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OPTIMAL DESTABILIZING VECTORS IN SOME
GAUGE THEORETICAL MODULI PROBLEMS

by Laurent BRUASSE

Abstract. — We prove that the well-known Harder-Narsimhan filtration the-
ory for bundles over a complex curve and the theory of optimal destabilizing 1-
parameter subgroups are the same thing when considered in the gauge theoretical
framework.

Indeed, the classical concepts of the GIT theory are still effective in this context
and the Harder-Narasimhan filtration can be viewed as a limit object for the action
of the gauge group, in the direction of an optimal destabilizing vector. This vector
appears as an extremal value of the so called “maximal weight function”. We
give a complete description of these optimal destabilizing endomorphisms. Then
we show how this principle may be applied to an other complex moduli problem:
holomorphic pairs (i.e. holomorphic vector bundles coupled with morphisms with
fixed source) over a complex curve. We get here a new version of the Harder-
Narasimhan filtration theorem for the notion of τ -stability. These results suggest
that the principle holds in the whole gauge theoretical framework.

Résumé. — Nous montrons que, du point de vue de la théorie de jauge, la filtra-
tion de Harder-Narasimhan d’un fibré vectoriel complexe au-dessus d’une courbe
et la notion de sous-groupe déstabilisant optimal à un paramètre coïncident.

En utilisant l’approche de la GIT, la filtration de Harder-Narasimhan apparaît
comme un objet limite pour l’action du groupe de jauge, dans la direction d’un
vecteur déstabilisant optimal. Ce vecteur est un extremum de la “fonction de poids
maximal”. Nous donnons une description complète de ces vecteurs déstabilisants
optimaux. Nous montrons que le même principe s’applique à un autre problème
de modules : celui des paires holomorphes (un fibré vectoriel complexe couplé avec
un morphisme) sur une courbe complexe. On obtient dans ce contexte une nou-
velle version du théorème de filtration de Harder-Narasimhan pour la notion de
τ -stabilité. Ces résultats suggèrent que le principe reste valable en toute généralité
en théorie de jauge.

Keywords: GIT, optimal 1-parameter subgroup, gauge theory, maximal weight map,
complex moduli problem, stability, Harder-Narasimhan filtration, moment map.
Math. classification: 32M05, 53D20, 14L24, 14L30, 32L05, 32G13, 53C55.



1806 Laurent BRUASSE

1. Introduction

Harder and Narasimhan have proved [9] that any non semistable bundle
on an algebraic curve admits a unique filtration by subsheaves such that
the quotients are torsion free and semistable. This is now a classical result
which was generalized for reflexive sheaves on projective manifolds [18],
[13], and then to any reflexive sheaf on an arbitrary compact Hermitian
manifold [4], [6].

The system of semistable quotients associated to a non semistable vec-
tor bundle by the Harder-Narasimhan theorem can be interpreted as a
semistable object with respect to a new moduli problem: the moduli prob-
lem for G-bundles, where G is a product

∏
i GL(ri). The motivation of

this work is to find a general principle which applies to an arbitrary moduli
problem: we want to associate in a canonical way to a non semistable object
a new moduli problem and a semistable object for this new problem. One
of the motivation is to find an analogous of the Harder-Narasimhan state-
ment for other type of complex objects, for instance holomorphic bundles
coupled with sections or endomorphisms.

On the other hand, the Geometric Invariant Theory (GIT) and its fur-
ther developments (see [10], [14], [11], [17], [19], [7]) give powerful tools
and intuitions, to deal with a stability condition. In [7], we discussed the
relation between generalized GIT concepts and Harder-Narasimhan theory
in the finite dimensional framework, for moduli problems associated with
actions of a reductive group on a finite dimensional (possibly non com-
pact) manifold. We look at a holomorphic action α : G × F → F of a
complex reductive Lie group G on a complex manifold F . We prove, that
under a certain completeness assumption [19], the notion of stability and of
semistability associated to the choice of a compact subgroup K ⊂ G and of
a K-equivariant moment map µ may be defined in term of a G-equivariant
generalized maximal weight map λ : H(G) × F → R, where H(G) ⊂ g is
the union of all subspaces of the form ik. In the classical GIT, this map
is known as the Hilbert numerical function (see [11]). We have proved the
existence and unicity (up to equivalence) of an optimal destabilizing vec-
tor s in the Lie algebra of G associated to any non semistable point f ∈ F .
The role of this optimal vector corresponds precisely to that of so-called
adapted 1-parameter subgroups in classical GIT (see [10] or [17]). We have
shown that the path t 7→ etsf converges to a point f0 which is semistable
with respect to a natural action of the centralizator Z(s) on a submani-
fold of F . The assignment f 7→ f0 = limt→∞ etsf is a finite dimensional
“Harder-Narasimhan type” statement.

ANNALES DE L’INSTITUT FOURIER



OPTIMAL DESTABILIZING VECTORS 1807

Therefore the general principle may be stated as follows: to get an ana-
logue of the Harder-Narasimhan result for a given complex moduli problem,
one has to give a gauge theoretical formulation of the problem (i.e. describe
it in term of an action of a gauge group on certain complex variety) and then
use the generalized GIT machinery to compute the maximal weight map
and to study the optimal destabilizing vectors. Then the new semistable
object is obtained as a limit in the direction of the optimal vector.

