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CONTINUED FRACTIONS AND TRANSCENDENTAL
NUMBERS

by Boris ADAMCZEWSKI, Yann BUGEAUD & Les DAVISON

ABSTRACT. — The main purpose of this work is to present new families of
transcendental continued fractions with bounded partial quotients. Our results are
derived thanks to combinatorial transcendence criteria recently obtained by the
first two authors in [3].

RESUME. L’objet principal de ce travail est de donner de nouvelles familles
de fractions continues transcendantes dont la suite des quotients partiels est bor-
née. Les démonstrations de nos résultats reposent sur les critéres combinatoires de
transcendance récemment obtenus par les deux premiers auteurs dans [3].

1. Introduction

It is widely believed that the continued fraction expansion of every irra-
tional algebraic number « either is eventually periodic (and we know that
this is the case if and only if « is a quadratic irrational), or it contains
arbitrarily large partial quotients. Apparently, this question was first con-
sidered by Khintchine in [22] (see also [6, 39, 41] for surveys including a
discussion on this subject). A preliminary step towards its resolution con-
sists in providing explicit examples of transcendental continued fractions.

The first result of this type goes back to the pioneering work of Liou-
ville [26], who constructed transcendental real numbers with a very fast
growing sequence of partial quotients. Indeed, the so-called “Liouville in-
equality” implies the transcendence of real numbers with very large partial
quotients. Replacing it by Roth’s theorem yields refined results, as shown
by Davenport and Roth [15]. In [4], the argument of Davenport and Roth
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is slightly improved and Roth’s theorem is replaced by a more recent result
of Evertse [19] to obtain the best known result of this type. Note that the
constant e, whose continued fraction expansion is given by

e=1[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,...,1,1,2n,1,1,.. ],

(see for instance [23]) provides an explicit example of a transcendental
number with unbounded partial quotients; however, its transcendence does
not follow from the criteria from [26, 15, 4].

At the opposite side, there is a quest for finding explicit examples of
transcendental continued fractions with bounded partial quotients. The
first examples of such continued fractions were found by Maillet [28] (see
also Section 34 of Perron [30]). The proof of Maillet’s results is based on
a general form of the Liouville inequality which limits the approximation
of algebraic numbers by quadratic irrationals. They were subsequently im-
proved upon by A. Baker [10, 11], who used the Roth theorem for number
fields obtained by LeVeque [24]. Later on, Davison [16] applied a result
of W. M. Schmidt [36], saying in a much stronger form than Liouville’s
inequality that a real algebraic number cannot be well approximable by
quadratic numbers, to show the transcendence of some specific continued
fractions (see Section 4). With the same auxiliary tool, M. Queffélec [32]
established the nice result that the Thue-Morse continued fraction is tran-
scendental (see Section 5). This method has then been made more explicit,
and combinatorial transcendence criteria based on Davison’s approach were
given in [7, 17, 13, 25].

Recently, Adamczewski and Bugeaud [3] obtained two new combinatorial
transcendence criteria for continued fractions that are recalled in Section
2. The main novelty in their approach is the use of a stronger Diophan-
tine result of W. M. Schmidt [37, 38], commonly known as the Subspace
Theorem. After some work, it yields considerable improvements upon the
criteria from [7, 17, 13, 25]. These allowed them to prove that the continued
fraction expansion of every real algebraic number of degree at least three
cannot be “too simple”, in various senses. It is the purpose of the present
work to give further applications of their criteria to well-known (families
of) continued fractions. In addition, we provide a slight refinement of their
second criterion. Note also that a significative improvement of the results of
Maillet and of Baker mentioned above is obtained in [4] thanks to a similar
use of the Subspace Theorem.

The present paper is organized as follows. In Section 2, we state the two
main transcendence criteria of [3], namely Theorems 2.1 and 2.2. Then,
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Section 3 is devoted to a slight sharpening of Theorem 2.2. In the sub-
sequent Sections, we give various examples of applications of these tran-
scendence criteria. We first solve in Section 4 a problem originally tackled
by Davison in [16] and later considered by several authors in [7, 17, 13].
The Rudin—Shapiro and the Baum—Sweet continued fractions are proved
to be transcendental in Section 5. Then, Sections 6 and 7 are respectively
devoted to folded continued fractions and continued fractions arising from
perturbed symmetries (these last sequences were introduced in [29, 14]). In
the last Section, we show through the study of another family of continued
fractions that, in some cases, rather than applying roughly Theorem 2.2,
it is much better to go into its proof and to evaluate continuants carefully.

2. The transcendence criteria

In this Section, we recall the transcendence criteria, namely Theorems
2.1 and 2.2, obtained by the first two authors in [3].

