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FRACTAL REPRESENTATION OF THE ATTRACTIVE
LAMINATION OF AN AUTOMORPHISM OF THE

FREE GROUP

by Pierre ARNOUX, Valérie BERTHÉ,
Arnaud HILION & Anne SIEGEL

Abstract. — In this paper, we extend to automorphisms of free groups some
results and constructions that classically hold for morphisms of the free monoid, i.e.,
the so-called substitutions. A geometric representation of the attractive lamination
of a class of automorphisms of the free group (irreducible with irreducible powers
(iwip) automorphisms) is given in the case where the dilation coefficient of the
automorphism is a unit Pisot number. The shift map associated with the attractive
symbolic lamination is, in this case, proved to be measure-theoretically isomorphic
to a domain exchange on a self-similar Euclidean compact set. This set is called the
central tile of the automorphism, and is inspired by Rauzy fractals associated with
Pisot primitive substitutions. The central tile admits some specific symmetries, and
is conjectured under the Pisot hypothesis to be a fundamental domain for a toral
translation.

Résumé. — Nous étendons aux automorphismes de groupes libres certains ré-
sultats et constructions associés aux morphismes de monoïdes libres, autrement
appelés substitutions. Nous construisons une représentation géométrique de la la-
mination attractive d’une classe d’automorphismes du groupe libre (plus précisé-
ment, les automorphismes irréductibles et dont les puissances sont irréductibles)
dans le cas où le coefficient de dilatation de l’automorphisme est un nombre de
Pisot unitaire. On montre que, dans ce cas, l’application de décalage sur la lami-
nation symbolique attractive est isomorphe en mesure à un échange de domaines
sur un ensemble autosimilaire compact. Cet ensemble est appelé tuile centrale de
l’automorphisme ; sa construction s’inspire des fractals de Rauzy associés à une
substitution primitive Pisot. La tuile centrale admet des symétries liées à l’inver-
sion dans le groupe libre. On conjecture dans le cas général que la tuile centrale
est un domaine fondamental pour une translation sur un groupe compact.

Keywords: Free group automorphism, attractive lamination, substitution, symbolic
dynamics, self-similarity, Pisot number.
Math. classification: 20E05, 37B10, 05B45, 68R15.



2162 P. ARNOUX, V. BERTHÉ, A. HILION & A. SIEGEL

1. Introduction

Symbolic dynamical systems were first introduced, more than a century
ago, to gain insight into the dynamics of some geometric maps. The simplest
of them, i.e., the subshifts of finite type, proved particularly well adapted
to studying dynamical systems for which past and future are disjoint, e.g.,
toral automorphisms or Pseudo-Anosov diffeomorphisms of surfaces [33].

1.1. Geometric models of substitutions

Of interest are also self-similar systems, which can be loosely defined as
systems where the large-scale recurrence structure is similar to the small-
scale recurrence structure, or more precisely as systems which are topolog-
ically conjugate to their first return map on a particular subset. They also
have natural models, namely symbolic systems associated with substitu-
tions, defined as morphisms of the free monoid (a substitution consists in
replacing a letter in a finite alphabet by a nonempty finite word on this
alphabet) [42, 41]. A basic idea is that, as soon as self-similarity appears,
a substitution is hidden behind the original dynamical system.

Conversely, substantial literature is devoted to the geometric interpreta-
tion of substitutions, as domain exchanges acting on a self-affine structure
[43, 51, 18, 19, 47, 48, 49, 41], as numeration systems [23, 24, 13], or as ex-
panding foliations in space tilings [11]. All these representations are based
on the minimal symbolic dynamical system generated by the substitution
σ, which we assume from now on to be primitive, i.e., there exists an iterate
σn such that the image of any letter under σn contains all the other letters.

Substitutive dynamical systems were first analyzed in particular cases in
[43] and [51]. These constructions were soon afterwards generalized to irre-
ducible Pisot substitutions: a primitive substitution is said to be irreducible
Pisot if all its eigenvalues except its dominant one have modulus non-zero
and strictly smaller than 1; the dominant eigenvalue is then a Pisot number.
The substitution is said to be unit Pisot when this Pisot dominant eigen-
value is a unit integer. In many cases it is possible to associate with an
irreducible unit Pisot substitution a finite family of compact subtiles: the
union of these tiles is called (according to the authors) central tile, Rauzy
fractal, or Thurston tile, and it provides a geometric representation of the
substitutive dynamical system. The subtiles are solutions of a self-affine
graph-directed Iterated Function System [37] and generate both a periodic
and a self-replicating multiple tiling. In all known examples, these multiple
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tilings are in fact tilings. This is equivalent to the fact that the substitutive
dynamical system has pure discrete spectrum according to [11]: the dynam-
ical system is indeed measure-theoretically isomorphic with a translation
on the (d− 1)-dimensional torus Td−1, the central tile being a fundamen-
tal domain for Td−1, where we denote by d the degree of the dominant
eigenvalue, that is, the cardinality of the alphabet of the substitution. A
combinatorial necessary and sufficient condition for this pure discrete spec-
trum is stated in terms of the so-called conditions of geometric coincidences
or of super-coincidences [31, 11]. The discrete spectrum conjecture, which
resists now for several years, asserts that all irreducible Pisot substitution
dynamical systems have a discrete spectrum. This also has consequences
for the effective construction of Markov partitions for toral automorphisms,
whose main eigenvalue is a Pisot number [30, 40, 46]. We recall in more
details the construction of the central tile of a Pisot substitution in Section
4.1.

1.2. Geometric models of free group automorphisms

In this paper, we intend to investigate how this picture can be com-
pleted when extending from substitutions (morphisms of the free monoid)
to morphisms of the free group. Any substitution naturally extends to an
endomorphism of the free group, and those that extend to an automor-
phism are called invertible substitutions. Although invertibility does not
play a significant role in the case of substitutions, it does in the case of
morphisms of the free group; indeed the general theory of endomorphisms
is not yet well understood, and most geometric constructions lead to auto-
morphisms. Here we thus focus solely on the case of automorphisms of the
free group. In this framework, substitutions appear as a special family of
morphisms, namely positive morphisms.

Another very specific (and quite well known) family of morphisms of
the free group is provided by geometric automorphisms induced by home-
omorphisms of orientable surfaces with non-empty boundary. Then the
homeomorphism of the surface can be coded into an automorphism of the
homotopy group of the surface. The case of the free group of rank 2 is
special: all automorphisms of the group F2 are geometric. On the contrary,
the so-called Tribonacci automorphism 1 7→ 12, 2 7→ 13, 3 7→ 1 is not
geometric; more generally, most automorphisms of the free group are not
geometric. As we shall see in Appendix 2, no irreducible automorphism on
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a free group of odd rank comes from an homeomorphism of an orientable
surface.

The dynamical behavior of automorphisms of a free group is much more
difficult to understand than the behavior of substitutions. The problem is
that the study of substitutions is based on the existence of a finite set of
infinite words which are fixed or periodic under the action of the substitu-
tion. Such infinite words clearly exist, because one can always find a letter
a and a power σp of the substitution such that σp(a) begins with a; hence
the words σnp(a) are prefixes of each other, and tend, under weak condi-
tions, to an infinite word fixed by σp. The iterates of any word under the
substitution then converges to this finite set of periodic points. If we re-
place the free monoid by the free group, this does not work any more, or at
least not in such a simple way, due to the appearance of cancellations. An
elementary example is that of a conjugacy automorphism, iw : a 7→ waw−1,
which fixes the word w.

An impressive achievement was obtained by Bestvina, Feighn and Han-
del [14]: they give a good representative for any automorphism, called an
improved relative train-track map, which takes care of cancellations. The
simplest dynamically nontrivial automorphisms are irreducible ones, with
irreducible power (iwip): they are the algebraic equivalent of pseudo-Anosov
homeomorphisms of surfaces. For such automorphisms, using train-track
representatives [17], Bestvina, Feighn and Handel show that one can find
a reduced two-sided recurrent infinite word on which the automorphism
acts without cancellation and which is fixed by some power of the auto-
morphism. Then they construct a dynamical system, called the attractive
symbolic lamination [15], by taking the closure of the orbit of this word
under the shift map.

Since then, a general theory of laminations of free (or hyperbolic) groups
has been put forward [22]. It appears that these laminations have two
presentations, namely an algebraic one and a symbolic one. Algebraically,
a lamination is a set of geodesic lines in the free group which is closed (for
the topology induced by the boundary topology), invariant under the action
of the group and flip-invariant (i.e., orientation-invariant). Symbolically, a
lamination is a classic symbolic dynamical system: it is a shift and flip-
invariant closed set of two-sided sequences.

In this paper, we detail how a central tile can be used to represent the
attractive lamination, in the particular case of a unit Pisot dilation coef-
ficient. The map x 7→ x−1 produces symmetries in the central tile. This
allows us to recover the dynamics of the attractive lamination of the free
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group automorphism as a first return map into a specific self-similar com-
pact set. Moreover, this also allows us to prove in some specific cases that
the symbolic dynamical system describing the attractive lamination has a
pure discrete spectrum, providing a spectral interpretation of the central
tile.

Note that a basic difference between the free monoid and the free group
is that the free monoid has a canonical basis, which is not the case for
the free group. Hence, although the attractive lamination is intrinsic, there
exist several symbolic codings for it. It seems that deciding to choose a
specific coding, hence a specific symbolic dynamical system, corresponds
in particular to choosing a discrete time to move on the leaf of the formal
lamination; it would be interesting to find an intrinsic way to define a flow
on the lamination; the different codings would then appear as first-return
map of this flow to a section, in the spirit of [11].

1.3. Principle of the construction

In this paper, we focus on the case where the dilation coefficient of the
iwip automorphism ϕ is a unit Pisot number β.

We take a primitive train-track representative f of ϕ, acting on a graph
with k edges. We can consider f as a morphism of the free group on k

letters. We use the fact that f has no cancellation under the iteration on
an edge to consider a letter ei and its inverse e−1

i as different letters, so
that f gives rise to a substitution σf (that we call double substitution) on
alphabet A consisting of 2k letters {e1 . . . ., ek, e−1

1 , . . . , e−1
k }.

