. �

6. Algebro-geometric specialization

In order to prove Theorem 1, in the direction of (1) ⇒ (2), we need
two basic ingredients. The first is to use the hypothesis (i.e., finite gener-
ation and the existence of a linear representation whose image has a non-
amenable R-Zariski closure) in order to cook up a rational (or algebraic)
representation to which we can apply Theorem 3, which is of course the
second ingredient. This section is devoted to finding such a specialization,
which is provided by the following:

Proposition 6.1. — Let Γ be a finitely generated group. If there ex-
ists a linear representation ϕ : Γ→SLn(R) such that the Zariski closure
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ϕ(Γ)
Z
(R) is non-amenable then there exists a representation ψ : Γ→SLm(Q)

(possibly in a higher dimension) so that the Zariski closure ψ(Γ)
Z
(R) is

semisimple and not compact.

Recall that a semisimple R-algebraic group is amenable if and only if it is
compact. This follows from Whitney’s theorem [31, Theorem 3] (which says
that a R-algebraic group has finitely many components as a R-Lie group)
and from [32, Corollary 4.1.9] which states that a connected semisimple
R-Lie group is amenable if and only if it is compact. So, the proposition
guarantees that we may find, from an arbitrary R-representation, a Q-
representation which preserves the property of having non-amenable R-
Zariski closure. The techniques used in the proof of this proposition are
standard: the restriction of scalars functor and specializations of purely
transcendental rings over Q.

However, we will also need a criterion which can distinguish when the
image of a representation has non-amenable R-Zariski closure. This is pro-
vided by the following:

Proposition 6.2. — Let Γ be a finitely generated group. For each n >
0 there exists a normal finite index subgroup Γn P Γ so that for any
homomorphism ϕ : Γ → GLn(R) the following are equivalent:

(1) The R-Zariski closure ϕ(Γ)
Z
(R) is amenable.

(2) The traces of the commutator subgroup ϕ([Γn,Γn]) are uniformly
bounded; that is

|tr(ϕ([Γn,Γn]))| 6 n.

Remark. — It is a fact (see Subsection 6.3, Lemma 6.6), that if a sub-
group of GLn(R) has bounded traces, then its R-Zariski closure is amenable
(actually it is a compact extension of a unipotent group). Therefore, in
the direction of (2) implies (1), there is nothing special about [Γn,Γn].
Namely, any co-amenable normal subgroup of Γ would do. The more sub-
tle direction is that of (1) implies (2). It is in this direction that we must
work to find a suitable Γn. Under the added assumption that ϕ(Γ)

Z
(R)

is Zariski-connected the result follows from classical structure theory of
Zariski-connected R-algebraic groups with Γn = Γ.

However, we must address the fact that the image of a general represen-
tation ϕ : Γ → GLn(R), need not have Zariski-connected Zariski-closure.
It turns out that for an arbitrary (reductive) R-algebraic group, there is
a finite index subgroup (with uniformly bounded index) which “behaves
as if” it were connected (see Subsection 6.2, Lemma 6.3). Namely, it has
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most of the nice structure properties of Zariski-connected groups (see Sub-
section 6.1, Lemma 6.2). It turns out that the uniform bound on the index
of this subgroup, together with its “pseudo-connectedness” properties are
exactly what we need to find a suitable Γn which is done in Subsection 6.4.
We then prove Proposition 6.2 in Subsection 6.5 and Proposition 6.1 in
Subsection 6.6.

6.1. Some algebraic facts

Throughout this section, we will be dealing exclusively with R-Zariski
closures. As such we will write G instead of G(R), when speaking of R-
Zariski closed groups, and we will just say Zariski-closed or algebraic. Also,
when we say connected, we mean Zariski-connected. We now develop the
necessary lemmas to prove Proposition 6.2.

Definition 6.1. — An algebraic group G is said to be reductive if any
closed unipotent normal subgroup is trivial.

Observe that it is common to require in the definition of a reductive
group that either G be Zariski-connected or that any closed connected
normal unipotent subgroup of G be trivial.

However, in characteristic zero, the two notions are the same since alge-
braic unipotent groups are always Zariski-connected. This follows by

• Chevalley’s Theorem: [10, Theorem 11.2] IfH 6 G are two algebraic
groups, then there exists a rational representation G → GLN (R)
and a vector v ∈ Rn such that H = stabG(R· v).

• The image of a unipotent element under a rational homomorphism
is unipotent.

• Unipotent elements have infinite order in characteristic zero.
To be complete, we also give the following definition:

Definition 6.2. — An algebraic group G is said to be semisimple if
any closed solvable normal subgroup is finite.

And now onto the lemmas; the first of which shows that we may re-
strict our attention to reductive groups, since doing so does not affect the
hypotheses and conclusions of Proposition 6.2.

Lemma 6.1. — Suppose that L 6 GLn(C) is a C-closed group and
U P L is the maximal unipotent normal subgroup. There is a representation
π : L→ GLn(C) such that ker(π) = U and tr(g) = tr(π(g)) for every g ∈ L.
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Proof. — Choose a Jordan-Hölder series for Cn as an L-module:

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = Cn.

Let πi : L→ GL(Vi/Vi−1) be the corresponding representation on the factor

modules. Also, let V =
k⊕
i=1

Vi/Vi−1 be the direct sum of these modules and

π : L→ GL(V ) the corresponding diagonal representation. Observe that it
is semisimple.

Now, since U P L it follows that π is also a semisimple U -representation
[9, Section XVIII.1, p212]. As such, π(U) is trivial since it is again unipo-
tent. Therefore, U 6 ker(π).

On the otherhand, ker(π) is clearly unipotent. Since U is the maximal
normal unipotent subgroup of L, it follows that ker(π) = U .

Finally, if we consider a basis of Cn which respects this Jordan-Hölder
series it is clear that by construction, we have:

tr(π(g)) =
k∑
i=1

tr(ρi(g)) = tr(g) for each g ∈ L.

�

The following is a corollary to the proof above:

Corollary 6.1. — Let G be a R-algebraic reductive group. Then every
C-representation ofG is the direct sum ofG-irreducible sub-representations.

This next lemma is classical. These are exactly the “nice” properties of
connected (and reductive) groups that were alluded to above.

Lemma 6.2. — Let G0 be a connected reductive group. Then the fol-
lowing hold:

(1) R(G0) = Z(G0)o, where R(G0) is the radical of G0, i.e., the maxi-
mal connected solvable normal subgroup, and where Z(G0)o is the
identity component of the center of G0.