Before stating the new criteria, we need to introduce some notation.
Let A be a given set, not necessarily finite. The length of a word W on
the alphabet A, that is, the number of letters composing W, is denoted by
|W|. For any positive integer k, we write W¥ for the word W ... W (k times
repeated concatenation of the word W). More generally, for any positive
rational number z, we denote by W? the word W*IW’, where W’ is the
prefix of W of length [(z — [2])|W]]. Here, and in all what follows, [y] and
[y] denote, respectively, the integer part and the upper integer part of the
real number y. For example, if W denotes the word 232243, then W3/2 is
the word 232243232. Let a = (ag)r>1 be a sequence of elements from A,
that we identify with the infinite word ajas...ay.... Let w be a rational
number with w > 1. We say that a satisfies Condition (x),, if a is not
eventually periodic and if there exists a sequence of finite words (V},)n>1
such that:

e For any n > 1, the word V¥ is a prefix of the word a;
e The sequence (|V,|)n>1 is increasing.

Roughly speaking, a satisfies Condition (%), if a is not eventually peri-
odic and if there exist infinitely many “non-trivial” repetitions (the size of
which is measured by w) at the beginning of the infinite word ajas ... ap. ..

A first transcendence criterion for “purely” stammering continued frac-
tions is given in [3].

TOME 56 (2006), FASCICULE 7
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THEOREM 2.1. — Let a = (ag)¢>1 be a sequence of positive integers.
Let (pe/qe)e=1 denote the sequence of convergents to the real number

Q= [O§a1>az7...,ag,...].

If there exists a rational number w > 2 such that a satisfies Condition
(%)w, then o is transcendental. If there exists a rational number w > 1 such
that a satisfies Condition (%), and if the sequence (qé/é)g>1 is bounded
(which is in particular the case when the sequence a is bounded), then «
is transcendental.

Unfortunately, in the statement of Theorem 2.1, the repetitions must
appear at the very beginning of a. When this is not the case, but the
repetitions occur not too far from the beginning of a, then we have another
criterion.

Keep the above notation. Let w and w’ be non-negative rational numbers
with w > 1. We say that a satisfies Condition (%), . if a is not eventually
periodic and if there exist two sequences of finite words (Up)n>1, (Vi)n>1
such that:

e For any n > 1, the word U, V¥ is a prefix of the word a;
e The sequence (|U,|/|Va])n>1 is bounded from above by w';
e The sequence (|V,|)n>1 is increasing.

We are now ready to present a transcendence criterion for (general) stam-

mering continued fractions, as stated in [3].

THEOREM 2.2. — Let a = (ag)¢>1 be a sequence of positive integers.
Let (pe/qe)e=1 denote the sequence of convergents to the real number

a:=[0;a1,a2,...,a...].

Assume that the sequence (q;/z)gl is bounded and set

M = lim sup ql}/é
—4o00
and

. 1/¢
m = lim inf q/ .
{——+o00

Let w and w' be non-negative real numbers with

log M log M
(2.1) w>w' (285 1) 4 B2
logm logm

If a satisfies Condition (%), then « is transcendental.
It turns out that condition (2.1) can be slightly weakened by means of a
careful consideration of continuants. This is the purpose of Section 3.
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3. A slight sharpening of Theorem 2.2

In this Section, we establish the following improvement of Theorem 2.2.

THEOREM 3.1. — Let a = (az)¢>1 be a sequence of positive integers.
Let (pe/qe)e=1 denote the sequence of convergents to the real number

Q= [O§a17a2,...,a¢,...].

Assume that the sequence (q;/e)gl is bounded and set
M = lim sup q;/e
{— o0

and
m = liminf q;/e.
£—400

Let w and w’' be non-negative real numbers with

log M
(3.1) w > w (2 08 1) F1.
logm

If a satisfies Condition (%), then « is transcendental.

We note that the right hand side of (3.1) is always smaller than or equal
to the right hand side of (2.1).

Before proceeding with the proof, we recall some useful facts on con-
tinuants. For positive integers a1, ..., an, denote by K,,(ai,...,a,) the
denominator of the rational number [0;aq,...,as]. It is commonly called
a continuant.

LEMMA 3.2. — For any positive integers ay,...,a,, and any integer k
with 1 < k < m — 1, we have

Kp(ay, ... am) = Kpn(am,...,a1)

and
Ki(ar,...,a5) Kp—g(akg1,. - am) < Kpp(ag, ... am)
< 2K;€(a1, RN 7ak) . Km,k(ak+1, ey am).
Proof. — See Kapitel 1 from Perron’s book [30]. ]

Proof of Theorem 3.1 — We follow step by step the proof of Theorem 2
from [3], with a single modification. We keep the notation from [3]. Recall
that, for any n > 1, we set r,, = |U,| and s, = |V,|.