Let l denote the abelianization map. This substitution σf has obvious
symmetries. If we consider its abelianization l ◦ σf , it preserves the space
generated by the vectors l(ei) − l(e−1

i ), and its action on this space is
given by the abelianization of f . It also preserves the space generated by
the vectors l(ei) + l(e−1

i ), and its action on this space has the dilation
coefficient β of ϕ. There is an invariant subspace associated with β and its
conjugates, which splits into an eigenline associated with β and an invariant
(contracting) subspace Hc associated with the conjugate eigenvalues.

The principle of the construction is then to associate a broken line in
R2k with a periodic point of f , and to project the vertices of this broken
line on Hc along its natural complement. This set is bounded in Hc, and its
closure is a compact set, called the central tile of f . We note that there is a
particular case, the orientable case, where the train-track f is a substitution
up to replacement of some letters by their inverses. In this case, the central
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tile Tf decomposes into two distinct symmetric parts. If this is not the case
(nonorientable case), the substitution σf is primitive, and we have:

Theorem 1.1. — Let f : G → G be a nonorientable train-track for a
unit Pisot iwip outer automorphism Φ. Let k be the number of edges of
G. Let d be the degree of the dilation coefficient of f (or Φ). The central
tile Tf of f is a compact subset with a nonempty interior, hence non-zero
measure, of a (d − 1)-dimensional subspace of R2k. It is divided into 2k
subtiles, namely Tf (e) and Tf (e−1) for any edge e of G, that satisfy a
graph-directed Iterated Function System.

This central tile has remarkable properties. We denote by LΦ
+(G) the

attractive symbolic lamination in G-coordinates given by the nonorientable
train-track f : G→ G (for more details, see Definition A.3 below).

Theorem 1.2. — Let f : G→ G be an nonorientable train-track for a
unit Pisot iwip outer automorphism Φ. We furthermore assume that the
double substitution σf satisfies the so-called combinatorial condition of
strong coincidence. Then there exists a domain exchange Ef acting on the
central tile Tf which is defined almost everywhere, and which acts on the k
pieces Tf (e)∪Tf (e−1). The attractive symbolic lamination in G-coordinates
LΦ

+(G) provided with the shift map S is measure-theoretically isomorphic
to (Tf , Ef ), that is, there exists a map µ : LΦ

+(G) → Tf that is continuous,
onto and almost everywhere one-to-one, and that satisfies µ ◦ S = Ef ◦ µ.

This implies the following properties of the central tile.

Theorem 1.3. — The central tile of a unit Pisot iwip nonorientable
train-track f is symmetric with respect to the origin: Tf = −Tf . Further-
more, the subtiles Tf (e) and Tf (e−1) are pairwise symmetric.

This is reminiscent of the properties of measured foliations of surfaces.
Orientable foliations can be studied by interval exchanges, which give rise
to a special type of symbolic dynamics. This symbolic dynamical system
has no reason to be stable under reversal, since the interval exchange has
no need to be conjugate to its inverse [5]. General nonorientable foliations
cannot be directly studied in this way. However, one can always lift to
an orientation cover to obtain an orientable foliation; but in this case,
this orientable foliation admits by construction an orientation-reversing
symmetry, and a symbolic dynamical system invariant under reversal.

The formalism introduced here extends in a natural way to non-unit Pisot
dilation coefficients following the approach of [47, 12]; in this latter case,
the central tile has p-adic components. Central tiles for automorphisms of
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free groups in the non-Pisot case have also been considered in [25]. Let
us finally quote [8], where a simple example of an automorphism of the
free group on 4 generators, with an associated matrix that has 4 distinct
complex eigenvalues, two of them of modulus larger than 1, and the other
2 of modulus smaller than 1 (non-Pisot case) is handled in details; the link
with the present construction is unclear.

1.4. Outline of the paper

Section 2 introduces the basic concept of our study, namely iwip auto-
morphisms. More precisely, Section 2.1 recalls basic notions on substitutive
dynamical systems, whereas Section 2.2 deals with automorphisms of free
groups. The notions of topological representatives of an outer automor-
phism and of train-track maps are introduced in Section 2.3.

Section 3 is devoted to the definition of the attractive symbolic lamina-
tion of an iwip automorphism with a train track map.

Section 4.1 recalls the construction of central tiles associated with Pisot
substitutions. In Section 4.2, we define the main topic of study of the
present paper, namely the central tile associated with iwip automorphisms.
The essential ingredient of our construction, introduced in Section 3, is the
double substitution associated with a topological representative of the outer
automorphism which is a train-track map, defined by duplicating the al-
phabet. This substitution generates the central tile in the usual substitutive
sense. We consider the topological and geometric properties of the central
tile in Section 4.3. We then introduce, in Section 4.4, a first dynamical sys-
tem acting on them and defined as an exchange of pieces, as well as multiple
tilings of the space whose prototiles are given by the central tiles. This al-
lows us, in Section 4.5, to give a geometric and spectral interpretation of
the dynamical system associated with the attractive lamination.

We give several examples in Section 5 (some examples are given before
to illustrate the definitions and theorems).

We conclude this paper by evoking open questions and further research
work in Section 6.

Appendix 1 is meant to complete the picture by showing that the at-
tractive lamination has an intrinsic definition; although the object we deal
with depends on several noncanonical choices, there are underlying intrin-
sic objects. Appendix 2 shows that some automorphisms do not come from
homeomorphisms of orientable surfaces.

TOME 56 (2006), FASCICULE 7
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2. Substitutions and automorphisms of the free group

2.1. Substitutive symbolic dynamical systems

We recall in this subsection the definition of the symbolic dynamical
system associated with a primitive substitution. For further details, the
reader is referred to [42, 34, 41].

2.1.1. Monoid, sequences, language

Let A = {a1, . . . , aN} be a finite set called alphabet whose elements are
called letters. The free monoid A∗ on the alphabet A with empty word ε is
defined as the set of finite words on the alphabet A, that is, A∗ := {ε}∪i∈N
Ai, endowed with the concatenation map. We denote by AN (resp. AZ) the
set of one-sided (resp. two-sided) sequences on A. The topology of the set
of one sided-sequences or two-sided sequences is the product topology of
the discrete topology on each copy of A; it is metrizable.

The length |w| of a word w ∈ A∗ is defined as the number of letters it
contains. For any letter a ∈ A, we denote by |w|a the number of occurrences
of a in w. Let l : w ∈ A∗ 7→ (|w|a)a ∈ Nn be the natural homomorphism
obtained by abelianization of the free monoid, called the abelianization
map.

A factor of a sequence x (which is assumed to be either one-sided or
two-sided) or a word x is a finite word w = w1 · · ·wn ∈ A∗ that occurs in
x, i.e., there exists j such that xj = w1, · · · , xj+n−1 = wn. The language
of the sequence x is the set of finite factors of x.

2.1.2. Symbolic dynamics, minimality and quasiperiodicity

The shift map S on the sets AN and AZ is defined by S(ui) = (vi)
with vi = ui+1 for all i. A one-sided (resp. two-sided) symbolic dynamical
system is a pair (X,S), where S is the shift, and X is a closed subset of
AN (resp. AZ) which is invariant by the shift.

In particular, with any sequence w = (wn)n∈I (assumed to be either
one-sided or two-sided), one can associate the symbolic dynamical system
(Xw, S) where Xw is defined as the closure of the orbit of w under the
action of the shift map: Xw = {Snw; n ∈ I}. The set Xw consists of all
sequences whose language is contained in that of w; it is completely defined
by the language of w.
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A one-sided or two-sided sequence w is said to be quasiperiodic or repet-
itive when it satisfies the bounded gap property. Every factor of w occurs
an infinite number of times in w, with bounded recurrence time, or equiv-
alently, for all K > 0, there exists C > 0 such that every factor of w
of length C contains all factors of w of length K. When the sequence w
is quasiperiodic, then the symbolic dynamical system Xw is minimal, i.e.,
every nonempty shift-invariant closed subset of Xw is equal to Xw. For
further details, see for instance [42].

2.1.3. Substitutions

A substitution is an endomorphism of the free monoid A∗ such that the
image of each letter of A is nonempty; to avoid trivial cases (projection
or permutations of letters), we will always suppose that for at least one
letter, say a, the length of the successive iterations σn(a) tends to infinity.
A substitution naturally extends to the set of one-sided or two-sided se-
quences AN and AZ. We associate with every substitution σ its incidence
matrix (or transition matrix) Mσ which is the N -square matrix obtained
by abelianization, i.e., l(σ(w)) = Mσl(w) for all w ∈ A∗. We now define
the important property of primitivity.

Definition 2.1. — A substitution σ is primitive if there exists an in-
teger K (independent of the letters) such that, for each pair (a, b) ∈ A2,
the word σK(a) contains at least one occurrence of the letter b.

Remark 2.2. — There exists a notion of primitivity for square matri-
ces with nonnegative integral entries: such an N -square matrix M is said
to be primitive if there exists an integer K > 0 such that for all (i, j)
(1 6 i, j 6 N), the (i, j)-entry of MK is positive. It is said to be irreducible
if for all (i, j), there exists an integer K = K(i, j) > 0 such that the (i, j)-
entry of MK is positive. In fact, the matrix M is primitive if, and only if,
all the positive powers of M are irreducible [45]. Note that a substitution
is primitive (resp. irreducible) if, and only if, its incidence matrix Mσ is
primitive (resp. irreducible).

A one-sided periodic point of the substitution σ is an infinite word w =
(wi)i∈N ∈ AN that satisfies σν(w) = w for some ν > 0. A two-sided periodic
point of the substitution σ is an infinite word w = (wi)i∈Z ∈ AZ that
satisfies σν(w) = w for some ν > 0, and furthermore its central pair of
letters w−1w0 belongs to the image of some letter by σn. All substitutions
admit periodic points; in the case of primitive substitutions, one can say
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more: the number of one-sided (resp. two-sided) periodic points is bounded
by the size of the alphabet (resp. by its square). Indeed, one can always, by a
simple argument, find a letter a and a power σn of σ such that σn(a) begins
with a; then the words σjn(a) are prefixes of each other, and determine a
periodic point, the unique sequence which admits all the words σjn(a) as
prefixes. The same proof shows that any one-sided fixed point is completely
determined by its first letter, because, by primitivity, for any letter a, the
length of the successive iterations σn(a) tends to infinity. It is also clear
that any periodic two-sided sequence is determined by its central pair of
letters.

