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ON HALPHEN’S THEOREM AND SOME
GENERALIZATIONS

by Alcides LINS NETO (*)

Abstract. — Let Mn be a germ at 0 ∈ Cm of an irreducible analytic set of
dimension n, where n > 2 and 0 is a singular point of M . We study the question:
when does there exist a germ of holomorphic map φ : (Cn, 0) → (M, 0) such that
φ−1(0) = {0} ? We prove essentialy three results. In Theorem 1 we consider the
case where M is a quasi-homogeneous complete intersection of k polynomials F =
(F1, . . . , Fk), that is there exists a linear holomorphic vector field X on Cm, with
eigenvalues λ1, . . . , λm ∈ Q+ such that X(F T ) = U ·F T , where U is a k×k matrix
with entries in Om. We prove that if there exists a germ of holomorphic map φ
as above and dimC(sing(M)) 6 n − 2, then λ1 + · · · + λm > Re(tr(U)(0)). In
Theorem 2 we answer the question completely when n = 2, k = 1 and 0 is an
isolated singularity of M . In Theorem 3 we prove that, if there exists a map as
above, k = 1 and dimC(sing(M)) 6 n−2, then dimC(sing(M)) = n−2. We observe
that Theorems 1 and 2 are generalizations of some results due to Halphen.

Résumé. — Soit Mn un germe en 0 ∈ Cm d’ensemble analytique irréductible de
dimension n, où n > 2 et 0 est un point singulier de M . Nous étudions le problème
suivant : quand est-ce qu’il existe un germe d’application holomorphe φ : (Cm, 0) →
(M, 0) telle que φ−1(0) = {0} ? Nous démontrons essentiellement trois résultats.
Dans le théorème 1 nous considérons le cas où M est une intersection complète
quasi-homogène de k polynômes F = (F1, . . . , Fk), c’est-à-dire il existe un champ
de vecteurs linéaire holomorphe X dans Cm, avec valeurs propres λ1, . . . , λm ∈ Q+

telles que X(F T ) = U ·F T , où U est une matrice k × k d’éléments dans Om.
Nous démontrons que s’il existe un germe d’application φ comme précédemment et
dimC(sing(M)) 6 n−2 alors λ1+· · ·+λm > Re(tr(U))(0). Dans le théorème 2 nous
répondons complètement à la question quand n = 2, k = 1 et 0 est une singularité
isolée de M . Dans le théorème 3 nous démontrons que, s’il existe une application
φ comme précédemment, k = 1 et dimC(sing(M)) 6 n− 2, alors dimC(sing(M)) =
n − 2. Remarquons que les théorèmes 1 et 2 sont des généralisations de quelques
résultats de Halphen.

Keywords: Halphen’s theorem, quasi-homomogeneous, complete intersection.
Math. classification: 32S05, 32S25.
(*) This research was partially supported by Pronex.
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1. Introduction

Around 1884 Halphen proved the following result (cf. [9] or [10], chap. I,
p. 15):

Theorem. — Let f , g and h be three (non zero) homogeneous polyno-
mials in C3, two by two without common factors. Suppose that fp + gq +
hr ≡ 0, where p, q, r are integers, 2 6 p 6 q 6 r and p·deg(f) = q·deg(g) =
r·deg(h). Then

(1.1)
1
p

+
1
q

+
1
r
> 1

Moreover, for each solution of the inequality (1.1), then

(a) There exist homogeneous polynomials F,G,H in C2 such that F p +
Gq +Hr ≡ 0.

(b) If f, g, h are three homogeneous polynomials in Cn without common
factors which satisfy fp+gq+hr ≡ 0, then there exists a homogeneous
map φ : Cn → C2 such that (f, g, h) = (F,G,H) ◦ φ.

In other words, we can say that for each solution (p, q, r) of the in-
equality (1.1), there exists a map ψ = (F,G,H) : C2 → M , where M =
{(X,Y, Z) ∈ C3|Xp + Y q + Zr = 0}, such that if M∗ = M r {0} and
ψ1 := ψ|C2r{0}, then ψ1 : C2 r {0} → M∗ is the holomorphic universal
covering of M∗.

The purpose of this paper is to generalize this result in two ways. First
of all, we will generalize inequality (1.1) for germs of holomorphic maps
φ : (Cn, 0) → (Mn, 0), where Mn ⊂ Cm, m = n+k, is a quasi-homogeneous
complete intersection defined by polynomials F1 = · · · = Fk = 0. In order
to state our first result, we need some definitions.

Definition 1.1. — Let M 6= {0}, be a germ at 0 ∈ Cm of an analytic
set defined by an ideal I of germs at 0 ∈ Cm of holomorphic functions.
We say that M is quasi-homogeneous, if there exists a germ at 0 ∈ Cm of
holomorphic vector field X with the following properties:

(a) There exists a local holomorphic coordinate system (x1, . . . , xm)
around 0 ∈ Cm where X =

∑m
j=1 λj ·xj

∂
∂xj

and λj ∈ Q+ for all
j = 1, . . . ,m.

(b) X(I) := {X(F )|F ∈ I} ⊂ I.

In this case, we will say that M is quasi-homogeneous with respect to X
(briefly q.h.w.r. to X).
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Remark 1.2. — Condition (b) means that X is tangent to M and M is
invariant by the flow XT of the vector field X: Take a representative M̃ ⊂ B

of M , where B is a ball around 0 ∈ Cm and M̃ is a closed analytic subset
of B. If p ∈ M̃ and T ∈ C is such that XT (p) ∈ B then XT (p) ∈ M̃ . In
fact M is the germ of a global analytic subset of Cm: Since λ1, . . . , λm > 0,
we get that sat(B) := {XT (p)|p ∈ B} = Cm. This implies that sat(M̃) =
{XT (p)|p ∈ M̃, T ∈ C} is an analytic subset of Cm which extends M̃ and
the germ at 0 of sat(M) is M . From now on a quasi-homogeneous analytic
set will be considered as an analytic subset of Cm, for some m.

Remark 1.3. — The name quasi-homogeneous is motivated by the sit-
uation where I =< F > and F is quasi-homogeneous, that is there are
k1, . . . , km, ` ∈ N such that F (T k1 ·x1, . . . , T

km ·xm) = T `·F (x1, . . . , xm).
In this case, if we take X =

∑m
j=1

kj

` xj
∂

∂xj
then X(F ) = F and M =

F−1(0) is q.h.w.r. to X. Note that the relation X(F ) = F implies that
F is a polynomial. An example is F (x1, . . . , xm) = xn1

1 + · · · + xnm
m and

X =
∑m

j=1
1

nj
xj

∂
∂xj

, where X(F ) = F and F is q.h.w.r. to X. This example
will be used in Corollary 1.7.

In our first result we will consider the following situation: Mn ⊂ Cm,
m = n + k, will be an irreducible complete intersection of k polynomi-
als F1, . . . , Fk. We suppose that M is q.h.w.r. to a diagonal vector field
X =

∑m
j=1 λjxj

∂
∂Xj

, where λ1, . . . , λm ∈ Q+. The condiction that M is
q.h.w.r. to X means the following: let F = (F1, . . . , Fk)T , where (· · · )T is
the transpose of the vector (· · · ). Then M is q.h.w.r. to X if, and only if,

(1.2) X(F ) = U ·F

where X(F ) = (X(F1), . . . , X(Fk))T and U = (uij)16i,j6k is a k×k matrix
with entries uij ∈ Om+k. We set tr(U) =

∑k
j=1 ujj .

Definition 1.4. — Let Mn be an irreducible analytic subset of dimen-
sion n of a ball B ⊂ Cm. We will denote by sing(M) the singular set
of M . We will say that dimC(sing(M)) 6 k if, either sing(M) = ∅, or
sing(M) 6= ∅ and all irreducible components of sing(M) have complex di-
mension 6 k. We will say that dimC(sing(M)) = k if sing(M) 6= ∅ and all
irreducible components of sing(M) have complex dimension k. Let p ∈ M
and φ : (Cn, q) → (M,p) be a germ of holomorphic map. We will say that
φ−1(p) = {q} if there exists a representative of φ, denoted again by φ, say
φ : V →M , such that φ−1(p) ∩ V = {q}.

The first generalization is the following:

TOME 56 (2006), FASCICULE 6



1950 Alcides LINS NETO

Theorem 1.5. — Let n > 2 andMn ⊂ Cm,m = n+k, be an irreducible
complete intersection defined by (F1 = · · · = Fk = 0), q.h.w.r. to the linear
vector field

X(z) =
m∑

j=1

λjzj
∂

∂zj

with λ1, . . . , λm ∈ Q+. Let X(F ) = U ·F and Λ = Re(tr(U)(0)), where
F and U are as in (1.2). Suppose that dimC(sing(M)) 6 n − 2 and that
there exists a germ of holomorphic map φ : (Cn, 0) → (M, 0) such that
φ−1(0) = {0}. Then

∑m
j=1 λj > Λ.

As a particular case, we get the following:

Corollary 1.6. — Let M ⊂ Cm, m = n+k, be an irreducible complete
intersection (F1 = · · · = Fk = 0) with dimC(sing(M)) 6 n − 2. Suppose
that there exists a germ of holomorphic map φ : (Cn, 0) → (M, 0) such that
φ−1(0) = {0} and a linear vector field X as in Definition 1.1 such that
X(Fj) = `j ·Fj , ∀j, where `j ∈ Q+, j = 1, . . . , k. Then

∑m
j=1 λj >

∑k
i=1 `i.

We observe that the above result is no longer true if sing(M) has some
component of dimension n− 1 (see Example 1.16).

As a consequence, we obtain a generalization of the first part of Halphen’s
theorem:

Corollary 1.7. — Let M(p,q,r) ⊂ C3 be the surface given by xp +
yq + zr = 0, where p, q, r ∈ N and p 6 q 6 r. Suppose that there exists a
holomorphic map φ : U → M(p,q,r), where U is some neighborhood of 0 ∈
Cn, n > 2, such that φ(0) = 0 ∈M and φ−1(0) = {0}. Then 1

p + 1
q + 1

r > 1
and, if 2 6 p 6 q 6 r, then (p, q, r) ∈ {(2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5)}.

In the next two results we will consider germs at 0 ∈ Cn+1 of hypersur-
faces. We need another definition.

Definition 1.8. — Let M1,M2 be two germs at 0 ∈ Cm of analytic
sets. We will say that M1 and M2 are equivalent if there exists a germ of
biholomorphism ψ : (Cm, 0) → (Cm, 0) such that ψ(M1) = M2.

The second generalization is the folowing:

Theorem 1.9. — Let M be a germ at 0 ∈ C3 of hypersurface with an
isolated singularity at 0. Suppose there exists a germ of holomorphic map
φ : (C2, 0) → (M, 0), such that φ−1(0) = {0}. Then M is equivalent to one
of the following surfaces:

(a) M(p,q,r), where (p, q, r) ∈ {(2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5)}.
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(b) Xm = {(x, y, z) ∈ C3|z2 = xy(y − xm+1)}, where m > 1.
(c) Y = {(x, y, z) ∈ C3|z2 = y(y2 + x3)}.
(d) Zm = {(x, y, z) ∈ C3|z2 = x(y2 + x2m+1)}, where m > 1.

Moreover, the surfaces in (a)–(d) are two by two non-equivalent.

Concerning the dimension of the singular set of M we have the following
result:

Theorem 1.10. — LetM be a germ at 0 ∈ Cn+1, n > 3, of hypersurface
where dimC(sing(M)) 6 n−2. Suppose there exists a germ of holomorphic
map φ : (Cn, 0) → (M, 0), such that φ−1(0) = {0}. If 0 ∈ sing(M) then
dimC(sing(M)) = n− 2.

Observe that Corollary 1.7 of Theorem 1.5 could be stated for hypersur-
faces of the form M(n1,...,nm) = {xn1

1 + · · ·+ xnm
m = 0}, for any m > 3 (see

Remark 1.3). However, Theorem 1.10 implies that for m > 4 there is no
germ of holomorphic map φ : (Cm−1, 0) → (M, 0) such that φ−1(0) = {0},
because sing(M(n1,...,nm)) = {0}.

In the next four examples we show that for any one of the surfaces as in
(a), (b), (c) or (d), there exists a regular map φ like in Theorem 1.9. In all
the examples, the map φ|C2r{0} : C2 r {0} →M∗ is a universal covering of
M∗ = M r {0} (see also [16], [12], [9] and [14]).