TOME 56 (2006), FASCICULE 7
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Let n be a positive integer. Let § > 0 be a (small) real number. Since
w>1and r, <w's,, we get

2ry, + s, 2w's,, + 05y, 2w + 9§ logm

P+ (w—1)s,  ws,+(w—1)s, w4+w—-1 " loghM’

by (3.1), if § is sufficiently small. Consequently, there exist positive real
numbers 7 and 1’ with n < 1 such that

logm

@2)2Q+wx1+#ﬁn+M1+#kn<(1—ﬂﬂmﬂﬂwn_smﬁgﬂ”

for any n > 1.
In the course of the proof of Theorem 4.1 from [3] we had to bound from

above the quantity ¢;+" gt gt

vt sn Qo+ [wsn]* Our new observation is that the
estimate

Ar,+sn QTnJr[(wfl)sn] < qr, qrnJr[wsn]

follows from Lemma 3.2 (here and below, the numerical constant implied
by <« does not depend on n). Consequently, we get

14n 1+ -1 2+ -1
(3.3) G e e G s, K B G tsn Dot (0 1)1

Assuming n sufficiently large, we then have
Grn S M(1+7]’)Tn, G, +s, < M(1+n')(rn+sn)’

and
Grt[(w-1)s,] = mt 7T T wsnmon),

with " as in (3.2). Consequently, we get
24 —1
qrn K qgn+sn q’r’n+[(w71)sn]

< M2(1+77)(1+"7/)"‘n+"](1+n,)5n mf(lfn/)(""n‘i’wsn*sn) < 1’

by our choice of 1 and n’. It then follows from (3.2) and (3.3) that
qi:_n qijﬁsn q;nlJr[wsn] < 13
and, with the notation from [3], we get the upper bound

H 1L (z,)] < (@, @rpts,)”"
1<)<4

for any positive integer n. We then conclude as in that paper. O
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4. Davison’s continued fractions

Let 6 be an irrational number with 0 < # < 1. Under some mild as-
sumptions, Davison [16] established the transcendence of the real number
ag = [0;d1,ds,...], with d,, = 1+ ([nf] mod 2) for any n > 1. These
extra assumptions were subsequently removed in [7]. Then, Davison [17]
and Baxa [13] studied the more general question of the transcendence
of the real number oy g = [0;d1,do,...], where k > 2 is an integer and
dp, =1+ ([n6] mod k) for any n > 1. The two authors obtained some par-
tial results but their methods did not allow them to cover all the cases. It
turns out that Theorem 2.1 yields a complete answer to this question.

THEOREM 4.1. — Let 0 be an irrational number with 0 < 6 < 1 and
let k be an integer at least equal to 2. Let d = (d,,)n,>1 be defined by
dp, = 1+([nb] mod k) for any n > 1. Then, the number ay g = [0;dy,d2, .. ]
is transcendental.

In order to prove Theorem 4.1, we need two auxiliary results (Lemmas
4.3 and 4.4 below), which will be deduced from the following proposition
obtained in [17]. Throughout this Section, § = [0;a1,az,...,an,...| de-
notes an irrational number in (0,1) and (p,/gn)n>0 is the sequence of its
convergents.

PROPOSITION 4.2. — For any non-negative integers n and r with 1 <
r < gn+1 — 1, we have

[(qn +7)0] = pn + [10].
Our first auxiliary result is the following.

LEMMA 4.3. — For any integers n, r and s withn > 1, 0 < s < ap41
and 1 <7 < @qn + qn_1 — 1, we have

[(5qn +7)0] = sp, + [r0].

Proof. — The proof goes by induction on s. If s = 0, the statement is a
tautology. Let us assume that the result holds for a given s with 0 < s <
Gn+1- Then, we have s +1 < a1 and

(s +1)gn +7 < ant1¢n + @n + n1 — 1 = gni1 + ¢ — 1.
Hence, sq, + 7 < gn+1 — 1 and Proposition 4.2 implies that
[((s + Dan +7)8] = [(gn + (50 +7))0] = P + [(sqn + 7)6)].
By our inductive assumption, we thus obtain

(s + 1)gn +7)0] = pn + 5pp + [r0] = (s + 1)pn + [10],

TOME 56 (2006), FASCICULE 7
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concluding the proof of the lemma. O

LEMMA 4.4. — For any integers n, £ and r with n > 1, £ > 0 and
1 <r < gny1 — 1, we have

(@nte +Gnie—1+ ..+ qn +7)0] = Ppge + Prge—1+ ... +pn + [10].

Proof. — The proof goes by induction on ¢. The case £ = 0 is given by
Proposition 4.2 Let us assume that the desired result holds for a given non-
negative integer £. Let n and r be as in the statement of the lemma. Since
Gm+2 = Gm+1 + ¢m holds for any non-negative integer m, we easily get that

Gnie+ oo+ qni1 + G +7 < Guiera — 1.

Then, we infer from Proposition 4.2 that

[(nresr +qnie+ oo+ @ +7)0] = [(nyer1 + (Gnye + o+ qn +7))0]
= pntet1 + [(@ne + .+ qn +17))0).