In gauge theory, there are already well-known links between the stabil-
ity theory of vector bundles and the GIT concepts. The analogue of the
maximal weight map in this setting has already been exploited by several
authors, in particular to study the Kobayashi-Hitchin correspondance (see
for example [15], [12]). In the case of plain bundles, the relation between
the algebraic geometric notion of stability and the Morse theory associated
to the Yang-Mills functional (see [1], [8]) is also well known. But what ap-
pears to be unavailable in the literature, even in the case of plain bundles,
is the very natural fact that the extremal value of the maximal weight map
in the gauge theoretical framework corresponds exactly to the optimal di-
rection which leads to the Harder-Narasimhan filtration (or precisely to the
associated system of semistable quotients).

The purpose of the present paper is to give a direct and complete proof
of this fact in two classical gauge theoretical problems: holomorphic vector
bundles and holomorphic pairs (i.e. vector bundles coupled with morphisms
with fixed source) over a complex curve. These results were announced
without proof in [12]. The case of a higher dimensional base will be studied
in a forthcomig article.

We first focus on the moduli problem of complex vector bundles: we prove
that one can associate to any non semistable bundle over a curve a maximal
destabilizing element in the formal Lie algebra of the gauge group, then we
give a complete description of this optimal vector. The main tools here are
the notion of Harder-Narasimhan polygonal line (see [5]) and a well defined
notion of energy for such lines. The system of quotients of the “classical”
Harder-Narasimhan filtration appears as the limit in the direction of this
optimal vector.

In a second part, we give an analogue description for the moduli prob-
lem associated to holomorphic pairs over a curve. Here the corresponding
notion of stability, called τ -stability (see [2]), depends on the choice of a
real parameter. We prove, in this setting, a generalization of the Harder-
Narasimhan filtration theorem for the τ -stability (let us remark that a
generalization of the Seshadri filtration in the context of τ -stability was

TOME 56 (2006), FASCICULE 6



1808 Laurent BRUASSE

given a few years ago in [3]). Using an explicit formula for the maximal
weight function, we describe the optimal destabilizing vectors. Once again,
the filtration is obtained as a limit in the direction of this extremal value
of the maximal weight map.

It is a quite remarkable fact that when optimizing the maximal weight
map we are led to study energy of piecewise affine plane curves. The Harder-
Narsimhan polygonal line plays here a central role: It makes a link between
the maximal weight map an a sort of “energy of the filtration”.

These two results and the recent work in [12] suggest that the principle
holds in the infinite dimensional gauge theoretical framework: for mod-
uli problems for principal G-bundles possibly coupled with linear or non-
linear actions. The main tools for this generalization should be found in [12]
and [7]: the analoguon of the Harder-Narasimhan filtration in this frame-
work is a meromorphic reduction (see [12]) of the G-bundle structure to a
parabolic subgroup L of G (the group stabilizing the Harder-Narasimhan
filtration in the present article). As in the finite dimensional case [7], this
parabolic subgroup appears naturally when solving an optimization prob-
lem for the generalized maximal weight map (see [12]). Details will be
studied in a forthcoming article.

2. Holomorphic vector bundles

Here we will use the “GIT” intuition to describe the behavior of the
following gauge theoretical moduli problem: classifying the holomorphic
structures on a given complex vector bundle up to gauge equivalence. We
will assume that the base manifold is a complex curve to avoid complica-
tions related to singular sheaves (and so the use of L2

1-Sobolev sections).
Besides, the completeness property used in [7] is formally satisfied for lin-
ear moduli problems on a complex curve, so this is natural to work first in
this framework.

LetEbe a complex vector bundle of rank r over the Hermitian curve (Y, g).
We denote by G the complex gauge group

G := Aut(E)

whose formal Lie algebra is A0(End(E)). Let h be any Hermitian structure
on E and let us denote by

Kh := U(E, h) ⊂ G

the real gauge group of unitary automorphisms of E with respect to h.

ANNALES DE L’INSTITUT FOURIER
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We will use here the terminology developed in [19] and [7]. An element
s ∈ A0(End(E)) is said to be of Hermitian type if there exists a Hermitian
metric h on E, such that s ∈ A0(Herm(E, h)).

We identify a holomorphic structure E on E with the corresponding
integrable semiconnections ∂E on E (see [12]). We are concerned with the
stability theory for the action of G on the space H(E) of holomorphic
structures. Fixing a Hermitian metric h, the moment map for the induced
Kh-action on H(E) is given by

µ(E) = Λg(FE,h) +
2πi

volg(Y )
m(E) idE

where FE,h is the curvature of the Chern connection associated to ∂E and h,
and where the the slope of E is

m(E) :=
deg(E)

r
·

Let us recall that a holomorphic vector bundle E ∈ H(E) is semistable
with respect to this moment map if and only if it is semistable in the sense
of Mumford (see [14], [12]):

m(F) :=
deg(F)
rank(F)

6
deg(E)
rank(E)

:= m(E)

for all reflexive subsheave F ⊂ E such that 0 < rank(F) < r.

One may give an analytic Hilbert type criterion for the stability theory
associated to the moment map µ. We will need the following notation: if f

is an endomorphism of a vector space V , we will put for any a ∈ R

Vf (a) :=
⊕
a′6a

Eig(f, a′).

We extend the notation for endomorphisms of E with constant eigenvalues
in an obvious way.

Then, one has an explicit formula for the maximal weight map λ (see [16]):
if E ∈ H(E) and s ∈ Herm(E, h) then

λs(E) =


λk deg(E) +

∑k−1
i=1 (λi − λi+1) deg(Ei)− (deg(E)/r) tr(s)

if the eigenvalues λ1 < · · · < λk of s are constant
and Ei := Es(λi) are holomorphic,

∞ if not.