Example 1.11. — The parametrizations φ : C2 →M(p,q,r), where p, q, r
satisfy the inequality (1.1), is closely related with Platonic solids and to the
non-cyclic finite subgroups of PSL(2,C). Some of them were known already
by Euler, Hoppe, Liouville and others, but the general case was found by
Schwarz (cf. [16] and also [12], [9], [3] and [14]). If 2 6 p 6 q 6 r then,
the possible solutions of inequality (1.1) are (p, q, r) ∈ {(2, 2, r), (2, 3, 3),
(2, 3, 4), (2, 3, 5)}. In each case, the holomorphic map φ = (F,G,H) : C2 →
M(p,q,r) can be obtained by considering a finite subgroup of PSL(2,C).
These groups were classified by Klein and are the following (cf. [5] and [3]):

(a) The Dihedral group of order 2r. From this group it can be obtained
the parametrization of M(2,2,r).

(b) The Tetrahedral group, the group of isometries of C ' S2 ⊂ R3

which leaves invariant the regular tetrahedral inscribed in S2. From
this group it can be obtained the parametrization of M(2,3,3).

(c) The Octahedral group, the group of isometries of S2 which leaves
invariant the regular octahedral (or cube) inscribed in S2. From this
group it can be obtained the parametrization of M(2,3,4).

TOME 56 (2006), FASCICULE 6



1952 Alcides LINS NETO

(d) The Icosahedral group, the group of isometries of S2 which leaves
invariant the regular icosahedral (or dodecahedron) inscribed in S2.
From this group it can be obtained the parametrization of M(2,3,5).

Some explicit formulae for the uniformizations can be found in [3],
p. 55–56. We observe that, in all cases, the map φ is such that φ|C2r{0} : C2r
{0} →M∗

(p,q,r) is a universal covering of M∗
(p,q,r) := M(p,q,r) r{0} (cf. [14]).

Moreover, we have the following:

(a) In the case (2,2,r), φ has topological degree r and #(π1(M∗
(2,2,r))) = r.

(b) In the case (2,3,3), φ has topological degree 8 and #(π1(M∗
(2,3,3))) = 8.

(c) In the case (2,3,4), φ has topological degree 24 and #(π1(M∗
(2,3,4))) =24.

(d) In the case (2,3,5), φ has topological degree 120 and #(π1(M∗
(2,3,5))) =

120.

In the next three examples we will use that M(p,q,r) is equivalent to the
surfaces given by a.xp + b.yq + c.zr = 0, where a, b, c ∈ C∗.

Example 1.12. — Let Xm = {(x, y, z) ∈ C3|z2 = xy2 − xm+1y} and
M(2,2,2m) be given as {(u, v, w) ∈ C3|u2m − v2 + w2 = 0}. Consider the
map ϕ : C3 → C3 defined by (x, y, z) = ϕ(u, v, w) = (u2, v2, u.v.w). Note
that

z2 − x· y2 + xm+1· y = u2· v2(w2 − v2 + u2m) =⇒ ϕ(M(2,2,2m)) ⊂ Xm·

Let ψ = ϕ|M(2,2,2m) : M(2,2,2m) → Xm. It is easy to see that ψ−1(0) = {0}
and #(ψ−1(p0)) = 4 for all p0 ∈ Xm r {0}. This implies that

ψ|M∗
(2,2,2m)

: M∗
(2,2,2m) → X∗

m

is a covering map with four sheets. Therefore, if ψ1 : C2 → M(2,2,2m) is as
in (a) of Example 1.11, then φ = ψ ◦ ψ1 : C2 → Xm satisfies φ−1(0) = {0}.
Moreover, φ|C2r{0} : C2 r {0} → X∗

m is a (universal) covering map with
8m sheets. In particular, we have #(π1(X∗

m)) = 8m. Observe that Xm is
q.h.w.r. to the vector field

X =
1

2m+ 1
x
∂

∂x
+

m

2m+ 1
y
∂

∂y
+

1
2
z
∂

∂z
.

Example 1.13. — Let Y = {(x, y, z) ∈ C3|z2 = y(y2 +x3)} and M(2,3,4)

be given as {(u, v, w) ∈ C3|u2−v3−w4 = 0}. Consider the map ϕ : C3 → C3

defined by (x, y, z) = ϕ(u, v, w) = (u,w2, u·w). It can be checked that
ϕ(M(2,3,4)) ⊂ Y and that, if ψ := ϕ|M(2,3,4) : M(2,3,4) → Y then ψ−1(0) =
{0} and ψ|M∗

(2,3,4)
: M∗

(2,3,4) → Y ∗ is a covering with two sheets. Therefore,
if ψ1 : C2 →M(2,3,4) is as in (c) of Example 1.11, then φ = ψ ◦ψ1 : C2 → Y
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satisfies φ−1(0) = {0}. Moreover, φ|C2r{0} : C2 r {0} → Y is a (univer-
sal) covering map with 48 sheets. In particular, we have #(π1(Y ∗)) = 48.
Observe that Y is quasi-homogeneous with respect to the vector field

X =
2
9
x
∂

∂x
+

1
3
y
∂

∂y
+

1
2
z
∂

∂z
.

Example 1.14. — Let Zm = {(x, y, z) ∈ C3|z2 = x(y2 + x2m+1)} and
M(2,2,2(2m+1)) be given as {(u, v, w) ∈ C3|u2(2m+1)+v2−w2 = 0}. Consider
the map ϕ : C3 → C3 defined by (x, y, z) = ϕ(u, v, w) = (u2, v, u·w). It can
be checked that ϕ(M(2,2,2(2m+1))) ⊂ Zm and that, if ψ := ϕ|M(2,2,2(2m+1)) :
M(2,2,2(2m+1)) → Zm then ψ−1(0) = {0}. As in Examples 1.12 and 1.13,

ψ|M∗
(2,2,2(2m+1))

: M∗
(2,2,2(2m+1)) → Z∗m

is a covering with two sheets and if ψ1 : C2 → M(2,2,2(2m+1)) is as in (a)
of Example 1.11, then φ = ψ ◦ ψ1 : C2 → Zm satisfies φ−1(0) = {0}.
Moreover, φ|C2r{0} : C2 r {0} → Z∗m is a (universal) covering map with
4(2m+ 1) sheets. In particular, we have #(π1(Z∗m)) = 4(2m+ 1). Observe
that Zm is quasi-homogeneous with respect to the vector field

X =
1

2(m+ 1)
x
∂

∂x
+

2m+ 1
4(m+ 1)

y
∂

∂y
+

1
2
z
∂

∂z
.

Let us give an example in higher dimension.

Example 1.15. — Let

M =
{

(z0, . . . , zn) ∈ Cn+1|zp
0 = z1 · · · zn

}
.

We have the following map φ : Cn →M ,

φ = (φ0, . . . , φn), where φ0(u1, . . . , un) = u1 · · ·un,

and
φj(u1, . . . , un) = up

j , j = 1, . . . , n.

Observe that dimC(sing(M)) = n − 2, φ−1(0) = {0} and M is quasi-
homogeneous, that is X(zp

0 − z1 · · · zn) = zp
0 − z1 · · · zn, where

X =
1
p
z0

∂

∂z0
+

1
n

n∑
j=1

zj
∂

∂zj
.

Example 1.16. — In this example we show that the hypothesis
dimC(sing(M)) 6 n − 2 is the best possible in Theorem 1.5. Let M =
{(x0, x1, x2, . . . , xn) ∈ Cn+1|F (x) = x6

0 − x3
1·x2

2 · · ·x2
n = 0}. Then M

is irreducible and sing(M) = ∪n
j=1Sj , where Sj = {x0 = xj = 0} and

TOME 56 (2006), FASCICULE 6



1954 Alcides LINS NETO

dimC(Sj) = n− 1. The reader can easily verify that the map φ : Cn → M

defined by
φ(u1, u2, . . . , un) = (u1 · · ·un, u

2
1, u

3
2, . . . , u

3
n)

satisfies φ−1(0) = {0}. On the other hand, let X =
∑n

j=0 λjxj
∂

∂xj
be a

vector field such that X(F ) = F and λ0, . . . , λn ∈ Q+. Then we must have
λ0 = 1

6 and 3λ1+2λ2+· · ·+2λn = 1. But this implies that λ1+· · ·+λn <
1
2

and so
∑n

j=0 λj <
1
6 + 1

2 < 1.

Remark 1.17. — We would like to observe that the conclusion of The-
orem 1.10 is not true if φ is not holomorphic. Indeed, there are examples
of hypersurfaces of the form

Mp =
{

(x0, . . . , xn) ∈ Cn+1|xp0
0 + · · ·+ xpn

n = 0
}
,

with n > 3 and p0, . . . , pn > 2 such that Kr = Mp ∩ Sr is homeomor-
phic to a sphere S2n−1 (cf. [11] and [14]), where Sr = {(x0, . . . , xn)||x0|2 +
· · · + |xn|2 = r2}. Since Mp is homeomorphic to a cone over Kr (cf. [14]),
then Mp is homeomorphic to Cn in these cases and there exists a con-
tinuous map φ : Cn → Mp satisfiyng the hypothesis of Theorem 1.10, but
dimC(sing(Mp)) = 0. An example of such hypersurfaces is when p0 = 3,
p1 = · · · = pn = 2 and n is odd (cf. [14]).

We would like to state the following problems:

Problem 1.18. — Let Mn be a germ at 0 ∈ Cn+k of an irreducible
complete intersection, where dimC(sing(M)) = n − 2 and, either n, k > 2,
or k = 1 and n > 3. Suppose that there exists a germ of holomorphic map
φ : (Cn, 0) → (M, 0). Is M (as germ) equivalent to a quasi-homogeneous
analytic set ? We would like to observe that when n = 2 and k = 1 the
answer is yes. This fact will be proved in §3 and it is crucial in our proof of
Theorem 1.9. However, our proof works only when the singularities of M
are isolated and this is not the case if n > 3 and k = 1, by Theorem 1.10.

Problem 1.19. — Is it possible to classify the germs at 0 ∈ Cn+1, of
hypersurfaces M such that dimC(sing(M)) = n−2 and there exists a germ
of holomorphic map φ : (Cn, 0) → (M, 0), when n > 3 ? This question
seems easier when we restrict to the case where M is quasi-homogeneous.

Another interesting problem, suggested by the referee, is the following:

Problem 1.20. — In the case of a surface M2 with an isolated singularity
at 0, every germ of holomorphic map φ : (C2, 0) → (M, 0) factorizes through
the universal covering of M∗. What happens in higher dimensions ? Does

ANNALES DE L’INSTITUT FOURIER



ON HALPHEN’S THEOREM AND SOME GENERALIZATIONS 1955

a local uniformization of a quasi-homogeneous hypersurface gives rise to a
global one by the affine space ?

The next section will be devoted to the proof of Theorem 1.5. The proof
of this theorem will be based on the existence of a holomorphic n-form η

on M∗ = M r sing(M) such that η(p) 6= 0 for any p ∈M∗. This form will
be used also in the proofs of Theorems 1.9 and 1.10, which will be done in
§3 and in §4, respectively. As a consequence of the proof of Theorem 1.9
we will obtain the following result (see Lemma 3.2):

“Let M be a germ at 0 ∈ C3 of an irreducible surface with an isolated
singularity at 0. Let η be a holomorphic 2-form on M∗ such that η(p) 6= 0
for all p ∈M∗. If η = dω, where ω is holomorphic, then M is equivalent to
a quasi-homogeneous surface in C3.”

The converse of this statement is not true (see Remark 3.7).
I would like to aknowledge the referee for many suggestions which have

improved a lot the paper. In particular, in the original version of the paper
Theorem 1.5 was proved for hypersurfaces and he suggested that it should
be true also for complete intersections, which in fact I have done in the
final version.