Using the inductive assumption, this shows that the desired result holds
for £ + 1 and proves the lemma. O

Proof of Theorem 4.1 — We are now ready to prove Theorem 4.1 by show-
ing that the sequence (d,,)n>1 satisfies Condition (x),, for a suitable real
number w > 1. We first remark that the sequence d is not eventually
periodic since @ is irrational. We have to distinguish two cases.

First, let us assume that there are infinitely many integers n such that
ant1 = k. For such an n, we infer from Lemma 4.3 with s = k that

(4.1) [(kgn +7)0] = [rf] mod k, for 1 <7 < ¢ + gn-1 — 1.

Set Vi, = dy...dgq, and Wy, = drg,+1dkg,+2 - - Ak 1)gn+gn_1—1 and
view V,, and W,, as words on the alphabet {1,2,...,k}. It follows from
(4.1) that W, is a prefix of V,,. Furthermore, since

|Wn| _ qn+qn—1_1 > 1
V2l kqn Tk

the infinite word d begins in Vn1+1/k. Thus, d satisfies Condition (x)141 k-

Now, let us assume that there exists an integer ng such that a, < k
for all n > ng. Let n > ng be an integer. At least two among the k + 1
integers pn, Pn + Pntis- .-y Pn + Pnt1+ ...+ Pnir are congruent modulo k.
Consequently, there exist integers n’ > n+1 and £, with 0 < £ < k—1 and
n' + ¢ < n-+k, such that

P/t + Dnige—1+ ..+ ppy =0 mod k.

ANNALES DE L’INSTITUT FOURIER
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Set N = qnye + qn+0—1+ - .. + ¢n. Then, Lemma 4.4 implies that
(4.2) [([N+7r)0]=[rf] modk,

for 1 <7 <qpy1—1.5etV, =d;...dy and W,, = dNH...dNJrqn,H,l
and view V,, and W,, as words on the alphabet {1,2,...,k}. Then, (4.2)
implies that W, is a prefix of V,,. Since ¢,/ 4¢ < kfqn (this follows from the
assumption a,, < k for any m > ng), we obtain

|Wn| — qn'4+1 — 1 2 dn’ > 1 2 i
Vil N kquye ~ kLT kR

It thus follows that the infinite word d begins in an +1/ kk.

Consequently, the sequence d satisfies in both cases Condition (x)q 11 /xk-
By Theorem 2.1, the real number a4, ¢ is transcendental, as claimed. m|

5. Automatic continued fractions

Let k > 2 be an integer. An infinite sequence a = (ay)n>0 is said to
be k-automatic if a,, is a finite-state function of the base-k representation
of n. This means that there exists a finite automaton starting with the
k-ary expansion of n as input and producing the term a,, as output. Finite
automata are one of the most basic models of computation and take place
at the bottom of the hierarchy of Turing machines. A nice reference on this
topic is the book of Allouche and Shallit [9]. We refer the reader to it for
more details about this notion.

Motivated by the Hartmanis-Stearns problem [21], the following ques-
tion was addressed in [3]: do there exist algebraic numbers of degree at
least three whose continued fraction expansion can be produced by a finite
automaton?

The first result towards this problem is due to Queffélec [32], who proved
the transcendence of the Thue-Morse continued fractions. A more general
statement can be found in [33]. As it is shown in [3], the transcendence of a
large class of automatic continued fractions can be derived from Theorem
2.1 and 2.2. In the present Section, we show how our transcendence criteria
apply to two others emblematic automatic sequences: the Rudin—Shapiro
and the Baum—Sweet sequences.

Before proving such results, we recall some classical facts about mor-
phisms and morphic sequences. For a finite set A, we denote by A* the
free monoid generated by A. The empty word ¢ is the neutral element of
A*. Let A and B be two finite sets. An application from A to B* can be

TOME 56 (2006), FASCICULE 7
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uniquely extended to a homomorphism between the free monoids A* and
B*. We call morphism from A to B such a homomorphism. If there is a
positive integer k such that each element of A is mapped to a word of
length k, then the morphism is called k-uniform or simply uniform.

A morphism ¢ from A into itself is said to be prolongable if there exists
a letter a such that o(a) = aW, where the word W is such that c™(W) is a
non-empty word for every n > 0. In that case, the sequence of finite words
(0™(a))n>1 converges in A%>0 (endowed with the product topology of the
discrete topology on each copy of A) to an infinite word a. Such an infinite
word is clearly a fixed point for the map o.