Stability criterion. — A point E ∈ H(E) is semistable if and only if
λs(E) > 0 for all s ∈ A0(Herm(E, h)).

TOME 56 (2006), FASCICULE 6



1810 Laurent BRUASSE

Let us come to the definition of optimal destabilizing endomorphisms:

Proposition 2.1. — Let E be a non semistable bundle. There exists a
Hermitian endomorphism sop ∈ A0(Herm(E, h)) such that

λsop(E) = inf
s∈A0(Herm(E,h))

‖s‖=1

λs(E).

Proof. — It is sufficient to consider the s ∈ A0(Herm(E, h)) with con-
stant eigenvalues λ1 < · · · < λk and such that the Ei are holomorphic.
Condition ‖s‖ = 1 implies that the eigenvalues λi are bounded. Moreover,
we know that the degree of a subbundle of E is bounded above (see [4],
Prop. 2.2), so that, writing λ in the form

λs(E) = deg(E)
[
λk −

1
r

k∑
i=1

riλi

]
+

k−1∑
i=1

deg(Ei)(λi − λi+1),

it becomes obvious that λs(E) is bounded from below on the sphere ‖s‖ = 1.
Now let (sn)n be a sequence of Hermitian endomorphisms such that

lim
n→+∞

λsn(E) = inf
s∈A0(Herm(E,h))

‖s‖=1

λs(E).

We always assume that the associated filtrations are holomorphic. Going to
a subsequence if necessary, we may suppose that each sn admits k distinct
eigenvalues λn

1 < · · · < λn
k .

Let us recall the following result which is a direct consequence of the
convergence theorem for subsheaves proved in [6] (see also [4, Prop. 2.9]):

Proposition 2.2. — Let (Fn)n be a sequence of subsheaves of E and
assume that there exists a constant c ∈ R such that for all n deg(Fn) > c.
Then we may extract a subsequence (Fm)m which converges in the sense
of weakly holomorphic subbundles to a subsheaf F of E. In particular

lim sup
m→+∞

deg(Fm) 6 deg(F).

Using this proposition and the fact that the λn
i are bounded, one can

easily extract from (sn)n a subsequence (sm)m such that:

(i) there exist indices 0 = j0 < j1 < · · · < j` = k and distinct values
λj1 < · · · < λj`

such that λm
i → λjp+1 for all i ∈ {jp, · · · , jp+1};

(ii) there exists a filtration 0 = E0 ⊂ Ej1 ⊂ · · · ⊂ Ej`
= E such that each

Ejp
is the limit in the sense of weakly holomorphic subbundles of

the Em
jp

, which implies that deg(Ejp) > lim supm→+∞ deg(Em
jp

).

ANNALES DE L’INSTITUT FOURIER



OPTIMAL DESTABILIZING VECTORS 1811

For the second point, we use the fact that inclusion of subsheaves is
preserved when going through the limit in the sense of weakly holomorphic
subbundles [4].

Let s be the Hermitian endomorphism whose eigenvalues are the λjp with
corresponding filtration {Ejp

} (s may have less than k distinct eigenvalues).
Then we have

λs(E) 6 lim inf
m→+∞

λsm(E) = inf
s∈A0(Herm(E,h))

‖s‖=1

λs(E)

so that s is an optimal destabilizing endomorphism of E . �

Let us come to the proof of the result stated in [7]:

Theorem 2.3. — Let E ∈ H(E) be a non semistable bundle. Then it
admits a unique optimal destabilizing element sop ∈ A0(Herm(E, h)) which
is given by

sop =
∑k

i=1

[
deg(E)/r − deg(Ei/Ei−1)/ri

]
(
Vol(Y )

) 1
2
( k∑
i=1

ri

[
deg(Ei/Ei−1)/ri − deg(E)/r

]2) 1
2

idFi ,

where

0 = E0 ⊂ E1 ⊂ E1 ⊂ · · · ⊂ Ek = E

is the Harder-Narasimhan filtration of E , Fi is the h-orthogonal complement
of Ei−1 in Ei and ri := rank(Ei/Ei−1).

Proof. — Let s ∈ A0(Herm(E, h)) such that s has constant eigenvalues
λ1 < λ2 < · · · < λk and the filtration given by the Ei = Es(λi) is holomor-
phic. Let us denote by

mi :=
deg(Ei/Ei−1)

ri

, 1 6 i 6 k, m := m(E),

the slopes of the associated quotient sequence. The expression of the max-
imal weight map becomes

λs(E) =
k∑

i=1

λiri(mi −m).

We want to minimize this expression with respect to s under the assumption

‖s‖ =
( ∫

Y

tr(ss?) volg
) 1

2
=

(
Vol(Y )

) 1
2
( k∑

i=1

riλ
2
i

) 1
2

= 1.

TOME 56 (2006), FASCICULE 6



1812 Laurent BRUASSE

Assume first that the filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E is fixed and
hence that the ri and the mi are fixed. We have to minimize the map

g{Ei} : (λ1, · · · , λk) 7−→
k∑

i=1

λiri(mi −m)

over the smooth ellipsoid

S =
{

(λ1, · · · , λk) ;
k∑

i=1

riλ
2
i = 1/ Vol(Y )

}
with the additional open condition

(?) λ1 < λ2 < · · · < λk.

Resolving the Lagrange problem for g S we see that there are two critical
points of g over S which are obtained for

λi = ε(mi −m), 1 6 i 6 k and ε =
±1(

Vol(Y )
) 1

2
(∑k

i=1 ri(mi −m)2
) 1

2
·

Let us remark that g{Ei} is negative only for ε < 0.