2. Basic facts and proof of Theorem 1.5

2.1. Basic facts

Let Mn be a germ at 0 ∈ Cm, m = n + k, of an irreducible complete
intersection defined by (F1 = · · · = Fk = 0), where F1, . . . , Fk ∈ Om. We
will consider a representative of M , denoted by the same letter, which is
an analytic subset of a ball B ⊂ Cm. It is well known that the singular set
of M is given by sing(M) = {p ∈ M |dF1(p) ∧ · · · ∧ dFk(p) = 0}. We will
suppose that 0 is effectively a singularity: 0 ∈ sing(M). We will use the
notation M∗ = M r sing(M). Note that, if p ∈M∗ then

TpM
∗ = {v ∈ TpCm|iv(dF1(p) ∧ · · · ∧ dFk(p)) = 0},

where iv denotes the interior product.
We are going now to describe a well-known construction, which proves

that there exists a non-vanishing holomorphic n-form on M∗. Let us con-
sider a holomorphic coordinate system in B, say (x1, . . . , xm). The k-form
Θ := dF1 ∧ · · · ∧ dFk can be written as

Θ =
∑

I

ΦIdxI ,
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where I = {i1 < · · · < ik} ⊂ {1, . . . ,m}, dxI = dxi1 ∧ · · · ∧ dxik
and

ΦI = det(Fjxir
)16j,r6k. Given I = {i1 < · · · < ik}, set UI = {z ∈ U |ΦI 6=

0} and MI = UI ∩M . We observe that (MI)I∈K is a covering of M∗ by
Stein open sets, where K = {{i1 < · · · < ik}|1 6 ij 6 m}. For I ∈ K,
let J(I) = {1, . . . ,m} r I = {j1 < · · · < jn} and ηI be the n-form on UI

defined by

ηI =
σ(I)
ΦI

dxj1 ∧ · · · ∧ dxjn
,

where σ(I) ∈ {1,−1} is chosen in such a way that Θ∧ηI = dx1∧· · ·∧dxm.
Given I, J ∈ K set MIJ = MI ∩MJ .

Claim 2.1. — If I, J ∈ K then ηI |MIJ
= ηJ |MIJ

. In particular, there
exists a holomorphic n-form η1 on M∗ such that η1|MI

= ηI |MI
for all

I ∈ K. Moreover, η1(p) 6= 0 for all p ∈M∗. In particular, the (n, n)-form

µ1 = c· η1 ∧ η1

where c = in· (−1)n(n+1)/2, is a volume form on M∗.

Proof. — We will use the following fact: let θ be a holomorphic m-form
defined in an open set V ⊂ B, m 6 n. Then θ|M∗∩V ≡ 0 if, and only if,
Θ(p) ∧ θ(p) = 0 for all p ∈ M∗ ∩ V . Given I, J ∈ K we have Θ ∧ ηI =
dx1 ∧ · · · ∧ dxm = Θ ∧ ηJ , which implies Θ ∧ (ηI − ηJ) = 0. Hence, (ηI −
ηJ)|MIJ

= 0, which proves the first part of the claim. Now, let p ∈M∗ and
{v1, . . . , vn} be a base of TpM

∗. Since M∗ = ∪IMI then p ∈ MI for some
I. Therefore, η1(p) = ηI(p)|TpM∗ and η1(p)(v1, . . . , vn) = ηI(p)(v1, . . . , vn).
Let u1, . . . , uk ∈ TpCm be such that {u1, . . . , uk, v1, . . . , vn} is a base of
TpCm. A straightforward computation using that ivj

(Θ(p)) = 0 for all
j = 1, . . . , n, gives

0 6= dx1 ∧ · · · ∧ dxm(u1, . . . , uk, v1, . . . , vn)

= Θ(p) ∧ ηI(p)(u1, . . . , uk, v1, . . . , vn)

= Θ(p)(u1, . . . , uk)· ηI(p)(v1, . . . , vn) =⇒ η1(p)(v1, . . . , vn) 6= 0.

�

Now, letM be quasi-homogeneous with respect to the vector fieldX(x) =∑m
j=1 λjxj

∂
∂xj

, where λ1, . . . , λm ∈ Q+. Set X(F ) = U ·F , where F and U
are as in (1.2). Let η1 be the n-form on M∗ considered in claim 1.

Claim 2.2. — We have LX(η1) = f · η1, where f =
∑m

j=1 λj − tr(U)|M∗

and LX denotes the Lie derivative along X. Moreover, there exists h ∈
O∗(M∗) such that if η := h· η1 then LX(η) = a· η, where a = f(0).

ANNALES DE L’INSTITUT FOURIER



ON HALPHEN’S THEOREM AND SOME GENERALIZATIONS 1957

Proof. — Since η1|MI
= ηI |MI

and M∗ = ∪IMI , it is sufficient to prove
that LX(ηI)|MI

= f · ηI |MI
for all I ∈ K. Set tr(X) =

∑m
j=1 λj . Given

I ∈ K, we have:

tr(X)· dx1 ∧ · · · ∧ dxm = LX(dx1 ∧ · · · ∧ dxm)

= LX(Θ ∧ ηI) = LX(Θ) ∧ ηI + Θ ∧ LX(ηI).

On the other hand,

LX(Θ) = LX(dF1 ∧ · · · ∧ dFk) =
k∑

j=1

dF1 ∧ · · · ∧ d(X(Fj)) ∧ · · · ∧ dFk.

Since X(Fj) =
∑k

i=1 ujiFi, given p ∈M∗ we get:

LX(Θ)(p) =
k∑

j=1

ujj(p)· (dF1 ∧ · · · ∧ dFj ∧ · · · ∧ dFk)(p) = tr(U)(p)·Θ(p).

Therefore,

tr(X)·Θ(p) ∧ ηI(p) = tr(U)(p)·Θ(p) ∧ ηI(p) + Θ(p) ∧ LX(ηI)(p) =⇒

(2.1) Θ(p) ∧ [LX(ηI)(p)− (tr(X)− tr(U)(p))ηI(p)] = 0.

Since ηI |MI
= η1|MI

and X is tangent to MI , we have LX(ηI)|MI
=

LX(η1)|MI
. Hence, (2.1) implies that LX(η1)(p) = (tr(X)− tr(U)(p))η1(p),

p ∈M∗.
Let f1 = f − f(0) and −f1(x) =

∑
|σ|>0 aσ·xσ be Taylor series of −f1

at 0, where σ = (σ1, . . . , σm) ∈ (N ∪ {0})m, |σ| =
∑

j σj , aσ ∈ C and xσ =
xσ1

1 · · ·xσm
m . If we set ψ(x) =

∑
σ bσ·xσ, where bσ = (

∑m
i=1 λi·σi)−1· aσ,

then the series ψ has positive radius of convergence and satisfies X(ψ) =
−f1 (recall that λj ∈ Q+ for all j). Therefore, if h1 = exp(ψ) then h1 ∈ O∗

m

and X(h1) = −h1· f1. On the other hand, if h2 = h1|M∗ and η = h2· η1
then,

LX(η) = LX(h2· η1) = X(h2)· η1 + h2·X(η1)

= h2(f − f1)· η1 = f(0)· η := a· η.

�

Let us prove that the form η can be extended to M∗. We need the
following:

Claim 2.3. — sing(M) and M∗ are invariant for the flow XT , T ∈ C,
of X.
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Proof. — We have seen that LX(Θ) = tr(U)·Θ on M . This implies that

Θ ◦XT (p) = exp
(∫ T

0

tr(U) ◦Xs(p)ds
)
·Θ(p),∀p ∈M

=⇒ sing(M) = {p ∈M |Θ(p) = 0}

is invariant by XT . Since M∗ = M r sing(M), M∗ is also invariant for XT .
�

Denote by Xt, t ∈ R, the real flow of X,

Xt(x1, . . . , xm) = (eλ1t·x1, . . . , e
λmt·xm).

Consider a ball B around 0 ∈ Cn+k such that η is defined in B∩M∗. Since
LX(η) = a· η, a = f(0), f = tr(X)− tr(U)|M∗ (Claim 2.2), we have

(2.2) X∗
t (η)(p) = eat· η(p)

for all t ∈ R and p ∈ M∗ such that both members of (2.2) are defined.
Note that (2.2) and the fact that M∗ is invariant for Xt imply that η can
be extended to M∗. In fact, given q ∈M∗, since λ1, . . . , λm > 0, and M∗ is
invariant for Xt (Claim 2.3), there exists t ∈ R− such that Xt(q) ∈M∗∩B.
By (2.2), given a base {v1, . . . , vn} of TqM

∗, we can define

η(q)· (v1, . . . , vn) = e−at· η(Xt(q))· (DXt(q)· v1, . . . , DXt(q)· vn)

and this definition does not depends on t. This finishes the proof of
Claim 2.2.

2.2. Proof of Theorem 1.5

From now on, we fix a representative of the germ φ : (Cn, 0) → (M, 0),
denoted again by φ, and some open ball of Cn, W 3 0, such that φ−1(0) ∩
W = {0}. We will use the following well known result (cf. [8] vol. II, p. 56):

Lemma 2.4. — If W ⊂ Cn is sufficiently small, then φ(W ) is an open
neighborhood of 0 in M and φ : W → φ(W ) satisfies the following proper-
ties:

(a) φ is a proper and open map.
(b) If A ⊂ M is an irreducible analytic subset of complex dimension k

then any irreducible component of φ−1(A) has complex dimension
k. In particular codC(φ−1(sing(M))) > 2.
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(c) There exists d ∈ N such that #(φ−1(p)) 6 d for any p ∈ V . In fact, it
is possible to find arbitrarily small neighborhoods U of 0 in Cn and
V of 0 in Cn+1 such that φ : U → V ∩M is defined, φ−1(V ∩M) = U

and φ|U is a finite ramified covering with d-sheets.

For r > 0 set

Mr :=
{
z ∈M |||x|| :=

( m∑
j=1

|xj |2
)1/2

6 r
}

= M ∩Br(0)

and M∗
r = Mr∩M∗. Let η be as in the Claim 2.2, that is such that LX(η) =

a· η, a = f(0), and µ be the volume form in M∗ given by µ = c· η ∧ η. The
main fact is the following:

Lemma 2.5. — If r > 0 is small and φ is as in Lemma 2.4, then
volµ(M∗

r ) < +∞, where

volµ(M∗
r ) =

∫
M∗

r

µ.

Proof. — Let ν = φ∗(η), which is a holomorphic n-form on Wr
φ−1(sing(M)). It follows from (b) of Lemma 2.4 and Hartogs’ theorem,
that ν can be extended to a holomorphic n-form on W . This implies that
the (n, n)-form φ∗(µ) can be extended to a real analytic (n, n)-form on W .
Since φ is proper and Mr is a compact subset of φ(W ), if r > 0 is small,
it follows that φ−1(Mr) is a compact subset of W . This implies that, for
r > 0 small, we have: ∫

φ−1(Mr)

φ∗(µ) < +∞.

Let C(φ) ⊂ W and CV (φ) = φ(C(φ)) be the sets of critical points and
critical values of φ, respectively. Choose open sets 0 ∈ U ⊂ W and 0 ∈
V ⊂ Cn+1 such that φ−1(V ∩M) = U and φ|U : U → V ∩M is a ramified
covering with d-sheets, d > 1. The Lemma is a consequence of the following
fact: if Br(0) ⊂ V then:

(2.3) volµ(M∗
r ) 6

∫
φ−1(Mr)

φ∗(µ) < +∞.

Let us prove (2.3). Since CV (φ) has measure zero (Sard’s theorem), we
have ∫

M∗
r

µ =
∫

M∗
r rCV (φ)

µ.
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In order to prove (2.3), it is sufficient to prove that for any open subset
A ⊂M∗

r r CV (φ), with closure A ⊂M∗
r r CV (φ), then∫

A

µ 6
∫

φ−1(Mr)

φ∗(µ).

Let us fix A as above. Note that φ|φ−1(A) : φ−1(A) → A is a regular covering
with d-sheets. Therefore,

d

∫
A

µ =
∫

φ−1(A)

φ∗(µ) 6
∫

φ−1(Mr)

φ∗(µ) =⇒
∫

A

µ 6
∫

φ−1(Mr)

φ∗(µ).

This finishes the proof of the lemma. �

The following lemma implies Theorem 1.5:

Lemma 2.6. — Let Mr be as before and Λ = Re(tr(U)(0)). If tr(X) −
Λ 6 0, then volµ(M∗

r ) = +∞.

Proof. — The proof will be by contradiction. It follows from (2.2) that
X∗

t (η)(p) = eat· η(p) for all t ∈ R. Hence, the (n, n)-volume form µ = c· η∧η
satisfies:

(2.4) X∗
t (µ) = e2 Re(a)t·µ

for all t ∈ R. On the other hand, if t > 0 then Xt(Br(0)) ⊃ Br(0), because
λ1, . . . , λm > 0. This implies that, if t > 0 then M∗

r ⊂ int(Xt(M∗
r )) ⊂M∗.

Therefore, if volµ(M∗
r ) < +∞ then

volµ(M∗
r ) < volµ(Xt(M∗

r )),∀t > 0.