(2) The intersection [G0, G0] ∩ Z(G0) is finite.
(3) G0 = [G0, G0]·Z(G0).
(4) The commutator subgroup [G0, G0] is semisimple.

Proof. — For assertions (1) and (2) we cite [10, Lemma 19.5].
Assertion (3) follows from (2) by noting that G0/[G0, G0]·Z(G0) is a

connected Abelian semisimple group, and therefore trivial.
Assertion (4) follows from (3) and (2): Let R P [G0, G0] be a closed

solvable normal subgroup. Since G0 is reductive, G0/R(G0) is semisimple.
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Then, R/R∩R(G0) is closed and solvable and hence finite. Since [G0, G0]∩
R(G0) is finite, it follows that R is finite. �

This next lemma yields the want-to-be connected group that was alluded
to above.

Lemma 6.3. — Let G0 be a connected reductive group of finite index
in G 6 GLn(R). Then there exists a subgroup G1 P G such that

(1) G0 P G1.
(2) The index [G : G1] 6 n!.
(3) The commutator subgroup [G1, G1] contains [G0, G0] as a finite

index normal subgroup. (And hence [G1, G1] is semisimple.)

We first prove the following special case:

Lemma 6.4. — Let G0 be a connected reductive group of finite index in
G. Suppose that G 6 GLn(C) is an irreducible representation. Then, there
exists a subgroup G1 P G with the following properties:

(1) G0 P G1.
(2) The index [G : G1] 6 n!.
(3) If Z(G0) and Z(G1) are the centers of G0 and G1 respectively then

Z(G0) 6 Z(G1).

Proof. — Since G0 is reductive, the representation on Cn decomposes as
a direct sum of irreducible sub-representations. Let V ⊂ Cn be one such.

Now, since G0 P G it follows that for each g ∈ G the subspace gV is also
an irreducible G0-sub-representation. Hence if gV ∩V 6= {0} then gV = V .

Claim. — There exists {g1, . . . , gl} ⊂ G, with l 6 n, such that Cn =
l
⊕
j=1

gjV .

Proof. — Let g1 = 1. Then either V = Cn, or there exists a g2 ∈ G such
that V ∩ g2V = {0}. In this latter case we have that V ⊕ g2V ⊂ Cn.

Inductively, suppose that we have found {g1, . . . , gk} ⊂ G such that the

corresponding gjV are linearly independent. Namely so that
k
⊕
j=1

gjV ⊂ Cn

is a direct sum of G0-irreducible sub-representations.

Observe that
k
⊕
j=1

gjV is G0-invariant. And since the G-translates of V

are G0-irreducible sub-representations we get the following dichotomy:

(1) There exists a gk+1 ∈ G such that gk+1V ∩
k
⊕
j=1

gjV = {0}, or

(2) gV ⊂
k
⊕
j=1

gjV for each g ∈ G.
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In case (1) we may conclude that
k+1
⊕
j=1

gjV ⊂ Cn is a direct sum of G0-

irreducible sub-representations.

In case (2) we must have that ggiV ⊂
k
⊕
j=1

gjV for each i = 1, . . . , k, and

g ∈ G. This means that
k
⊕
j=1

gjV is G-invariant, and hence
k
⊕
j=1

gjV = Cn.

Since n <∞, we must eventually be in case (2). Clearly l 6 n. �

This induces a homomorphism σ : G→ Sym(l) where the Sym(l) denotes

the symmetric group on l-symbols. Let G1 =
l
∩
j=1

stabG(gjV ). Then clearly,

G1 = ker(σ), so that G1 satisfies properties (1) and (2) as promised above.
Furthermore, all of the G0-irreducible subspaces are G1-invariant and

hence these are also G1-irreducible subspaces. By Schur’s Lemma, the cen-
ters of G0 and G1 are block-scalar matrices of the same type, and therefore,
G1 also satisfies property (3) as it was promised to do. �

In order to pass from Lemma 6.4 to Lemma 6.3 we will need the following:

Lemma 6.5. — If G0 P G is a finite index subgroup then [G,G0] is a
normal finite index subgroup of [G,G].

Proof. — Since G0 P G it follows that [G,G0] P G (and in particular
[G,G0] P [G,G]). Hence, to show that the index of [G,G0] in [G,G] is
finite, it is sufficient to show that if [G,G0] = 1 then [G,G] is finite. (Just
take the quotient of G by [G,G0] if necessary, and use the general fact
that for any homomorphism h : G → H and any subgroups A,B 6 G the
following equality holds: h([A,B]) = [h(A), h(B)].)

If [G,G0] = 1, it follows that G0 centralizes G. That is, G0 6 Z(G).
Then,

[G : Z(G)] 6 [G : G0] <∞

This implies that [G,G] is finite (see [10, Lemma 17.1.A]). �

6.2. Proof of Lemma 6.3

Proof. — The assumptions are that G0 P G 6 GLn(R) where G0 is
connected, reductive and of finite index in G. This means that G is also
reductive and so by Corollary 6.1 we have that the representation of G

on Cn =
k
⊕
i=1

Cni is the direct sum of G-irreducible subrepresentations. By

considering each irreducible piece and applying Lemma 6.4, we see that
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there exists a subgroup G1 P G of index at most
k∏
i=1

(ni)! 6 n! such that

G0 P G1 and Z(G0) 6 Z(G1).
We claim that [G1, G0] = [G0, G0]:
Let x ∈ G1, y ∈ [G0, G0], and z ∈ Z(G0) 6 Z(G1). Recall that [G0, G0] P

G1 so that
[x, yz] = [x, y] = (xyx−1)y−1 ∈ [G0, G0].

Since G0 = [G0, G0]·Z(G0) it follows that [G1, G0] is generated by ele-
ments in [G0, G0] and therefore, [G1, G0] 6 [G0, G0]. On the other hand,
[G0, G0] 6 [G1, G0] so [G1, G0] = [G0, G0].

Now, sinceG0 has finite index inG1 by Lemma 6.5, we see that [G0, G0] =
[G1, G0] is a finite index normal subgroup of [G1, G1] and we are done. �

6.3. The trace connection

So, far, we have addressed only the structure of the algebraic groups in
question, and have ignored the role of the trace. We now discuss how the
trace ties in to the picture.