5.1. The Rudin—Shapiro continued fractions

Let € = (e5)n>0 be a sequence with values in the set {41, —1}. It is not
difficult to see that

2imn6
n€

> VN,

sup
6€[0,1]

€
0<n<N

for any positive integer N. In 1950, Salem asked the following question,
related to some problems in harmonic analysis: do there exist a sequence
£ = (gn)n>0 in {+1,—1}%20 and a positive constant ¢ such that

< VN

2imn6
nt

(5.1) sup
0€[0,1]

3
o<n<N

holds for any positive integer N7 A positive answer to this problem was
given by Shapiro [40] and Rudin [35], who provided an explicit solution
which is now known as the Rudin—Shapiro sequence. This sequence is a
famous example of a 2-automatic sequence and can be defined as follows: 7,
is equal to +1 (respectively —1) if the number of occurrences of the pattern
“11” in the binary representation of n is even (respectively odd). Theorem
2.1 yields the transcendence of the Rudin—Shapiro continued fractions.

THEOREM 5.1. — Let a and b two distinct positive integers, and let
r = (rn)n>0 be the Rudin—-Shapiro sequence on the alphabet {a,b} (that
is the symbol 1 is replaced by a and the symbol —1 is replaced by b in the
usual Rudin—-Shapiro sequence). Then, the real number o = [0; 79,71, 72, . . .]
is transcendental.

Proof. — We first infer from (5.1) that the Rudin—Shapiro sequence
is not eventually periodic. We present now a useful description of this

ANNALES DE L’INSTITUT FOURIER
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sequence. Let o be a morphism defined from {1,2,3,4}* into itself by:
o(1) = 12, 0(2) = 42, ¢(3) = 13 and o(4) = 43. Let

u = 1242434213 . ..

be the fixed point of ¢ begining with 1 and let ¢ be the morphism defined
from {1,2,3,4}* to {a,b}* by: ©(1) = ¢(2) = a and ¢(3) = p(4) = b. It is
known (see for instance [20], Ch. 5) that

(5.2) r = p(u).

Since 0°(1) = 1242434213, u begins with V1+1/8 where V = 12424342.
Then, it follows from (5.2) that for any positive integer n, the word r begins
with (o™ (V1*+1/8)). The morphism o being a uniform morphism, we easily
check that

p(a™(VIHE)) = (p(a™ (V) HE.
The sequence r thus satisfies the condition (x);41/s. This ends the proof
thanks to Theorem 2.1. O

5.2. The Baum—Sweet continued fractions

In 1976, Baum and Sweet [12] proved that, unlike what is expected in
the real case, the function field Fo((X~!)) contains a cubic element (over
F2(X)) with bounded partial quotient in its continued fraction expansion.
This element is Zn)O spX ", where s, is equal to 0 if the binary represen-
tation of n contains at least one string of 0’s of odd length and s,, is equal
to 1 otherwise. The sequence s = (sy,)n>0 is now usually referred to as the
Baum—-Sweet sequence. It follows from [5, 2] that, for any integer b > 2,
the real number Zn>0 sp/b™ is transcendental. Here, we use Theorem 3.1
to prove a similar result for the continued fraction expansion.

THEOREM 5.2. — Let a and b be distinct positive integers, and let
S = (Sn)n>0 be the Baum—Sweet sequence on the alphabet {a,b} (that is,
the symbol 0 is replaced by a and the symbol 1 is replaced by b in the
usual Baum—-Sweet sequence). Then, the real number o = [0; sg, 51, S2, - - -]
is transcendental.

Proof. — Let us first remark that the sequence s is not eventually peri-
odic. Indeed, as shown in [12], the formal power series }, -, s,X " is a
cubic element over Fo(X), thus, it is not a rational function.

Let us now recall a useful description of the Baum—Sweet sequence on
the alphabet {a,b}. Let o be the morphism defined from {1,2,3,4}* into

TOME 56 (2006), FASCICULE 7
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itself by: o(1) = 12, 0(2) = 32, 0(3) = 24 and o(4) = 44. Let also ¢ be
the morphism defined from {1,2,3,4}* to {a,b}* by: ¢(1) = ¢(2) = b and
©(3) = ¢(4) = a. Let

u = 123224323244 . ..

denote the fixed point of ¢ begining with 1. It is known (see for instance
[9], Ch. 6) that

(5.3) s = p(u).

Observe that u begins in the word UV?/2, where U = 1 and V = 232243.
Since the morphism o is uniform, it follows from (5.3) that, for any posi-
tive integer n, the word s begins with U, V;/?, where U, = p(c™(U)) and
Vi = @(6™(V)). In particular, we have |Uy,|/|V,| = 1/6 and s thus satisfies
Condition (x*)3/21/6. We further observe that the frequency of a in the
word U, tends to 1 as n tends to infinity. By Theorem 5 from [7], this
implies that the sequence (qz)igl converges, where gy denotes the denomi-
nator of the ¢-th convergent of «, for any positive integer £. Thus, with the
notation of Theorem 3.1, we have M = m. Since 3/2 > 1+ 1/6, we derive
from Theorem 3.1 that « is transcendental. This finishes the proof of our
theorem. O

6. Folded continued fractions

Numerous papers, including the survey [18], are devoted to paperfolding
sequences. In this Section we consider folded continued fractions and we
prove that they are always transcendental.