Now (2.4) and the theorem of change of variables imply that,

volµ(Xt(M∗
r )) =

∫
Xt(M∗

r )

µ =
∫

M∗
r

X∗
t (µ)

= e2 Re(a)t

∫
M∗

r

µ = e2 Re(a)t· volµ(M∗
r ).

Therefore, if tr(X)− Λ = Re(a) 6 0, t > 0 and volµ(M∗
r ) < +∞ then

volµ(M∗
r ) < volµ(Xt(M∗

r )) = e2 Re(a)t· volµ(M∗
r ) 6 volµ(M∗

r ),

a contradiction. This finishes the proof of Lemma 2.6 and of Theorem 1.5.
�
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3. Proof of Theorem 1.9

The proof will be divided in three steps:

1st-step. — We will prove that there exists a germ of holomorphic vec-
tor field at 0 ∈ C3, say X, such X(F ) = F , where F = 0 is a reduced
equation of M . In this case, F belongs to its Jacobian ideal and it follows
from a theorem of Saito (cf. [15]), that there exists a linearizable germ of
holomorphic vector field Y on C3 such that Y (F ) = F . This vector field
can be written in a suitable coordinate system (x, y, z) in a neighborhood
of 0 ∈ C3 as,

(I) Y = λ1x
∂

∂x
+ λ2y

∂

∂y
+ λ3z

∂

∂z
, where λ1, λ2, λ3 ∈ Q+·

2nd-step. — We will prove that if F is a quasi-homogeneous polynomial
with respect to X = λ1x

∂
∂x + λ2y

∂
∂y + λ3z

∂
∂z , where λ1, λ2, λ3 ∈ Q+ and

λ1 + λ2 + λ3 > 1, then F is equivalent to one of the forms in (a), (b), (c)
or (d) in the statement of Theorem 1.9.

3rd-step. — We will prove that the surfaces in (a), (b), (c) and (d) are
two by two non-equivalent.

3.1. Proof of the 1st step

We will divide the proof in three Lemmas.
LetM be a germ of hypersurface at 0 ∈ C3, with an isolated singularity at

0, given by a reduced equation F = 0, where F ∈ O3. Consider the 2-form
η on M∗ as defined in §2. Suppose that there exists a germ of holomorphic
map φ : (C2, 0) → (M, 0) such that φ−1(0) = {0}. Given a neighborhood V
of 0 ∈ C3 such that F is defined (that is, has a representative F : V → C)
and sing(F ) ∩ V = {0}, we will use the notations MV = {p ∈ V |F (p) = 0}
and M∗

V = MV r {0}.

Lemma 3.1. — If V is sufficiently small, then there exists a holomorphic
1-form ω on M∗

V , such that dω = η.

Proof. — Fix neighborhoods U of 0 ∈ C2 and V of 0 ∈ C3 such that F
has a representative F : V → C, φ has a representative φ : U → C3 and
φ(U) ⊂ V . As we have seen before the form φ∗(η) extends to a closed
holomorphic 2-form on U , say θ. Since θ is closed, it follows from Poincaré
Lemma that θ = dα in a small neighborhood of 0 ∈ C2, where α is holo-
morphic. Therefore, if we take U and V small enough, we can suppose
that:
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(i) α is defined in U .
(ii) φ has a representative φ : U →MV .

Let C(φ,U) = C be the set of critical points of φ|U , CV =
CV (φ, V ) := φ(C) ⊂ MV the set of critical values and D =
φ−1(CV ). We can choose U and V in such a way that,

(iii) φ−1(MV ) = U and φ : U rD →MV r CV is a covering map with
m sheets. We will use the notation M̂ for MV r CV .

We will use α to construct a form ω on MV such that dω = η.
Let us construct ω on M̂ .

It follows from (iii) that, given a point p ∈ M̂ , where φ−1(p) =
{q1, . . . , qm}, there exists a neighborhood Vp⊂M̂ of p and neigh-
borhoods U1

p , . . . , U
d
p of q1, . . . , qm, such that

(iv) Vp is biholomorphic to a ball in C2.
(v) U i

p ∩ U j
p = ∅, for i 6= j.

(vi) φj
p := φ|Uj

p
: U j

p → Vp is a biholomorphism.
For each j = 1, . . . ,m, consider the 1-form βj

p on Vp defined by
βj

p = ((φj
p)
−1)∗(α). Since φ∗(η) = dα, we have dβj

p = η|Up . Define
a 1-form ωp on Vp by

(3.1) ωp =
1
m

d∑
j=1

βj
p.

Observe that dωp = η. By standards arguments, we can construct
a covering V = {Vp}p∈M̂

of M̂ by connected open sets, and a col-
lection of holomorphic 1-forms {ωp}p∈M̂

, ωp ∈ Ω1(Vp), such that
(vii) If Vp ∩ Vq 6= ∅ then Vp ∩ Vq is contractible.
(viii) dωp = η|Vp for all p.

By taking the Vp′s small, we can suppose
(ix) If Vp ∩ Vq 6= ∅, φ−1(Vp) = ∪m

j=1U
j
p and φ−1(Vq) = ∪m

j=1U
j
q , then

for every 1 6 j 6 m, there exists an unique k = k(j) ∈ {1, . . . ,m}
such that U j

p ∩ Uk
q 6= ∅.

We claim that, if Vp ∩ Vq 6= ∅ then ωp = ωq on Vp ∩ Vq. This
will imply that ω extends to M̂ . In fact, let φ−1(p) = {p1, . . . , pm},
φ−1(q) = {q1, . . . , qm}, φ−1(Vp) = ∪m

j=1U
j
p and φ−1(Vq) = ∪m

j=1U
j
q ,

be as in (ix). Given 1 6 j 6 m, let k ∈ {1, . . . ,m} be such that
U j

p ∩ Uk
q 6= ∅. Since φj

p = φk
q = φ on U j

p ∩ Uk
q , we get from the

construction that βj
p = βk

q on Vp ∩ Vq. This implies that ωp = ωq

on Vp ∩ Vq.
It follows that we can define a 1-form ω on M̂ such that dω = η.

It remains to prove that ω extends to M∗
V . We will use the local
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forms for φ near a singular point. Observe first, that if we take V
sufficiently small, then CV = CV (φ, V ) and D = φ−1(CV ) are
curves such that sing(CV ) = {0} and sing(D) = {0}. Remark that,
if CV = ∪jCj and D = ∪kDk are the decompositions of CV and D
into irreducible components, then for each k there exists an unique j
such that φ(Dk) = Cj . Moreover, if q ∈ Dk r{0} and p = φ(q) then
Dφ|TqDk

: TqDk → TpCj is an isomorphism. Therefore we can find
holomorphic coordinate systems (Uq, (u, v)) and (Vp, (x, y)) around
q and p respectively, such that

(x) Uq = {(u, v) ∈ C2||u| < 1, |v| < 1}, Vp = {(x, y) ∈ C2||x| < 1, |y| <
1}, D∩Uq = Dk∩Uq = {v = 0} and CV ∩Vp = Cj ∩Vp = {y = 0}.

(xi) φ(u, v) = (X(u, v), Y (u, v)) = (u, vn), for some n > 1 (Whitney’s
local forms).

Observe that on Vp we have η = h(x, y)· dx∧ dy = d(H(x, y)dx),
where Hy = −h. Therefore, φ∗(η) = d(H(u, vn)du) = dα on Uq

and α|Uq = H(u, vn)du+ dg(u, v), where g ∈ O(Uq). Let g(u, v) =∑∞
j=0 gj(u)vj .

Now, fix p0 = (x0, y0) ∈ Vp r {y = 0} and let φ−1(p0) = {q1, . . . , qd}.
Since φ(u, v) = (u, vn) for (u, v) ∈ Uq, then Uq ∩φ−1(p0) contains n points,
say q1, . . . , qn, where qj = (x0, δ

j · v0), δ is a primitive nth-root of the unity
and vn

0 = y0. Let Dr ⊂ {y|0 < |y| < 1} be a small disk centered at y0 and
b(y) = y1/n be the branch of the nth-root of y, defined in Dr and such that
b(y0) = v0. It follows from the definition of βk

p0
that, for k = 1, . . . , n, we

have βk
p0

= H(x, y)dx+ dgk(x, y), in a small neighborhood of p0, where

gk(x, y) =
∞∑

j=0

gj(x)δkj(b(y))j .

Hence,

n∑
k=1

βk
p0

= nH(x, y)dx+ d
[ ∞∑

j=0

( n∑
k=1

δkj
)
gj(x)(b(y))j

]
= nH(x, y)dx+ nd

[ ∞∑
j=0

gjn(x)yj
]
,

because
∑n

k=1 δ
kj = 0 if n does not divide j. This implies that the form∑n

k=1 β
k
p0

extends to a holomorphic 1-form on Vp, say β, such that dβ = nη.
Using the same argument in the other points of φ−1(p) ⊂W , it is possible
to prove that

∑m
k=n+1 β

k
p0

(p0 near p), extends to a holomorphic 1-form
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defined in a neighborhood of p, say β1, such that dβ1 = (m − n)η. Since
1
m (β + β1) = ω, we get that ω extends to a neighborhood of p. �

Lemma 3.2. — Let M be a germ at 0 ∈ C3 of an irreducible surface
with an isolated singularity at 0. Let η be a holomorphic 2-form on M∗

such that η(p) 6= 0 for all p ∈ M∗. If η = dω, where ω is a holomorphic
1-form, then M is equivalent to the germ of a quasi-homogeneous surface
in C3.

Proof. — We will prove the lemma in the case that η is given by the
construction of §2 and leave the general case for the reader. In this case, if
Mj = {p ∈M |Fxj

(p) 6= 0} then,

η|M1 =
dx2 ∧ dx3

Fx1

|M1 , η|M2 =
dx3 ∧ dx1

Fx2

|M2

(3.2)
and η|M3 =

dx1 ∧ dx2

Fx3

|M3 .

We will construct a germ at 0 ∈ C3 of holomorphic vector field X, such that
X(F ) = F . Since η(p) 6= 0 for all p ∈M∗, we get that ω = iY (η), where Y
is a holomorphic vector field on M∗. The vector field Y can be extended
to a a holomorphic vector field defined in a neighborhood of 0 ∈ C3. In
fact, if V is a small Stein neighborhood of 0 ∈ C3 and Y =

∑3
j=1 Yj

∂
∂xj

,
where Yj ∈ O(MV ), then the functions Yj can be extended to holomorphic
functions on V because H1(V r {0},O) = {0}, by [C] (see the proof of
Lemma 4.1). We will denote this extension by the same letter. Since M
is invariant for Y we have Y (F ) = h·F , where h ∈ O3. If h(0) 6= 0, then
we set X = 1

h ·Y . In this case, X is a germ of holomorphic vector field at
0 ∈ C3 for which X(F ) = F , and we are done. Therefore, we have only
to prove that h(0) = 0 leads to a contradiction. Remark that Y (0) = 0,
because 0 is a singular point of M .

Claim 3.3. — Let Y = Y1
∂

∂x1
+Y2

∂
∂x2

+Y3
∂

∂x3
, be such that iY (η) = ω

on M , where Y1, Y2, Y3 ∈ O3, and L = DY (0) be the linear part of Y at 0.
Then:

Y1x1 + Y2x2 + Y3x3 = 1 + h

on M . In particular, if h(0) = 0, then tr(L) = 1 and L has at least one non
zero eigenvalue.

Proof. — Observe first that LY (η) = iY (dη) + d(iY (η)) = dω = η, on
M∗. It follows from (3.2) and a straightforward computation that on M3
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we have

LY (η) = LY (
dx1 ∧ dx2

Fx3

)(3.3)

= (Y1x1 + Y2x2 −
Y (Fx3)
Fx3

− Fx1Y1x3

Fx3

− Fx2Y2x3

Fx3

)η.

On the other hand,

Y (Fx3) = Y (
∂

∂x3
(F ))

= [Y,
∂

∂x3
](F ) +

∂

∂x3
(Y (F ))

= −Y1x3 ·Fx1 − Y2x3 ·Fx2 − Y3x3 ·Fx3 + hx3 ·F + h·Fx3

By substituting the above expression in (3.3) and using that M = {F = 0},
we obtain

LY (η) = (Y1x1 + Y2x2 + Y3x3 − h)η

which implies that Y1x1 + Y2x2 + Y3x3 − h ≡ 1 on M . If h(0) = 0, we get

tr(L) = Y1x1(0) + Y2x2(0) + Y3x3(0) = 1.