We need the following

Lemma 2.4. — The filtration {Ei}16i6k associated to any optimal desta-
bilizing element sop satisfies m1 > m2 > · · · > mk.

Proof. — If the sequence (mi)16i6k is not decreasing, the critical point
of g{Ei} which may correspond to a minimum does not satisfy condition (?).
So let sop be an optimal destabilizing element and λ1 < · · · < λk its eigen-
values. Assume that for the corresponding filtration the sequence (mi)16i6k

is not decreasing, then ν = (λ1, . . . , λk) is not a critical point of g = g{Ei},
so that the gradient gradν(g S) is non zero. Therefore, moving slightly the
point ν in the opposite direction, we may get a new point ν′ ∈ S which
still satisfies the open condition (?) and with g(ν′) < g(ν). Thus, the cor-
responding Hermitian endomorphism s′ satisfies λs′

(E) < λsop(E) which is
a contradiction. �

Keeping in mind this result, it is sufficient to consider endomorphisms
whose associated filtration {Ei}16i6k satisfies m1 > m2 > · · · > mk. We
will call such a filtration an admissible filtration.

For admissible filtrations, the map g{Ei} reaches its minimum for

(λ1, · · · , λk) =
1(

Vol(Y )
) 1

2
(∑k

i=1 ri(mi −m)2
) 1

2
(m−m1, . . . ,m−mk)

ANNALES DE L’INSTITUT FOURIER



OPTIMAL DESTABILIZING VECTORS 1813

and

g{Ei}(λ1, · · · , λk) = − 1(
Vol(Y )

) 1
2

( k∑
i=1

ri(mi −m)2
) 1

2
.

Thus, we have to maximize
∑k

i=1 ri(mi −m)2 among all admissible filtra-
tions.

Let us remind some fundamental property of the Harder-Narasimhan
filtration (see [5], [4] for details):

Proposition 2.5. — The Harder-Narasimhan filtration is the unique
filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E such that

(i) each quotient Ei/Ei−1 is semistable for 1 6 i 6 `;
(ii) the slope sequence satisfies

m(Ei/Ei−1) < m(Ei+1/Ei) for 1 6 i 6 `− 1.

We may associate to any filtration D = (0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E) a
polygonal line P(D) in R2 defined by the sequence of points

pi = (rank Ei,deg Ei)

for 0 6 i 6 `. The line associated to the Harder-Narasimhan filtration is
called the Harder-Narasimhan polygonal line (see Fig. 2.1).

H-N polygonal line

E

E1

E2
E3

rank

degree

Figure 2.1. The Harder-Narasimhan polygonal line

For any filtration D = {Ei}16i6k, the condition m1 > · · · > mk is equiv-
alent to the fact that the line P(D) is concave and let us remark that
it is satisfied by the Harder-Narasimhan filtration. Now, the expression∑k

i=1 ri(mi − m)2 can be interpreted as an energy of the corresponding
polygonal line. Indeed, let us denote by fD ∈ C0([0, r], R) the map whose
graph is the polygonal line P(D); this is a piecewise affine function and so

TOME 56 (2006), FASCICULE 6



1814 Laurent BRUASSE

let a0 = 0 < a1 < · · · < a` = r be the corresponding partition of [0, r].
We define

E(fD) :=
k∑

i=1

ri(mi −m)2 =
`−1∑
i=0

∫ ai+1

ai

(f ′D(x)−m)2dx

We will delay the proof of the following fundamental result, which as-
serts that the Harder-Narasimhan filtration is energy-maximizing among
all admissible filtrations:

Proposition 2.6. — Let D be the Harder-Narasimhan filtration of E
and D be any other admissible filtration, then E(fD) > E(fD). The max-
imum of the energy among all concave polygonal lines associated to a fil-
tration of E is obtained for the Harder-Narasimhan polygonal line.

Using this proposition we see that the maximal weight map λs(E) reaches
its minimum for a Hermitian element s ∈ A0(Herm(E, h)) whose associated
filtration is the Harder-Narasimhan filtration of E and whose eigenvalues
are λi = (m−mi)/((Vol(Y ))

1
2 (

∑k
i=1 ri(mi −m)2)

1
2 ). Moreover it follows

from the proof that this is a strict minimum. �

To prove proposition 2.6, we need the following lemma about the energy
of concave piecewise affine maps.

Lemma 2.7. — Let f, g : [0, r] → R be two continuous piecewise affine
concave functions. Assume that g(0) = f(0) and f(r) = g(r). If for all
x ∈ [0, r], f(x) > g(x) then E(f) > E(g). Equality may occur if and only
if f = g.

Proof. — Let a0 = 0 < a1 < · · · < a` = r be a partition of [0, r] common
to f and g. Let F (t, x) = tf(x)+(1−t)g(x) then x → F (t, x) is continuous,
concave, and affine on each segment [ai, ai+1]. So we may define for each t

the energy E(F (t, x)) of the map x 7→ F (t, x). One has

d
dt

E(Ft) =
`−1∑
i=0

2
∫ ai+1

ai

d2

dtdx
F (t, x)

( d
dx

F (t, x)−m
)
dx

=
`−1∑
i=0

[ d
dt

F (t, x)
( d

dx
F (t, x)−m

)]ai+1

ai

− 2
`−1∑
i=0

∫ ai+1

ai

d
dt

F (t, x)
d2

dx2
F (t, x)dx

ANNALES DE L’INSTITUT FOURIER



OPTIMAL DESTABILIZING VECTORS 1815

>
`−1∑
i=1

[
(f(ai)− g(ai))

× (t((f)′g(ai)− (f)′d(ai)) + (1− t)((g)′g(ai)− (g)′d(ai)))
]

> 0.

