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PALINDROMIC COMPLEXITY OF INFINITE WORDS
ASSOCIATED WITH SIMPLE PARRY NUMBERS

by Petr AMBROŽ, Zuzana MASÁKOVÁ,
Edita PELANTOVÁ & Christiane FROUGNY

Abstract. — A simple Parry number is a real number β > 1 such that the
Rényi expansion of 1 is finite, of the form dβ(1) = t1 · · · tm. We study the palin-
dromic structure of infinite aperiodic words uβ that are the fixed point of a sub-
stitution associated with a simple Parry number β. It is shown that the word uβ

contains infinitely many palindromes if and only if t1 = t2 = · · · = tm−1 > tm.
Numbers β satisfying this condition are the so-called confluent Pisot numbers. If
tm = 1 then uβ is an Arnoux-Rauzy word. We show that if β is a confluent Pisot
number then P(n + 1) +P(n) = C(n + 1)−C(n) + 2, where P(n) is the number of
palindromes and C(n) is the number of factors of length n in uβ . We then give a
complete description of the set of palindromes, its structure and properties.

Résumé. — Un nombre de Parry simple est un nombre réel β > 1 tel que le
développement de Rényi de 1 est fini, de la forme dβ(1) = t1 · · · tm. Nous étudions
la structure palindromique des mots infinis apériodiques uβ qui sont point fixe
d’une substitution associée à un nombre de Parry simple β. Nous montrons que
le mot uβ contient un nombre infini de palindromes si et seulement si t1 = t2 =
· · · = tm−1 > tm. Les nombres β satisfaisant cette condition sont connus sous
le nom de nombres de Pisot confluents. Si de plus tm = 1 alors uβ est un mot
d’Arnoux-Rauzy. Nous montrons que si β est un nombre de Pisot confluent alors
P(n + 1) + P(n) = C(n + 1) − C(n) + 2, où P(n) est le nombre de facteurs de
longueur n de uβ . Nous donnons aussi une description complète de l’ensemble des
palindromes, de sa structure et de ses propriétés.

1. Introduction

Infinite aperiodic words over a finite alphabet are suitable models for
one-dimensional quasicrystals, i.e. non-crystallographic materials display-
ing long-range order, since they define one-dimensional Delaunay sets with

Keywords: beta-expansions, palindromic complexity.
Math. classification: 68R15, 11A63.



2132 P. AMBROŽ, Z. MASÁKOVÁ, E. PELANTOVÁ & C. FROUGNY

finite local complexity. The first quasicrystal was discovered in 1984: it is
a solid structure presenting a local symmetry of order 5, i.e. a local invari-
ance under rotation of π/5, and it is linked to the golden ratio and to the
Fibonacci substitution. The Fibonacci substitution, given by

0 7→ 01, 1 7→ 0,

defines a quasiperiodic selfsimilar tiling of the positive real line, and is a
historical model of a one-dimensional quasicrystal. The fixed point of the
substitution is the infinite word

010010101 · · ·

The description and the properties of this tiling use a number system in
base the golden ratio.

A more general theory has been elaborated with Pisot numbers(1) for
base, see [8, 16]. Note that so far, all the quasicrystals discovered by physi-
cists present local symmetry of order 5 or 10, 8, and 12, and are modelized
using quadratic Pisot units, namely the golden ratio for order 5 or 10,
1 +

√
2 for order 8, and 2 +

√
3 for order 12.

For the description of physical properties of these materials it is impor-
tant to know the combinatorial properties of the infinite aperiodic words,
such as the factor complexity, which corresponds to the number of local
configurations of atoms in the material, or the palindromic structure of
the aperiodic words, describing local symmetry of the material. The palin-
dromic structure of the infinite words has been proven important for the
description of the spectra of Schrödinger operators with potentials adapted
to aperiodic structures [25].

The most studied infinite aperiodic word is the Fibonacci word, which
is the paradigm of the notion of Sturmian words. Sturmian words are bi-
nary aperiodic words with minimal factor complexity, i.e. C(n) = n+ 1 for
n ∈ N = {0, 1, 2, . . .}. There exist several equivalent definitions of Sturmian
words see [10], or [28, Chapter 2]. From our point of view the characteriza-
tion of Sturmian words using palindromes [20] is particularly interesting.

Sturmian words can be generalized in several different ways to words over
m-letter alphabet, namely to Arnoux-Rauzy words of order m, see [3, 10],
or to infinite words coding m-interval exchange [27, 33]. The Sturmian case
is included for m = 2.

(1) A Pisot number is an algebraic integer > 1 such that the other roots of its minimal
polynomial have a modulus less than 1. The golden ratio and the natural integers are
Pisot numbers.

ANNALES DE L’INSTITUT FOURIER



PALINDROMIC COMPLEXITY 2133

Arnoux-Rauzy words and words coding generic m-interval exchange have
factor complexity C(n) = (m− 1)n+ 1 for n ∈ N, [27]. For Arnoux-Rauzy
words the palindromic structure is also known [26, 18]: for every n the
number P(n) of palindromes of length n is equal to P(n) = 1 if n is even and
to P(n) = m if n is odd. The palindromic structure of infinite words coding
m-interval exchange is more complicated. The existence of palindromes of
arbitrary length depends on the permutation which exchanges the intervals.
For m = 3 and the permutation π = (321) the result is given in [18], for
general m in [6].

As we have seen for the Fibonacci word, infinite aperiodic words can also
be obtained as the fixed point of a substitution canonically associated with
a number system where the base is an irrational number β, the so-called
β-expansions introduced by Rényi [34]. The words uβ are defined in the
case that β is a Parry number, that is to say when the Rényi expansion
of 1 is eventually periodic or finite, see Section 2 for definitions. These
words provide a good model of one-dimensional quasicrystals [8]. The factor
complexity of these words is at most linear, because they are fixed points
of primitive substitutions [32]. The exact values of the complexity function
C(n) for a large class of Parry numbers β can be found in [23] and some
partial results about other Parry numbers β are to be found in [24].

This paper is devoted to the description of the palindromic structure of
the infinite words uβ , when β is a simple Parry number, with the Rényi
expansion of 1 being of the form dβ(1) = t1 · · · tm. We first show that
the word uβ contains infinitely many palindromes if and only if t1 = t2 =
· · · = tm−1 > tm. Numbers β satisfying this condition have been introduced
and studied in [22] from the point of view of linear numeration systems.
Confluent linear numeration systems are exactly those for which there is no
propagation of the carry to the right in the process of normalization, which
consists of transforming a non-admissible representation on the canonical
alphabet of a number into the admissible β-expansion of that number. Such
a number β is known to be a Pisot number, and will be called a confluent
Pisot number. We also know from [23] that the infinite word uβ is an
Arnoux-Rauzy sequence if and only if it is a confluent Pisot number with
the last coefficient tm being equal to 1; then β is an algebraic unit.

In the sequel β is a confluent Pisot number. We then determine the
palindromic complexity, that is P(n), the number of palindromes in uβ of
length n. In the description of P(n) we use the notions introduced in [23]
for the factor complexity. The connection of the factor and palindromic
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complexity is not surprising. For example, in [2] the authors give an upper
estimate of the palindromic complexity P(n) in terms of C(n).

In this paper we show that if the length of palindromes is not bounded,
which is equivalent to lim supn→∞ P(n) > 0, then

(1.1) P(n+ 1) + P(n) = C(n+ 1)− C(n) + 2 , for n ∈ N .

In general it is has been shown [5] that for a uniformly recurrent word
with lim supn→∞ P(u) > 0 the inequality

P(n+ 1) + P(n) 6 C(n+ 1)− C(n) + 2

holds for all n ∈ N. Moreover, the authors proved the formula (1.1) to
be valid for infinite words coding the r-interval exchange. Finally, it is
known that the formula (1.1) holds also for Arnoux-Rauzy words [2] and
for complementation-symmetric sequences [18].