Recall that if Γ 6 GLn(R) is a precompact group then all of its eigen-
values have norm 1 and hence its traces are uniformly bounded by n. Also
recall that the Zariski closure of a precompact group is compact and there-
fore amenable. The following shows that the converse also holds. Namely:

Lemma 6.6. — Let Γ 6 GLn(R) be a group. If the set of traces tr(Γ) :=
{tr(γ) : γ ∈ Γ} is bounded then the Zariski-closure Γ

Z
(R) is amenable.

We will need the following useful facts:

Fact 6.1 ([2], Corollary 1.3(c)). — Let Γ 6 GL(V ) be a group acting
irreducibly on the complex vector space V . If the traces of Γ are bounded
then Γ is precompact (in the C-topology).

Claim 6.1. — Let Γ6GLn(C) be a subgroup such thatB = sup
γ∈Γ

|tr(γ)| <

∞. Then all Γ-eigenvalues have norm 1 and B = n.

Proof. — By contradiction suppose that there is some γ ∈ Γ with an
eigenvalue of norm not equal to 1. Then upon passing to γ−1 if necessary,
we may assume that γ has an eigenvalue of norm strictly greater than 1.

Order the eigenvalues so that

|λ1| = · · · = |λm| > |λm+1| > · · · |λn|.
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Since the traces of Γ are bounded we get that for each k ∈ N

∣∣tr(γk)∣∣ =

∣∣∣∣∣∣
n∑
j=1

λkj

∣∣∣∣∣∣ 6 B.

The triangle inequality gives us that∣∣∣∣∣∣
m∑
j=1

λkj
λk1

∣∣∣∣∣∣ 6
B

|λk1 |
+

n∑
j=m+1

∣∣∣∣∣λkjλk1
∣∣∣∣∣ → 0.

By Claim 6.2 (see below) we get that
m∑
j=1

λk
j

λk
1

= m and so

1 6 m =

∣∣∣∣∣∣
m∑
j=1

λkj
λk1

∣∣∣∣∣∣ → 0

a contradiction.
Therefore, all eigenvalues of Γ have norm 1 and the supremum

B = sup
γ∈Γ

|tr(γ)| is attained at the identity. �

Claim 6.2. — If
n∑
j=1

eikθj converges as k → ∞ then
n∑
j=1

eikθj ≡ n for

all k.

Proof. — Consider the action of Z by the rotation on the n-torus Tn

corresponding to (eiθ1 , . . . , eiθn). Let us define the closed subgroup

S = 〈(eikθ1 , . . . , eikθn) : k ∈ Z〉.

Now, if S is discrete then it is finite, which means that the identity
(1, . . . , 1) ∈ Tn is a periodic point. On the other hand, if S is not discrete
then the identity is an accumulation point of the sequence{

(eikθ1 , . . . , eikθn) : k ∈ Z
}
.

Either way, there is a subsequence kl → +∞ such that

lim
l→∞

(eiklθ1 , . . . , eiklθn) = (1, . . . , 1).

This shows that if
n∑
j=1

eikθj converges then

lim
k→∞

n∑
j=1

eikθj = lim
l→∞

n∑
j=1

eiklθj = n.
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Since the sequence is convergent, any subsequence converges to the same
limit. Therefore the same argument shows that if (eiψ1 , . . . , eiψn) ∈ S then

n∑
j=1

eiψj = n.

In particular, this holds for (eiψ1 , . . . , eiψn) = (eiθ1 , . . . , eiθn). Since 1
is an extreme point of the unit disk we conclude that eiθj = 1 for each
j = 1, . . . , n. �

The proof of Lemma 6.6. — By Lemma 6.1 we may assume that G =
Γ
Z
(R) 6 GLn(R) is reductive. Using Corollary 6.1, we decompose Cn =

⊕
i∈I
Vi into a direct sum of G-irreducible sub-representations. Since Γ is

Zariski-dense in G, this of course means that each Vi is also a Γ-irreducible
sub-representation. We aim to show that G is compact. To this end, it is
sufficient to show that Γ is pre-compact in GLn(Vi) for each i ∈ I since the
homomorphism G→

∏
i∈I

GLn(Vi) is rational and injective.

By Claim 6.1, Γ has bounded traces in each GLn(Vi). And by Fact 6.1,
Γ is precompact in each GLn(Vi) since it acts irreducibly on Vi. �

6.4. Choosing Γn for Proposition 6.2

Recall that condition (2) of Lemma 6.3 guarantees a uniform bound on
the index of the groups in question. We now show how we will make use of
that fact to find our Γn:

Lemma 6.7. — Let Γ be a finitely generated group and let

HN :=
{
π : Γ → F |F is a group of order at most N

}
.

Then Γ(N) = ∩
π∈HN

ker(π) is a finite index (normal) subgroup of Γ.

Proof. — This is a straightforward consequence of two facts:
Fact 1: There are finitely many groups of order at most N .
Fact 2: There are finitely many homomorphisms from a finitely generated
group to a fixed finite group. �

6.5. The proof of Proposition 6.2

Let Γn = Γ(n!) as in Lemma 6.7. Then, Γn is a finite index normal
subgroup of Γ. Let ϕ : Γ → GLn(R) be any homomorphism.
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(2) ⇒ (1): If the set of traces tr(ϕ([Γn,Γn])) is uniformly bounded, then
by Lemma 6.6 the Zariski closure ϕ([Γn,Γn])

Z
(R) is amenable. Therefore,

ϕ(Γ)
Z
(R) is amenable as it is a virtually Abelian extension of

ϕ([Γn,Γn])
Z
(R).

(1) ⇒ (2): Suppose that G := ϕ(Γ)
Z
(R) is amenable. As was mentioned

several times, by Lemma 6.1 it does no harm to assume that G is reductive.
Let G0 be the Zariski connected component of 1 and let G1 be as in Lemma
6.3. Then, [G0, G0] being Zariski-connected, semisimple, and amenable, it
is compact. Since [G1, G1] contains [G0, G0] as a finite index subgroup, it
follows that [G1, G1] is compact.