A sheet of paper can be folded in half lengthways in two ways: right
half over left (the positive way) or left half over right (the negative way).
After having been folded an infinite number of times, the sheet of pa-
per can be unfolded to display an infinite sequence of creases formed by
hills and valleys. For convenience, we will denote by +1 the hills and by
—1 the valleys. The simplest choice, that is to fold always in the positive
way, gives the well-known regular paperfolding sequence over the alphabet
{+1, —1}. More generally, if e = (e,)n>0 is in {+1, —1}%>0, the associated
paperfolding sequence on the alphabet {+1, —1} is obtained accordingly to
the sequence e of folding instructions, that is, the n-th fold is positive if
en = +1 and it is negative otherwise.

Among the numerous studies concerned with paperfolding sequences,
much attention has been brought on the way (quite intriguing) they are
related to the continued fraction expansion of some formal power series.
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Indeed, it can be shown that for any sequence e = (e,,)n>0 € {+1, —1}%>0
of folded instructions, the continued fraction expansion of the formal power
series X Zn>0 en X 2" can be deduced from the associated paperfolding
sequence f. As a consequence, the authors of [31] precisely described the
continued fraction expansion of the real number £ = 2Zn>0 e,272" . In
particular, they proved that such an expansion is also closely related to the
sequence f and called it a “folded continued fraction”. However, we point
out that these “folded continued fractions” are not the same as those we
consider in Theorem 6.1. Real numbers such as £ were shown to be tran-
scendental in [27] thanks to the so-called Mahler method (the observation
that Ridout’s Theorem [34] also implies that such numbers are transcen-
dental was for instance done in [1]). Consequently, we get the transcendence
of a family of continued fractions whose shape arises from paperfolding se-
quences; a fact mentioned in [31]. The following result has the same flavour
though it is obtained in a totally different way. It deals with another family
of continued fractions arising from paperfolding sequences.

THEOREM 6.1. — Let a and b be two positive distinct integers, (€5)n>0
€ {+1,—1}%>0 be a sequence of folding instructions and let £ = (f)n>0
be the associated paperfolding sequence over the alphabet {a,b} (that is,
the symbol +1 is replaced by a and the symbol —1 is replaced by b in the
usual paperfolding sequence associated with (ey)n>0). Then, the number
a = [0; fo, f1, fa,...] is transcendental.

Proof. — Let f = (fn)n>0 be the paperfolding sequence on the alpha-
bet {a,b} associated with the sequence (e,),>0 in {+1,—1}%>0 of folding
instructions. We first notice that f is not eventually periodic since no pa-
perfolding sequence is eventually periodic (see [18]).

We present now another useful description of the sequence f. Let F;,
i € {41, —1}, be the map defined from the set {41, —1}* into itself by

Fi: wr— wi— (W),

where W1 W3 - - - Wy, 1= Wy Wy —1 - . - w1 denotes the mirror image of the word
WIW3 . .. Wy, and —(wiwga ... Wy,) = wijwh ... w),, with w, = +1 (resp.
w; = —1) if w; = —1 (resp. w; = +1). Let ¢ be the morphism defined from
{+1,—-1}* to {a,b}* by ¢(+1) = a and ¢(—1) = b. One can easily verify
(see for instance [18]) that

(6.1) f= lim @(FeFe, ... Fe, (),

n—-—+oo

where € denotes the empty word.

TOME 56 (2006), FASCICULE 7



2106 Boris ADAMCZEWSKI, Yann BUGEAUD & Les DAVISON

Let n > 2 be an integer and set V;, = F, ... Fe, (€). By (6.1), the finite
word

F, = 4,0(-7:60-7:@1 e Fen(€)) = o(FegFey, (Vi)

is a prefix of f. Moreover, we have

FosFer (Vi) = Fuy (Viner — Vi) = (Vier — Vi)eo — (Vs — V).
This gives
FeoFer (V) = (Vner = Vi)eoVy — (Vyer).
In particular, the word
o(Vner(—Va)eo Vi)

is a prefix of f. Moreover, we have

p(Vne1(=Va)eoVi) = (p(Vaer(—Va)eo))"n,

where w, = 1+ [@(V,)|/(2]¢(Vn)| + 2). Thus, f begins with the word
(p(Ver (=Vi)eo))®/4. Since |¢(V;,)| tends to infinity with n, this proves
that f satisfies Condition (x)5,4. Consequently, Theorem 2.1 implies that
the real number a = [0; fo, f1, f2, - . .] is transcendental. This ends the proof.
O

7. Generalized perturbed symmetry systems

A perturbed symmetry is a map defined from A* into itself by Sx (W) =
W XW, where A is a finite set, W and X are finite words on A, and W
is defined as in the previous Section. Since Sx (W) begins in W, we can
iterate the map Sx to obtain the infinite sequence

SEW)=WXWXWXW ...