Indeed, the concavity of each polygonal line implies that its derivative is
decreasing, that d2F (t, x)/dx2 6 0 and we have (f(ai)− g(ai)) > 0 of
course. Let us remark that if f 6= g the strict inequality E(f) > E(g)
obviously occurs. �

Proof of proposition 2.6. — Let us denote by D the Harder-Narasimhan
filtration of E and let D be any other filtration whose polygonal line is
concave.

Proposition 2.8 (see [5]). — For any subsheaf F of E , the point

(rankF ,degF)

is located below the Harder-Narasimhan polygonal line P(D). As a conse-
quence, any polygonal line P(D) associated to a filtration D of E is located
below the Harder-Narasimhan polygonal line P(D).

Then, by Proposition 2.8, the polygonal line P(D) lies below P(D), that
is for any x ∈ [0, r], fD(x) 6 fD(x) with strict inequality on an open subset
(see Fig. 2.2). We use Lemma 2.7 to conclude. �

Et decreasing

E

P(D)

P(D)

rank

degree

Figure 2.2. Illustration of Proposition 2.6

Using the identification of H(E) with the space of integrable semicon-
nections, it is not difficult (see for instance [15, Lemma 2.3.2]) to show that

lim
t→+∞

(etsop) ∂E = ∂F1 ⊕ · · · ⊕ ∂Fk
.

In other words the holomorphic structure etsopE converges to the direct
sum holomorphic structure

⊕k
i=1 Ei/Ei−1 as t → +∞.

TOME 56 (2006), FASCICULE 6



1816 Laurent BRUASSE

This illustrates our principle that the Harder-Narasimhan filtration is a
limit object precisely in the direction given by the extremal value of the
maximal weight map. The direct sum holomorphic structure is of course
semistable with respect to the smaller gauge group

∏k
i=1 Aut(Ei/Ei−1)

(which corresponds to the centralizor Z(s) of the optimal destabilizing
vector s in the finite dimensional case (see [7]).

3. Holomorphic pairs

Here we will give an analogous result for a different moduli problem
associated to holomorphic pairs.

Let F0 be a fixed holomorphic vector bundle of rank r0 with a fixed
Hermitian metric h0 and E a complex vector bundle of rank r on the
Hermitian curve (Y, g). We are interested in the following moduli problem:
classifying the holomorphic pairs (E , ϕ) where E is a holomorphic structure
on E and ϕ is a holomorphic morphism ϕ : F0 → E . Such a pair will be
called a holomorphic pair of type (E,F0) and we will denote by H(E,F0)
the space of such pairs. Here the complex gauge group is once again the
group G := Aut(E).

Let us fix a Hermitian metric h on E, and let us denote by Kh := U(E, h)
the group of unitary automorphisms. The moment map for the Kh action
on H(E,F0) has the form:

µ(E , ϕ) = ΛgFE,h − 1
2 i ϕ ◦ ϕ∗ + 1

2 i t idE .

In the sequel we will assume that the topological condition µ(E) > τ holds.
Then we have the following characterisation of semistable pairs (E , ϕ)

(see [2]): let τ := (1/4π)t Volg(Y ), then (E , ϕ) is semistable with respect to
the moment map µ if and only if it is τ -semistable in the following sense:

(i) m(F) := deg(F)/rk(F) 6 τ for all reflexive subsheaves F ⊂ E
with 0 < rk(F) < r;

(ii) m(E/F) := deg(E/F)/rk(E/F) > τ for all reflexive subsheaves
F ⊂ E with 0 < rk(F) < r and ϕ ∈ H0(Hom(F0,F)).

Now we may give an analogue of the Harder-Narasimhan theorem for
this notion of stability:

Theorem 3.1. — Let (E , ϕ) be a non τ -semistable holomorphic pair of
type (E,F0). Then there exists a unique holomorphic filtration with torsion
free quotients

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em ⊂ Em+1 ⊂ · · · ⊂ Ek = E
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of E such that:
(i) The slopes sequence satisfies:

m(E1/E0) > · · · > m(Em/Em−1) > τ

> m(Em+2/Em+1) > · · · > m(Ek/Ek−1)

and the additional condition τ > m(Em+1/Em).
(ii) The quotients Ei+1/Ei are semistable for i 6= m.
(iii) One of the following properties holds:

(a) Im(ϕ) 6⊂ Em , τ > deg(Em+1/Em)/rk(Em+1/Em) and the pair
(Em+1/Em, ϕ̄) is τ -semistable, where ϕ̄ is the Em+1/Em-valued
morphism induced by ϕ.

(b) Im(ϕ) 6⊂ Em , τ = deg(Em+1/Em)/rk(Em+1/Em) and Em+1/Em

is semistable of slope τ . This implies that the pair (Em+1/Em, ϕ̄)
is τ -semistable.

(c) Im(ϕ) ⊂ Em and Em+1/Em is semistable.
Moreover, in cases (b) and (c) the obtained filtration coincides with the
“classical” Harder-Narasimhan filtration of E and the additional condition
m(Em+1/Em) > m(Em+2/Em+1) holds.