Thus, if ϕ(Γn) 6 G1 then we are done. But, this follows by construction:
Recall that Γn 6 ker(π) for every homomorphism π : Γ → F where F is a
finite group of order at most n!. Since G1 P G and the index [G : G1] 6 n!
we must have that ϕ(Γn) 6 G1. �

6.6. Finally: The proof of Proposition 6.1

To conserve notation, we assume that Γ 6 SLn(R). Let K be the field
generated by the entries of some finite generating set for Γ so that Γ 6
SLn(K). Then, since K is finitely generated, it is a finite and hence sepa-
rable extension of Q(t1, . . . , ts) ⊂ R, where t1, . . . , ts ∈ K are algebraically
independent transcendentals. So, after applying the restriction of scalars
if necessary, we may assume that Γ 6 SLn(Q(t1, . . . , ts)). (We note that
property (3) of the restriction of scalars, guarantees that the hypothesis is
preserved.)

The proof is by induction on the transcendence degree of Q(t1, . . . , ts)/Q.

Base Case. — Suppose s = 0.
Let G = Γ

Z
be the Zariski-closure. Since Γ 6 SLn(Q) it follows that

G and its radical R(G) are defined over Q. Fixing a representation of
G/R(G)(Q) 6 SLn(Q) we have the desired result.

Induction Hypothesis. — Assume it is true for s− 1.
Since Γ is finitely generated, it follows that there exist irreducible poly-

nomials δ1, . . . , δl ∈ Q[t1, . . . , ts] such that if we set

R = Q[t1, . . . , ts, δ−1
1 , . . . , δ−1

l ]

then Γ 6 SLn(R).
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Observe that by Proposition 6.2, [Γn,Γn] 6 SLn(R) has unbounded
traces since Γ

Z
(R) is non-amenable. So, up to a relabeling of the tran-

scendentals there are two cases to consider:
Case 1: The unbounded traces of [Γn,Γn] are independent of ts, that is

{tr(γ) : γ ∈ [Γn,Γn] and |tr(γ)| > n+ 2} ⊂ Q(t1, . . . , ts−1).

Case 2: There is an element in [Γn,Γn] with large trace which is non-
constant as a rational function in ts. Namely, there is a γ ∈ [Γn,Γn] such
that |tr(γ)| > n+ 2 and tr(γ) ∈ R\Q(t1, . . . , ts−1).

We now need to say how we will specialize the transcendental ts. First
consider the denominators δi as polynomials in ts. Since there are finitely
many, the bad set

B = {a ∈ R : δi(t1, . . . , ts−1, a) = 0 for some i = 1, . . . , l}

is finite. Now, we choose the specialization in each case:
Case 1: Choose a ∈ Q\B.
Case 2: Let γ ∈ [Γn,Γn] be such that r(ts) = tr(γ) is a nonconstant ratio-

nal function in ts and such that |r(ts)| > n+ 2. Then, r(x) is a continuous
function in some neighborhood of ts ∈ R\B and so there is an a ∈ Q\B
such that |r(a)| > n+ 1.

Now, with the embedding Q(t1, . . . , ts−1) ⊂ R fixed, let

ψ : SLn(Q(t1, . . . , ts)) → SLn(Q(t1, . . . , ts−1))

be the homomorphism induced from the ring homomorphism ts 7→ a. Ob-
serve that this is well defined since we are dealing with unimodular matrices.

To apply the induction hypothesis, we must show that the Zariski-closure
ψ(Γ)

Z
(R) is again non-amenable. This is immediate by Proposition 6.2

since by construction, there is a γ ∈ [Γn,Γn] such that |tr(ψ(γ))| > n+ 1.
Since the traces of a subgroup of SLn(R) are either uniformly bounded by
n or unbounded, we see that ψ([Γn,Γn]) has unbounded traces and the
proposition is proved. �

7. Proof of Theorem 1 in the direction (1) ⇒ (2)

We instead prove the following:

Theorem 7.1. — Suppose that Γ is a finitely generated group which
admits a linear representation ϕ : Γ → SLn(R) such that the R-Zariski
closure ϕ(Γ)

Z
(R) is non-amenable. Then there exists a finite set of primes

S ⊂ Z and a homomorphism α : Γ → SLN (Z[S−1]) such that, if A =
Z[S−1]N then (Γ nα A,A) has relative property (T).
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The proof is in two basic steps:
Step A: Show that under the hypothesis of Theorem 7.1 there is a finite

index subgroup Γ0 P Γ satisfying property (F∞).
Step B: Show that if Γ0 P Γ is a finite index subgroup such that (Γ0 n

A,A) has relative property (T) then there is an action of Γ on Ak (with
A as above and k = [Γ : Γ0]) such that (Γ n Ak, Ak) has relative property
(T).

It is clear that Steps A and B prove Theorem 7.1 by Theorem 3.

Proof of Step A. — By Proposition 6.1 there exists a rational represen-
tation ψ : Γ → SLm(Q) such that ψ(Γ)

Z
(R) is semisimple and not compact.

Let Γ0 P Γ be the normal subgroup of finite index such that ψ(Γ0)
Z
(R)

is the Zariski-connected component of the identity of ψ(Γ)
Z
(R). Then,

G(R) := ψ(Γ0)
Z
(R) is again not compact semisimple.

In order to be totally precise, we now turn our attention to the C-Zariski
closure G(C), which is of course defined over Q. Furthermore, we fix an
embedding Q ⊂ C.

Step A.1: There is a Q-homomorphism π : G(C) →
∏
i∈I
Hi(C) with finite

central kernel, where each Hi(C) is a Q-simple Q-group.
Since G(C) is Zariski-connected and semisimple, this follows from [27,

Proposition 2]. Let πi : G(C) → Hi(C) be the corresponding Q-projection.

Step A.2: Each Hi is defined over Ki, a finite normal extension of Q and
πi is a Ki-morphism.

By [32, Propositions 3.1.8 & 3.1.10], this follows from the fact that
πiψ(Γ0) 6 Hi(Q) is a Zariski-dense finitely generated subgroup.

Now, for each i, fix a Ki-rational representation Hi(Q) → SLni(Q) with-
out fixed vectors and identify Hi(Q) with its image. By abuse of notation,
we still take πi : Γ0 → Hi(Ki) 6 SLni

(Q).

Step A.3: There is an i0 such that πi0 realizes property (F∞) for Γ0.
Observe that by construction, the Q-Zariski-closure of πi(Γ0) is Hi(Q)

and is therefore Q-simple. For the same reason πi(Γ0) 6 SLni
(Q) has no

fixed vectors as this is a Zariski-closed condition. Thus in order for πi to
realize property (F∞) for Γ0 we need only show that the corresponding
diagonal embedding into RKi/QHi(R) is not precompact. We now find an
i0 for which this holds.