We then give a complete description of the set of palindromes, its struc-
ture and properties. The exact palindromic complexity of the word uβ is
given in Theorem 7.1.

Further on, we study the occurrence of palindromes of arbitrary length
in the prefixes of the word uβ . It is known [19] that every word w of length
n contains at most n + 1 different palindromes. The value by which the
number of palindromes differs from n + 1 is called the defect of the word
w. Infinite words whose every prefix has defect 0 are called full. We show
that whenever lim supn→∞ P(n) > 0, the infinite word uβ is full.

2. Preliminaries

Let us first recall the basic notions which we work with, for more details
reader is referred to [28]. An alphabet is a finite set whose elements are
called letters. A finite word w = w1w2 · · ·wn on the alphabet A is a con-
catenation of letters. The length n of the word w is denoted by |w|. The
set of all finite words together with the empty word ε equipped with the
operation of concatenation is a free monoid over the alphabet A, denoted
by A∗.

An infinite sequence of letters of A of the form

u0u1u2 · · · , · · ·u2u1u0, or · · ·u−2u−1u0u1u2 · · ·

is called right infinite word, left infinite word, or two-sided infinite word,
respectively. If for a two-sided infinite word the position of the letter in-
dexed by 0 is important, we introduce pointed two-sided infinite words,
· · ·u−2u−1|u0u1u2 · · · .

ANNALES DE L’INSTITUT FOURIER



PALINDROMIC COMPLEXITY 2135

A factor of a word v (finite or infinite) is a finite word w such that there
exist words v1, v2 satisfying v = v1wv2. If v1 = ε, then w is called a prefix
of v, if v2 = ε, then w is a suffix of v. For a finite word w = w1w2 · · ·wn

with a prefix v = w1 · · ·wk, k 6 n, we define v−1w := wk+1 · · ·wn.
On the set A∗ we can define the operation ∼ which to a finite word

w = w1 · · ·wn associates w̃ = wn · · ·w1. The word w̃ is called the reversal
of w. A finite word w ∈ A∗ for which w = w̃ is called a palindrome.

The set of all factors of an infinite word u is called the language of u and
denoted by L(u). The set of all palindromes in L(u) is denoted by Pal(u).
The set of words of length n in L(u), respectively in Pal(u) determines the
factor, respectively palindromic complexity of the infinite word u. Formally,
the functions C : N → N, P : N → N are defined by

C(n) := # {w | w ∈ L(u), |w| = n} ,
P(n) := # {w | w ∈ Pal(u), |w| = n} .

Obviously, we have P(n) 6 C(n) for n ∈ N. We have moreover

P(n) 6
16
n
C

(
n+

⌊n
4

⌋)
,

as shown in [2].
For the determination of the factor complexity important is the notion of

the so-called left or right special factors, introduced in [17]. The extension
of a factor w ∈ L(u) by a letter to the left is called the left extension of w,
analogously we define the right extension of a factor w. Formally, we have
the sets

Lext(w) := {a | aw ∈ L(u)} ,
Rext(w) := {a | wa ∈ L(u)} .

If #Lext(w) > 2, we say that w is a left special factor of the infinite word
u. Similarly, if #Rext(w) > 2, then w is a right special factor of u. For the
first difference of complexity we have

∆C(n) = C(n+ 1)− C(n) =
∑

w∈L(u), |w|=n

(#Lext(w)− 1) .

In this formula we can exchange Lext(w) with Rext(w).
Infinite words which have for each n at most one left special factor and

at most one right special factor are called episturmian words [26]. Arnoux-
Rauzy words of order m are special cases of episturmian words; they are
defined as words on a m-letter alphabet such that for every n there exist
exactly one left special factor w1 and exactly one right special factor w2.
Moreover, these special factors satisfy #Lext(w1) = #Rext(w2) = m.

TOME 56 (2006), FASCICULE 7
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Analogically to the case of factor complexity, for the palindromic com-
plexity it is important to define the palindromic extension: If for a palin-
drome p ∈ Pal(u) there exists a letter a such that apa ∈ Pal(u), then we
call the word apa the palindromic extension of p.

A mapping on a free monoidA∗ is called a morphism if ϕ(vw) = ϕ(v)ϕ(w)
for all v, w ∈ A∗. Obviously, for determining the morphism it is sufficient
to define ϕ(a) for all a ∈ A. The action of a morphism can be naturally
extended on right infinite words by the prescription

ϕ(u0u1u2 · · · ) := ϕ(u0)ϕ(u1)ϕ(u2) · · · .

A non-erasing(2) morphism ϕ, for which there exists a letter a ∈ A such
that ϕ(a) = aw for some non-empty word w ∈ A∗, is called a substitution.
An infinite word v such that ϕ(v) = v is called a fixed point of the substi-
tution ϕ. Obviously, any substitution has at least one fixed point, namely
limn→∞ ϕn(a). Assume that there exists an index k ∈ N such that for every
pair of letters i, j ∈ A the word ϕk(i) contains as a factor the letter j. Then
the substitution ϕ is called primitive.

Similarly, one can extend the action of a morphism to left infinite words.
For a pointed two-sided infinite word u = · · ·u−3u−2u−1|u0u1 · · · we define
action of a morphism ϕ by ϕ(u) = · · ·ϕ(u−3)ϕ(u−2)ϕ(u−1)|ϕ(u0)ϕ(u1) · · · .
One can also define analogically the notion of a fixed point.

Right infinite words which will be studied in this paper, are connected
with the Rényi β-expansion of real numbers [34]. For a real number β > 1
the transformation Tβ : [0, 1] → [0, 1) is defined by the prescription

Tβ(x) := βx− bβxc .

The sequence of non-negative integers (tn)n>1 defined by ti = bβT i−1(1)c
satisfies 1 = t1

β + t2
β2 + t3

β3 + · · · . It is called the Rényi expansion of 1 and
denoted by

dβ(1) = t1t2t3 · · · .
In order that the sequence t1t2t3 · · · be the Rényi expansion of 1 for some
β, it must satisfy the so-called Parry condition [29]

titi+1ti+2 · · · ≺ t1t2t3 · · · for all i = 2, 3, . . . ,

where the symbol ≺ stands for "lexicographically strictly smaller". A num-
ber β > 1 for which dβ(1) is eventually periodic is called a Parry number.
If moreover dβ(1) has only finitely many non-zero elements, we say that β

(2) A morphism ϕ on an alphabet A is non-erasing if for any a ∈ A the image ϕ(a) is a
non-empty word.

ANNALES DE L’INSTITUT FOURIER



PALINDROMIC COMPLEXITY 2137

is a simple Parry number and in the notation for dβ we omit the ending
zeros, i.e. dβ(1) = t1t2 · · · tm, where tm 6= 0.

A Pisot number is an algebraic integer such that all its Galois conjugates
are in modulus less than 1. A Pisot number is a Parry number [13]. It is
known that a Parry number is a Perron number, i.e. an algebraic integer all
of whose conjugates are in modulus less than β. Solomyak [35] has shown
that all conjugates of a Parry number lie inside the disc of radius 1

2 (1+
√

5),
i.e. the golden ratio.

With every Parry number one associates a canonical substitution ϕβ ,
see [21]. For a simple Parry number β with dβ(1) = t1t2 · · · tm the substi-
tution ϕ = ϕβ is defined on the alphabet A = {0, 1, . . . ,m− 1} by

(2.1)

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m− 2) = 0tm−1(m− 1)
ϕ(m− 1) = 0tm

The notation 0k in the above stands for a concatenation of k zeros. The
substitution ϕ has a unique fixed point, namely the word

uβ := lim
n→∞

ϕn(0) ,

which is the subject of the study of this paper. The substitution (2.1) is
primitive, and thus according to [32], the factor complexity of its fixed point
is sublinear. The exact values of C(n) for uβ with dβ = t1 · · · tm satisfying
t1 > max{t2, . . . , tm−1} or t1 = t2 = · · · = tm−1 can be found in [23]. The
determination of the palindromic complexity of uβ is the aim of this article.