Proof. — We will use the results and methods of Theorem 3.2 in [4].
In order to build the filtration, let us first consider type (i) destabilizing
subsheaves of E , i.e. subsheaves F which satisfy m(F) > τ . If there exists
such a subsheaf, we let E1 be the maximal destabilizing type (i) subsheaf: it
is nothing but the first element of the Harder-Narasimhan filtration of E . If
Im(ϕ) ⊂ E1 then we follow with the classical Harder-Narasimhan filtration
(case (c)), if not we consider the pair (E/E1, ϕ1) where ϕ1 is induced by ϕ

and we follow the same principle until there is no more type (i) destabilizing
subsheaves: we get a sequence

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em

which coincides with the first terms of the usual Harder-Narasimhan filtra-
tion and such that E/Em has no type (i) destabilizing subsheaf.

Then we consider type (ii) destabilizing subsheaves and we take the sub-
sheaf F1 containing Im(ϕ) and minimizing the slope m(E/F1) (we take F1

of maximal rank with this property, it exists and it is unique by the argu-
ments developed in [4]). This will be the last term of our filtration. By def-
inition, we have m(E/F1) < τ . Moreover F1 contains Em by the following
lemma.

Lemma 3.2. — Let G ⊂ E be a maximal destabilizing subsheaf of type
(i) and let F ⊂ E be a type (ii) maximal destabilizing subsheaf, then G ⊂ F .
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Proof. — Assume first that G∩F = 0, then (F+G)/F ' G and of course
Im(ϕ) ⊂ G + F . Then we have

m((F + G)/F) = m(G) > τ > m(E/F),

0 −→ (F + G)/F −→ E/F −→ E/(F + G) −→ 0.

We get m(E/(F + G)) < m(E/F) which is a contradiction. Assume now
that F ∩ G is a non trivial subsheaf of G then using the following exact
sequence

0 −→ G ∩ F −→ G −→ G/G ∩ F −→ 0

and the isomorphism (G + F)/F ' G/G ∩ F , we get

m((F + G)/F) = m(G/G ∩ F) < m(E/F) < τ < m(G)

and m(G ∩ F) > m(G) which is a contradiction. So we get G ∩ F = G so
that G ⊂ F . �

Remark 3.3. — This lemma simply states that one can always build a
Harder-Narasimhan filtration starting either from its first term or from its
last term.

Following the process, we get a sequence F` ⊂ · · · ⊂ F1 ⊂ E where F`

does contain Em and admits no type (ii) destabilizing subsheaf. It is quite
easy to prove that each quotient Fi/Fi+1 is semistable. Moreover, it is
clear that F`/Em has no type (i) destabilizing subsheaf. So, putting things
together, we get a filtration

0 ⊂ E0 ⊂ · · · ⊂ · · · Em ⊂ Em+1(= F`) ⊂ · · · ⊂ Ek−1 = (F1) ⊂ Ek = E

where Im(ϕ) ⊂ Em+1.
Also we have

m(E1/E0) > · · · > m(Em/Em−1) > τ and

m(Em+2/Em+1) > · · · > m(Ek/Ek−1).

If Im(ϕ) ⊂ Em, then clearly the filtration coincides with the classical
Harder-Narasimhan filtration and we are in case (c) of the theorem. Else the
pair (Em+1/Em, ϕ) is by construction τ -semistable with m(Em+1/Em) 6 τ .
Let us remark to conclude that if m(Em+1/Em) = τ , then the notion of
τ -semistability and semistability coincide for Em+1/Em (case (b) of the
theorem).

Unicity is proved in the same way as in the algebraic “classical” case (see
[4] or [5]). �
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Remark 3.4. — Theorem 3.1 clearly holds for any bundle over a compact
Hermitian manifold (X, g) where g is a Gauduchon metric (see [4]). Indeed,
we did not use the fact that Y is one dimensional in this proof.

Coming back to our gauge moduli problem, one can once again give a
formula for the maximal weight function:

λs(E) =


λk deg(E) +

∑k−1
i=1 (λi − λi+1) deg(Ei)− τ tr(s)

if the eigenvalues λ1 < · · · < λk of s are constant,
Ei := Es(λi) are holomorphic, and ϕ ∈ H0(Hom(F0, Es(0)));

∞ if not.

Criterion. — A holomorphic pair (E , ϕ) is semistable with respect to
the moment map µ if and only if λs(E) > 0 for all s ∈ A0(Herm(E, h)).

Put again ri := rk(Ei/Ei−1) and mi = m(Ei/Ei−1). We have the following
result:

Theorem 3.5. — For any Hermitian metric h on E and any non semi-
stable holomorphic pair (E , ϕ), there exists a unique normalised Hermitian
endomorphism sop ∈ A0(Herm(E, h)) which satisfies

λsop(E) = inf
s∈A0(Herm(E,h))

‖s‖=1

λs(E).

It is given by
(i) If Im(ϕ) ⊂ Em then

sop =

k∑
i=1

[τ −mi] idFi(
Vol(Y )

) 1
2
( k∑
i=1

ri [mi − τ ]2
) 1

2

·

(ii) If Im(ϕ) 6⊂ Em

sop =

k∑
i=1

i 6=m+1

[τ −mi] idFi

(
Vol(Y )

) 1
2
( k∑

i=1
i 6=m+1

ri [mi − τ ]2
) 1

2

,

where Fi is the h-orthogonal complement of Ei−1 in Ei.

Proof. — The existence of an optimal destabilizing element sop is proved
in the same way as in proposition 2.1: we simply use the fact that inclu-
sion of subsheaves is preserved when going through the limit in the sense
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of weakly holomorphic subbundles to deal with the additional condition
Im(ϕ) ⊂ Es(0).

Now, let s ∈ A0(Herm(E, h)) with constant eigenvalues λ1 < · · · <

λk, such that the filtration given by the Ei = Es(λi) is holomorphic and
Im(ϕ) ⊂ Es(0). Using the previous notations the expression of the minimal
weight map becomes

λs(E) =
k∑

i=1

λiri(mi − τ).