One can say more, namely if u is a periodic point for a primitive sub-
stitution σ, the set Xu does not depend on u, but only on σ, since, by
primitivity, all periodic points have the same language. This leads to the
following definition:

Definition 2.3. — The symbolic dynamical system generated by a
primitive substitution σ is the system (Xu, S), where u is any periodic
point of σ; this will be denoted by (Xσ, S).

The system (Xσ, S) is minimal and uniquely ergodic, i.e., there exists a
unique shift-invariant probability measure µXσ

on Xσ [42].

Remark 2.4. — One could ask whether we considered one-sided or two-
sided fixed points in Definition 2.3; this is actually not very important,
since one proves that the one-sided system is one-to-one, except for a finite
number of points with a finite number of preimages (see e.g., [41], Chap.
5), hence the natural projection of the two-sided system on the one-sided
system is one-to-one, except on a countable number of points; in particular,
the two systems are measurably isomorphic. The one-sided system lends
itself to an elementary presentation; but the two-sided system has better
properties (in particular, it is one-to-one by construction).

2.2. Automorphisms of free groups

A substitution σ defined over the free monoid A∗ associated with a finite
alphabet A naturally extends to the free group on A, by defining σ(a−1) =
σ(a)−1. Hence, it is natural to try to extend the previous construction to a
general endomorphism of the free group FN on N generators. (As we said
in the introduction, we will only consider here automorphisms of the free
group, since the general theory of endomorphisms is not developed enough
for our purposes.)

ANNALES DE L’INSTITUT FOURIER
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But two problems arise. The first one is that cancellations may appear
when we extend from the free monoid to the free group. This changes
things even for substitutions: the Sturmian substitution (see e.g., [34]) a 7→
aba b 7→ ba fixes no nonempty word in the free monoid, but it fixes the
commutator aba−1b−1! This implies that the previous simple construction
of a fixed infinite word by iterating the image of a letter does not directly
apply to the general case of an automorphism. In general, cancellations
appear, and we will not get an increasing sequence of prefixes σjn(a). For
example, as noted in the introduction, if we consider the conjugacy by
a word w (also called inner automorphism), iw : g 7→ wgw−1, we have
iw(w) = w, hence we cannot get an infinite periodic point by iterating
on w. We thus need a condition that generalizes the primitivity condition
defined earlier, and allows us to define an infinite fixed point when we
start from a letter. We define below the so-called iwip automorphisms, as
introduced in [17, 14] (Definition 2.6). The iwip condition appears to be a
generalization of the primitivity condition.

The second problem is of a more theoretical nature, namely the basis
(alphabet) used to build a free monoid is canonical, while it is not for
the free group. More generally, in many situations, automorphisms of the
free groups arise as automorphisms of the fundamental group of a graph,
induced by a continuous map of the graph to itself, as we shall see in Section
2.3. However, such an automorphism is only defined up to a composition
by an inner automorphism (due to the choice of an arbitrary path from the
basis point of the fundamental group to its image). The difficult question,
which does not arise for substitutions, is to understand what is intrinsic in
our constructions.

In this subsection, we define the notions necessary to deal with these two
problems.

2.2.1. Free group, basis and factor

A good introduction to free groups and graphs can be found in [36].
Let AN = {a1, . . . , aN} be a finite alphabet with N letters. Let A−1

N =
{a−1

1 , . . . , a−1
N } denote the inverse letters of AN . The free group FN gen-

erated by AN is the quotient of the free monoid (AN ∪ A−1
N )∗ under the

congruence relation generated by aia
−1
i = a−1

i ai = ε. A finite word or an
infinite sequence on the alphabet {a±1 , · · · , a

±1
N } is said to be reduced if it

has no factor aia−1
i or a−1

i ai.
A free factor G of the free group FN is a subgroup generated by a subset

of some basis of FN ; equivalently, a subgroup G of FN is a free factor if
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there exists a subgroup H of FN such that FN is the free product G ∗H
of G and H [36].

2.2.2. Automorphisms, positive automorphisms and outer automorphisms
of free groups

We denote by Aut(FN ) the group of automorphisms of FN . Specific mor-
phisms of free groups are the positive ones. A morphism ϕ of FN is said
to be positive if there exists a basis A such that the reduced words ϕ(a),
for every a ∈ A, contain no letter with a negative exponent. Equivalently,
positive morphisms of a free group FN are extensions of substitutions on a
monoid A generating FN .

The set Inn(FN ) of all inner automorphisms (or conjugacy) is a nor-
mal subgroup of Aut(FN ). The quotient group of Aut(FN ) by Inn(FN ) is
denoted by Out(FN ); its elements are called outer automorphisms of FN .

Remark 2.5. — A substitution is called invertible when it extends to an
automorphism of the free group. The two-letter invertible substitutions are
exactly Sturmian substitutions (see for instance [34]); they have been widely
studied and have a very rich combinatorial characterization as Sturmian
substitutions (see references in [34]). For more than two letters, the set
of invertible substitutions forms a monoid which seems to have a more
complicated structure (see [50]).

2.2.3. Iwip automorphisms

In this article, we will focus on a special class of automorphisms of free
groups, namely the iwip automorphisms. As mentioned in the introduction,
they are the natural equivalent of primitive substitutions, or of pseudo-
Anosov homeomorphisms of surfaces. In the next subsection, we will de-
scribe why this analogy with primitivity holds. Let us give their definition.

Definition 2.6. — An automorphism ϕ ∈ Aut(FN ) is said to be iwip,
that is, irreducible with irreducible powers, if no proper free factor F of
FN is mapped by any positive power of ϕ to a conjugate of F . An outer
automorphism Φ ∈ Out(FN ) is iwip if one (and hence any) automorphism
ϕ ∈ Aut(FN ) in Φ is iwip.
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2.3. Train-track representative of an iwip automorphism

A first idea to control cancellations and gain insight into the dynamics of
an automorphism is to choose an appropriate basis of the free group; but
this is not enough for our purposes. In this section, we introduce a much
more powerful tool based on [17]. It consists in using graphs and their
homotopy equivalences to reduce the cancellations occurring in iterations
as much as possible.

2.3.1. Combinatorial and topological graphs

We consider a combinatorial graph G, given by a finite set of vertices
V = {v1, . . . vm} and a finite set of oriented edges E provided with a map
ρ : E → V × V mapping an edge to its initial and terminal vertices (note
that this definition allows graphs to contain several edges joining the same
vertices). The set of edges E is supposed to be symmetric: for every edge
e ∈ E , there exists an opposite edge in E , denoted by e−1, with an opposite
orientation (in particular, ρ(e−1) = (b, a) if ρ(e) = (a, b)).

This combinatorial graph definition is not precise enough to tackle the
problem with algebraic topology and geometry. We need to introduce a
topological representation of graphs, i.e., the notion of one-dimensional
CW-complex [36]. The topological graph associated with a combinatorial
graph is defined as follows.

• For each pair {ei, e−1
i } of opposite edges, choose a canonical repre-

sentative (an orientation of the edge).
• For every canonical representative ej , let Ij = [aj , bj ] be a segment

(topological space homeomorphic to a compact interval in R).
• Define an equivalence relation∼ on the disjoint union V

∐ (∐k
j=1 Ij

)
by taking the transitive closure of ai ∼ vj if ei has vj as origin point,
and bi ∼ vj if ei has vj as end point.

• The topological graph associated with the graph G is the quotient
of V

∐ (∐k
j=1 Ij

)
by this equivalence relation, endowed with the

quotient topology.
Conversely, the combinatorial graph with which the topological graph

is associated is uniquely determined. In the following, we will use both a
combinatorial and a topological point of view. When there is no ambiguity,
we will simply call them graphs.

The valence of a vertex of a topological graph is the number of extremities
of canonical edges attached to this vertex; more formally, it is the number
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of preimages of a vertex by the canonical projection
∐k
j=1 Ij → G. A graph

is said to be trivial if its components are vertices. A tree is a contractible
connected graph. A graph is a forest if its components are trees.

2.3.2. Paths in a graph

Let G be a combinatorial graph with set of edges E . A path in G indexed
by a set I is a sequence of edges w = (ei)i∈I ∈ EI such that:

• the notation I for the set of indices is either a finite set I = {1, . . . n}
(then the path is said to be finite), or equal to N (one gets a one-
sided sequence that is called a ray), or equal to Z (one gets a two-
sided sequence that is called a line);

• w is the coding of a walk in the graph, that is, for all i, the initial
vertex of ei+1 is equal to the terminal vertex of ei;

• w is reduced, that is, ei 6= e−1
i+1 for all i ∈ I.

In a topological graph, a path is an immersion (that is, a locally injective
map) of a segment [a, b] (for a finite path), or of [0,+∞] (for a ray), or of
R (for a line), or a point (for a trivial path).

Note that, by definition, for us, and following [14], paths are always
reduced, even though this is not standard terminology.

2.3.3. Marked graph and topological representative

The rose with N petals, denoted by RN , is the graph with a unique
vertex ∗ and N edges (from ∗ to ∗). We identify its fundamental group
π1(RN , ∗) with FN : a basis of FN is given by the edges [36].