A similar canonical substitution is defined for non-simple Parry numbers.
Partial results about the factor and palindromic complexity of uβ for non-
simple Parry numbers β can be found in [7, 24].

One can define the canonical substitution ϕβ even if the Rényi expansion
dβ(1) is infinite non-periodic, i.e. β is not a Parry number. In this case,
however, the substitution and its fixed point are defined over an infinite
alphabet. The study of such words uβ is out of the scope of this paper.

3. Words uβ with bounded number of palindromes

The infinite word uβ associated with a Parry number β is a fixed point
of a primitive substitution. This implies that the word uβ is uniformly

TOME 56 (2006), FASCICULE 7
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recurrent [31]. Let us recall that an infinite word u is called uniformly
recurrent if every factor w in L(u) occurs in u with bounded gaps.

Lemma 3.1. — If the language L(u) of a uniformly recurrent word u

contains infinitely many palindromes, then L(u) is closed under reversal.

Proof. — From the definition of a uniformly recurrent word u it follows
that for every n ∈ N there exists an integer R(n) such that every arbitrary
factor of u of length R(n) contains all factors of u of length n. Since we
assume that Pal(u) is an infinite set, it must contain a palindrome p of
length > R(n). Since p contains all factors of u of length n, and p is a
palindrome, it contains with every w such that |w| = n also its reversal w̃.
Thus w̃ ∈ L(u). This consideration if valid for all n and thus the statement
of the lemma is proved. �

Note that this result was first stated, without proof, in [19].
The fact that the language is closed under reversal is thus a necessary

condition so that a uniformly recurrent word has infinitely many palin-
dromes. The converse is not true [11].

For infinite words uβ associated with simple Parry numbers β the invari-
ance of L(uβ) under reversal is studied in [23].

Proposition 3.2 ([23]). — Let β > 1 be a simple Parry number such
that dβ(1) = t1t2 · · · tm .

(1) The language L(uβ) is closed under reversal, if and only if

Condition (C) : t1 = t2 = · · · = tm−1 .

(2) The infinite word uβ is an Arnoux-Rauzy word if and only if Con-
dition (C) is satisfied and tm = 1.

Corollary 3.3. — Let β be a simple Parry number which does not
satisfy Condition (C). Then there exists n0 ∈ N such that P(n) = 0 for
n > n0.

Numbers β satisfying Condition (C) have been introduced and studied
in [22] from the point of view of linear numeration systems. Confluent linear
numeration systems are exactly those for which there is no propagation of
the carry to the right in the process of normalization, which consists of
transforming a non-admissible representation on the canonical alphabet of
a number into the admissible β-expansion of that number. A number β
satisfying Condition (C) is known to be a Pisot number, and will be called
a confluent Pisot number.

Set
t := t1 = t2 = · · · = tm−1 and s := tm .

ANNALES DE L’INSTITUT FOURIER



PALINDROMIC COMPLEXITY 2139

From the Parry condition for the Rényi expansion of 1 it follows that t >
s > 1. Then the substitution ϕ is of the form

(3.1)

ϕ(0) = 0t1
ϕ(1) = 0t2

...
ϕ(m− 2) = 0t(m− 1)
ϕ(m− 1) = 0s

t > s > 1 .

Note that in the case s = 1, the number β is an algebraic unit, and the
corresponding word uβ is an Arnoux-Rauzy word, for which the palindromic
complexity is known. Therefore in the paper we often treat separately the
cases s > 2 and s = 1.

4. Palindromic extensions in uβ

In the remaining part of the paper we study the palindromic structure
of the words uβ for confluent Pisot numbers β.

For an Arnoux-Rauzy word u (and thus also for a Sturmian word) it
has been shown that for every palindrome p ∈ L(u) there is exactly one
letter a in the alphabet, such that apa ∈ L(u), i.e. any palindrome in an
Arnoux-Rauzy word has exactly one palindromic extension [18]. Since the
length of the palindromic extension apa of p is |apa| = |p|+ 2, we have for
Arnoux-Rauzy words P(n+ 2) = P(n) and therefore

P(2n) = P(0) = 1 and P(2n+ 1) = P(1) = #A .

Determining the number of palindromic extensions for a given palindrome
of uβ is essential also for our considerations here. However, let us first
introduce the following notion.

Definition 4.1. — We say that a palindrome p1 is a central factor of
a palindrome p2 if there exists a finite word w ∈ A∗ such that p2 = wp1w̃.

For example, a palindrome is a central factor of its palindromic exten-
sions.

The following simple result can be easily obtained from the form of the
substitution (3.1), and is a special case of a result given in [23].

Lemma 4.2 ([23]). — All factors of uβ of the form X0nY for X,Y 6= 0
are the following

(4.1) X0t1, 10tX with X ∈ {1, 2, . . . ,m− 1}, and 10t+s1 .

TOME 56 (2006), FASCICULE 7



2140 P. AMBROŽ, Z. MASÁKOVÁ, E. PELANTOVÁ & C. FROUGNY

Remark 4.3. —
(1) Every pair of non-zero letters in uβ is separated by a block of at

least t zeros. Therefore every palindrome p ∈ L(uβ) is a central
factor of a palindrome with prefix and suffix 0t.

(2) Since ϕ(A) is a suffix code, the coding given by the substitution
ϕ is uniquely decodable. In particular, if w1 ∈ L(uβ) is a factor
with the first and the last letter non-zero, then there exist a factor
w2 ∈ L(uβ) such that 0tw1 = ϕ(w2).

Proposition 4.4. —
(i) Let p ∈ L(uβ). Then p ∈ Pal(uβ) if and only if ϕ(p)0t ∈ Pal(uβ).
(ii) Let p ∈ Pal(uβ). The number of palindromic extensions of p and

ϕ(p)0t is the same, i.e.

#{a ∈ A | apa ∈ Pal(uβ)} = #{a ∈ A | aϕ(p)0ta ∈ Pal(uβ)} .

Proof. — (i) Let p = w0w1 · · ·wn−1 ∈ L(uβ). Let us study under which
conditions the word ϕ(p)0t is also a palindrome, i.e. when

(4.2) ϕ(w0)ϕ(w1) · · ·ϕ(wn−1)0t = 0t ˜ϕ(wn−1) · · · ϕ̃(w1)ϕ̃(w0) .

The substitution ϕ has the property that for each letter a ∈ A it satisfies
ϕ̃(a) = 0−tϕ(a)0t. Using this property, the equality (4.2) can be equiva-
lently written as

ϕ(p) = ϕ(w0) · · ·ϕ(wn−1) = ϕ(wn−1) · · ·ϕ(w0) = ϕ(p̃) .

As a consequence of unique decodability of ϕ we obtain that (4.2) is valid
if and only if p = p̃.

(ii) We show that for a palindrome p it holds that

apa ∈ Pal(uβ) ⇐⇒ bϕ(p)0tb ∈ Pal(uβ) , where b ≡ a+1 (mod m) ,

which already implies the equality of the number of palindromic extensions
of palindromes p and ϕ(p)0t.

Let apa ∈ Pal(uβ). Then

ϕ(a)ϕ(p)ϕ(a)0t =

0t(a+ 1)ϕ(p)0t(a+ 1)0t , for a 6= m− 1 ,

0sϕ(p)0t+s , for a = m− 1 ,

is, according to (i) of this proposition, also a palindrome, which has a central
factor (a+ 1)ϕ(p)0t(a+ 1) for a 6= m− 1, and 0ϕ(p)0t0 for a = m− 1.