Recall that the restriction of scalars satisfies several nice properties,
which were enumerated in Section 2. We will refer to these by number
below:
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Let i∈I. Recall that by Property 1, the restriction of scalars RKi/QHi(C)
is uniquely determined (up to Q-isomorphism) by specifying a “projection”
Pi : RKi/QHi(C) → Hi(C), which we now fix.

Since G(C) is a Q-group and πi is a Ki-morphism, it follows (Property 2)
that there is a unique Q-morphism ρi : G(C) → RKi/QHi(C) so that πi =
Pi ◦ ρi.

This of course means that there is a Q-morphism

ρ : G(C) →
∏
i∈I
RKi/QHi(C)

such that π = P ◦ ρ where P :
∏
i∈I
RKi/QHi(C) →

∏
i∈I
Hi(C) is the obvious

projection. Furthermore, the kernel of ρ is finite since ker(ρ) 6 ker(π). So,
ρ is virtually an isomorphism onto its image.

Now, since ρ is a Q-morphism with finite kernel, it follows that ρ(G(R)) 6∏
i∈I
RKi/QHi(R) is semisimple and not compact. This means that for some

i0 ∈ I the corresponding homomorphism ρi0 : ψ(Γ0) → RKi0/QHi0(Q) has
non-precompact image in RKi0/QHi0(R). �

Proof of Step B. — Let α : Γ0 → SLN (Z[S−1]) such that, setting A =
Z[S−1]N , we have that (Γ0 nα A,A) has relative property (T).

Also, let k = [Γ : Γ0]. We now construct a homomorphism α′ : Γ →
SLkN (Z[S−1]) such that (Γ nAk, Ak) has relative property (T).

Set F = Γ/Γ0 and choose a section s : F → Γ. Let c : Γ×F → Γ0 be the
corresponding cocycle. That is, c(γ, f) = s(γf)−1γs(f).

Define the action of Γ on ⊕
f∈F

A as follows:

γ(af )f∈F = (c(γ, f)· af )γf∈F .

The fact that c is a cocycle ensures that this is a well-defined action.
Actually Ak, as a Γ-module, is the module induced from A, by induction
from Γ0 to Γ. Therefore, we may form the semidirect product Γ n ⊕

f∈F
A.

To show that (Γ n ⊕
f∈F

A, ⊕
f∈F

A) has relative property (T) it is sufficient

to show that (Γ0 n ⊕
f∈F

A, ⊕
f∈F

A) has relative property (T). Indeed, any

unitary representation of Γn ⊕
f∈F

A is a (continuous) unitary representation

of Γ0 n ⊕
f∈F

A.

Now, observe that since Γ0 P Γ the corresponding Γ0 action on ⊕
f∈F

A is

given by:
γ0(af )f∈F = (s(f)−1γ0s(f)· af )f∈F .
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Namely, Γ0 preserves the f0-component Af0 6 ⊕
f∈F

A for each f0 ∈ F .

Let Γ0 ns(f0) A 6 Γ0 n ⊕
f∈F

A be the subgroup corresponding to f0 ∈ F .

It follows from Lemma 5 that if (Γ0 ns(f0) A,A) has relative property (T)
for each f0 ∈ F then (Γ0 n ⊕

f∈F
A, ⊕

f∈F
A) has relative property (T).

And this is indeed the case since twisting the Γ0-action by s(f0) amounts
to precomposing the Γ0-action on A by an automorphism of Γ0. And, the
conclusion of Burger’s Criterion, and hence the proof of Theorems 2 and
3, remains valid under this twist. �

8. Theorem 1 in the direction of (2) ⇒ (1)

Recall that there is a natural embedding GLn(R) 6 SLn+1(R) induced by

g 7→ diag(g, 1/det(g)).

Hence, SLn(R) 6 GLn(R) 6 SLn+1(R). This means that there is a ho-
momorphism ϕ : Γ → GLn(R) such that ϕ(Γ)

Z
(R) is non-amenable if and

only if there is a homomorphism ϕ′ : Γ → SLn′(R) such that ϕ′(Γ)
Z
(R) is

non-amenable. This shows that Theorem 1 is equivalent to the following:

Theorem 1’. — Let Γ be a finitely generated group. The following are
equivalent:

(1) There exists a homomorphism ϕ : Γ → GLn(R) such that the R-
Zariski-closure ϕ(Γ)

Z
(R) is non-amenable.

(2) There exists an Abelian group A of nonzero finite Q-rank and a
homomorphism ϕ′ : Γ → Aut(A) such that the corresponding group
pair (Γ nϕ′ A,A) has relative property (T).

So, in this section, we will show Theorem 1’ in the direction of (2) ⇒ (1).
To do this we will make use of the following generalization of [32, Theorem
7.1.5] to the relative case.

Lemma 8.1. — Let (Γ, A) be a group pair having relative property (T),
with A not necessarily normal in Γ. If Γ/A is finitely generated in the
sense that there exists a finitely generated subgroup Γ′ 6 Γ which acts
transitively on the left cosets of A, then Γ is finitely generated.

Proof. — Let K1 be a finite set generating Γ′ and Kn be an increasing
nested sequence of finite sets which exhaust Γ.

Consider the subgroups Sn = 〈Kn〉. By construction, Γ′ 6 Sn. Let
ρn : Γ → U(`2(Sn\Γ)) be the right regular representation on the right cosets
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of Sn. Finally let H = ⊕
n∈N

`2(Sn\Γ) and ρ : Γ → U(H) be the corresponding

diagonal representation.
Consider the sequence of unit vectors ui =

∑
n∈N

δi,n1[Sn] ∈ H, where 1[Sn]

is the characteristic function of the identity coset in Sn\Γ and δi,n is the
Kronecker delta function. Observe that they are (Ki, 0)-almost invariant
vectors. Since (Γ, A) has relative property (T), it follows that there is a
vector v ∈ H which is nontrivial and A-invariant.

Now, v being nontrivial, there must be an N ∈ N such that fN , the
projection of v onto `2(SN\Γ), is again nontrivial. Of course, fN must
again be A-invariant as the ρ-action is diagonal.

Claim. — The A-invariant square summable function fN is constant.

Proof. — Let γ ∈ Γ. By assumption on Γ/A, there exists a γ′ ∈ Γ′ 6 SN
and an a ∈ A such that γ = γ′a. We then have that:

fN (SNγ) = fN (SNγ′a) = fN (SNa) = ρN (a)fN (SN ) = fN (SN ).