Recall that a homotopy equivalence f : G→ G′ between two topological
graphs is a continuous map inducing an isomorphism on the fundamental
groups of G and G′, that is, a continuous map such that there exists a
continuous map g : G′ → G so that f ◦ g and g ◦ f are homotopic to the
identity. For any connected topological graph, there is a unique number N
(the cyclomatic number of the graph G, equal to 1− χ(G), where χ(G) is
the Euler characteristic of the graph, see also Remark 2.10) such that there
exists a homotopy equivalence τ : RN → G. A topological graph G provided
with such a homotopy equivalence (called the marking) τ : RN → G is a
marked graph. Considering that τ induces the identity between π1(RN , ∗)
and π1(G, τ(∗)), we identify FN (in a non-canonical way) with π1(G, τ(∗)).
Note that a connected graph G is a tree if, and only if, its cyclomatic
number is 0.
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Let G be a marked graph with marking τ : RN → G, and a homotopy
equivalence f : G → G. Then f naturally induces an automorphism of
π1(G, τ(∗)) ' FN . This automorphism is defined up to composition by
an inner automorphism, since the identification between π1 (G, τ(∗)) and
π1 (G, f(τ(∗))) is made up to the choice of an arbitrary path between τ(∗)
and f(τ(∗)). We call outer automorphism associated with f and denote it
by Φ the outer class of automorphisms induced by the homotopy equiva-
lence f : G→ G.

Let Φ ∈ Out(FN ) be an outer automorphism. A topological representa-
tive of Φ is a map f : G→ G, where G is a marked graph, such that:

• the image of a vertex is a vertex,
• the image of an edge is a finite path of G (as defined above),
• f induces Φ on FN ' π1(G, τ(∗)) (in particular, f is a homotopy

equivalence).
A subgraph H of G is said to be f -invariant if f(H) ⊂ H. A topological

representative f : G→ G is said to be irreducible if:
• the graph G has no vertex of valence one,
• the f -invariant subgraphs of G are trivial.

A topological representative f : G → G is said to be primitive if for all
k ∈ N, fk : G→ G is irreducible.

2.3.4. Train-track map

If f is a topological representative of an outer automorphism, the image
of any edge is a path, but the image of a path is not necessarily a path,
i.e., cancellations can occur. In particular, any automorphism of FN with
a given basis has a topological representative on the rose with N petals,
and these cancellations are the reason why an infinite fixed word cannot
be immediately found; this is one motivation for the following definition.

Definition 2.7. — A train-track map is a topological representative
f : G→ G of a free group automorphism, such that:

• G has no vertex of valence 1 or 2,
• for all edge e ∈ E and all n > 0, fn(e) is a path in G.

The crucial point of this definition is that no cancellation occurs when
iterating f on an edge.

The existence of a train-track map representing a given automorphism is
far from obvious. The simplest examples of automorphisms that can be rep-
resented by a train-track map are the positive ones: every substitution on N
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letters is trivially represented by a train-track on the rose RN . M. Bestvina
and M. Handel prove in [17] the following main result:

Theorem 2.8 (Bestvina-Handel). — Every iwip outer automorphism
Φ ∈ Out(FN ) admits a train-track map f : G → G as a topological repre-
sentative.

Moreover, they give an algorithm that produces, from the data of an
automorphism ϕ ∈ Aut(FN ), a topological representative f : G→ G of the
outer automorphism Φ ∈ Out(FN ) defined by ϕ, which is:

• either a train-track map which is irreducible,
• or a reduction, i.e., G has no vertex of valence one, there is no
f -invariant non-trivial forest, and f is not irreducible.

In the second case, f cannot be iwip. In fact, using the algorithm of
Bestvina-Handel, one can check effectively whether an automorphism is
iwip.

2.3.5. Transition matrix, dilation coefficient

Let f : G→ G be a topological representative of an outer automorphism
Φ ∈ Out(FN ), and denote by e1, e−1

1 , . . . , ek, e
−1
k the edges of G. The tran-

sition matrix Mf associated with f is a k-square matrix with (i, j)-entry
the number of times f(ei) crosses ej or e−1

j . A topological representative
is primitive if, and only if, its transition matrix is primitive.

By its definition, Mf has nonnegative integral entries. If, moreover, Mf

is primitive, then the Perron-Frobenius theorem applies such that Mf has
a unique dominant real eigenvalue λf > 1 called the Perron-Frobenius
eigenvalue. The unique dominant eigenvector with positive real entries
normalized such that the sum of entries is equal to one is denoted by
vf = (v1, . . . , vn). The following is stated in [17]:

Theorem 2.9 (Bestvina-Handel). — If Φ ∈ Out(FN ) is an iwip outer
automorphism, then there exists a primitive topological representative f
for Φ whose associated Perron-Frobenius eigenvalue λf is minimal (i.e.,
it is less than or equal to the Perron-Frobenius eigenvalue associated with
any primitive topological representative of Φ). Moreover, any such primitive
topological representative f for Φ without vertex of valence 2, is a primitive
train-track map.

It follows that λf only depends on the outer automorphism Φ: we shall
denote it by λΦ and call it the dilation coefficient of Φ. A length can be given
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to any finite path w in G by considering that each edge ei is isometric to an
interval of length vi: we call it the Perron-Frobenius length, and denote it
by | |PF . Note that if w is a finite path in G such that no cancellation occurs
when calculating f(w), we have: |f(w)|PF = λΦ|w|PF , which justifies the
dilation coefficient name for λΦ.

Remark 2.10. — Since the graph G of a train-track map f : G → G

representing a given Φ ∈ Out(FN ) has no vertex of valence 1 or 2, there
exist only finitely many such graphs. Indeed, since every vertex has at least
valence 3, the number E of edges and the number V of vertices satisfy
2E > 3V ; but the cyclomatic number N of the graph is equal to E−V +1,
hence we must have N = E−V +1 > 1

2V +1; this implies that V 6 2(N−1),
and E = N + V − 1 6 3N − 3; but the number of combinatorial graphs
with a bounded number of edges and vertices is finite. Moreover, since the
transition matrix Mf of a train-track map has nonnegative integral entries
and fixed Perron-Frobenius eigenvalue λΦ, there exist only finitely many
train-track maps representing Φ. Another consequence of this discussion is
that the degree of the dilation coefficient of an iwip outer automorphism
Φ ∈ Out(FN ) is bounded above by 3N − 3 (since it is bounded above by
the size of the transition matrix of a train-track map representing Φ).

The following proposition gives a useful sufficient condition for check-
ing the iwip property. Let ϕ be an automorphism of FN . We define M+

ϕ

(resp. M−
ϕ ) as the N -square matrix with (i, j)-entry the number of oc-

curences of ai (resp. a−1
i ) in ϕ(aj). Let Aϕ be the abelianization matrix

defined as Aϕ := M+
ϕ − M−

ϕ . This matrix provides information on the
action of ϕ since l(ϕ(w)) = Aϕ(l(w)) for all w ∈ FN (we recall that the
abelianization map l is defined in Section 2.1).

Proposition 2.11. — Let ϕ be an automorphism of the free group. If
the characteristic polynomial of the abelianization matrix Aϕ is irreducible
over Z, then ϕ is an iwip automorphism.

Proof. — If ϕ is not an iwip automorphism, there exists a proper free
factor F of FN ϕ-invariant. By abelianization, F maps to a proper sublat-
tice of ZN which is Aϕ-invariant; this contradicts the irreducibility of the
characteristic polynomial of Aϕ over Z. �

Example 2.12. — Let ϕ1 be the automorphism of F3 =< a, b, c > given
by a 7→ c, b 7→ c−1a, c 7→ b. This automorphism is the inverse of the
well-studied substitution σ1 : a 7→ ab, b 7→ c, c 7→ a.
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One has Aϕ1 =

0 1 0
0 0 1
1 −1 0

. The characteristic polynomial of the abe-

lianization matrix Aϕ1 is equal to X3+X−1 and it is irreducible. According
to Proposition 2.11, ϕ1 is an iwip automorphism. It induces a train-track
map f1 on the rose R3; indeed, one checks by hand that ϕ1

j(a) contains no
cancellation for every nonnegative integer j since a cancellation can only
occur if the word ab occurs by iterating ϕ1 on a letter, which is never the
case.

The transition matrix Mf1 =

0 1 0
0 0 1
1 1 0

 is primitive and its character-

istic polynomial is equal to X3 −X − 1. Hence, the dilation coefficient is
the dominant eigenvalue λϕ1 ≈ 1, 32, that is, the smallest Pisot number.

Example 2.13. — Let ϕ2 be the automorphism of F3 =< a, b, c > given
by a 7→ c, b 7→ c−1a, c 7→ bc−1. It is the inverse of the substitution
σ2 : a 7→ ab, b 7→ ca, c 7→ a (sometimes called the flipped Tribonacci
substitution).

The characteristic polynomial of the abelianized matrix Aϕ2 is X3+X2+
X−1 which is irreducible. Hence, ϕ2 is an iwip automorphism. One checks
that it induces a train-track map f2 on the rose R3.

The transition matrix Mf2 is primitive, and its characteristic polynomial
X3 −X2 −X − 1 is irreducible. Hence, the dilation coefficient λϕ2 ≈ 1.84
is a Pisot number, the so-called Tribonacci number, according to [43]. See
also Section 5.2.

2.3.6. Primitive invertible substitutions and iwip automorphisms.

Let us relate primitive invertible substitutions to iwip automorphisms.

Proposition 2.14. — Let σ be an invertible substitution.
(1) If the characteristic polynomial of the transition matrix Mσ is ir-

reducible over Z, then σ extends to an iwip automorphism.
(2) If σ extends to an iwip automorphism, then σ is primitive.

Proof. — (1) is a consequence of Proposition 2.11, since the abelianized
matrix of a substitution is equal to its transition matrix.

To prove (2), suppose that σ is not primitive. By hypothesis, its transition
matrix Mσ is not primitive. Then, according to Remark 2.2, there exists
some K > 0 such that MK

σ is not irreducible; so there exist two letters
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a, a′ of the alphabet A of σ such that for all n ∈ N, a′ does not occur in
σKn(a). Denote by Aa the minimal σK-invariant subset of A containing a.
Then Aa is a nontrivial subset, since it does not contain a′. Let N stand
for the cardinality of A; Aa generates a proper σK-invariant free factor F
of FN , and thus σ cannot represent an iwip automorphism. �

Note that the primitivity of an invertible substitution does not imply
that this substitution extends to an iwip automorphism. A simple counter-
example is given by the invertible substitution σ : a 7→ bac, b 7→ ba, c 7→ ca.
Indeed, σ is clearly primitive, but fixes bc−1 and so fixes the free factor
< bc−1 > it generates.