On the other hand, assume that bϕ(p)0tb ∈ Pal(uβ). If b 6= 0, then using
1. of Remark 4.3, we have 0tbϕ(p)0tb0t = ϕ

(
(b− 1)p(b− 1)

)
0t ∈ Pal(uβ).

Point (i) implies that (b − 1)p(b − 1) ∈ Pal(uβ) and thus (b − 1)p(b − 1)

ANNALES DE L’INSTITUT FOURIER



PALINDROMIC COMPLEXITY 2141

is a palindromic extension of p. If b = 0, then Lemma 4.2 implies that
10sϕ(p)0t0s1 ∈ L(uβ) and so 1ϕ

(
(m− 1)p(m− 1)0

)
∈ L(uβ), which means

that (m− 1)p(m− 1) is a palindromic extension of p. �

Unlike Arnoux-Rauzy words, in the case of infinite words uβ with dβ(1) =
tt · · · ts, t > s > 2, it is not difficult to see using Lemma 4.2 that there
exist palindromes which do not have any palindromic extension. Such a
palindrome is for example the word 0t+s−1.

Definition 4.5. — A palindrome p ∈ Pal(uβ) which has no palin-
dromic extension is called a maximal palindrome.

It is obvious that every palindrome is either a central factor of a maximal
palindrome, or is a central factor of palindromes of arbitrary length.

Proposition 4.4 allows us to define a sequence of maximal palindromes
starting from an initial maximal palindrome. Put

(4.3) U (1) := 0t+s−1, U (n) := ϕ(U (n−1))0t, for n > 2 .

Lemma 4.2 also implies that the palindrome 0t has for s > 2 two palin-
dromic extensions, namely 00t0 and 10t1. Using Proposition 4.4 we create
a sequence of palindromes, all having two palindromic extensions. Put

(4.4) V (1) := 0t, V (n) := ϕ(V (n−1))0t, for n > 2 .

Remark 4.6. — It is necessary to mention that the factors U (n) and V (n)

defined above play an important role in the description of factor complexity
of the infinite word uβ . Let us cite several results for uβ invariant under
the substitution (3.1) with s > 2, taken from [23], which will be used in
the sequel.

(1) Any prefix w of uβ is a left special factor which can be extended to
the left by any letter of the alphabet, i.e. aw ∈ L(uβ) for all a ∈ A,
or equivalently Lext(w) = A.

(2) Any left special factor w which is not a prefix of uβ is a prefix of
U (n) for some n > 1 and such w can be extended to the left by
exactly two letters.

(3) The words U (n), n > 1 are maximal left special factors of uβ , i.e.
U (n)a is not a left special factor for any a ∈ A. The infinite word
uβ has no other maximal left special factors.

(4) The word V (n) is the longest common prefix of uβ and U (n), more-
over, for every n > 1 we have

(4.5) |V (n)| < |U (n)| < |V (n+1)|
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(5) For the first difference of factor complexity we have

∆C(n) =

{
m if |V (k)| < n 6 |U (k)| for some k > 1 ,

m− 1 otherwise .

Now we are in position to describe the palindromic extensions in uβ . The
main result is the following one.

Proposition 4.7. — Let uβ be the fixed point of the substitution ϕ

given by (3.1) with parameters t > s > 2, and let p be a palindrome in uβ .
Then

(i) p is a maximal palindrome if and only if p = U (n) for some n > 1;
(ii) p has two palindromic extensions in uβ if and only if p = V (n) for

some n > 1;
(iii) p has a unique palindromic extension if and only if p 6= U (n), p 6=

V (n) for all n > 1.

Proof. — (i) Proposition 4.4, point (ii) and the construction of U (n) im-
ply that U (n) is a maximal palindrome for every n. The proof that no other
palindrome p is maximal will be done by induction on the length |p| of the
palindrome p.

Let p be a maximal palindrome. If p does not contain a non-zero let-
ter, then using Lemma 4.2, obviously p = U (1). Assume therefore that p
contains a non-zero letter. Point 1. of Remark 4.3 implies that p = 0tp̂0t,
where p̂ is a palindrome. Since p is a maximal palindrome, p̂ ends and
starts in a non-zero letter. Otherwise, p would be extendable to a palin-
drome, which contradicts maximality. From 2. of Remark 4.3 we obtain
that p = 0tp̂0t = ϕ(w)0t for some factor w. Proposition 4.4, (i), implies
that w is a palindrome. Point (ii) of the same proposition implies that w
has no palindromic extension, i.e. w is a maximal palindrome, with clearly
|w| < |p|. The induction hypothesis implies that w = U (n) for some n > 1
and p = ϕ(U (n))0t = U (n+1).

(ii) and (iii) From what we have just proved it follows that every palin-
drome p 6= U (n), n > 1, has at least one palindromic extension. Since we
know that V (n) has exactly two palindromic extensions, for proving (ii) and
(iii) it remains to show that if a palindrome p has more than one extension,
then p = V (n), for some n > 1.

Assume that ipi and jpj are in L(uβ) for i, j ∈ A, i 6= j. Obviously, p is
a left special factor of uβ . We distinguish two cases, according to whether
p is a prefix of uβ , or not.

• Let p be a prefix of uβ . Then there exists a letter k ∈ A such that pk
is a prefix of uβ and using (1) of Remark 4.6, the word apk ∈ L(uβ)
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for every letter a ∈ A, in particular ipk and jpk belong to L(uβ).
We have either k 6= i, or k 6= j; without loss of generality assume
that k 6= i. Since L(uβ) is closed under reversal, we must have
kpi ∈ L(uβ). Since ipi and kpi are in L(uβ), we obtain that pi is
also a left special factor of uβ , and pi is not a prefix of uβ . By
(2) of Remark 4.6, p is the longest common prefix of uβ and some
maximal left special factor U (n), therefore using (4) of Remark 4.6
we have p = V (n).

• If p is a left special factor of uβ , which is not a prefix of uβ , then by
(2) of Remark 4.6, p is a prefix of some U (n) and the letters i, j are
the only possible left extensions of p. Since p 6= U (n), there exists a
unique letter k such that pk is a left special factor of uβ and pk is a
prefix of U (n), i.e. the possible left extensions of pk are the letters
i, j. Since by symmetry kp ∈ L(uβ), we have k = i or k = j, say
k = i. Since jpk = jpi ∈ L(uβ), we have also ipj ∈ L(uβ). Since by
assumption ipi and jpj are in L(uβ), both pi and pj are left special
factors of uβ . Since p is not a prefix of uβ , neither pi nor pj are
prefixes of uβ . This contradicts the fact that k is a unique letter
such that pk is left special.

Thus we have shown that if a palindrome p has at least two palindromic
extensions, then p = V (n). �

From the above result it follows that if n 6= |V (k)|, n 6= |U (k)| for all
k > 1, then every palindrome of length n has exactly one palindromic
extension, and therefore P(n+2) = P(n). Inequalities in (4) of Remark 4.6
further imply that |V (i)| 6= |U (k)| for all i, k > 1. Therefore the statement
of Proposition 4.7 can be reformulated in the following way:

P(n+ 2)− P(n) =


1 if n = |V (k)| ,
−1 if n = |U (k)| ,
0 otherwise .

Point (5) of Remark 4.6 can be used for deriving for the second difference
of factor complexity

∆2C(n) = ∆C(n+ 1)−∆C(n) =


1 if n = |V (k)| ,
−1 if n = |U (k)| ,
0 otherwise .

Therefore we have for s > 2 that P(n + 2) − P(n) = ∆C(n + 1) −∆C(n),
for all n ∈ N. We thus can derive the following theorem.
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Theorem 4.8. — Let uβ be the fixed point of the substitution (3.1).
Then

P(n+ 1) + P(n) = ∆C(n) + 2 , for n ∈ N .