�

The fact that fN is constant, nonzero, and square summable shows us
that SN\Γ is finite. Finally, choosing coset representatives {γ1, . . . , γs} for
SN\Γ, we see that Γ is generated by the finite set KN ∪ {γ1, . . . , γs}. �

Observe that this lemma yields the following:

Corollary 8.1. — Suppose that Γ is finitely generated and A is count-
able. If (ΓnA,A) has relative property (T) then ΓnA is finitely generated.

To prove Theorem 1’, we will also need the following:

Fact 8.1. — If (G,A) has relative property (T) and π : G → G′ is a
homomorphism then (π(G), π(A)) has relative property (T).

8.1. A special case

We begin with the following lemma, which shows (2) ⇒ (1) in the case
when A = Z[S−1]n.

Lemma 8.2. — Suppose that Γ is a group and ϕ : Γ → GLn(Z[S−1])
a homomorphism such that (Γ nϕ Z[S−1]n,Z[S−1]n) has relative property
(T). Then ϕ(Γ)

Z
(R) is non-amenable.
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Proof. — Let A = Z[S−1]n. Since ker(ϕ) 6 ΓnA centralizes A, it follows
that ker(ϕ) P Γ n A and hence by Fact 8.1 (ϕ(Γ) n A,A) has relative
property (T).

Recall that A 6 V := Rn×
∏
p∈S

Qn
p is a co-compact lattice. So (ϕ(Γ)nV, V )

also has relative property (T) by Lemma 5.3.
Now since

∏
p∈S

Qn
p P ϕ(Γ) n V by Fact 8.1 we get that (ϕ(Γ) n Rn,Rn)

has relative property (T).
This implies that (ϕ(Γ)

Z
(R) n Rn,Rn) has relative property (T). In-

deed, any strongly continuous unitary representation of ϕ(Γ)
Z
(R)nRn is a

strongly continuous representation of ϕ(Γ)nRn (since ϕ(Γ) has the discrete
topology).

But this means that ϕ(Γ)
Z
(R) is non-amenable as is demonstrated by

the next lemma. �

Lemma 8.3. — Let G be a locally compact, second countable, amenable
group and A 6 G a closed subgroup. The group pair (G,A) has relative
property (T) if and only if A is compact.

Proof. — If A is compact then it has property (T) [32, Proposition 4.1.5,
Corollary 7.1.9] and hence (G,A) has relative property (T).

To show the converse, we begin by showing that, asA-modules, L2(G,µG)
and L2(A × A\G,µA × ν) are unitarily isomorphic. Here µG and µA are
left invariant Haar measures on G and A respectively, and ν is the G-
quasi-invariant measure on A\G corresponding to a measurable section
σ : A\G→ G. Such a section always exists [16, Lemma 1.1].

Recall that it is sufficient to show that L2(A×A\G,µA×ν) is isomorphic
(as an A-module) to L2(G,α) where α is any measure in the measure class
of µG.

Now, consider the function ϕ : A×A\G→ G defined as ϕ(a, x) = aσ(x).
The fact that σ is a measurable section for the right cosets of A assures
us that ϕ is a measurable isomorphism. Furthermore, taking the action of
A on A × A\G to be the product of left translation on A with the trivial
action on A\G and the action of A on G by left translation, it is obvious
that ϕ is A-equivariant.

Let α = ϕ∗(µA × ν) be the push forward measure. It is immediate that
L2(A×A\G,µA × ν) is unitarily isomorphic as an A-module to L2(G,α).
We must now show that α ∼ µG (i.e., that they are in the same measure
class). This is achieved by showing that α is quasi-invariant for the action
of G by right translation and by quoting [15, Lemma 3] which states that
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any measure which is quasi-invariant for the action of G by right transla-
tions is equivalent to Haar measure. The following proof is taken from [16,
Lemma 1.3]:

Observe that ϕ′ : G → A × A\G defined as ϕ′(g) = (gσ(g)−1, [g]) is
inverse to ϕ. Let x ∈ A\G and E ⊂ G be measurable. Consider the cross
section ϕ′(E)x = {a ∈ A : (a, x) ∈ ϕ′(E)}. It is straight forward to verify
that ϕ′(E)x = A∩Eσ(x)−1. Therefore, by Fubini’s Theorem, we have that:

ϕ∗(µA × ν)(E) =
w

A\G

µA(A ∩ Eσ(x)−1)dν(x).

Now, let g ∈ G and note that there is an ax,g ∈ A such that σ(x)g−1 =
ax,gσ(xg−1). Letting ∆A denote the modular function of A we have:

ϕ∗(µA × ν)(Eg) =
w

A\G

µA(A ∩ Egσ(x)−1)dν(x)

=
w

A\G

µA(A ∩ Eσ(xg−1)−1a−1
x,g)dν(x)

=
w

A\G

∆A(ax,g)·µA(A ∩ Eσ(x)−1)dν(xg).

Now, as ν is quasi-invariant for the action of G, it follows that ϕ∗(µA ×
ν)(Eg) = 0 if and only if µA(A∩Eσ(x)−1) = 0 for ν-a.e. x. This of course
shows that for all g ∈ G we have:

g∗ϕ∗(µA × ν) ∼ ϕ∗(µA × ν).

Assume now, that (G,A) has relative property (T). By the amenability
of G, it follows that L2(G,µG) and hence L2(A × A\G,µA × ν) contains
nontrivial A-invariant vectors. Let f ∈ L2(A × A\G,µA × ν) be one such
nontrivial vector.

The fact that f is A-invariant means that f is constant as a function of
A. Hence by Fubini’s Theorem we have:

∞ > ‖f‖2 =
w

A×A\G

‖f(a, x)‖2d(µA × ν)(a, x)

=
w

A

w

A\G

‖f(a, x)‖2dν(x)dµA(a)

=
w

A

w

A\G

‖f(1, x)‖2dν(x)dµA(a)

= µA(A)
w

A\G

‖f(1, x)‖2dν(x) > 0
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Therefore, µA(A) <∞ and hence A is compact. �

8.2. The proof of Theorem 1’ in the direction of (2) ⇒ (1)

Let A be an Abelian group such that

(1) The Q-rank of A is finite and non-zero.
(2) There is an action of Γ on A by automorphisms such that (ΓnA,A)

has relative property (T).
(3) The Q-rank of A is minimal among all Abelian groups satisfying

(1) and (2).