Let us mention the following more elaborate example we have learnt from
M. Lustig. Consider the invertible substitution σ : a 7→ abcdea, b 7→ abcde,
c 7→ ac, d 7→ ad, e 7→ ea. Then σ is primitive, but one can check that
F5 splits as a σ-invariant free product < a, b, c, c−1de > ∗ < c−1d >. It is
an interesting question to find a simple characterization of the primitive
substitutions that are iwip automorphisms.

3. Attractive symbolic lamination for an iwip
automorphism

The aim of this section is to introduce the attractive symbolic lamina-
tion associated with a primitive train-track map. Let us stress the fact
that this attractive lamination is highly non-canonical. Indeed, the outer
automorphism Φ is given by the images of a given basis of FN by one of
the representatives ϕ of Φ, from which we derive, using the algorithm of
Bestvina-Handel (Theorem 2.8), a train-track map representing Φ. We thus
can build the attractive symbolic lamination associated with f .

At the end of the paper, in Appendix 1, we will define the attractive
algebraic lamination associated with the outer automorphism Φ, and prove
that the symbolic lamination is a representative of this algebraic lamina-
tion. Hence, this shows that it has intrinsic properties that only depend on
the outer automorphism Φ.

We will however only need the symbolic lamination in the rest of the
paper; the interest of the algebraic lamination here is only to prove that
this construction has some intrinsic properties. Let us note that there are
interesting related questions: the shift gives a natural dynamical system on
the symbolic lamination. It seems very probable (see, e.g., [11]) that there
is a related flow on the corresponding algebraic lamination associated with
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an outer automorphism, but the existence and definition of this flow remain
unclear for us.

We now consider an iwip outer automorphism Φ, and we choose a prim-
itive train-track representative map f : G → G. By definition, when we
iterate f on any edge e, we obtain a path in the graph (there is no cancel-
lation).

Using the train-track property, we can associate with f a substitution
σf , by considering edges e and e−1 as different letters. This is possible
because no cancellation occurs when we iterate f on any edge. We denote
by A = {e1, e−1

1 , . . . , ek, e
−1
k } the set of names of oriented edges of G. (By

abuse of notation, we make no distinction between the topological space,
that is, the edge e, and its name e ∈ A.)

Definition 3.1. — Let f : G → G be a train-track map. Let A :=
{e1, e−1

1 , . . . , ek, e
−1
k } be the 2k-letter alphabet of names of oriented edges.

We denote by h the natural map from the set of paths in G to A∗ which,
with any finite path, associates its name, that is, the word given by the
names of successive edges contained in the path. We define the double
substitution σf associated with f as the substitution that maps every name
of an oriented edge to the names of the successive oriented edges contained
in f(e), that is:

∀e ∈ A, σf (e) = h(f(e)).

Example 3.2. — The automorphism ϕ1 : a 7→ c, b 7→ c−1a, c 7→ b was
introduced in Example 2.12. Its double substitution is the 6-letter substitu-
tion σϕ1 : a 7→ c, b 7→ c−1a, c 7→ b, a−1 7→ c−1, b−1 7→ a−1c, c−1 7→ b−1.
Note that σf1 is a primitive substitution. Indeed, σ11

f1
(a) contains all the

letters and the image of any letter eventually contains a.

The double substitution σf admits a remarkable symmetry, induced by
the inverse map e 7→ e−1 and its extension to finite words.

Definition 3.3. — The flip map Θ on A∗ is defined by Θ(w1w2 . . . wn)
= w−1

n . . . w−1
2 w−1

1 .

By abuse of language, we extend the definition of the flip map Θ to AZ

as follows: if x = (xi) ∈ AZ, then Θ(x) = (yi) ∈ AZ with yi = x−1
−i−1 for all

i ∈ Z.

Proposition 3.4. — The double substitution σf commutes with the
flip.
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The proof is immediate from the definition of f , because the statement
holds for letters. We can now define the orientability of the substitution
σf :

Definition 3.5. — We say that the double substitution σf defined
above is orientable if there exists a subset E of A such that E and Θ(E)
form a partition of A, and σf preserves E∗ (σf (E∗) ⊂ E∗) or exchanges E∗
and Θ(E∗) (σf (E∗) ⊂ Θ(E∗)). Otherwise, we say that σf is nonorientable.

If σf is orientable, we say that σf is orientation preserving if it preserves
E∗, and orientation reversing if it exchanges E∗ and Θ(E)∗. In this last case,
σ2
f is orientation preserving.

Remark 3.6. — The geometric meaning is clear: if σf is orientation pre-
serving, it means that we can give a global orientation to the topological
graph G such that f preserves this orientation; the image of any positively
oriented (for this orientation) edge only contains positively oriented edges.
Of course, the opposite orientation is also preserved by f . The combina-
torial meaning is also clear: if σf is orientation preserving, then up to a
replacement of some edges by their inverses, f is in fact a substitution.

Proposition 3.7. — The double substitution σf associated with a prim-
itive train-track map f is primitive if σf is nonorientable. If σf is orientable
and orientation preserving, it splits in two primitive components which are
exchanged by the flip Θ. If σf is orientation-reversing, it exchanges the two
primitive components associated with its square.

Proof. — Suppose, first, that σf is orientable and orientation preserving,
and let E be the associated subset of A. Let e be any element of E , and
let e′ be any edge. By primitivity of the train-track map f , we know that
there is an integer n such that fn(e) contains e′ or e′−1; but exactly one of
these two letters is in E . This implies that the restriction of the action of
σf on E is primitive, and the same is true by symmetry for Θ(E). A similar
proof works in the orientation reversing case.

Suppose now that σf is nonorientable. By primitivity, there exists n such
that, for any pair e, e′ of edges, either e′ or e′−1 occurs in fn(e). Consider,
on the setA of oriented edges, the relation “e′ occurs in fn(e)”, and let B be
a strongly connected component for the transitive closure of this relation.
It is clear that Θ(B) is also a strongly connected component. We can also
consider the set of nonoriented edges (pairs (e,Θ(e))), and define the same
relation. It is clear that B projects to a strongly connected component for
this relation. But primitivity implies that the only such component is the
complete set; hence B projects to the complete set. If it is disjoint of Θ(B),

TOME 56 (2006), FASCICULE 7



2182 P. ARNOUX, V. BERTHÉ, A. HILION & A. SIEGEL

then σf is orientable which contradicts the hypothesis. Hence, it is all of
A, and σf is primitive. �

Example 3.8. — Consider, for instance, the train-track map f : a 7→ c,
b 7→ a−1, c 7→ ab−1. One checks that σf is not primitive. Indeed, σf is
orientable, since it stabilizes the letters {a, b−1, c}. Renaming b′ = b−1,
we can check immediately that f corresponds in fact to the substitution
a 7→ c, b′ 7→ a, c 7→ ab′.

We are now in a position to define the main topic of our study:

Definition 3.9. — Let f be a train-track map, and σf be the associated
double substitution. If σf is nonorientable, we define the attractive symbolic
lamination associated with f as the set Xσf

of the symbolic dynamical
system (Xσf

, S) defined by σf , and we denote it by Lf .
If σf is orientable, the substitution (taking the square in the orientation-

reversing case) splits in two disjoint primitive substitutions conjugated by
Θ; we define the attractive symbolic lamination Lf in this case as the union
of the two systems associated with the two primitive substitutions.

For more details about Lf , see Appendix 1.
We have the following property:

Proposition 3.10. — The attractive symbolic lamination Lf is invari-
ant by the flip Θ.

Proof. — This is immediate by definition in the orientable case; other-
wise, it results from the primitivity of the substitution. �

Remark 3.11. — The elements of the lamination can be interpreted
as infinite paths in graph G. Particular elements can be obtained in the
following way: take an edge e, and consider an inner point of e which is
fixed by a power fn of f (such a point always exists by primitivity). Taking
the square of fn if necessary, we see that the letter e occurs inside the word
corresponding to f(e), and the words h(f jn(e)) are factors of each other,
and converge to a biinfinite word; any such biinfinite word generates Lf , and
corresponds to an infinite pointed path fixed by f . The shift corresponds
to a move of the origin on the path.

4. Representation of the attractive lamination of a unit
Pisot iwip automorphism

We now have gathered all the material required for the definition of
the central tile of a train track map representing an iwip automorphism.
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This construction will be performed thanks to the double substitution σf
(Definition 3.1). We first recall in Section 4.1 the construction of the central
tile in the classic case of a substitution. We then specifically consider the
case of a unit Pisot iwip automorphism in Section 4.2. The topological
properties of the central tile are detailed in Section 4.3. The action of a
domain exchange acting on it is studied in Section 4.4. We conclude this
section with dynamical properties in Section 4.5.

4.1. Central tile of a Pisot substitution

As reviewed in the introduction, central tiles are compact sets with a frac-
tal boundary which are attractors of some graph-directed Iterated Function
System. They were first introduced by Rauzy [43] to produce geometric rep-
resentations of substitutive dynamical systems for some discrepancy moti-
vations, while Thurston [51] extended them to numeration systems with a
noninteger basis. Both constructions apply quite naturally to the class of
irreducible unit Pisot substitutions.

Definition 4.1. — A primitive substitution is said to be unit Pisot if
its dominant eigenvalue β is a unit Pisot number. A primitive substitution
is said to be irreducible if the characteristic polynomial of its incidence
matrix is irreducible.

There exist various extensions of the notion of central tiles to more gen-
eral situations, namely to the non-unit case [47], to the non-Pisot case [8],
or to the reducible case [12, 31, 25]. The construction we describe here is
based on the construction of central tiles for reducible unit Pisot substi-
tutions developed in [12, 31]. Note that here we do not suppose that the
substitution is unimodular, meaning that detMσ = ±1. The only assump-
tion that we need is that the dominant eigenvalue is a unit, even if the
matrix Mσ is not invertible over Z.