Proof. — Let the parameter in the substitution (3.1) be s = 1. Then uβ is
an Arnoux-Rauzy word, for which P(n+2)−P(n) = 0 = ∆C(n+1)−∆C(n).
For s > 2 we use P(n+ 2)− P(n) = ∆C(n+ 1)−∆C(n) derived above.

We have

P(n+ 1) + P(n) = P(0) + P(1) +
n∑

i=1

(
P(i+ 1)− P(i− 1)

)
=

= 1 +m+
n∑

i=1

(
∆C(i)−∆C(i− 1)

)
=

= 1 +m+ ∆C(n)−∆C(0) =

= 1 +m+ ∆C(n)− C(1) + C(0) = ∆C(n) + 2 ,

where we have used P(0) = C(0) = 1 and P(1) = C(1) = m = #A. �

Remark 4.9. — According to (5) of Remark 4.6, we have ∆C(n) 6 #A.
This implies P(n+1)+P(n) 6 #A+2, and thus the palindromic complexity
is bounded.

5. Centers of palindromes

We have seen that the set of palindromes of uβ is closed under the map-
ping p 7→ ϕ(p)0t. We study the action of this mapping on the centers of the
palindromes. Let us mention that the results of this section are valid for β
a confluent Pisot number with t > s > 1, i.e. also for the Arnoux-Rauzy
case.

Definition 5.1. — Let p be a palindrome of odd length. The center
of p is a letter a such that p = waw̃ for some w ∈ A∗. The center of a
palindrome p of even length is the empty word.

If palindromes p1, p2 have the same center, then also palindromes ϕ(p1)0t,
ϕ(p2)0t have the same center. This is a consequence of the following lemma.

Lemma 5.2. — Let p, q ∈ Pal(uβ) and let q be a central factor of p.
Then ϕ(q)0t is a central factor of ϕ(p)0t.

Note that the statement is valid also for q being the empty word.
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Proof. — Since p = wqw̃ for some w ∈ A∗, we have

ϕ(p)0t = ϕ(w)ϕ(q)ϕ(w̃)0t ,

which is a palindrome by (i) of Proposition 4.4. It suffices to realize that 0t is
a prefix of ϕ(w̃)0t. Therefore we can write ϕ(p)0t = ϕ(w)ϕ(q)0t0−tϕ(w̃)0t.
Since |ϕ(w)| = |0−tϕ(w̃)0t|, the word ϕ(q)0t is a central factor of ϕ(p)0t.

�

The following lemma describes the dependence of the center of the palin-
drome ϕ(p)0t on the center of the palindrome p. Its proof is a simple ap-
plication of properties of the substitution ϕ, we will omit it here.

Lemma 5.3. — Let p1 ∈ Pal(uβ) and let p2 = ϕ(p1)0t.
(i) If p1 = w1aw̃1, where a ∈ A, a 6= m − 1, then p2 = w2(a + 1)w̃2,

where w2 = ϕ(w1)0t.
(ii) If p1 = w1(m − 1)w̃1 and s + t is odd, then p2 = w20w̃2, where

w2 = ϕ(w1)0
s+t−1

2 .
(iii) If p1 = w1(m − 1)w̃1 and s + t is even, then p2 = w2w̃2, where

w2 = ϕ(w1)0
s+t
2 .

(iv) If p1 = w1w̃1 and t is even, then p2 = w2w̃2, where w2 = ϕ(w1)0
t
2 .

(v) If p1 = w1w̃1 and t is odd, then p2 = w20w̃2, where w2 = ϕ(w1)0
t−1
2 .

Lemmas 5.2 and 5.3 allow us to describe the centers of palindromes V (n)

which are in case s > 2 characterized by having two palindromic extensions.

Proposition 5.4. — Let V (n) be palindromes defined by (4.4).
(i) If t is even, then for every n > 1, V (n) has the empty word ε for

center and V (n) is a central factor of V (n+1).
(ii) If t is odd and s is even, then for every n > 1, V (n) has the letter

i ≡ n−1 (mod m) for center, and V (n) is a central factor of V (n+m).
(iii) If t is odd and s is odd, then for every n > 1, V (n) has the empty

word ε for center if n ≡ 0 (mod (m+1)), otherwise it has for center
the letter i ≡ n−1 (mod (m+1)). Moreover, V (n) is a central factor
of V (m+n+1).

Proof. — If t is even, then the empty word ε is the center of V (1) =
0t. Using Lemma 5.2 we have that ϕ(ε)0t = V (1) is a central factor of
ϕ(V (1))0t = V (2). Repeating Lemma 5.2 we obtain that V (n) is a central
factor of V (n+1). Since ε is the center of V (1), it is also the center of V (n)

for all n > 1.
It t is odd, the palindrome V (1) has center 0 and using Lemma 5.3, V (2)

has center 1, V (3) has center 2, . . . , V (m) has center m− 1. If moreover s
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is even, then V (m+1) has again center 0. Moreover, from (ii) of Lemma 5.3
we see that 0s+t is a central factor of V (m+1), which implies that V (1) = 0t

is a central factor of V (m+1). In case that s is odd, then V (m) having
center m − 1 implies that V (m+1) has center ε and V (m+2) has center 0.
Moreover, using (v) of Lemma 5.3 we see that V (1) = 0t is a central factor
of V (m+2). Repeated application of Lemma 5.2 implies the statement of
the proposition. �

As we have said, every palindrome p is either a central factor of a maximal
palindrome U (n), for some n > 1, or p is a central factor of palindromes with
increasing length. An example of such a palindrome is V (n), for n > 1, which
is according to Proposition 5.4 central factor of palindromes of arbitrary
length. According to the notation introduced by Cassaigne in [17] for left
and right special factors extendable to arbitrary length special factors, we
introduce the notion of infinite palindromic branch. We will study infinite
palindromic branches in the next section.

6. Infinite palindromic branches

Definition 6.1. — Let v = · · · v3v2v1 be a left infinite word in the
alphabet A. Denote by ṽ the right infinite word ṽ = v1v2v3 · · · .

• Let a ∈ A. If for every index n > 1, the word

p = vnvn−1 · · · v1av1v2 · · · vn ∈ Pal(uβ) ,

then the two-sided infinite word vaṽ is called an infinite palindromic
branch of uβ with center a, and the palindrome p is called a central
factor of the infinite palindromic branch vaṽ.

• If for every index n > 1, the word p = vnvn−1 · · · v1v1v2 · · · vn ∈
Pal(uβ), then the two-sided infinite word vṽ is called an infinite
palindromic branch of uβ with center ε, and the palindrome p is
called a central factor of the infinite palindromic branch vṽ.

Since for Arnoux-Rauzy words every palindrome has exactly one palin-
dromic extension, we obtain for every letter a ∈ A exactly one infinite
palindromic branch with center a; there is also one infinite palindromic
branch with center ε.

Obviously, every infinite word with bounded palindromic complexity
P(n) has only a finite number of infinite palindromic branches. This is
therefore valid also for uβ .
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Proposition 6.2. — The infinite word uβ invariant under the substi-
tution (3.1) has for each center c ∈ A∪{ε} at most one infinite palindromic
branch with center c.

Proof. — Lemma 5.3 allows us to create from one infinite palindromic
branch another infinite palindromic branch. For example, if vaṽ is an infi-
nite palindromic branch with center a 6= m−1, then using (i) of Lemma 5.3,
the two-sided word ϕ(v)0t(a + 1)0tϕ̃(v) is an infinite palindromic branch
with center (a + 1). Similarly for the center m − 1 or ε. Obviously, this
procedure creates from distinct palindromic branches with the same center
c ∈ A∪{ε} again distinct palindromic branches, for which the length of the
maximal common central factor is longer than the length of the maximal
common central factor of the original infinite palindromic branches. This
would imply that uβ has infinitely many infinite palindromic branches,
which is in contradiction with the boundedness of the palindromic com-
plexity of uβ , see Remark 4.9. �

Remark 6.3. — Examples of infinite palindromic branches can be easily
obtained from Proposition 5.4 as a centered limit of palindromes V (kn) for
a suitably chosen subsequence (kn)n∈N and n going to infinity, namely

• If t is even, then the centered limit of palindromes V (n) is an infinite
palindromic branch with center ε.