�

Let N be a a germ at 0 ∈ C3 of a holomorphic submanifold of dimension
k, k ∈ {1, 2, 3}. We will say that it is an invariant manifold of Poincaré
type for the vector field Y (briefly i.m.P.t) if

(I) N is smooth at 0 and invariant for Y .
(II) If L is the linear part of Y at 0 then L|T0N is in the Poincaré

domain, in the sense that its eigenvalues are non zero (observe that
L(T0N) = T0N) and there exists a line ` ⊂ C, 0 ∈ `, such that
all eigenvalues of L|T0N are contained in one of the components of
C r `.

Lemma 3.4. — If h(0) = 0 and N is an i.m.P.t. for Y , then
(a) N ⊂M . In particular, dim(N) = 1.
(b) If the eigenvalue of L|T0N is λ 6= 0, then the eigenvalues of L are λ,

−k·λ and 1 + (k − 1)λ, where k ∈ N.

Proof. — Let us prove (a). We denote the local flow of Y by YT =
(Y 1

T , Y
2
T , Y

3
T ), T ∈ C. Since N is smooth, we can choose a local coordi-

nate system (x, y, z) around 0 such that N ⊂ Σ ' T0N , where Σ is a linear
subspace of C3 and L(Σ) = Σ. Since the eigenvalues of L|Σ are in the
Poincaré domain, there exists α ∈ C∗ such that the eigenvalues of α·L|Σ
have negative real part. Let Z = α·Y |N , g = α·h and a > 0 be such that
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a < min{−Re(λ)|λ is an eigenvalue of Z}. It is well known (cf. [2]) that
there exists a neighborhood U of 0 ∈ N such that

(i) For any p ∈ U , Zt(p) is defined for all t > 0.
(ii) If t > 0 and p ∈ U then ||Zt(p)|| 6 C· e−at, where C > 0.

Since Z(F ) = g·F , it follows from (i) and (ii) that
(iii) If p ∈ U and t > 0 then

F (Zt(p)) = exp
( ∫ t

0

g(Zs(p))ds
)
·F (p).

Now, g(0) = 0 and (ii) imply that there exists A > 0 such that |g(Zs(p))| 6
A· e−as. Hence,

∫∞
0
g(Zs(p))ds is convergent, say

∫∞
0
g(Zs(p))ds = b ∈ C.

It follows from (iii) that

eb·F (p) = lim
t→∞

F (Zt(p)) = 0 =⇒ F (p) = 0 =⇒ p ∈M =⇒ N ⊂M.

Since dimC(M) = 2 we must have dimC(N) 6 2. On the other hand, since
M is irreducible and is singular at 0 ∈ C3, we must have dimC(N) = 1.
This proves (a).

Let us prove (b). We can assume that N ⊂ {(x, 0, 0)|x ∈ C}. This implies
F (x, y, z) = y·A(x, y, z) + z·B(x, y, z), where A,B ∈ O3. It follows from
Poincaré’s linearization theorem (cf. [2]) that we can find a local coordinate
system x ∈ C such that Y (x, 0, 0) = λx ∂

∂x and YT (x, 0, 0) = (eλT ·x, 0, 0).
Let us assume that L = DY (0) is in Jordan’s canonical form. In this case,
the eigenvalues of L are ∂Y1

∂x (0) = λ, ∂Y2
∂y (0) and ∂Y3

∂z (0).
Observe that Y (F ) = h·F implies LY (dF ) = d(h·F ) = h· dF + F · dh.

Therefore, for p = (x, 0, 0) we get

(3.4) LY (dF )(p) = h(p)· dF (p)

=⇒ [Y ∗
T (dF )](p) = exp

(∫ T

0

h(Ys(p))ds
)
· dF (p).

On the other hand, dF (x, 0, 0) = A(x, 0, 0)dy + B(x, 0, 0)dz, where either
A(x, 0, 0) 6≡ 0, or B(x, 0, 0) 6≡ 0, because 0 is an isolated zero of dF . This
implies that we can write dF (x, 0, 0) = xk·u(x)dy + x`· v(x)dz, k, ` > 1,
where either u 6≡ 0 and u(0) 6= 0, or v 6≡ 0 and v(0) 6= 0. If u, v 6≡ 0, let us
suppose, without lost of generality, that k 6 `, and so

dF (x, 0, 0) = xk·u(x)(dy + xmv1(x)dz),

where m = ` − k > 0 and v1 = v/u. The change of variables ψ(x, y, z) =
(x, y + xm, z) = (x1, y1, z1) is a biholomorphism near 0 ∈ C3 and in these
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new coordinates we have dF (x1, 0, 0) = xk
1u(x1)dy1. Returning to the old

notation (x1 = x, y1 = y), we have

(3.5) dF (x, 0, 0) = xku(x)dy.

Observe that after this change of variables ∂Y2
∂y (0) is still an eigenvalue of

L. We leave this computation to the reader. We are going to prove that
∂Y2
∂y (0) = −kλ.

If we set YT = (Y 1
T , Y

2
T , Y

3
T ) and H(T, x) = exp

( ∫ T

0
h(Ys(x, 0, 0))ds

)
, we

get fro (3.4) and (3.5) that

ekλTxk·u(eλTx)· dY 2
T (x, 0, 0) = H(T, x)·xku(x)dy

=⇒ dY 2
T (x, 0, 0) = H(T, x)

u(x)
u(eλTx)

· e−kλT · dy

and

(3.6)
∂Y 2

T

∂y
(x, 0, 0) = H(T, x)

u(x)
u(eλTx)

· e−kλT .

Now, since ∂YT

∂T = Y (YT ), we have

∂2Y 2
T

∂T∂y
(p) = dY2(YT (p))· ∂YT

∂y
(p).

Since Y0(p) = p, we have ∂Y0
∂y (x, y, z) = (0, 1, 0). If we set T = 0 and

p = (x, 0, 0) in the above relation, we get

∂2Y 2
T

∂T∂y
|(T=0,p) = dY2(x, 0, 0)· (0, 1, 0) =

∂Y2

∂y
(x, 0, 0) =⇒

(3.7)
∂2Y 2

T

∂T∂y
|(T=0,0) =

∂Y2

∂y
(0).

Now, (3.6) implies that

∂2Y 2
T

∂T∂y
(x, 0, 0) = e−kλT

{ ∂

∂T

[
H(T, x)

u(x)
u(eλTx)

]
− kλH(T, x)

u(x)
u(eλTx)

}
.

Since H(0, x) = 1,

∂H(T, x)
∂T

= h(YT (x, 0, 0))·H(T, x)

and
∂u(eλTx)

∂T
= λeλTxu′(eλTx),

we get for T = 0

∂2Y 2
T

∂T∂y
|(T=0,(x,0,0)) = h(x, 0, 0)− λ

x·u′(x)
u(x)

− kλ
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This together with h(0) = 0 and (3.7) gives
∂Y2

∂y
(0) = −kλ

which implies that −kλ is an eigenvalue of L. Since tr(L) = 1, the other
eigenvalue of L must be 1 + (k − 1)λ. �

We will use the following result, which is a consequence of the stable
manifold theorem (cf. [13]).

Lemma 3.5. — Let Z be a germ at 0 ∈ Cn of holomorphic vector field
such that Z(0) = 0. Set L := DZ(0) and let S = {λ1, . . . , λn} be the
spectrum of L. Suppose that there exists a straight line ` through 0 ∈ C
such that ` ∩ S = ∅ and the components of C r ` are A1 and A2. Set
Sk = S ∩Ak, k = 1, 2, and let Ek be the invariant subspace of T0Cn for L,
relative to the eigenvalues in Sk. Then there are germs of i.m.P.t. Wk such
that T0Wk = Ek, k = 1, 2.

The proof of the above result can be found in [1]. Let us suppose by
contradiction that h(0) = 0. Let S = {λ1, λ2, λ3} be the spectrum of L =
DY (0), where |λ1| > |λ2| > |λ3| > 0. It follows from tr(L) = 1 that at least
one of the eigenvalues of L is non-zero: |λ1| > 0. Let v be an eigenvector of
L with eingenvalue λ1 and set E1 = C· v.

Claim 3.6. — There exists an i.m.P.t. of dimension one W1 tangent
to E1.

We will prove the above claim at the end. Let us finish the proof that
h(0) 6= 0 by using the claim. If h(0) = 0, it follows from Lemma 3.4 that
−k·λ1 is an eigenvalue of L, where k ∈ N. Since |λ1| > |λ2| > |λ3|, we
must have k = 1 and λ2 = −λ1, or λ3 = −λ1. In both cases, we get
S = {λ1,−λ1, 1}, because tr(L) = 1. Hence, all eigenvalues of L are non-
zero and there exists a line ` through 0 ∈ C such that C r ` contains
two eigenvalues of L in one of its components and one in the other. It
follows from Lemma 3.5 that there exists an i.m.P.t. W of dimension two.
Therefore, W ⊂ M , by Lemma 3.4, and 0 is not a singularity of M , a
contradiction.

Proof. — Proof of claim 3.6 After multiplying Y by a constant, we can
suppose that λ1 = 1 and |λ2|, |λ3| 6 1. Choose coordinates (x, y) =
(x, y1, y2) ∈ C × C2, such that E1 = {y = 0} and L is triangular. In
this case, the differential equation associated to Y is of the form:

(3.8)

{
dx
dt = x+ `(y) + r(x, y)
dy
dt = Ay +R(x, y)

.
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where ` and A are linear, r and R are of order greater than one and the
eigenvalues of A are λ2 and λ3. After a blowing-up y = x· z = (x· z1, x· z2)
at 0 ∈ C3, equation (3.8) is transformed into

(3.9)

{
dx
dt = x+ x· r1(x, z)
dz
dt = x·W + (A− I)z +R1(x, z)

.

where W is a constant vector, r1 is of order > 1 and R1 of order > 2. The
eigenvalues of the linear part of (3.9) are λ′1 = 1, λ′2 = λ2 − 1 and λ′3 =
λ3−1. Suppose first that λj 6= 1, j = 2, 3. In this case, we have Re(λ′j) < 0
(because |λj | 6 1), j = 2, 3. It follows from Lemma 3.5 that (3.9) has
an i.m.P.t., W1, tangent to the eigenspace associated to the eigenvalue 1.
If x 7→ (x, z(x)) is a parametrization of W1, then x 7→ (x, x· z(x)) is a
parametrization of an i.m.P.t. for Y , tangent to E1. In the general case,
note first that λ′j 6= 1 = λ′1, j = 2, 3. By a linear change of variables in
(3.9), that sends the linear part to the Jordan form, we get W = 0. After
the blowing-up z = x·w = (x·w1, x·w2), equation (3.9) (with W = 0)
is transformed in an other equation with eigenvalues of the linear part
λ′′1 = 1, λ′′2 = λ2− 2, λ′′3 = λ3− 2. Since Re(λ′′j ) < 0, j = 2, 3, we can apply
Lemma 3.5 to obtain an i.m.P.t. tangent to the eigenspace associated to
the eigenvalue 1. If x 7→ (x,w(x)) is a parametrization of the i.m.P.t. so
obtained, then x 7→ (x, x2.w(x)) is a parametrization of an i.m.P.t. for Y .
This finishes the proof of Lemma 3.2 and of the first step. �

Remark 3.7. — In this remark we analyse the converse of Lemma 3.2.
Let M = {F = 0} ⊂ C3 be q.h.w.r. the vector field X = λ1x

∂
∂x + λ2y

∂
∂y +

λ3z
∂
∂z , where λj ∈ Q+, j = 1, 2, 3, and X(F ) = F . The converse of

Lemma 3.2 is true when tr(X) =
∑

j λj 6= 1. In fact, let η be the 2-form
constructed as in Claim 2.1. It follows from Claim 2.2 that LX(η) = a· η,
where a = tr(X) − 1. Since LX(η) = iX(dη)) + d(iX(η)) = d(iX(η)), if
a 6= 0 then η = dω where ω = a−1· iX(η).