Let tor(A) = {a ∈ A : na = 0 for some n ∈ Z} be the torsion Z-
submodule of A. Observe that it is Γ-invariant and hence tor(A) P Γ nA.
By Fact 8.1, we may assume that A is torsion free. Since tor(A) is the
kernel of the homomorphism A → Q ⊗Z A, we identify A with it’s image
in Q⊗Z A.

If n is the Q-rank of A then there exists v1, . . . , vn ∈ A such that
n
⊕
i=1

Q· vi = Q⊗Z A. (The notation is meant to emphasize the basis.)

Now let ϕ : Γ → GLn(Q) be the corresponding homomorphism. (Observe
that since Γ acts by automorphisms on A 6 Q⊗Z A as an Abelian group,
it acts by automorphisms of A as a Z-module. This means that we may
extend the action Q-linearly to obtain a Γ-action on all of Q⊗ZA. And the
group of automorphisms of Q ⊗Z A, with respect to the above basis, is of
course GLn(Q).)

Since Γ is finitely generated it follows by Corollary 8.1 that Γ n A is
finitely generated, and therefore ϕ(Γ) n A is also finitely generated. So
there is a finite set of primes S0 such that A 6

n
⊕
i=1

Z[S−1
0 ]· vi.

For each i = 1, . . . , n, let

Si =
{
p ∈ S0 : A ∩ (Z[S−1

0 ]· vi) ⊂ Qp· vi is not precompact
}
.

Claim 8.1. — There is a T ∈ GLn(Q) such that T (A) 6
n
⊕
i=1

Z[S−1
i ]· vi

and p ∈ Si if and only if T (A) ∩ (Z[S−1
i ]· vi) ⊂ Qp· vi is not precompact.

Proof. — For each i = 1, . . . , n and p ∈ S0\Si there is a k ∈ N such that

A ∩ (Z[S−1
0 ]· vi) ⊂

1
pk

Zp· vi.

Let ki(p) > 0 be the minimal one. Then, define the diagonal matrix:
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T =


∏

p∈S0\S1

pk1(p) 0

. . .
0

∏
p∈S0\Sn

pkn(p)


where of course we define

∏
p∈S0\Si

pki(p) = 1 in case Si = S0.

Then, T (A) 6
n
⊕
i=1

Z[S−1
i ]· vi and p ∈ Si if and only if T (A)∩(Z[S−1

i ]· vi) ⊂
Qp· vi is not precompact. �

Therefore, up to replacing A by an isomorphic copy (and conjugating
the Γ-action), we may assume that A 6

n
⊕
i=1

Z[S−1
i ]· vi and that p ∈ Si if

and only if A ∩ (Z[S−1
i ]· vi) ⊂ Qp· vi is not precompact.

Claim 8.2. — A =
n
⊕
i=1

Z[S−1
i ]· vi.

Proof. — Let i∈{1, . . . , n}. Consider the set Ci =
{
c∈Z[S−1

i ] : cvi∈A
}

which is a group under addition. Observe that 1 ∈ Ci.
We aim to show that Ci = Z[S−1

i ] and begin by showing that Z[ 1p ] ⊂ Ci
for each p ∈ Si.

By definition, if p ∈ Si then for each k ∈ N there is a c ∈ Ci such that
c = a

bpk where p does not divide a and b. This means that a
pk = bc ∈ Ci.

Now, since p does not divide a it follows that there exist x, y ∈ Z such that
xpk + ya = 1. Namely, x+ y a

pk = 1
pk ∈ Ci.

By induction, suppose that if P ⊂ Si is any subset of size l − 1 then
Z[P−1] ⊂ Ci. Then, for p1, . . . , pl ∈ Si and k1, . . . , kl ∈ N we have that

1

pk11 · · · pkl−1
l−1

,
1

pk22 · · · pkl

l

∈ Ci

Since p1 and pl are relatively prime, there exists x, y ∈ Z such that xpkl

l +
ypk11 = 1. Then,

x

pk11 · · · pkl−1
l−1

+
y

pk22 · · · pkl

l

=
xpkl

l + ypk11

pk11 · · · pkl

l

=
1

pk11 · · · pkl

l

∈ Ci

�

Observe that this means that for an arbitrary v =
n∑
i=1

αivi ∈ Q⊗Z A we

have that v ∈ A if and only if αi ∈ Z[S−1
i ] for each i = 1, . . . , n.
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Now, up to renumbering the basis, assume that |S1| > |Si| for each
i = 1, . . . , n and
S1 = · · · = Sm and S1 6= Si for any i = m+ 1, . . . , n. Let S = S1.

Claim 8.3. — The subgroup
m
⊕
i=1

Z[S−1]· vi is Γ-invariant.

Proof. — Let γ = (γi,j) be the matrix representation of γ with respect
to the above basis. Observe that

m
⊕
i=1

Z[S−1]· vi is Γ-invariant if and only if

for every (γi,j) ∈ Γ and each i0 ∈ {1, . . . ,m}

γj0,i0 ∈

{
Z[S−1] if j0 ∈ {1, . . . ,m},
{0} if j0 ∈ {m+ 1, . . . , n}.

Since Γ preserves A the above condition is already satisfied for j0 ∈
{1, . . . ,m}. We now show that if i0 ∈ {1, . . . ,m} and j0 ∈ {m + 1, . . . , n}
then γj0,i0 = 0.

By maximality of |S| and the fact that S 6= Sj0 there is a p ∈ S\Sj0 .
Now, 1

pl vi0 ∈ A for each l ∈ N so that γ( 1
pl vi0) ∈ A as well.

This means that 1
pl γj0,i0 ∈ Z[S−1

j0
] and so m

pl γj0,i0 ∈ Z[S−1
j0

] for every
m ∈ Z.

Choose m ∈ Z\{0} and l ∈ N sufficiently large such that
m

pl
γj0,i0 ∈ Z[S−1

j0
] ∩ Z[p−1] = {0}.

�

We are almost done. Indeed the result follows by Lemma 8.2 and the
following:

Claim 8.4. — Let A′ =
m
⊕
i=1

Z[S−1]· vi. Then A′ = A.