There are several construction methods for central tiles. One first ap-
proach inspired by the seminal paper [43] is based on formal power series,
and is developed in [38, 39, 18, 19]. A second approach via Iterated Func-
tion Systems (IFS) and generalized substitutions has been developed on
the basis of ideas from [29] in [9, 44, 28, 49], with special focus on self-
similar properties of the Rauzy fractals and relations with discrete planes
[6, 7]. Similar sets have also been introduced and studied in the framework
of β-numeration by Akiyama in [1, 2, 4, 3], inspired by [51]. Both con-
structions are equivalent to a third one, which involves projecting a stair
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Figure 4.1. The discrete line Dσ

representing by abelianization the periodic point of a substitution on a
contracting subspace to get a bounded set [11, 13]. This last construction
is the most natural, hence it is the starting point of our construction.

4.1.1. The discrete line

Let u be a two-sided periodic point of a primitive unit Pisot substitution
σ on k letters. Let us embed this infinite word u as a discrete line in Rk by
successively replacing each letter of u by the corresponding vector in the
canonical basis, as depicted in Fig. 4.1. We thus define the discrete line Dσ
(4.1) Dσ := {l(u0 · · ·ui); i ∈ N}.

Let us recall that l stands for the abelianization map of the free monoid.
By discrete line we mean here a countable set of points which are vertices
of a stair, and not really the stair itself.

4.1.2. Algebraic decomposition of the space.

We now need to introduce a suitable decomposition of Rk with respect
to eigenspaces of the incidence matrix Mσ associated with the eigenvalue
β. We denote by d the algebraic degree of β; one has d 6 k, since the
characteristic polynomial of Mσ may be reducible.

Let r− 1 stand for the number of real conjugates of β; each correspond-
ing eigenspace has dimension one according to the primitivity assumption
and Perron-Frobenius’ theorem. Let 2s denote the number of complex con-
jugates of β; each eigenvector pair with its complex conjugate generates a
stable 2-dimensional plane. We call β-contracting space of the matrix Mσ

the subspace Hc generated by eigenspaces associated with β-conjugates. It
has dimension r+2s−1 = d−1. Then, by construction, the linear map as-
sociated with the matrix Mσ maps Hc to Hc. We denote by hσ : Hc → Hc

its restriction to Hc; it is a contraction with eigenvalues the conjugates of β.
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We denote by He the β-expanding line of Mσ, i.e., the real line generated
by a β-eigenvector. Let P be the characteristic polynomial of Mσ, and
Q the minimal polynomial of β; we can write P = QR, where R is a
polynomial prime with Q. We denote by Hr the kernel of R (Mσ); it is
an invariant space for Mσ, which is a complement in Rn to Hc ⊕ He. Let
πc : Rn → Hc be the projection onto Hc along He ⊕Hr, according to the
natural decomposition Rk = Hc ⊕ He ⊕ Hr. Then, the relation l(σ(w)) =
Mσl(w), for all w ∈ A∗ implies the following commutation relation:

∀w ∈ A∗, πc(l(σ(w))) = hσπc(l(w)).

4.1.3. Central tile.

In the irreducible case, the Pisot assumption implies that the discrete
line of σ remains at a bounded distance from the expanding direction of
the incidence matrix. In the reducible case, the discrete line may have
other expanding directions, but the projection of the discrete line by πc
still provides a bounded set in Hc ' Rd−1.

Definition 4.2. — Let σ be a primitive unit Pisot substitution with
dominant eigenvalue β. The central tile of σ is the projection on the β-
contracting plane of the discrete line associated with any periodic point
u = (ui)i∈N of σ:

T = {πc(l(u0 · · ·ui−1)); i ∈ N}.

Subtiles of the central tile R are naturally defined, depending on the
letter associated with the vertex of the discrete line that is projected. One
thus gets for 1 6 j 6 k

Tσ(aj) = {π (l(u0 · · ·ui−1)) ; i ∈ N, ui = aj}.

By definition, the central tile Tσ consists of the finite union of its subtiles
Tσ(aj). To ensure that the subtiles are disjoint in measure, we recall from
[9] the following combinatorial condition on substitutions.

Definition 4.3. — A substitution σ over the alphabet A satisfies the
strong coincidence condition if for every pair (b1, b2) ∈ A2, there exists n
such that: σn(b1) = p1as1 and σn(b2) = p2as2 with l(p1) = l(p2),where l
denotes the abelianization map.

This condition is satisfied by every unimodular irreducible Pisot substitu-
tion over a two-letter alphabet [10]. It is conjectured that every substitution
of Pisot type satisfies the strong coincidence condition.
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Theorem 4.4. — Let σ be a primitive unit Pisot substitution. Let d
be the degree of its dominant eigenvalue. The central tile Tσ is a compact
set with nonempty interior in Rd−1. Hence it has non-zero measure. Each
subtile is the closure of its interior. The subtiles of Tσ are solutions of the
following graph-directed affine Iterated Function System:

(4.2) ∀a ∈ A, Tσ(a) =
⋃

b∈A,σ(b)=pas

hσ(Tσ(b)) + πc(l(p)).

We assume, furthermore, that σ satisfies the strong coincidence condi-
tion. Then the subtiles have disjoint interiors.

Proof. — See for instance [43] for the Tribonacci case, [47, 49, 31] for
(4.2), [9] for the last statement, and for more details, the survey [13] and
[11]. �

Example 4.5. — Let σ1 : a 7→ ab, b 7→ c, c 7→ a. This substitution is
invertible and its inverse is the automorphism ϕ1 : a 7→ c, b 7→ c−1a, c 7→ b

introduced in Example 2.12. The substitution σ1 is irreducible, primitive,
and unit Pisot. Its dominant eigenvalue β1 is the second smallest Pisot
number; it satisfies β3

1 = β2
1 + 1. The central tile of σ1 is shown in Fig. 4.2;

the largest shaped tile is the tile Tσ3(a), the middle size shape is Tσ3(b)
while the smallest shaped tile is Tσ3(c).

Let σ2 : a 7→ ab, b 7→ ca, c 7→ a be the so-called flipped Tribonacci
substitution. Its inverse ϕ2 : a 7→ c, b 7→ c−1a, c 7→ bc−1 was introduced
in Example 2.13. Like the previous example, σ2 is irreducible, primitive,
and unit Pisot. Its dominant eigenvalue satisfies β3 = β2 + β + 1. Note
that the train-track representative of σ−1

2 does not have the same dilation
coefficient as σ2. The central tile of σ2 is shown in Fig. 4.2.

Figure 4.2. Central tiles for the substitutions σ1, σ2.

ANNALES DE L’INSTITUT FOURIER



FRACTAL REPRESENTATION OF A FREE GROUP AUTOMORPHISM 2187

4.1.4. Dynamical systems acting on the central tile.

Two maps act in a natural way on the symbolic system Xσ, namely the
shift map and the substitution.

From the definition of the subtile, one can translate any point of a sub-
tile Tσ(a), for a ∈ A by the projection on the contracting plane of the
corresponding canonical vector, without leaving the central tile:

Tσ(a) + πc(l(a)) = πc ({t(u0 · · ·ui−1a); i ∈ N, ui = a})
⊂ πc ({t(u0 · · ·ui−1ui); i ∈ N}) = Tσ.

Consequently, on each subtile, the shift map commutes with the following
domain exchange

(4.3)
Eσ : Tσ → Tσ,

x ∈ Tσ(a) 7→ x+ πc(l(a)) ∈ Tσ.

On the whole central tile, the substitution commutes with the contrac-
tion hσ : Hc → Hc, defined in the algebraic decomposition and used in
Theorem 4.4. Once the strong coincidence condition is satisfied, the sub-
tiles are disjoint almost everywhere, so both actions can be defined on the
whole central tile.

It is natural to code, using the partition defined by the subtiles, the action
of the domain exchange Eσ over the central tile Tσ. According to [43, 9]
there exists a coding map from Tσ into the full shift AZ that is one-to-
one almost everywhere. Moreover, this coding map is onto the substitutive
system Xσ.

Theorem 4.6. — Let σ be a primitive Pisot unit substitution that sat-
isfies the coincidence condition. The substitutive dynamical system (Xσ, S)
associated with σ is semi-topologically conjugate to the domain exchange
Eσ defined on the central tile T (see (4.3)).

Proof. — See for instance in [9, 19, 12]. See also for more details, the
surveys [13, 41]. �

Remark 4.7. — The minimality of the shift map has an interesting con-
sequence: consider any two-sided sequence w in the symbolic dynamical
system Xσ and build a discrete line in Rd as in (4.1). Then the closure
of the projection of the vertices of the discrete line describing w on Hc

is exactly the central tile. Similarly, if one projects the negative part of
the discrete instead of the positive part, then the resulting set is again the
central tile.
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4.2. Central tile of a unit Pisot iwip automorphism

To associate a central tile with a train-track map f representing an iwip
automorphism, we use the double substitution σf defined in Definition 3.1.
In all that follows, we focus on the case of nonorientable double substitu-
tions; indeed, the case of an orientable double substitution can be easily
reduced to the classic case of a substitution. We study, in this section, the
relation between the incidence matrix Mσf

of σf and the transition matrix
Mf of f . We then deduce a construction for the central tile.

Let ϕ ∈ Aut(FN ) be an iwip automorphism, and let Φ be the outer
automorphism defined by ϕ. We consider a train-track map f : G → G

representing Φ. The choice of the train-track map f is now fixed. Note that
the notions we introduce in the following may depend on this particular
choice. We denote the edges of G by e1, e−1

1 , . . . , ek, e
−1
k . In all that follows,

we focus only on the unit Pisot case:

Definition 4.8. — An iwip automorphism is said to be unit Pisot if
its dilation coefficient β is a unit Pisot number.

We have seen in Section 2.3 that, while β is defined as the dominant
eigenvalue of the primitive transition matrix Mf , it does not depend on
the choice of f but only on the outer automorphism Φ.