On the other hand, if tr(X) = 1 then the converse of Lemma 3.2 is not
true, as was asserted in §1. Consider for instance the surface M(3,3,3) =
{(x, y, z)|F := x3 + y3 + z3 = 0}, which is q.h.w.r. to a vector field X

as above with λj = 1
3 , j = 1, 2, 3. In this case we have X(F ) = F and

LX(η) = 0. If η is as before, then there is no holomorphic 1-form ω on M∗

such that dω = η. In fact, suppose by contradiction that there exists ω
holomorphic such that dω = η. Let Y be a germ at 0 ∈ C3 of holomorphic
vector field tangent to M , such that ω = iY (η) and Y (F ) = h·F . It follows
from the proof of Lemma 3.2 that h(0) 6= 0. Therefore, if Z = h−1·Y then
Z(F ) = F , (X − Z)(F ) = 0 and F is a first integral of W := X − Z. The
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relation W (F ) = 0 implies that the linear part of W at 0 vanishes and
tr(DZ(0)) = 1. On the other hand, it follows from Claim 3.3 that

h(0) = h(0)· tr(DZ(0)) = tr(DY (0)) = 1 + h(0) =⇒ 1 = 0,

a contradiction.

3.2. Proof of the 2nd step

Let M = F−1(0), where F : C3 → C is a polynomial with an isolated
singularity at 0 ∈ C3, quasi-homogeneous with respect to the vector field
X = λ1x

∂
∂x + λ2y

∂
∂y + λ3z

∂
∂z , where X(F ) = F and λ1, λ2, λ3 ∈ Q+. Sup-

pose that there exists a germ of holomorphic map φ : (C2, 0) → (M, 0) such
that φ−1(0) = {0}. We are going to prove that M is equivalent to one of the
surfaces: M(p,q,r), where (p, q, r) ∈ {(2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5)}, Xm,
where m > 1, Y or Zm, where m > 1 (see the statement of Theorem 1.9).

Notation. — Let G,H ∈ On. We will use the notation G ' H to say
that there exist u ∈ On and a germ ψ of biholomorphism at 0 ∈ Cn such
that u(0) 6= 0 and G = u·H ◦ψ. The following remark will be used several
times in the proof:

Remark 3.8. — Let G ∈ On be of the form G(u1, . . . , un−1, un) :=
G(u, v) = am· vm + am−1(u)· vm−1 + · · · + a0(u), where a0, . . . , am−1 ∈
On−1 and am ∈ C∗. Then there exist b0, . . . , bm−2 ∈ On−1 such that G '
vm+bm−2(u)· vm−2+ · · ·+b0(u) := H(u, v). Moreover, if X(G) = G, where
X =

∑n
j=1 λjuj

∂
∂uj

, then λn = 1
m , X(H) = H and X(bj) = (1 − j

m )bj ,
j = 0, . . . ,m− 2.

Note that the change of variables ψ1(u, v) = (u, α· v) = (u, v1), where
αm = am, is such that G ◦ψ−1

1 (u, v1) = vm
1 + ãm−1(u)· vm−1

1 + · · ·+ a0(u),
where ãj = α−j · aj , j = 0, . . . ,m − 1. Therefore, we can suppose that
am = 1. On the other hand, the germ of biholomorphism ψ(u, v) = (u, v +
1
mam−1(u)) = (u, v1) is such that G ◦ ψ−1(u, v1) = vm

1 + bm−2(u)· vm−2
1 +

· · · + b0(u) := H, where b0, . . . , bm−2 ∈ On−1. Note that, ψ∗(X)(H) =
ψ∗(X)(G ◦ ψ−1) = X(G) ◦ ψ−1 = H. On the other hand, X(aj · vj) =
X(aj)· vj + aj · j·λn· vj = aj · vj , j = 0, . . . ,m (am = 1), which implies
that λn = 1

m and X(aj) = (1 − j
m )aj , j = 0, . . . ,m − 1. It follows that,

X(v1) = 1
mv1 and ψ∗(X) = 1

mv1
∂

∂v1
+

∑n−1
j=1 λjuj

∂
∂uj

, which has the same
expression as X. This proves the remark.

Let M = F−1(0) and X = λ1x
∂
∂x +λ2y

∂
∂y +λ3z

∂
∂z , where λ1, λ2λ3 ∈ Q+

and X(F ) = F . We will suppose that λ1 6 λ2 6 λ3.
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Claim 3.9. — We claim that Fxyz ≡ Fyyz ≡ Fxzz ≡ Fyzz ≡ Fzzz ≡ 0.
In particular, we must have

F (x, y, z) = A(x, y) +B(x, y)z + Cz2

where X(A) = A, X(B) = (1− λ3)B and C is a constant.

Proof. — The claim is a consequence of the following fact: if G ∈ O3 is
such that X(G) = −a·G, where a > 0, then G ≡ 0.

Note that X(Fxyz) = (1−λ1−λ2−λ3)·Fxyz, where 1−λ1−λ2−λ3 < 0,
by Theorem 1.5. Therefore Fxyz ≡ 0. The other cases are similar.

Now, Fzzz ≡ 0, implies that F (x, y, z) = A(x, y) +B(x, y)z + C(x, y)z2,
where A,B,C are polynomials. Since Fxzz ≡ Fyzz ≡ 0, C is a constant. The
fact that X(F ) = F implies that X(A) = A and X(B) = (1− λ3)B. �

We have two possibilities: either (i) C 6= 0, or (ii) C = 0.

Case (i): C 6= 0. — We claim that in this case, λ3 = 1
2 and F '

z2+E(x, y), whereX(z) = 1
2z,X(E) = E and Exxyy = Exyyy = Eyyyy = 0.

In particular,

(3.10) E(x, y) = e3· y3 + e2(x)· y2 + e1(x)· y + e0(x),

where e3 ∈ C and deg(e2) 6 1.

In fact, since C 6= 0 we get F ' z2 +B1(x, y)· z +A1(x, y), where A1 =
C−1·A and B1 = C−1·B. It follows from Remark 3.8 that λ3 = 1

2 and F '
z2 +E(x, y), where X(E) = E. Now, X(Exxyy) = (1− 2(λ1 + λ2))·Exxyy.
Since λ1 + λ2 > 1− λ3 = 1

2 , we get 1− 2(λ1 + λ2) < 0 and so Exxyy = 0.
Similarly Exyyy = Eyyyy = 0. This implies that E can be written as in
(3.10), where e3 ∈ C and deg(e2) 6 1.

Case (i.1): C 6= 0 and e3 6= 0. — We claim that in this case, M is
equivalent to one of the following surfaces: Y , M(2,2,2) or M(2,3,r), where
r ∈ {3, 4, 5}.

Proof. — It follows from Remark 3.8 that λ2 = 1
3 and that E(x, y) '

y3 + f1(x)· y + f0(x), where f0, f1 ∈ C[x] and X(fj) = (1− j
3 )fj , j = 0, 1.

Therefore, F ' z2 + y3 + f1(x)· y + f0(x).
Note that, if fj 6= 0 then fj(x) is a monomial of the form a·xm, a ∈ C∗,

j = 0, 1. We have two possibilities: Either f0 6≡ 0, or f0 ≡ 0. Let us
consider first the case f0 6≡ 0. In this case, f0 must be a monomial of the
form f0(x) = a·xm, where a 6= 0 and λ1 = 1

m 6 1
3 . After the change of

variables of the form (x, y, z) 7→ (b·x, y, z), bm = a, we can suppose that
a = 1. Since λ1 + λ2 + λ3 > 1 we get that m < 6 and m ∈ {3, 4, 5}.
In any case, we must have f1(x) = c·xk, where c ∈ C and k·λ1 = 2

3 , if
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c 6= 0, because X(f1) = 2
3f1. This implies that if m ∈ {4, 5} then c = 0

and F ' z2 + y3 + xm. Hence, M is equivalent to M(2,3,m), m ∈ {4, 5}. If
m = 3 and c 6= 0, then k = 2 and F ' z2 + y3 + c·x2· y + x3. Note that
E(x, y) = y3 + c·x2· y + x3 = (y − a1x)(y − a2x)(y − a3x), where a1, a2, a3

are the roots of y3 + cy + 1 = 0. Therefore, a1 + a2 + a3 = 0. Since 0
is an isolated singularity of M , we must have ai 6= aj if i 6= j. Consider
an isomorphism ψ of C2 sending the lines y − ajx, j = 1, 2, 3, into the
lines y + x, y + δ·x, y + δ−1·x, where δ = e2πi/6. It can be checked that
E ◦ ψ−1(x, y) = α(x3 + y3), where α 6= 0. Hence F ' z2 + α(x3 + y3) '
z2 + x3 + y3 and M is equivalent to M(2,3,3).

Consider now the case f0 ≡ 0. In this case F ' z2 + y3 + xm· y = z2 +
y(y2 + xm), where m > 1. Since X(xm· y) = xm· y, we get m·λ1 + λ2 = 1,
and so λ1 = 2

3m . Note that the inequality λ1 + λ2 + λ3 > 1 implies that
1 6 m < 4. If m = 3 then F ' z2 − y(y2 + x3) and M is equivalent to
the surface Y . If m = 2 then y(y2 + x2) is homogeneous of degree three
and F ' z2 + x3 + y3, as we have seen before. Hence, M is equivalent
to M(2,3,3). If m = 1 then F ' z2 + y(y2 + x). In this last case, after the
changes of variables ψ1(x, y, z) = (x+y2, y, z) = (x1, y, z) and ψ2(x1, y, z) =
(x1+y

2 , x1−y
2i , z) = (x2, y2, z), we get that F ' z2 + x1· y ' z2 + x2

2 + y2
2 .

Therefore M is equivalent to M(2,2,2). �

Case (i.2): C 6= 0, e3 = 0 and e2 6= 0. — We claim that in this case M
is equivalent to one of the following surfaces: M(2,2,r), r > 2, M(2,3,3), Xm,
m > 1 or Zm, m > 1.

Proof. — Since deg(e2) 6 1 we have two possibilities: Either deg(e2) = 0,
or deg(e2) = 1. If deg(e2) = 0 then E(x, y) = e2· y2+e1(x)· y+e0(x), where
e2 ∈ C∗. It follows from Remark 3.8 that λ2 = 1

2 and E(x, y) ' y2 + f0(x),
where X(f0) = f0. Therefore, f0(x) must be a monomial of the form a·xr,
where r > 2 and a 6= 0. Hence F ' z2 + y2 + a·xr ' z2 + y2 + xr and
M is equivalent to M(2,2,r), r > 2. If deg(e2) = 1 then e2(x) = a·x, where
a 6= 0. Similarly, e1(x) and e0(x) are also monomials, where deg(e1) > 1
and deg(e0) > 2, because 0 is a singularity of M . Therefore, we can write
E as E(x, y) = x(a· y2 + b·x`· y + c·xk). It follows from Remark 3.8 that
a· y2 + b·x`· y+ c·xk ' y2 +α·xk. Therefore, E ' x(y2 +α·xk). Note that
α 6= 0 because 0 is an isolated singularity of M . We have two possibilities:
Either k is odd, or k is even. If k is odd, k = 2m+1, then F ' z2 +x(y2 +
a·x2m+1) ' z2 − x(y2 + x2m+1). Therefore, M is equivalent to the surface
Zm, m > 1. If k is even we have two possibilities: Either k = 2, or k > 2. If
k = 2, then E(x, y) is homogeneous of degree three and F ' z2 + x3 + y3,
as we have seen before. Therefore, M is equivalent to M(2,3,3). If k > 2 then
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k = 2(m+1), m > 1, and F ' z2+x(y2+a·x2m+2) ' z2−x(y2−x2m+2) =
z2−x(y−xm+1)(y+xm+1). In this last case, if we set y1 = y−xm+1, then
we get that F ' z2− xy1(y1 + 2xm+1) ' z2− xy(y+ xm+1). Therefore, M
is equivalent to Xm, m > 1. �

Case (i.3): C 6= 0, e3 = e2 = 0. — We claim that in this case M is
equivalent to M(2,2,2).

Proof. — In this case, F ' z2+e1(x)· y+e0(x) := G(x, y, z). Since 0 is an
isolated singularity of M we must have e1 6= 0. We assert that e1(x) = a·x,
where a 6= 0. In fact, since X(e1) = (1 − λ2)e1, e1 must be a monomial
of the form a·xm, a 6= 0, m > 1. Similarly, e0(x) = b·xk, where a ∈ C
and k > 2, because 0 is a singularity of M . This implies that Gy = a·xm

and Gx = ma·xm−1· y+kb·xk−1. If m > 1 then Gx(0, y, 0) = Gy(0, y, 0) =
Gz(0, y, 0) = 0 for all y and 0 is not an isolated singularity of M . Therefore,

F ' z2 + x(a· y + b·xk−1) ' z2 + xy ' z2 + x2 + y2.

Hence, M is equivalent to M(2,2,2). �

Case (ii): C = 0. — We claim that in this case M is equivalent to
M(2,2,r), r > 2.