Proof. — If we can show that the Q-rank of A/A′ ∼=
n
⊕

i=m+1
Z[S−1

i ]· vi is

0 then the result follows.
Since A′ is Γ-invariant it follows that A′ P Γ n A. By Fact 8.1, (Γ n

(A/A′), A/A′) has relative property (T). However, A was chosen to be of
minimal (non-zero) Q-rank among all such Abelian groups and so the Q-
rank of A/A′ is 0. �

9. Some examples

We would like to take the opportunity to address two questions that may
naturally arise as one reads this exposition.
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Question 1. — Does every nonamenable linear group satisfy condition
(1) of Theorem 1? Namely, if Γ is a non-amenable linear group does there
always exist ϕ : Γ → SLn(R) with ϕ(Γ)

Z
(R) non-amenable?

The answer to this question is of course no. There are purely p-adic
higher rank lattices and by Margulis’ Superrigidity Theorem such lattices
only admit precompact homomorphisms into SLn(R) (see for example [17,
Example IX (1.7.vii) p. 297, Theorem VII (5.6)]).

The second question arises out of the following application:

Theorem 9.1 ([6], [28], [23], p. 23). — Let α : Γ → Aut(A) be a ho-
momorphism, with A discrete Abelian such that (Γ nα A,A) has relative
property (T). Then there are uncountably many orbit inequivalent free
actions of the free product α(Γ) ? Z on the standard probability space.

We point out that although both the papers of Gaboriau-Popa and Törn-
quist prove the above theorem for the case of A = Z2 and Γ = Fn, it is
an observation of Y. Shalom that the proof extends to show the above
theorem.

Theorem 9.1, taken with Theorem 1, shows that it is good to know if
such semidirect products may be constructed with the action of Γ on the
Abelian group A being faithful.

Question 2. — Does there exist a linear group Γ satisfying property
(F∞) such that every homomorphism ϕ : Γ → SLn(Q) is not injective?

The answer to this question is yes. The homomorphism ϕ′ found in the
proof of Theorem 1 will have a kernel in general. This kernel arises out
of the need to specialize transcendental extensions of Q in order to get an
action on an Abelian group of finite Q-rank. We therefore look to these
transcendental extensions to find our example.

Proposition 9.1. — Every homomorphism ϕ : SL3(Z[x]) → GLn(Q) is
not injective.

We remark that this proposition only shows that SL3(Z[x]) never has a
faithful action on an Abelian group of finite Q-rank. On the other hand, it
is possible to get relative property (T) from this group. Indeed, Y. Shalom
showed [24, Theorem 3.1] that (SL3(Z[x]) n Z[x]3,Z[x]3) has relative prop-
erty (T).

To prove this proposition, we will need the following:
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Definition 9.1. — Let Γ be a group generated by the finite set S. An
element γ ∈ Γ is said to be a U -element if

dS(γm, 1) = O(logm)

where dS is the metric on the S-Cayley graph of Γ and 1 is of course the
identity.

This property is wonderful because it identifies “unipotent” elements
while appealing only to the internal group structure. In particular, it does
not depend on the choice of the generating set S. The usefulness of this
property is exemplified by the following:

Proposition 9.2 ([14], Proposition 2.4). — If γ ∈ Γ is a U -element
then for every representation ϕ : Γ → GLn(R) we have that ϕ(γ) is virtually
unipotent.

We now turn to the proof of Proposition 9.1:
Proof. — Let Ei,j(y) be the elementary unipotent matrix in SL3(Z[x])

with y ∈ Z[x] in the (i, j)-th position, and i 6= j. It is by now a well
known result of Bass, Milnor and Serre ([1, Corollary 4.3]) that SL3(Z)
is generated by S1 := {Ei,j(1)}. A similar result of Suslin ([26]) states
that {Ei,j(y) : y ∈ Z[x]} generates SL3(Z[x]). By observing that, for a fixed
y ∈ Z[x], all the Ei,j(y) are conjugate (in SL3(Z)), and the following com-
mutator relation, we see that the finite set Sx := {Ei,j(x)} ∪ S1 actually
generates SL3(Z[x]):

[E1,2(y1), E2,3(y2)] = E1,3(y1y2).

Claim 9.1. — E1,3(y) is a U -element for each y ∈ Z[x].

Proof. — By Corollary 3.8 of [14] Ei,j(1) is a U -element. Furthermore,
observe that dSx

(E1,2(m), 1) 6 dS1(E1,2(m), 1) since S1 ⊂ Sx. For m suf-
ficiently large, the above commutator relation, with y1 = m and y2 = y,
gives us

dSx(E1,3(my), 1) 6 2dSx(E1,2(y), 1) + 2dSx(E1,2(m), 1) 6 2(1 + C) logm

where dSx
(E1,2(m), 1) 6 C logm. Hence E1,3(y) is a U -element. �

Now to conserve notation, for each y ∈ Z[x] let us define γy = E1,3(ayy)
where ay ∈ N is the minimum of all a ∈ N such that ϕ(E1,3(ay)) is unipo-
tent.

Also, let Gu := 〈ϕ(γy)|y ∈ Z[x]〉
Z

be the Zariski-closure. Then Gu is
Q-rationally isomorphic to Rd for some d. Indeed, Gu is a Q-group gen-
erated by commuting unipotent elements and is therefore both unipotent
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and Abelian. This means that there is a Q-basis of Rn for which Gu is
a subgroup of the upper triangular unipotent matrices, which is in turn
isomorphic to Rn−1 n Rn−2 n · · ·n R.

Now, fix a Q-rational isomorphism ρ : Gu → Rd. Then, since
{ρφ(γy) : y ∈ Z[x]} is Zariski-dense in Rd there exists y1, . . . , yd ∈ Z[x]
so that {ρφ(γy1), . . . , ρφ(γyd

)} is a Q-basis for Rd.

Let y ∈ Z[x] such that 〈y〉 ∩
{ d∑
j=1

ajyj : aj ∈ Z
}

= {0}. Since ρφ(γy) is in

the Q-span of our basis, there exists qj ∈ Q such that

ρφ(γy) =
d∑
j=1

qjρφ(γyj ).

Clearing the denominators we have that there are m,m1, . . . ,md ∈ Z
such that

γmy
∏

j=1,...,d

γmj
yj

= E1,3

(
mayy +

d∑
j=1

mjayjyj

)
∈ ker(ρ ◦ φ).

By our choice of y and the fact that ker(ρ) = 1, we have that ker(ϕ) 6= 1. �
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