• If t is odd and s even, then the centered limit of palindromes

V (k+mn)

for k = 1, 2, . . . ,m is an infinite palindromic branch with center
k − 1.

• If t is odd and s odd, then the centered limit of palindromes

V (k+(m+1)n)

for k = 1, 2, . . . ,m is an infinite palindromic branch with center
k − 1, and for k = m + 1 it is an infinite palindromic branch with
center ε.

Corollary 6.4. —

(i) If s is odd, then uβ has exactly one infinite palindromic branch with
center c for every c ∈ A ∪ {ε}.

(ii) If s is even and t is odd, then uβ has exactly one infinite palin-
dromic branch with center c for every c ∈ A, and uβ has no infinite
palindromic branch with center ε.
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(iii) If s is even and t is even, then uβ has exactly one infinite palindromic
branch with center ε, and uβ has no infinite palindromic branch
with center a ∈ A.

Proof. — According to Proposition 6.2, uβ may have at most one infinite
palindromic branch for each center c ∈ A∪{ε}. Therefore it suffices to show
existence/non-existence of such a palindromic branch. We distinguish four
cases:

• Let s be odd and t odd. Then an infinite palindromic branch with
center c exists for every c ∈ A ∪ {ε}, by Remark 6.3.

• Let s be odd and t even. The existence of an infinite palindromic
branch with center ε is ensured again by Remark 6.3. For determin-
ing the infinite palindromic branches with other centers, we define
a sequence of words

W (1) = 0 , W (n+1) = ϕ(W (n))0t , n ∈ N, n > 1 .

Since s+t is odd, using (i) and (ii) of Lemma 5.3, we know thatW (n)

is a palindrome with center i ≡ n−1 (mod m). In particular, we have
that 0 = W (1) is a central factor of W (m+1). Using Lemma 5.2, also
W (n) is a central factor of W (m+n) for all n > 1. Therefore we can
construct the centered limit of palindromes W (k+mn) for n going to
infinity, to obtain an infinite palindromic branch with center k − 1
for all k = 1, 2, . . . ,m.

• Let s be even and t be odd. Then an infinite palindromic branch
with center c exists for every c ∈ A, by Remark 6.3. A palindromic
branch with center ε does not exist, since using Lemma 4.2 two
non-zero letters in the word uβ are separated by a block of 0’s of
odd length, which implies that palindromes of even length must be
shorter than t+ s.

• Let s and t be even. The existence of an infinite palindromic branch
with center ε is ensured again by Remark 6.3. Infinite palindromic
branches with other centers do not exist. The reason is that in
this case the maximal palindrome U (1) = 0t+s−1 has center 0 and
using Lemma 5.3 the palindromes U (2), U (3), . . . , U (m) have centers
1, 2, . . . ,m− 1, respectively. For all n > m the center of U (n) is the
empty word ε. If there existed an infinite palindromic branch vaṽ,
then the maximal common central factor p of vaṽ and U (a+1) would
be a palindrome with center a and with two palindromic extensions.
Using Proposition 4.7, p = V (k) for some k. Proposition 5.4 however
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implies that for t even the center of V (k) is the empty word ε, which
is a contradiction.

�

Remark 6.5. — The proof of the previous corollary implies:

(i) In case t odd, s even, uβ has only finitely many palindromes of even
length, all of them being central factors of U (1) = 0t+s−1.

(ii) In case t and s are even, uβ has only finitely many palindromes of
odd length and all of them are central factors of one of the palin-
dromes U (1), U (2), . . . , U (m), with center 0, 1, . . . ,m − 1, respec-
tively.

7. Palindromic complexity of uβ

The aim of this section is to give explicit values of the palindromic com-
plexity of uβ . We shall derive them from Theorem 4.8, which expresses
P(n) + P(n + 1) using the first difference of factor complexity; and from
(5) of Remark 4.6, which recalls the results about C(n) of [23].

Theorem 7.1. — Let uβ be the fixed point of the substitution (3.1),
with parameters t > s > 2.

(i) Let s be odd and let t be even. Then

P(2n+ 1) = m

P(2n) =

{
2, if |V (k)| < 2n 6 |U (k)| for some k,
1, otherwise.

(ii) Let s and t be odd. Then

P(2n+ 1) =


m+ 1, if |V (k)| < 2n+ 1 6 |U (k)| for some k

with k 6≡ 0 (mod (m+ 1)),

m, otherwise.

P(2n) =


2, if |V (k)| < 2n 6 |U (k)| for some k

with k ≡ 0 (mod (m+ 1)),

1, otherwise.
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(iii) Let s be even and t be odd. Then

P(2n+ 1) =


m+ 2, if |V (k)| < 2n+ 1 6 |U (k)| for some k > 2 ,

m, if 2n+ 1 6 |V (1)| ,
m+ 1, otherwise.

P(2n) =

{
1, if 2n 6 |U (1)| ,
0, otherwise.

(iv) Let s and t be even. Then

P(2n+ 1) =

{
#

{
k 6 m

∣∣ 2n+ 1 6 |U (k)|
}
, if 2n+ 1 6 |U (m)| ,

0, otherwise.

P(2n) =


m+ 2, if |V (k)| < 2n 6 |U (k)|

for some k > m+ 1 ,

#
{
k 6 m

∣∣ 2n > |V (k)|
}

+ 1, if 2n 6 |V (m+1)| ,
m+ 1, otherwise.

Proof. — We prove the statement by cases:

(i) Let s be odd and t be even. It is enough to show that P(2n+1) = m

for all n ∈ N. The value of P(2n) can then be easily calculated from
Theorem 4.8 and (5) of Remark 4.6.

From (i) of Corollary 6.4 we know that there exists an infinite
palindromic branch with center c for all c ∈ A. This implies that
P(2n+1) > m. In order to show the equality, it suffices to show that
all maximal palindromes U (k) are of even length, or equivalently,
have ε for center. Since both t and t+ s− 1 are even, 0t = V (1) is a
central factor of 0t+s−1 = U (1). Using Lemma 5.2, V (k) is a central
factor of U (k) for all k > 1. According to (i) of Proposition 5.4, V (k)

are palindromes of even length, and thus also the maximal palin-
dromes U (k) are of even length. Therefore they do not contribute
to P(2n+ 1).

(ii) Let s and t be odd. We shall determine P(2n) and the values of
P(2n+1) can be deduced from Theorem 4.8 and (5) of Remark 4.6.

From (i) of Corollary 6.4 we know that there exists an infinite
palindromic branch with center ε. Thus P(2n) > 1 for all n ∈ N.
Again, V (1) = 0t is a central factor of U (1) = 0t+s−1, and thus V (k)

is a central factor of U (k) for all k > 1. A palindrome of even length,
which is not a central factor of an infinite palindromic branch must
be a central factor of U (k) for some k, and longer than |V (k)|. Since
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|U (k)| < |V (k+1)| < |U (k+1)| (cf. (5) of Remark 4.6), at most one
such palindrome exists for each length. We have P(2n) 6 2. It
suffices to determine for which k, the maximal palindrome U (k) is
of even length, which happens exactly when its central factor V (k)

is of even length and that is, using (iii) of Proposition 5.4, for k ≡ 0
(mod (m+ 1)).

(iii) Let s be even and t be odd. According to (i) of Remark 6.5, all
palindromes of even length are central factors of U (1) = 0t+s−1.
Therefore P(2n) = 1 if 2n 6 |U (1)| and 0 otherwise. The value
of P(2n + 1) can be calculated from Theorem 4.8 and (5) of Re-
mark 4.6.