As in the classical situation, we want to minimize this expression with
respect to s under the assumption

‖s‖ =
(
Vol(Y )

) 1
2
( k∑

i=1

riλ
2
i

) 1
2

= 1

We use the same idea as in theorem 2.3. Assume first that the filtration by
eigenspaces is fixed; we have to minimize the map

g{Ei} : (λ1, · · · , λk) 7−→
k∑

i=1

λiri(mi − τ)

over the smooth ellipsoid

S =
{

(λ1, · · · , λk) ;
k∑

i=1

riλ
2
i = 1/ Vol(Y )

}
with the two additional conditions

(?1) : λ1 < λ2 < · · · < λk. and (?2) : Im(ϕ) ⊂ Es(0).

Once again, resolving the Lagrange problem for g{Ei}|S , we see that there
are two critical points of g{Ei} over S which are obtained for

λi = ε(mi − τ), 1 6 i 6 k and ε =
±1(

Vol(Y )
) 1

2
(∑k

i=1 ri(mi − τ)2
) 1

2
·

Let us remark that g{Ei} is negative only for ε < 0.

We have the following lemma:

Lemma 3.6. — Assume s is an optimal destabilizing Hermitian endo-
morphism and let {Ei}16i6k its associated filtration. Then there exists `

such that
(i) m1 > · · · > m` > τ > m`+2 > · · · > mk = m(E);
(ii) τ > m`+1 and the property Im(ϕ) ⊂ E`+1 holds;
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(iii) if moreover Im(ϕ) ⊂ E`, then the additional condition m`+1 >

m`+2 holds.

A filtration which satisfies these conditions will be called an admissible
filtration.

Proof. — These are once again gradient arguments. Assume s is optimal
and let ` such that λ1 < · · · < λ` < 0 6 λ`+1 < · · ·λk.

If Im(ϕ) ⊂ E`, since λ` < 0, then the filtration must satisfy m1 > · · · >

m` > τ > m`+1 > m`+2 > · · · > mk = m(E), otherwise the same gradient
argument as in lemma 2.4 contradicts the optimality of s.

If Im(ϕ) 6⊂ E`, then obviously Im(ϕ) ⊂ E`+1 and λ`+1 = 0. Then restrict-
ing g{Ei} to {λ |λ`+1 = 0}, a similar argument shows that the associated
filtration satisfies i). For the second point, an explicit computation of the
gradient of g{Ei}, shows that if m`+1 > τ , we may move the point λ such
that g{Ei} decreases and λ`+1 6 0, which contradicts the optimality of s.
Thus τ > m`+1. �

So it is sufficient for our problem to minimize g{Ei} where {Ei} is an
admissible filtration. Under this assumption we get:

• If Im(ϕ) ⊂ E`, the minimal value of g{Ei}|S
is obtained for

(λ1, · · · , λk) =
1(

Vol(Y )
) 1

2
(∑k

i=1 ri(mi − τ)2
) 1

2
(τ −m1, . . . , τ −mk)

and

g{Ei}(λ1, · · · , λk) = − 1(
Vol(Y )

) 1
2

( k∑
i=1

ri(mi − τ)2
) 1

2
.

• If Im(ϕ) 6⊂ E`, then g{Ei}|S
reaches its minimum for

(λ1, · · · , λk) =
1
‖λ‖

(τ −m1, . . . , τ −m`, 0, τ −m`+2, . . . , τ −mk)

and

g{Ei}(λ1, · · · , λk) = − 1(
Vol(Y )

) 1
2

( k∑
i=1

i 6=m+1

ri(mi − τ)2
) 1

2
.

Now we want to minimize these expressions among all admissible filtra-
tions. As in section 2, we will work on the polygonal line associated to any
admissible filtration. We use the same notations as in section 2, and we use
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the following definition for the energy E(f) of a polygonal line f :

E(f) :=
k∑

i=1

ri(mi − τ)2 =
`−1∑
i=0

∫ ai+1

ai

(
f ′D(x)− τ

)2dx

The difficult point here is that the polygonal line associated to an ad-
missible filtration may no longer be concave. We will in fact compare the
energy of the different concave parts.

Let us postpone the proof of the following technical lemma:

Lemma 3.7. — Let f : [0, r] → R and g : [0, s] → R two distinct concave
piecewise affine maps. Assume that

(i) f(0) = g(0);
(ii) f(x) > g(x) for all x ∈ [0,min(r, s)];
(iii) f ′(x) > τ and g′(x) > τ where they are defined;
(iv) [f(r)− g(s)]/(r − s) 6 τ .

Then E(f) > E(g).

Let D = (0 = E0 ⊂ · · · ⊂ Em ⊂ Em+1 ⊂ · · · ⊂ Ek = E) be the generalized
Harder-Narasimhan filtration given by Theorem 3.1 and fD ∈ C0([0, r], R)
the corresponding piecewise affine map. Put m0 = m if Im(ϕ) ⊂ Em,
m0 = m + 1 otherwise. Then fD is not a concave map but admits two con-
cave parts corresponding to (0 = E0 ⊂ · · · ⊂ Em) and (Em0 ⊂ · · · ⊂ Ek = E).
Keep in mind that the first m subsheaves of this filtration are just those of
the classical Harder-Narasimhan filtration. Let D = (0 = E0 ⊂ F1 ⊂ · · · ⊂
Fp = E) be any admissible filtration. Let us denote by

r′i := rank(Fi/Fi−1) and m′
i := m(Fi/Fi−1)

and assume m′
j > τ > m′

j+1.
Assume that rank(Fj) > rank(Em). It follows by the definition of the

filtration D that (deg(Em) − deg(Fj))/(rank(Em) − rank(Fj)) < τ : it is
an obvious consequence of the fact that the point corresponding to Fj is
located below the classical Harder-Narasimhan polygonal line and the fact
that Em admits by definition no more type (i) destabilizing subsheaf. Hence
applying Lemma 3.7 to the first concave part of each filtration, we get

j∑
i=1

r′i(τ −m′
i)

2 6
m∑

i=1

ri(τ −mi)2.