The transition matrix Mf provides information on the dilation coefficient
of the iwip automorphism ϕ but, as explained in section 3, it is not sufficient
for our purpose. The aim of Proposition 4.9 below is to prove in the unit
Pisot case that the double substitution σf is a primitive substitution (when
f is assumed to be nonorientable) whose dominant eigenvalue is a unit Pisot
number.

Proposition 4.9. — Let f : G → G be a train-track map for a unit
Pisot outer automorphism Φ. If f is nonorientable, then the double substi-
tution σf is a primitive unit Pisot substitution. The dominant eigenvalue
of Mσf

is the dilation coefficient of Φ.

Proof. — Since the train-track map is nonorientable, the incidence ma-
trix Mσf

of σf is primitive, according to Proposition 3.7. We have to prove
that its dominant eigenvalue is the dilation coefficient of Φ, that is, the
dominant eigenvalue of the transition matrix Mf of the train-track map.

We introduce two auxiliary transition matrices which distinguish between
the edge ei and the edge e−1

i : we define M+
f (resp. M−

f ) as the k-square
matrix with (i, j)-entry the number of times the path f(ej) crosses the
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edge ei (resp. e−1
i ). Both matrices M+

f and M−
f have nonnegative integer

entries. The transition matrix Mf satisfies Mf = M+
f + M−

f .
We define the abelianization matrix Af of f as Af := M+

f − M−
f .

Then we have Mσf
=

[
M+

f M−
f

M−
f M+

f

]
, so PMσf

P−1 =
(
Mf 0
0 Af

)
with

P =
(
Ik Ik
Ik −Ik

)
.

Hence, the eigenvalues of Mσf
are the eigenvalues of Mf or Af . To prove

the proposition, we just check that the dominant eigenvalue β of Mf also
dominates the eigenvalues of Af . Consider an eigenvalue µ of Af and an
associated eigenvector v = (v1, . . . , vk). Denoting by m+

ij (resp. m−
ij) the

(i, j)-coefficient of M+
f (resp. M−

f ), we obtain that for all i ∈ {1, . . . , k},∑
16i6n

(m+
ij −m−

ij)vi = µvi.

Hence

µ|vi| 6
∑

16i6k

|m+
ij −m−

ij ||vi|

6
∑

16i6k

(m+
ij +m−

ij)|vi|.

Thus |µ|v0 6 Mfv0, where v0 = (|v1|, . . . , |vk|), which implies (see for
instance [45]) that |µ| 6 β. �

We are now able to define the central tile for a nonorientable double
substitution.

Definition 4.10. — Let Φ be a unit Pisot outer automorphism and let
f : G→ G be a train-track map representing Φ. If the double substitution
σf is nonorientable, then the central tile of f is the central tile associ-
ated with its double substitution σf . We denote it by Tf . The subtiles are
denoted by Tf (e).

Theorem 4.11. — Let f : G → G be a nonorientable train-track for
a unit Pisot iwip outer automorphism. Let 2k be the number of edges of
G. Let d be the degree of the dilation coefficient of f . The central tile of f
is a compact subset with nonempty interior, hence non-zero measure, of a
(d− 1)-dimensional subspace of R2k. It is divided into 2k subtiles.

Proof. — Since f acts on k edges, σf is a substitution on 2k letters, so the
central tile is a subset of R2k and is divided into 2k tiles. Let β denote the
dilation coefficient of f . We have proved (Proposition 4.9) that β is also the
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dominant eigenvalue of Mσf
. By construction, the central tile is a subset

of the subspace of R2k generated by the eigenvectors of Mσf
associated

with the conjugates of β. Since f is nonorientable, Mσf
is primitive so β

is a simple eigenvalue of Mσf
. Hence, all the conjugates are also simple

eigenvalues of Mσf
. Finally, the contracting space of Mσf

has dimension
(d− 1). �

The following property of f allows us to construct the central tile di-
rectly from the train-track f , i.e., in a k-dimensional space instead of a
2k-dimensional space.

Lemma 4.12. — Let σf be a primitive double substitution (see Defi-
nition 3.1) on the 2k-letter alphabet A = {e1, . . . , ek, e−1

1 , . . . , e−1
k }. Then

the projection πc on Hc maps a letter and its inverse to the same vector:

∀i 6 k, πc(l(ei)) = πc(l(e−1
i )).

Proof. — We recall that l(ei) = ei, and l(e−1
i ) = ei+k, for 1 6 i 6 k,

where (e1, · · · , e2k) denotes the canonical basis of R2k. The vector space H1

spanned by e1 + ek+1, e2 + ek+2, . . . , ek + e2k is a stable subspace of Mσf
,

as well as the vector space H2 spanned by e1−ek+1, e2−ek+2, . . . , ek−e2k.
The spaces H1 and H2 are orthogonal.

Let βi be a conjugate of the dominating eigenvalue of σf and v a k-
dimensional βi-eigenvector of the transition matrix Mf . Then, as a con-
sequence of the proof of Proposition 4.9, (v,v) is a 2k-dimensional βi-
eigenvector of the incidence matrix Mσf

. We have also seen that βi is a
simple eigenvalue of Mσf

. Hence, the contracting subspace Hc of Mσf
is

generated by vectors (v,v) and Hc ⊂ H1. Consequently, Hc is orthogonal
to H2, so πc(H2) = 0. Each vector l(ei)− l(e−1

i ) = ei− ek+i belongs to H2,
hence πc(l(ei)) = πc(l(e−1

i )). �

As a consequence, the central tile of an iwip train-track map can be
directly constructed by using the transition matrix Mf of the train-track
map f and one two-sided periodic point (see Remark 4.7): one simply has
to represent a letter and its inverse by the same canonical vector.

Corollary 4.13. — Let Φ be a unit Pisot outer automorphism with a
nonorientable train-track representative f : G→ G. Let e1, e−1

1 , . . . ek, e
−1
k

denote the edges of G. Let t : G → Rk be the map that sends an edge e
and its inverse e−1 to the same canonical vector: t(ei) = t(e−1

i ) = ei ∈ Rk,
for 1 6 i 6 k. Let β be the dilation coefficient of f .

Let H̃c ⊂ Rk denote the β-contracting space of the transition matrix of
f and π̃c the projection on H̃c along the invariant complementary space.
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Then the central tile Tf of f is the closure of the projection by π̃c on H̃c

of the k-dimensional stair representing a periodic point u of f :

Tf = π̃c({t(u0) + · · ·+ t(ui); i ∈ N}).

4.3. Topological properties

We recall that we denote by hf : Hc → Hc the contraction obtained
as the restriction of the linear map associated with the matrix Mf on Hc;
in the eigenvector basis (uβ(2) , · · · ,uβ(d)) , hf multiplies the coordinate of
index i by β(i), for 2 6 i 6 d.

Theorem 4.14. — Let f : G → G be an nonorientable train-track for
a unit Pisot iwip outer automorphism. Let 2k be the number of edges of G
and let d be the degree of the dilation coefficient. Then

(1) each subtile is the closure of its interior;
(2) the subtiles of Tf are solutions of the following graph-directed self-

affine Iterated Function System:

(4.4) ∀e ∈ {e±1
1 , · · · , e±1

k }, Tf (e) =
⋃

b∈{e±1
1 ,··· ,e±1

k
},

p,s reduced words,
f(b)=pes

hf (Tf (b)) + πc(l(p)).

(3) They satisfy the following symmetry properties:

(4.5) ∀ e ∈ {e±1
1 , · · · , e±1

k }, Tf (e) = −Tf (e−1)− πc(l(e)).

(4) We assume, furthermore, that σf satisfies the strong coincidence
condition. Then the subtiles have disjoint interiors.

Proof. — We deduce all the statements of Theorem 4.14 from Theorem
4.4, except the symmetry conditions (4.5) that we now prove. We recall
that the solutions of the graph-directed self-affine Iterated Function System
(4.4) are uniquely determined since β is a Pisot number, according to [37].
Let us prove that −Tf (e−1)−πc(l(e)) satisfies (4.4), for e ∈ {e±1

1 , · · · , e±1
k }.

One has

Tf (e−1) =
⋃

b∈{e±1
1 ,··· ,e±1

k
}

f(b)=pes

hf (Tf (b−1)) + πc(l(s−1)).

Let us apply πc ◦ l to f(b) = pes. From πc ◦ l(s) = πc ◦ l(s−1) and
hfπcl(b) = πcl(f(b)), one deduces that hfπcl(b) = πcl(p) + πcl(e) + πcl(s),
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and[
−Tf (e−1)− πcl(e)

]
=

⋃
b∈{e±1

1 ,··· ,e±1
k

}
f(b)=pes

−hfTf (b−1)− πcl(s)− πcl(e)

=
⋃

b∈{e±1
1 ,··· ,e±1

k
}

f(b)=pes

−hfTf (b−1)− hfπcl(b) + πcl(p)

=
⋃

b∈{e±1
1 ,··· ,e±1

k
}

f(b)=pes

hf
[
−Tf (b−1)− πcl(b)

]
+ πcl(p),

which ends the proof. �

Example 4.15. — The subtiles of the central tile of the group automor-
phism ϕ1 : a 7→ c, b 7→ c−1a, c 7→ b of Example 2.12 satisfy

Tf (a) = hfTf (b) + πc(l(c−1))

Tf (b) = hfTf (c)
Tf (c) = hfTf (a) ∪

(
hfTf (b−1) + πc(l(a))

)
Tf (a−1) = hfTf (b−1)

Tf (b−1) = hfTf (c−1)

Tf (c−1) = hfTf (a−1) ∪ (hfTf (b))
Tf (a) = −Tf (a−1)− πc(l(a))

Tf (b) = −Tf (b−1)− πc(l(b))

Tf (c) = −Tf (c−1)− πc(l(c)).