Proof. — In this case F (x, y, z) = B(x, y)z + A(x, y), where X(A) = A

and X(B) = (1− λ3)B. Since Fxyz = 0, B must be of the form B(x, y) =
axm +byn, where m,n > 1 and either a 6= 0, or b 6= 0. Since 0 is an isolated
singularity of M , then, either m = 1, or n = 1 (if not, then Fx(0, 0, z) =
Fy(0, 0, z) = Fz(0, 0, z) = 0). We have two possibilities: Either b = 0, or
b 6= 0. If b = 0 then a 6= 0 and m = 1. Hence, F = axz + A(x, y). Since
M is irreducible, x does not divides A, and so A(x, y) = cyr + x·A1(x, y),
where c 6= 0. Therefore

F = axz+cyr+x·A1(x, y) = cyr+x(az+A1(x, y)) ' yr+xz ' x2+z2+yr.

Therefore M is equivalent to M(2,2,r), r > 2.
If b 6= 0 then n = 1. In fact, if a = 0 then it is clear that n = 1.

On the other hand, if a 6= 0 then λ3 + mλ1 = λ3 + nλ2 = 1, because
X(F ) = F . This implies that n 6 m, because λ1 6 λ2. Therefore, n = 1
and F = z(by + axm) + A(x, y). After the change of variables ψ(x, y, z) =
(x, by + axm, z) = (x1, y1, z1), we have

F ◦ ψ−1(x1, y1, z1) = y1z1 +A(x1, b
−1y1 − b−1axm) = y1z1 +A1(x1, y1)

=⇒ F ' yz +A1(x, y)
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Since M is irreducible, y does not divides A1 and we can write A1 =
cxr + y·B1(x, y), where c 6= 0. Hence

F ' cxr + y(z +B1(x, y)) ' xr + yz ' xr + y2 + z2.

Therefore, M is equivalent to M(2,2,r), r > 2. This finishes the proof of the
2nd step. �

3.3. Proof of the 3rd step

We will use two invariants: the Milnor number of M at 0 and the fun-
damental group of M∗. The Milnor number of M , denoted by µ(M), is
the complex dimension of O3/ < Fx, Fy, Fz > (cf. [14]). It is known that
µ(M) = [Fx, Fy, Fz]0 (the intersection number of Fx, Fy, Fz at 0 ∈ C3). By
a direct computation, we have

(3.11)


µ(M(p,q,r)) = (p− 1)(q − 1)(r − 1)

µ(Xm) = 2(m+ 2)

µ(Y ) = 5

µ(Zm) = 2m+ 3

.

On the other hand, as we have seen in Examples 1.11, 1.12, 1.13 and
1.14:

(3.12)



#(π1(M∗
(2,2,r))) = r

#(π1(M∗
(2,3,3))) = 8

#(π1(M∗
(2,3,4))) = 24

#(π1(M∗
(2,3,5))) = 120

#(π1(X∗
m) = 8m

#(π1(Y ∗) = 48

#(π1(Z∗m) = 4(2m+ 1)

.

As the reader can verify easily, if we take two of the above surfaces then,
either they have different Milnor numbers, or different fundamental groups.
This ends the proof of Theorem 1.9.

4. Proof of Theorem 1.10

Given a smooth complex manifold N , we will use the following notations:
(I) Ωk

N = the sheaf of germs of holomorphic k-forms on N .
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(II) χN = the sheaf of germs of holomorphic vector fields on N .
(III) If N = F−1(0) is a germ at p ∈ Cn+1 of an analytic hypersurface

and V ⊂ Cn+1 is an open set where F is defined, then NV = N∩V
and N∗

V = NV r sing(N).
The proof of Theorem 1.10 will be in three steps:
1st step. — Let M = F−1(0) be a germ of hypersurface at 0 ∈ Cn+1,

n > 3. Suppose that dimC(sing(M)) 6 n − 2 and that there exists a
Stein neighborhood V of 0 ∈ Cn+1 where F is defined and such that
H1(M∗

V ,Ω
n−1
M∗

V
) = {0}. Then 0 6∈ sing(M).

2nd step. — Let M = F−1(0) be a germ of hypersurface at 0 ∈ Cn+1,
n > 3. Suppose that dimC(sing(M)) 6 n − 3 and there exists a germ of
holomorphic map φ : (Cn, 0) → (M, 0) such that φ−1(0) = {0}. Then there
exists a Stein neighborhood V of 0 such that H1(M∗

V ,Ω
n−1
M∗

V
) = 0.

3rd step. — Let M be a germ of hypersurface at 0 ∈ Cn+1, n > 3.
Suppose that dimC(sing(M)) 6 n−2, 0 ∈ sing(M) and there exists a germ
of holomorphic map φ : (Cn, 0) → (M, 0) such that φ−1(0) = {0}. Then all
components of sing(M) through 0 have dimension n− 2.

Since the 3rd step implies the theorem and is the easiest one, we will
prove it first by using the other two.

4.1. Proof of the 3rd step

Let U and V be connected neighborhoods of 0 ∈ Cn and 0 ∈ Cn+1 such
that:

(i) F and φ have representatives F : V → C and φ : U → Cn+1 such
that φ(U) ⊂ V and F ◦ φ = 0.

(ii) φ : U → MV is a ramified covering. In particular φ is finite to one
in U and φ−1(MV ) = U .

Suppose by contradiction that sing(MV ) has a component, say B, of
dimension k 6 n − 3. Let p ∈ B ∩ V be a smooth point of sing(M) ∩ V .
Note that there exists a (Stein) neighborhood V1 ⊂ V of p in Cn+1 such
that B ∩ V1 = sing(M) ∩ V1 has pure dimension k 6 n− 3. It follows from
(ii) that there exists q ∈ U such that φ(q) = p. Let U1 be the connected
component of φ−1(V1) which contains q. Note that φ−1(p) ∩U1 = {q}. Set
φ1 = φ|U1 : U1 → V1. After composing φ1 with translations in both sides,
we can suppose that p = 0 ∈ Cn+1, q = 0 ∈ Cn, φ1 : (Cn, 0) → (Cn+1, 0)
and φ−1

1 (0) = {0}. Since sing(M) ∩ V1 has dimension k 6 n− 3, it follows
from steps 1 and 2 that p = 0 is not a singularity of M , a contradiction.
Therefore all irreducible components of sing(M) have dimension n− 2.
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4.2. Proof of the 1st step

This step is a consequence of the following:

Lemma 4.1. — Let M be a germ of hypersurface at 0 ∈ Cn+1, n > 3.
Suppose that dimC(sing(M)) 6 n − 2. Then the following assertions are
equivalent:

(a) 0 is not a singular point of M .
(b) There exists a Stein neighborhood V of 0 ∈ Cn+1 and a holomorphic

section Y : M∗
V → TCn+1|M∗

V
such that dFp(Y (p)) ≡ 1 for all p ∈

M∗
V .

(c) There exists a Stein neighborhood V of 0 such that H1(M∗
V ,Ω

n−1
M∗

V
) =

{0}.
(d) There exists a Stein neighborhood V of 0 such that H1(M∗

V , χ
·
M∗

V
) =

{0}.

Proof. — It is not difficult to see that (a) implies the other assertions.
On the other hand, the interior product and the n-form η induce an isomor-
phism δ : χ·M∗

V
→ Ωn−1

M∗
V

defined by δ(Y ) = iY (η), where Y is a holomorphic
vector field on some open subset of M∗

V . Therefore, (c) is equivalent to (d).
(d) =⇒ (b) Given V as in (d), consider the covering I = (Mj)n

j=1

of M∗
V , where Mj = {p ∈ MV |Fxj (p) 6= 0}. Let Zj : Mj → TCn+1 be

defined by Zj = 1
Fxj

∂
∂xj

. Note that dF (Zj) ≡ 1. For i, j ∈ {0, . . . , n}, set
Xij = Zj − Zi. Since dFp(Xij(p)) = 0 for all p ∈ Mij := Mi ∩Mj , the
collection {Xij}n

i,j=0 can be considered as a cocycle in Z1(I, χM∗
V
). Hence,

Xij = Xj − Xi, where Xj is a holomorphic vector field on Mj for all
j = 0, . . . , n, because H1(M∗

V , χ
·
M∗

V
) = {0}. This implies that there exists

a holomorphic section Y : M∗
V → TCn+1 such that Y |Mj = Zj − Xj for

all j = 0, . . . , n. Observe that dF (Y )|Mj
= dF (Zj) − dF (Xj) = 1, which

proves (b).
(b) =⇒ (a) Let Y : M∗

V → TCn+1 be a holomorphic section such that
dFp(Y (p)) = 1 for all p ∈M∗

V . The idea is to prove that Y can be extended
to a holomorphic vector field on V , say X. Since 0 ∈M∗

V , this implies that
dF0(X(0)) = 1. Therefore, dF0 6= 0 and 0 is not a singular point of M .

We will use the following result (cf [6] p. 133), which is a generalization
of [4]: Let N be a Stein manifold of dimension m > 3 and A ⊂ N be an
analytic subset of N such that dimC(A) 6 m−3. Then H1(N rA,O) = 0.

In particular, since dimC(sing(M)) 6 n − 2 = (n + 1) − 3, we have
H1(V r sing(M),O) = 0. Let us prove that the section Y can be extended
to V . Since codimV (sing(M)) > 2, by Hartogs’ theorem it is sufficient
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to prove that Y can be extended to a holomorphic vector field on V r
sing(M) := V ∗. Since M ⊂ Cn+1, we can write Y =

∑n
j=0 Yj

∂
∂xj

, where
Yj ∈ O(M∗

V ). Hence, it is sufficient to prove that Y0, . . . , Yn extend to
holomorphic functions on V ∗. In fact, any f ∈ O(M∗

V ) can be extended
to a holomorphic function on V ∗. Let U = (Vj)j∈J be a Leray covering of
V ∗ by open sets such that, if Vj ∩M∗

V 6= ∅ then f |Vj∩M∗
V

can be extended
to a holomorphic function, say fj , on Vj . If Vj ∩M∗

V = ∅, set fj ≡ 0. In
this way we have a collection (fj)j∈J , where fj ∈ O(Vj) and fj = f on
Vj ∩M∗

V , if this set is not empty. This implies that, if Vij := Vi ∩ Vj 6= ∅
then fj − fi = fij .F , where fij ∈ O(Vij). Now, the collection (fij)Vij 6=∅
is an additive cocycle. Therefore, if Vij 6= ∅, we can write fij = gj − gi

where gj ∈ O(Vj), because H1(V ∗,O) = 0. This implies that there exists
h ∈ O(V ∗), defined by h|Vj = fj − gj ·F for all j ∈ J . This implies (a),
because h|M∗

V
= f . �

4.3. Proof of the 2nd step

In this step we will use Dolbeault’s theorem (cf. [7]): if N is a complex
manifold of dimension n then H1(N,Ωn−1

N ) ' Hn−1,1

∂
(N). Hence, we are

going to prove that there exists a Stein neighborhood V of 0 ∈ Cn+1 such
that Hn−1,1

∂
(M∗

V ) = {0}.
Fix Stein neighborhoods U of 0 ∈ Cn and V of 0 ∈ Cn+1 such that:

(i) F has a representative F : V → C and φ a representative φ : U → V .
(ii) φ : U r φ−1(sing(M)) → M∗

V is a ramified covering with d sheets.
We will use the notation U r φ−1(sing(M)) = U∗.

We claim that Hn−1,1

∂
(U∗) = H1(U∗,Ωn−1

U∗ ) = {0}. In fact,
since U is Stein and dimC(φ−1 (sing(M))) 6 n − 3 (see (ii) of
Remark 1.17), we have H1(U∗,O) = 0 (cf. [6]). On the other hand,
any holomorphic (n− 1)-form on an open set A ⊂ U∗ ⊂ Cn can be
written as

n∑
j=1

ajdu1 ∧ · · · ∧ d̂uj ∧ · · · dun, aj ∈ O(A).