Such sequences were introduced in [29, 14], where it is proved that they
are periodic if and only if the word X is a palindrome, that is, X = X.

More recently, Allouche and Shallit [8] generalized this notion as follows.
For convenience, for any finite word W, we set W¥ := W and W¥ :=
W. Let k be a positive integer. Let X, Xs,..., X}, be finite words of the
same length s, and let eq,es,...,ex be in {E, R}. Then, the associated
generalized perturbed symmetry is defined by

k
Sw)y=w][[xiwe.

i=1
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Again, since S(W) begins in W, we get an infinite word S°°(W) by
iterating S. In [8], the authors proved that S« (W) is (k+1)-automatic and
gave a necessary and sufficient condition for this sequence to be eventually
periodic.

We introduce now a generalization of this process. First, let us assume
in the previous definition that the X; are finite and possibly empty words,
without any condition on their length. We can similarly define a map S
that we again call a generalized perturbed symmetry. If all the X; have the
same length, as previously, we may then call this map a uniform generalized
perturbed symmetry. We point out that the definition we consider here is
more general than the one given in [8]. A generalized perturbed symmetry
system is defined as a 4-tuple (A, W, S, (Sn)n>0), where A is a finite set,
W e A*, W # ¢, S is a finite set of generalized perturbed symmetries and
(Sn)n>0 € SZ>0_ Then, it is easily verified that the sequence of finite words

SpSn_1...So(W)

converges to an infinite sequence, which we call the sequence produced by
the generalized perturbed symmetry system (A, W,S, (Sn)n>0). When A
is a subset of Z>,, we obtain an infinite sequence of positive integers that
we can view as the continued fraction expansion of a real number.

THEOREM 7.1. — Generalized perturbed symmetry systems generate
either quadratic or transcendental continued fractions.

Proof. — For any integer n > 0, we consider a generalized perturbed
symmetry S5, associated with the parameters

Xl,TLvXQ,TH e 7an,n

and
€1m,€2n;---,€k,.n 0 {E, R}

Let u be the sequence generated by the generalized perturbed symmetry
system (A, W, S, (Sn)n>0). For every positive integer n we define the finite
word

Wn = On—-1--- So(W)

Then, W, is a prefix of u and the sequence (|W,|)n>1 tends to infinity.
To prove Theorem 7.1, we will show that there exists a rational w greater
than 1, such that u satisfies Condition (%),,. In order to do this, we have
to distinguish two different cases.

First, assume that for infinitely many integers n, we have e;,, = E. In
this case, S,,(W,,) begins in WnXl,nW,fl‘" = W, X1,,W,, thus the sequence
u begins in W, X; ,,W,,. Since |W,,| tends to infinity and |X; | lies in a
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finite set, we have that u begins in (W, X;,)%? as soon as n is large
enough. Thus, u satisfies Condition (x)3/2.

Now, assume that there exists an integer ng such that for all n > ng, we
have e; , = R. Let n be an integer greater than ng. Then, S, (W,,) begins
in W, X, nW where

W'ﬂ = S’nfl(anl) = Wn,1 H Xln 1W€l n— 1.

This implies that S, (W,,) begins with

kn—1 kn—1 R
<Wn—1 H Xln 1W€1 ‘' 1>)(1,n (Wn—l H X’LTL 1W€ln 1)
i=1 i=1
kn—l k'n,—l R
= (Wn—l H in 1W€1n 1>AX—1,n< H Xin lwezn 1)
i=1 1=2

R
(Wn 1 X1 na Wit 1) .

Since n > ng, we have e ,—1 = R. Consequently, S, (W,,) begins in

kn—1 R
n 1<HX1n 1 emn 1>X1,n(Hin 1VV€ln 1)
i=1

Who1 = Wy 1Y W,y

Since both the k; and the X, ; lie in a finite set, and since |WW,,| tends to
infinity with n, we get that S, (W),,), and thus u, begins in (Wn,lYn,l)H_ﬁ
for n large enough, where we have set k = max{k, : n > 1}. This implies
that u satifies Condition ()11 /(3x), and we conclude the proof by applying
Theorem 2.1. O

8. Inside the proof of Theorem 3.1: an example of the use
of continuants

The purpose of this Section is to point out that, in some cases, rather
than applying roughly Theorem 3.1, it is much better to go into its proof
and to evaluate continuants carefully. In order to illustrate this idea, we
introduce a new family of continued fractions.
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Throughout this Section, we use the following notation. Let £ > 3 be
an odd integer. Let by, ..., by be positive integers with b; < ... < bg. We
consider words defined on the alphabet ¥ = {b1,...,bs}. The character b;
denotes either the letter b;, or the integer b;, according to the context. For
any finite word W on ¥ and for j = 1,...,k, denote by [W/|y, the number
of occurrences of the letter b; in W. Set

quual ={WeX" (W, =W, for2<j<k}

Let A > 1 be real and, for any n > 1, let W,, be in quual with [W,41] >

AW, |. Consider the infinite word a = (as)¢>1 defined by
a=WW;W2.. . W2...