If rank(Fj) 6 rank(Em), then the points corresponding to Fi, 1 6 i 6 j are
located below the polygonal line P(D) and using again Lemma 3.7 we get
the same result.
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We can apply exactly the same argument to the second part of the filtra-
tion. Let j0 = j if Im(ϕ) ⊂ Fj and j0 = j + 1 in the other case. Then, one
can prove that the points corresponding to (Fi)j06i6p satisfy the following
conditions:

• if rank(Fi) > rank(Em0) for any i ∈ {j0, . . . , p}, then Fi is lo-
cated below the second part of the generalized Harder-Narasimhan
polygonal line (i.e. the points corresponding to Em0 ⊂ · · · ⊂ E);

• if rank(Fj0) < rank(Em0), the following relation holds:

(deg(Fj0)− deg(Em0))/(rank(Fj0)− rank(Em0)) > τ ;

• the part of the associated polygonal line corresponding to the in-
dices {j0, · · · , p} is concave.

The first and the second point can be seen as a Harder-Narasimhan prop-
erty for subsheaves containing Im(ϕ). Then using an analogue of Lemma 3.7
(in fact a symmetric proposition), we get

p∑
u=j0

r′u(τ −m′
u)2 6

k∑
u=m0

ru(τ −mu)2.

This is exactly that we wanted since in the case where Im(ϕ) 6⊂ Fj , then
the expression of λ(F) does not contain the j-th term (the eigenvalue of
the endomorphism must vanish).

In Figure 3.1, the energy of the left and right parts of the filtrations
are respectively compared to the energy of the corresponding parts of the
generalized Harder-Narasimhan filtration. The segments drawn with doted
lines give no contribution for the energy.

Harder-Narasimhan τ filtration
Em

Harder-Narasimhan τ filtration
Em

E EIm(ϕ) ⊂ Em

Fj

Im(ϕ) 6⊂ Em

Case 1 Case 2

Figure 3.1. Illustration of Lemma 3.7

In either case, we have proved that the minimum of λ(E) is achieved
for the Hermitian element sop whose associated filtration is the generalized
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Harder-Narasimhan filtration with the corresponding eigenvalues described
in the theorem. �

Proof of the technical Lemma 3.7. — Let us fix f : [0, r] → R; let
a0 = 0 < a1 < · · · < a` = s be the partition of [0, s] corresponding to
g : [0, s] → R. We will do an induction on the length ` of the partition.

For the case ` = 1, assume first that s 6 r then the result is a consequence
of Lemma 2.7 applied to f |[0,s] and g: using the additional condition (iii),
the conclusion of the lemma is still correct even if g(s) 6= f(s).

If s > r, let us denote by h : [0, r] → R the straight line defined by
h(0) = 0 and h(r) = f(r), then by Lemma 2.7, E(f) > E(h). Denote by h1

the slope of the line h and g1 whose of the line g. By hypothesis

h(r)− g(s)
r − s

6 τ

such that
h(r)− rτ > g(s)− sτ

and using conditions (ii) and (iii) we get (h(r) − rτ)2/r > (g(s) − sτ)2/s,

so that
r(h1 − τ)2 > s(g1 − τ)2.

Thus E(f) > E(h) > E(g), equality can only occur if f = g.
Now assume that the result is proved for a polygonal line of length less

or equal than ` and let g be a polygonal line of length ` + 1. Once again,
if s 6 r, we use Lemma 2.7 to conclude. Else, we define a new polygonal
line h as follows:

• h|[0,a`]
= g|[0,a`]

;
• if adding the segment [g(a`), f(r)] preserves the concavity of h we

do so(case 1 below),if not we extend the last segment[g(a`−1), g(a`)]
in order that it reaches the line of slope τ going through f(r) (case 2
in Figure 3.2).

Using the same argument as in the first step of the induction we get easily
E(h) > E(g). Then we use Lemma 2.7 in the first case and the induction
hypothesis applied to f and h in the second case to get E(f) > E(h). �

Once again, using the computation in [15], we get:

• If Im(ϕ) ⊂ Em, then it is contained in the elements of the filtration
corresponding to (strictly) negative eigenvalues of sop, so that the
path t 7→ etsop(E , ϕ) converges as in the classical case to the object

(E1/E0, · · · , Ek/Ek−1).
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f f

h
h

g g

f(r) f(r)

a` a`

g(s)
g(s)

a`−1

τslope

Case 1 Case 2

Figure 3.2. Proof of technical Lemma 3.7

• Else, if Im(ϕ) 6⊂ Em, then it converges to the object(
E1/E0, · · · , Em/Em−1, (Em+1/Em, ϕ), Em+2/Em+1, · · · , Ek/Ek−1

)
where ϕ is the map induced from ϕ (remark that in this case, the
eigenvalue of sop corresponding to Fm is vanishing).

This illustrates once again our general principle. By Theorem 3.1 the
limit object is semistable with respect to the gauge group

∏k
i=1 Aut(Ei/Ei−1).
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