This implies that H1(U∗,Ωn−1
U∗ ) ' (H1(U∗,O))n = 0, which proves

the assertion.
Now, let α ∈ Ωn−1,1(M∗

V ) be C∞ and such that ∂α = 0. We want
to prove that α = ∂ω for some ω ∈ Ωn−1,0(M∗

V ). Since φ−1(M∗
V ) =

U∗ and Hn−1,1

∂
(U∗) = 0 we have that φ∗(α) = ∂β, where β is a
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(n − 1, 0)-form on U∗ of class C∞. Let η be the holomorphic n-
form on M∗

V defined as in §2. As we have seen, φ∗(η) extends to a
holomorphic n-form on U which can be written as f(u)· du1 ∧ · · · ∧
dun, where f ∈ O(U). Note that C = {p ∈ U∗|f(p) = 0} is the set
of critical points of φ|U∗ and φ(C) = CV is the set of critical values
of φ|U∗ . In particular, if W = U∗ r φ−1(CV ) and M̂ = M∗

V rCV ,
then φ|W : W → M̂ is a covering with d-sheets.

Using the method of the proof of Lemma 3.1, it is possible to
construct a (n−1, 0)-form of class C∞, ω on M̂ , such that ∂ω = α.
The form ω is defined on M̂ by

(4.1) ωp =
1
d

∑
q∈φ−1(p)

(φq)∗(βq),

where (φq)∗ denotes the map induced by the isomorphism Dφ(q) :
Tq(Cn) → Tp(M∗

V ). It is well defined because φ|W : W → M̂ is a
covering map. At this point, we observe that if f(0) 6= 0 and V

is small then M̂ = M∗
V and the 2nd step is proved in this case. If

f(0) = 0, we must prove that ω extends to CV . The idea is the
following: Fix a point p ∈ CV . Since ∂α = 0, it follows from the ∂-
Poincaré Lemma that there exists a (n− 1, 0)-form δp of class C∞,
defined in a neighborhood Vp of p in M∗

V such that ∂δp = α on Vp.
Since ∂(ω − δp) = 0, the form ω − δp is holomorphic. Therefore,
we have only to prove that ω − δp extends to Vp, for all p ∈ CV .
This will be done as follows: We will divide CV into two parts, say
CV = CV1 ∪ CV2, such that

(iii) CV1 is contained in the smooth part of CV , dimC(CV1) = n − 1
and if p ∈ CV1 then ω − δp can be extended to Vp by using a local
form of φ that will be stated in (v). This will imply that ω can be
extended to M̂ ∪ CV1.

(iv) dimC(CV2) 6 n−2. If we suppose that (iii) is proved, we can extend
ω to M̂ ∪ CV1. Hence, if p ∈ CV2 then ω − δp can be extended to
Vp by Hartogs’ theorem, because CV2 ∩ Vp has codimension > 2 in
Vp.

Therefore, it is sufficient to prove the existence of such a decomposition.

Construction of CV1 and CV2. — It will be done in such a way that:
(v) For any p ∈ CV1 and q ∈ φ−1(p) there exist local coordinate systems

(Uq, (u, v) = (u1, . . . , un−1, v)) and (Vp, (x, y) = (x1, . . . , xn−1, y)) around
q and p respectively, where Vp is a neighborhood of p in M∗

V , such that
u(q) = x(p) = 0 ∈ Cn−1, v(q) = y(p) = 0 ∈ C, φ(Uq) = Vp, x(Vp) = Dn−1
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and y(Vp) = D (D = {z ∈ C||z| < 1}) and

(4.2) φ(u, v) = (u, vm),

where m ∈ N depends only on the irreducible components of CV and
φ−1(CV ) which contain p and q respectively.

Since CV = φ(C) and C = f−1(0) ∩ U∗, all irreducible components
of CV and of φ−1(CV ) have complex dimension n − 1. Moreover, if Σ is
an irreducible component of φ−1(CV ) then φ(Σ) is an irreducible compo-
nent of CV . Denote by A1 the singular set of CV . Note that dimC(A1) <
dimC(CV ) and that CV r A1 is smooth of dimension n − 1. Let Σ and
φ(Σ) be as before and denote by φΣ the restriction φ|Σ : Σ → φ(Σ). Let
AΣ = {q ∈ Σ r φ−1(A1)| rank(DφΣ(q)) 6 n − 2}. Note that φ(AΣ) and
A′Σ = φ−1(φ(AΣ)) are analytic subsets of M̂ and U∗, both of dimension
6 n−2. Therefore, the closure in U , A

′
Σ is also an analytic subset of U ⊂ Cn

of dimension 6 n− 2.
Set B = ∪Σφ(A

′
Σ) (in the union Σ runs over all irreducibe components of

φ−1(CV )), CV2 = A1∪B and CV1 = CV rCV2. Then dimC(CV1) = n−1
and dimC(CV2) 6 n− 2. Let us prove (v).

Notice that if p ∈ CV1 and q ∈ φ−1(p), then CV and φ−1(CV ) are
smooth of dimension n − 1 at p and q respectively and Dφ(q)|Tqφ−1(CV ) :
Tqφ

−1(CV ) → Tp(CV ) is an isomorphism. If q 6∈ C then, in fact Dφ(q) :
TqCn → Tp(M∗

V ) is an isomorphism and it is clear that we can obtain
coordinate systems satisfying (3.11) with m = 1. If q ∈ C, it follows from
the implicit function theorem that there exist local coordinate systems
(Uq, (u, v) = (u1, . . . , un−1, v)) and (Vp, (x, y) = (x1, . . . , xn−1, y)), where
u(q) = x(p) = 0 ∈ Cn−1, v(q) = y(p) = 0 ∈ C, φ(Uq) = Vp and φ(u, v) =
(u, f(u, v)) where f ∈ O(Uq) and fv(0, 0) = 0. We can assume φ−1(CV ) ∩
Uq = {v = 0} and CV ∩ Vp = {y = 0}. This implies that f(u, 0) ≡ 0 and
f(u, v) = g(u, v)· vm for some m > 2, where g 6≡ 0. Now, the set of critical
points of φ in Uq is defined by fv = 0 and is contained in φ−1(CV ) ∩
Uq = {v = 0}. Since fv(u, v) = vm−1(m· g(u, v) + v· gv(u, v)), we get that
g(u, 0) 6= 0 for all (u, 0) ∈ Uq. Therefore by taking a smaller Uq we can
suppose that Uq is simply connected and that g ∈ O∗(Uq). Let h ∈ O∗(Uq)
be such that hm = g and consider the change of variables in a neighborhood
of q given by u′ = u, v′ = g(u, v)· v. In the coordinate system (u′, v′) we
have φ(u′, v′) = (u′, (v′)m). Hence, we get property (v).

In order to prove that ω can be extended to a neighborhood of any point
p ∈ CV1, we need a lemma.
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Lemma 4.2. — For any p ∈ CV1 there exists a coordinate system
(Vp, (x, y) = (x1, . . . , xn−1, y)) such that:

(a) x(p) = 0 ∈ Cn−1, y(p) = 0 ∈ C, x(Vp) = Dn−1 and y(Vp) = D.
(b) CV1 ∩ Vp = {y = 0}.
(c) There exist 0 6 a < 1, c > 0 and a compact neighborhood Kp = K

of p such that if ω = ωn(x, y)dx1 ∧ · · · ∧ dxn−1 +
∑n−1

j=1 ωj(x, y)dx1 ∧
· · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dy, then

(4.3) max {|ω1(x, y)|, . . . , |ωn(x, y)|} 6 c· |y|−a, ∀(x, y)∈K ′:=Kr{y=0}.

Proof. — Fix p ∈ CV1 and let φ−1(p) = {q1, . . . , qr}. Since CV1 is
smooth of codimension one in M∗

V , we can find a local coordinate sys-
tem (B, (x, y)) around p such that x(p) = 0 ∈ Cn−1, y(p) = 0 ∈ C
and CV1 ∩ B = {y = 0}. Given qj ∈ φ−1(p) fix local coordinate systems
(Uj , (uj , vj) = (uj1, . . . , ujn−1, vj)) and (Vj , (xj , yj) = (xj1, . . . , xjn−1, yj))
as in (v), where φ(uj , vj) = (uj , v

mj

j ), mj ∈ N. Observe that m1+· · ·+mr =
d. We can suppose without lost of generality that Vj ⊂ B for all j = 1, . . . , r.
Let K be a compact neighborhood of p such that K ⊂ ∩jVj .

Since CV1 ∩ Vj = {y = 0} = {yj = 0}, there exists a constant k1 > 1
such that

(4.4) k−1
1 · |y(z)| 6 |yj(z)| 6 k1· |y(z)|

for all z ∈ K and all j = 1, . . . , r. Now, fix a point p0 = (x0, y0) ∈ Kr{y =
0}. In the coordinate system Vj we have p0 = (x0j , y0j) and φ−1(p0)∩Uj =
{(x0j , γ

`.v0j) := q`
0j | ` = 1, . . . ,mj}, where γ is a primitive mth

j root of
unity and v

mj

0j = y0j . Let

β|Uj = βn(uj , vj) duj1 ∧ · · · ∧ dujn−1

+
n−1∑
k=1

βk(uj , vj) duj1 ∧ · · · ∧ dujk−1 ∧ dujk+1 ∧ · · · ∧ dvj

where β1, . . . , βn ∈ C∞(Uj) (recall that φ∗(α) = ∂β). The inverse of φ from
a small neighborhood of p0 to a small neighborhood of q`

0j can be written
as ψ`

0j(xj , yj) = (xj , γ
`.y

1/mj

j ), where y1/mj

j is a branch of the mth
j root

of yj . Therefore, the contribution to the sum in (18) which comes from
φ−1(p) ∩ Uj , in this neighborhood of p0, is of the form 1

d

∑mj

k=1 θ
j
k

θj
k = (ψk

0j)∗(β) = θj
kndxj1 ∧ · · · ∧ dxjn−1

+
n−1∑
m=1

θj
kmdxj1 ∧ · · · ∧ dxj,m−1 ∧ dxj,m+1 ∧ · · · ∧ dyj
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where

θj
kn = βn(xj , γ

k.y
1/mj

j ) and θj
km

= βm(xj , γ
k.y

1/mj

j ) · 1
mj

γk.y
1/mj−1
j , m = 1, . . . , n− 1

Since β1, . . . , βn are bounded in φ−1(K) ∩ Uj , we get from the above rela-
tions that

(4.5) |θj
km(xj , yj)| 6 cj · |yj |−(1−1/mj),

where cj > 0. Now, let us write θj
k in the coordinate system (x, y) as

θj
k = θj1

kndx1 ∧ · · · ∧ dxn−1 +
n−1∑
m=1

θj1
kmdx1 ∧ · · · ∧ dxm−1 ∧ dxm+1 ∧ · · · ∧ dy.

Since (x, y) 7→ (xj , yj) is a diffeomorphism for all j = 1, . . . , r, we get from
(4.4) and (4.5) that

(4.6) |θj1
km(x, y)| 6 c1j · |y|−(1−1/mj),

for all m = 1, . . . , n, where c1j > 0. We leave this last computation for
the reader. Set a = max{1 − 1/mj |j = 1, . . . , r} and c =

∑r
j=1 c

1
j . Since

ω =
∑r

j=1

∑mj

k=1 θ
j
k, we obtain from (4.6) that

|ωm(x, y)| = |
∑

j

∑
k

θj1
km(x, y)| 6

∑
j

∑
k

|θj1
km(x, y)| 6 c· |y|−a,

for all m = 1, . . . , n. �

In order to finish the proof of Theorem 1.10 it is enough to show that
ω can be extended to the compact neighborhood of p, Kp ⊂ Vp, like in
Lemma 4.2. Let δp be a C∞ form on Vp such that ∂δp = α|Vp . Note that
ω − δp is holomorphic on Vp r (Vp ∩ CV1). Set

δp = δn(x, y)dx1∧· · ·∧dxn−1+
n−1∑
j=1

δj(x, y)dx1∧· · ·∧dxj−1∧dxj+1∧· · ·∧dy

where δ1, . . . , δn ∈ C∞(Vp). Since ω−δp is holomorphic on Vp r(Vp∩CV1),
we get that ωm − δm ∈ O(Vp r (Vp ∩ CV1)), for all m = 1, . . . , n. On the
other hand |δm| is bounded in Kp. Hence,

(4.7) |ωm(x, y)− δm(x, y)| 6 c1· |y|−a,∀(x, y) ∈ Kp,

for all m = 1, . . . , n, where c1 is a positive constant. Since 0 6 a < 1, (4.7)
implies that, for a fixed x, the holomorphic function y 7→ ωm(x, y)−δm(x, y)
has a removable singularity at y = 0. Hence, ωm(x, y)−δm(x, y) extends to
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Kp as a holomorphic function, for all m = 1, . . . , n. This finishes the proof
of Theorem 1.10. �
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