Observe that a is either eventually periodic, or it satisfies Condition
(X)w,u With w =2 and w’ =2/(\ —1).

If a is not eventually periodic, then Theorem 3.1 implies the transcen-
dence of the real number a = [0; a1, as, ...], provided A is sufficiently large
in terms of b. It turns out that the method of proof of Theorem 3.1 is
flexible enough to yield in some cases much better results: we can get a
condition on A that does not depend on the values of the b;’s.

THEOREM 8.1. — Keep the preceding notation. Assume furthermore
that |W,,| is odd for all sufficiently large n and that A > 3.26. Then, the
real number

a=1[0;a1,as,...]

is either quadratic, or transcendental.

In order to establish Theorem 8.1, we need three lemmas. We keep the
notation from Section 3 of [7]. In particular, for an integer matrix A, we
denote by p(A) its spectral radius and by ||A|| its L?-norm. Recall that
p(A) =||A]| when A is symmetrical. Our first auxiliary result is extracted
from [7]. In all what follows, we set v = 0.885.

LEMMA 8.2. — If A = (Cll (1)) and B = (Il) (1)) where a and b are

distinct positive integers, then we have
P(AB) > (p(A)p(B))".
b; 1

For j=1,...,k, set B; = (j

1 0). Set also

X =

T =

k
> log p(B;).
j=1
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For any finite word V on X, denote by K (V') the corresponding continuant.

LEMMA 8.3. — IfV isin X _ then we have

equal’
1
V]
Proof. — Let V = did> .. .d,, be a finite word defined over the alphabet
Z::qual' Set pm—1/dm-1 = [0;d1,...,dm-1] and pp/qm = [0;d1,...,dn].
Then, we have K(V) = ¢,, and

woel(s )

Pm  Pm-1
Setting h; = |V, for j = 1,..., k, it follows from the theory of continued

log K(V) < X.

fractions that
E(V) < |1Bi"™ ... || Byl|™.
Since the B;’s are symmetrical and hy = ... = hy = h, we have

K(V)Y" < p(By)...p(By).

Hence, the proof. O

Our last auxiliary result is the following.

LEMMA 8.4. — IfV isin XF  with |V| odd, then we have

equal
1 log 4
— log K(V) >~y X — ——.
V] V]
Proof. — We use repeatedly a particular case of Theorem 3.4 from [17]. It
asserts that if W is the product of an odd number m of matrices By, ..., By,

each of which occurring exactly ¢ times, then we have

tr(W) > p(ByBy)  tr(W'),
where W’ is the product arising from W by replacing the matrices By and
By by the identity matrix. As usual, tr(M) denotes the trace of the matrix

M.
With the notation of the proof of Lemma 8.3, we then get that

> ltr <Qm qm1>
Pm  Pm-1

p(B1By)" ... p(Be—1)/2Bxt3)/2)" tr(Bli 11 2)

=
S
\

=
> = p(BiBw)" ... p(B—1)/2B(k+3)/2)" P(Bli s 1) 2)

p(B1)...p(B)) ",

)

\Y
g SN I NN T )

—~

ANNALES DE L’INSTITUT FOURIER



CONTINUED FRACTIONS AND TRANSCENDENTAL NUMBERS 2111

by Lemma 8.2. The lemma follows. O

‘We have now all the tools needed to establish Theorem 8.1.
Proof of Theorem 8.1 — For any n > 2, set
Uy, =WWi.. W2, and V, =W,.

Clearly, a begins in U, V,2. Denote by K(U,,) and by K(V,,) the contin-
uants associated to the words U,, and V,,, respectively. In view of Lemma
3.2 and of (3.3), the theorem is proved as soon as we establish that there
exists a positive real number € such that

(8.1) log K(V,,) > (1 +¢)log K(Up,),

for any sufficiently large integer n.
To prove (8.1), we first infer from Lemmas 3.2 and 8.3 that

log K(U,) < log K(V;) + 2 g log K(V;) +2n < 2X S [V;| + 2n.
j=2 j=1
Consequently, we get J j
(8.2) |71n| log K (U,,) < f—i 4 %
On the other hand, Lemma 8.4 gives us that
(8.3) ﬁ log K(V,,) >~vX — 1|(;/g;|L'

We then infer from (8.2) and (8.3) that (8.1) is satisfied for some positive
€ as soon as we have v > 2/(\ — 1), that is, A > 1 +2~y~! = 3.25... This
completes the proof of the theorem. O
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