(iv) Let s and t be even. Using (ii) of Remark 6.5, the only palindromes
of odd length are central factors of U (k) for k = 1, 2, . . . ,m. There-
fore P(2n + 1) = 0 for 2n + 1 > |U (m)|. If 2n + 1 6 |U (m)|, the
number of palindromes of odd length is equal to the number of
maximal palindromes longer than 2n + 1. The value of P(2n) can
be calculated from Theorem 4.8 and (5) of Remark 4.6.

�

For the determination of the value P(n) for a given n, we have to know
|V (k)|, |U (k)|. In [23] it is shown that

|V (k)| = t

k−1∑
i=0

Gi , and |U (k)| = |V (k)|+ (s− 1)Gk−1 ,

where Gn is a sequence of integers defined by the recurrence

G0 = 1, Gn = t(Gn−1 + · · ·+G0) + 1 , for 1 6 n 6 m− 1 ,

Gn = t (Gn−1 + · · ·+Gn−m+1) + sGn−m , for n > m.

The sequence (Gn)n∈N defines the canonical linear numeration system as-
sociated with the number β, see [14] for general results on these numeration
systems. In this particular case, (Gn)n∈N defines a confluent linear numer-
ation system, see [22] for its properties.

8. Substitution invariance of palindromic branches

Infinite words uβ are invariant under the substitution (3.1). One can
ask whether also their infinite palindromic branches are invariant under a
substitution. In case that an infinite palindromic branch has as its center
the empty word ε, we can use the notion of invariance under substitution
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as defined for pointed two-sided infinite words. We restrict our attention
to infinite palindromic branches of such type.

Recall that an infinite palindromic branch of uβ with center ε exists,
(according to Corollary 6.4), only if in the Rényi expansion dβ(1) = tt · · · ts,
t is even, or both t and s are odd. Therefore we shall study only such
parameters.

Let us first study the most simple case, dβ(1) = t1 for t > 1. Here β is a
quadratic unit, and the infinite word uβ is a Sturmian word, expressible in
the form of the mechanical word µα,%,

µα,%(n) =
⌊
(n+ 1)α+ %

⌋
−

⌊
nα+ %

⌋
, n ∈ N ,

where the irrational slope α and the intercept ρ satisfy α = ρ = β
β+1 . The

infinite palindromic branch with center ε of the above word uβ = µα,% is
a two-sided Sturmian word with the same slope α = β

β+1 , but intercept 1
2 .

Indeed, two mechanical words with the same slope have the same set of
factors independently on their intercepts, and moreover the Sturmian word
µα, 1

2
is an infinite palindromic branch of itself, since

µα, 1
2
(n) = µα, 1

2
(−n− 1) , for all n ∈ Z .

Therefore if v = µα, 1
2
(0)µα, 1

2
(1)µα, 1

2
(2) · · · , then ṽv is the infinite palin-

dromic branch of uβ with the center ε.
Since the Sturmian word µα,% coincides with uβ , it is invariant under the

substitution ϕ. As a consequence of [30], the slope α is a Sturm number, i.e.
a quadratic number in (0, 1) such that its conjugate α′ satisfies α′ /∈ (0, 1),
(using the equivalent definition of Sturm numbers given in [1]).

The question about the substitution invariance of the infinite palindromic
branch ṽv is answered using the result of [4] (or also [36, 12]). It says that
a Sturmian word whose slope is a Sturm number, and whose intercept is
equal to 1

2 , is substitution invariant as a two-sided pointed word, i.e. there
exists a substitution ψ such that ṽ|v = ψ(ṽ)|ψ(v).

Example 8.1. — The Fibonacci word uβ for dβ(1) = 11 is a fixed point
of the substitution

ϕ(0) = 01, ϕ(1) = 0 .

Its infinite palindromic branch with center ε is

ṽv for v = 010100100101001001010 · · ·

which is the fixed point limn→∞ ψn(0)|ψn(0) of the substitution

ψ(0) = 01010, ψ(1) = 010 .
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Let us now study the question whether infinite palindromic branches in
uβ for general dβ(1) = tt · · · ts with t even, or t and s odd, are also substi-
tution invariant. It turns out that the answer is positive. For construction
of a substitution ψ under which a given palindromic branch is invariant,
we need the following lemma.

Lemma 8.2. — Let vṽ be an infinite palindromic branch with center ε.
Then the left infinite word v = · · · v3v2v1 satisfies

v = ϕ(v)0
t
2 for t even,

v = ϕm+1(v)ϕm(0
t+1
2 )0

t−s
2 for t and s odd.

Proof. — Let t be even and let vṽ be the unique infinite palindromic
branch with center ε. Recall that vṽ is a centered limit of V (n). Consider
arbitrary suffix vsuf of v, i.e. vsuf ṽsuf is a palindrome of uβ with center ε.
Denote w := ϕ(vsuf)0

t
2 . Using (iv) of Lemma 5.3 the word p = ww̃ is a

palindrome of uβ with center ε. We show by contradiction that w is a suffix
of v.

Suppose that p = ww̃ is not a central factor of vṽ, then there exists a
unique n such that p is a central factor of U (n). Then according to Propo-
sition 4.7, p is uniquely extendable into a maximal palindrome. In that
case we take a longer suffix v′suf of v, so that the length of the palindrome
p′ = w′w̃′, w′ := ϕ(v′suf)0

t
2 satisfies |p′| > |U (n)|. However, p′ (since it con-

tains p as its central factor) is a palindromic extension of p, and therefore
p′ is a central factor of U (n), which is a contradiction. Thus ϕ(vsuf)0

t
2 is a

suffix of v for all suffixes vsuf of v, therefore v = ϕ(v)0
t
2 .

Let now s and t be odd. If vsuf is a suffix of the word v, then vsuf ṽsuf

is a palindrome of uβ with center ε. Using Lemma 5.3, the following holds
true.

w0 = ϕ(vsuf)0
t−1
2 =⇒ w00w̃0 ∈ Pal(uβ)

w1 = ϕ(w0)0t =⇒ w11w̃1 ∈ Pal(uβ)
w2 = ϕ(w1)0t =⇒ w22w̃2 ∈ Pal(uβ)

...
wm−1 = ϕ(wm−2)0t =⇒ wm−1(m− 1)w̃m−1 ∈ Pal(uβ)

wε = ϕ(wm−1)0
s+t
2 =⇒ wεw̃ε ∈ Pal(uβ)

Together we obtain

wε = ϕm+1(vsuf)ϕm(0
t−1
2 )ϕm−1(0t) · · ·ϕ2(0t)ϕ(0t)0

s+t
2 .
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Since ϕm(0) = ϕm−1(0t)ϕm−2(0t) · · ·ϕ(0t)0s, the word wε can be rewritten
in a simpler form

wε = ϕm+1(vsuf)ϕm(0
t−1
2 )ϕm(0)0

t−s
2 = ϕm+1(vsuf)ϕm(0

t+1
2 )0

t−s
2

Since wε is again a suffix of v, the statement of the lemma for s and t odd
holds true. �

Theorem 8.3. — Let uβ be the fixed point of the substitution ϕ given
by (3.1), and let vṽ be the infinite palindromic branch of uβ with center
ε. Then the left-sided infinite word v is invariant under the substitution ψ

defined for all letters a ∈ {0, 1, . . . ,m− 1} by

ψ(a) =

{
w−1ϕ(a)w , where w = 0

t
2 , for t even,

w−1ϕm+1(a)w , where w = ϕm(0
t+1
2 )0

t−s
2 , for t and s odd.

Moreover, if t is even, then ψ(a) is a palindrome for all a ∈ A and vṽ as a
pointed sequence is invariant under the same substitution ψ.

Proof. —
First let us show that the substitution ψ is well defined.
• Let t be even. Since 0

t
2 is a prefix of ϕ(a) for all a ∈ {0, 1, . . . ,m−2}

and ϕ(m− 1) = 0s, therefore 0
t
2 is a prefix of ϕ(m− 1)0

t
2 = 0s+ t

2 .
• Let t and s be odd. Let us verify that w is a prefix of ϕm+1(a)w.

– If a 6= m− 1, we show that w = ϕm(0
t+1
2 )0

t−s
2 is a prefix of

ϕm+1(a) = ϕm
(
0t(a+ 1)

)
= ϕm(0

t+1
2 )ϕm(0

t−1
2 )ϕm(a+ 1) .

It suffices to show that 0
t−s
2 is a prefix of ϕm(0

t−1
2 ). For t = s it

is obvious. For t > s > 1 we obtain t > 3 and so ϕm(0
t−1
2 ) =

ϕm(0)ϕm(0
t−3
2 ) and clearly 0

t−s
2 is a prefix of ϕm(0).

– If a = m− 1, then

ϕm+1(m− 1)w = ϕm(0s)ϕm(0
t+1
2 )0

t−s
2 = ϕm(0

t+1
2 )ϕm(0)ϕm(0s−1)0

t−s
2 .

Since 0
t−s
2 is a prefix of ϕm(0), the correctness of the definition of

the substitution ψ is proven.
Now it is enough to prove that ψ(v) = v. Lemma 8.2 says that in the case
that t is even the left infinite word v = · · · v3v2v1 satisfies v = ϕ(v)w. Thus
we have

ψ(v) = · · ·ψ(v3)ψ(v2)ψ(v1) = · · ·w−1ϕ(v3)ww−1ϕ(v2)ww−1ϕ(v2)w =

= · · ·ϕ(v3)ϕ(v2)ϕ(v1)w = ϕ(v)w = v .

In case that t and s are odd, the proof is the same, using ϕm+1 instead
of ϕ.
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If t is even, it is clear from the prescription for ψ, that ψ(a) is a palin-
drome for any letter a, which implies the invariance of the word vṽ un-
der ψ. �

Let us mention that for t, s odd the words ψ(a), a ∈ A, may not be
palindromes. In that case the right-sided word ṽ is invariant under another
substitution, namely a 7→ ψ̃(a). Nevertheless even for t, s odd it may hap-
pen that ψ(a) is a palindrome for all letters. Then the two-sided word vṽ

is invariant under ψ. This situation is illustrated on the following example.

Example 8.4. — Consider the Tribonacci word, i.e. the word uβ for
dβ(1) = 111. It is the fixed point of the substitution

ϕ(0) = 01, ϕ(1) = 02, ϕ(2) = 0 ,

which is in the form (3.1) for t = s = 1 and m = 3. Therefore w = ϕ3(0) =
0102010. The substitution ψ, under which the infinite palindromic branch
vṽ of the Tribonacci word is invariant, is therefore given as

ψ(0) := w−1ϕ4(0)w = 0102010102010,
ψ(1) := w−1ϕ4(1)w = 01020102010,
ψ(2) := w−1ϕ4(2)w = 0102010.

Note that the substitution ψ has the following property: the word ψ(a) is
a palindrome for every a ∈ A.

9. Number of palindromes in the prefixes of uβ

In [19] the authors obtain an interesting result which says that every
finite word w contains at most |w| + 1 different palindromes. (The empty
word is considered as a palindrome contained in every word.) Denote by
P (w) the number of palindromes contained in the finite word w. Formally,
we have

P (w) 6 |w|+ 1 for every finite word w.

The finite words w for which the equality is reached are called full (as
suggested in [15]). An infinite word u is called full, if all its prefixes are
full. In [19] the authors have shown that every Sturmian word is full. They
have shown the same property for episturmian words.

The infinite word uβ can be full only if its language is closed under
reversal, i.e. in the simple Parry case for dβ(1) = tt · · · ts, t > s > 1. For
s > 2 such words are not episturmian, nevertheless, we shall show that
they are full.

We shall use the notions and results introduced in [19].
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Definition 9.1. — A finite word w satisfies property Ju, if there exists
a palindromic suffix of w which is unioccurrent in w.

Clearly, if w satisfies Ju, then it has exactly one palindromic suffix which
is unioccurrent, namely the longest palindromic suffix of w.

Proposition 9.2 ([19]). — Let w be a finite word. Then P (w) = |w|+1
if and only if all the prefixes ŵ of w satisfy Ju, i.e. have a palindrome suffix
which is unioccurrent in ŵ.

Theorem 9.3. — The infinite word uβ invariant under the substitu-
tion (3.1) is full.

Proof. — We show the statement using Proposition 9.2 by contradiction.
Let w be a prefix of uβ of minimal length which does not satisfy Ju, and
let X0k be a suffix of w with X 6= 0.

First we show that k ∈ {0, t+ 1}. For, if 1 6 k 6 t or t+ 2 6 k, then q is
the maximal palindromic suffix of w0−1 if and only if 0q0 is the maximal
palindromic suffix of w. Since 0q0 occurs at least twice in w, then also q

occurs at least twice in w0−1, which is a contradiction with the minimality
of w.

Define

w1 =

{
w0t if w has suffix X 6= 0 ,

w0s−1 if w has suffix X0t+1, X 6= 0 .

For the maximal palindromic suffix p of w denote

p1 =

{
0tp0t if w has suffix X 6= 0 ,

0s−1p0s−1 if w has suffix X0t+1, X 6= 0 .

Since in uβ every two non-zero letters are separated by the word 0t or
0t+s, we obtain that

(i) p1 is the maximal palindromic suffix of w1.
(ii) the position of centers of palindromes p and p1 coincide in all oc-

currences in uβ .
Since p occurs in w at least twice, also the palindromic suffix p1 occurs at
least twice in w1, i.e. the word w1 is a prefix of uβ which does not satisfy
Ju.

From the definition of w1 it follows that

w1 = ϕ(ŵ)0t

for some prefix ŵ of uβ . Thus the maximal palindromic suffix p1 of w1

is of the form p1 = ϕ(p̂)0t, where p̂ is a factor of ŵ. According to (i) of
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Proposition 4.4, p̂ is a palindrome, and the same proposition implies that p̂
is the maximal palindromic suffix of ŵ. Since p1 occurs at least twice in w1,
also p̂ occurs at least twice in ŵ. Therefore ŵ does not satisfy the property
Ju. As

|ŵ| < |ϕ(ŵ)| < |w|,
we have a contradiction with the minimality of w. �

10. Conclusions

The study of palindromic complexity of an uniformly recurrent infinite
word is interesting in the case that its language is closed under reversal.
Infinite words uβ associated to Parry numbers β are uniformly recurrent. If
β is a simple Parry number, the language of uβ is invariant under reversal if
the Rényi expansion of 1 satisfies dβ(1) = tt · · · ts, i.e. is a confluent Parry
number, and the corresponding palindromic complexity is the subject of
this paper.

For non-simple Parry number β, the condition under which the language
of the infinite word uβ is closed under reversal has been stated by Bernat [9].
He has shown that the language of uβ is closed under reversal if and only
if β is a quadratic number, i.e. a root of minimal polynomial X2− aX + b,
with a > b + 2 and b > 1. In this case dβ(1) = (a − 1)(a − b − 1)ω. The
palindromic complexity of the corresponding infinite words uβ is described
in [7].

Infinite words uβ for non-simple Parry numbers β are thus another ex-
ample for which the equality

P(n) + P(n+ 1) = ∆C(n) + 2

is satisfied for all n ∈ N. According to our knowledge, among all examples
of infinite words satisfying this equality, the words uβ (for both simple and
non-simple Parry number β) are exceptional in that they have the second
difference ∆2C(n) 6= 0.
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