4.4. Domain exchange

According to Theorem 4.6, the central tile Tf of a primitive Pisot sub-
stitution can be provided with a domain exchange Ef once the subtiles are
disjoint in measure. In the general substitutive case, each subtile Tσ(a) is
mapped by the translation vector πc(l(a)) according to (4.3). When the
substitution is a double substitution σf associated with a train-track map,
we have proved (Lemma 4.12) that the translation vectors associated with
an edge and its inverse are equal. More precisely, let e1, e−1

1 , . . . , ek, e
−1
k

denote the edges of the train-track map. The central tile is stable under
the following action:

(4.6) Ef : Tf → Tf , x ∈ Tf (e) ∪ Tf (e−1) 7→ x+ πc(l(e)) ∈ Tf .
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Corollary 4.16. — The central tile of a unit Pisot iwip nonorientable
train-track is symmetric with respect to the origin:

Tf = −Tf .

Proof. — From Theorem 4.14, each subtile satisfies Tf (e) = −Tf (e−1)−
πc(l(e)). Hence −Tf (e) = EfTf (e−1) ⊂ Tf . Finally, −Tf = −∪Tf (e) ⊂ Tf ,
which also implies the reverse implication. �

Example 4.17. — The central tiles for the group automorphisms ϕ1 and
ϕ2 (Example 2.12 and 2.13) of F3 are 2-dimensional, with 6 subtiles. They
are depicted in Fig. 4.3.

Figure 4.3. Central tiles for ϕ1 and ϕ2 (inverse of the flipped Tri-
bonacci substitution).

It is natural to code, with respect to the partition provided by the 2k
subtiles, the action of the domain exchange Ef over the central tile Tf .
Theorem 4.6 implies that the codings of the orbits of the points in the
central tile under the action of the domain exchange Ef are described by the
attractive symbolic lamination Lf , that is, the coding map, from Tf onto
the 2k-letter full shift {e±1

1 , . . . , e±1
k }Z is one-to-one almost everywhere, and

onto the symbolic dynamical system (Lf , S). We thus have

Theorem 4.18. — Let f : G→ G be a nonorientable train-track for a
unit Pisot iwip outer automorphism ϕ ∈ Out(FN ). Let k be the number
of edges of G and let d be the degree of the unit Pisot dilation coefficient.
We assume, furthermore, that σf satisfies the strong coincidence condition.
Then the domain exchange Ef (4.6) is defined almost everywhere on the
central tile Tf . The attractive symbolic lamination Lf provided with the
shift map S is measure-theoretically isomorphic to (Tf , Ef ), i.e., there exists
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a map µ : Lf → Tf that is is continuous, onto and one-to-one almost
everywhere, and that satisfies µ ◦ S = Eσ ◦ µ.

Example 4.19. — The action of the exchange of domains is illustrated
in Fig. 5.4 below for the train-track map ϕ2 of Example 2.13. Pieces move
simultaneously by pairs (that consist of a piece and its symmetric for the
inverse letter), so there are three translation vectors.

Figure 4.4. Exchange of domains for the central tile of ϕ1.

4.5. Dynamical properties

The domain exchange Ef is defined almost everywhere, but not every-
where, which prevents us from defining a continuous dynamics on the cen-
tral tile. A solution to this problem consists in “factorizing” the action of
Ef on Tf by the smallest possible lattice so that the translation vectors
πc(l(e)) for e ∈ {e1, · · · , ek} do coincide: we thus consider the subgroup

k−1∑
i=1

Zπc(l(ei)− l(ek))

of Hc. Let us recall that we mean by irreducible case that the characteristic
polynomial of the matrix Mf is irreducible. In this latter case, this sub-
group is discrete, the quotient is a compact group and the domain exchange
factorizes into a minimal translation on a compact group.

By a multiple tiling of Rd−1, we mean according, for instance to [32], ar-
rangements of tiles in Rd−1 such that almost all points in Rd−1 are covered
exactly p times for some fixed positive integer p.
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Proposition 4.20. — Let f : G → G be a nonorientable train-track
representative for a unit Pisot iwip outer automorphism Φ ∈ Out(FN ). Let
2k be the number of edges of G and let d be the degree of the unit Pisot
dilation coefficient. Let e1, e−1

1 , · · · , ek, e−1
k be the edges of graph G. We

assume, furthermore, that σf satisfies the strong coincidence condition.
If d = 2k, that is, if the number of edges (up to the orientation) is equal

to twice the algebraic degree of the dilation coefficient, then the central tile
generates a lattice multiple tiling of the (d− 1)-dimensional subspace Hc:

(4.7) Hc = Tf +
k−1∑
i=1

Z(πc(l(e1)− πc(l(ek)).

If this multiple tiling is a tiling, then (Lf , S) is measure-theoretically
isomorphic to a toral translation on the (d− 1)-dimensional torus Rd−1.

In the substitutive case, as soon as the size of the alphabet is larger
than or equal to the degree of the expanding eigenvalue, the subgroup∑k−1
i=1 Zπc(l(ei) − l(ek)) has no reason to be discrete. In particular, when

σ is a double substitution, the size of the alphabet is at least equal to
twice the degree of the expanding eigenvalue. This proposition means that
when it is exactly equal to twice the degree, then the symmetries of the
substitution imply that the subgroup is discrete, so one gets a multiple
tiling.

In the irreducible case, conditions for tiling exist in terms of discrete
geometry [31, 11], or of number theory [48, 13]. Most of the conditions
(super-coincidences, (F)-property) cannot be directly used in the reducible
case. Consequently, we here use the graph condition of [48]; this condition
is stated in the irreducible case but it can be generalized to the reducible
case, since it only involves the conjugates of the expanding eigenvalue of
the substitution. By checking the conditions of [48] on ϕ1 and ϕ2, we obtain
the following result:

Theorem 4.21. — The central tiles for ϕ1 : a 7→ c, b 7→ c−1a, c 7→ b and
ϕ2 : a 7→ c, b 7→ c−1a, c 7→ bc−1 generate a periodic tiling of R2. Hence, the
symbolic attractive laminations associated with each train-track maps ϕ1

and ϕ2 have a pure discrete spectrum. They are both measure-theoretically
isomorphic to a translation on the 2-dimensional torus.

Proof. — To prove that one has indeed a tiling, we have to check that T
does not intersect T +πc(x) for all x ∈

∑k−1
i=1 Z(l(ei)−l(ek)). Since we have

explicit bounds for the size of T , T +x does not intersect T once the norm
of x is large enough. When it is not the case, following [48], we compute all
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the algebraic integers of the form
∑j
i=0 diβ

i−j , where the sequence of digits
(di) takes its values in a finite set and satisfies (

∑
i>0 diβ

i)u = πc(x) (where
u is an expanding normalized eigenvector of Mσf

). Then we check which
sequence of digits (di) is a Dumont-Thomas expansion [23]. The final step
consists in verifying that the resulting sequences of digits (di) correspond
to a set of zero-measure in the central tile. All these computations can be
done in finite time.

The results of the computation for ϕ1 are the following: the central tile T
intersects the six tiles Tϕ1+x with x ∈ ±πc{l(e3)−l(e1), l(e2)−l(e1), l(e2)−
l(e3)}. All the intersections have zero-measure. The central tile of ϕ2 in-
tersects eight tiles Tϕ2 + x with x ∈ ±πc{l(e3)− l(e1), l(e2)− l(e1), l(e2)−
l(e3), 2l(e2)− l(e3)− l(e1)}. �

Figure 4.5. Left side: the periodic tiling generated by ϕ1 : a 7→ c,
b 7→ c−1a, c 7→ b on F3; ϕ1 induces an irreducible unit Pisot nonori-
entable train-track map. Each tile intersects exactly six neighbourgs;
the intersection has zero measure. Right side: The central tile of ϕ2 :
a 7→ c, b 7→ c−1a, c 7→ bc−1 also periodically tiles the plane, but each
tile has eight neighbourgs.

Furthermore, one can even check effectively that the symbolic attractive
laminations of ϕ1 and ϕ2 are not measure-theoretically isomorphic since
they have distinct spectra.

5. Examples

In the previous sections, we introduced two examples ϕ1 and ϕ2 (Ex-
ample 2.12 and 2.13) corresponding to automorphisms of F3 that have no
cancellation, that is, they directly induce a primitive train-track map on
the rose R3. We give below a few representative examples of more complex
situations.
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5.1. Example of an iwip automorphism on more than 3 letters

The next example corresponds to an automorphism on 5 letters that is
not Pisot.

Example 5.1. — One checks that the automorphism ϕ3 : a 7→ e, b 7→
e−1a, c 7→ b, d 7→ c, e 7→ d induces a train-track map f3 on the rose R5. Its
transition matrix Mf3 has for characteristic polynomial X5−X−1, which
is irreducible, hence ϕ3 is an iwip automorphism. Its dilation coefficient is
λϕ3 ≈ 1, 16. However, λϕ3 is not a Pisot number, so that we cannot build
a central tile for ϕ3.

Note that ϕ3 is the inverse of the smallest Pisot number β-substitution
σ3 : a 7→ ab, b 7→ c, c 7→ d, d 7→ e, e 7→ a. The characteristic polynomial of
its incidence matrix is (X3−X − 1)(X2−X +1), so that this substitution
is reducible and its dominating eigenvalue is the smallest Pisot number
β3 = β + 1. The central tile of σ3 is shown in Fig. 5.2.

5.2. Examples of automorphisms that do not induce a
train-track map

The next two examples (Example 5.2 and 5.3) correspond to automor-
phisms that do not directly induce a train-track map. In each case, the
transition matrix of the chosen topological representative as a train-track
map admits an irreducible characteristic polynomial.

The so-called Tribonacci substitution is defined by σ4 : a 7→ ab, b 7→ ac,
c 7→ a. Rauzy’s seminal paper [43] is based on a detailed study of this
substitution. See also [29, 38, 39, 35]. It is irreducible, primitive, and unit
Pisot. Its dominant eigenvalue satisfies β3 = β2 + β + 1. Its central tile is
depicted in Fig. 5.2.

In the following example, we consider the inverse ϕ4 of σ4.

Example 5.2. — The automorphism ϕ4 of F3 =< a, b, c > is given by
a 7→ c, b 7→ c−1a, c 7→ c−1b. It does not induce a train-track map on the
rose R3, since a cancellation occurs when computing ϕ2

4(c) = ϕ4(c−1b) =
b−1cc−1a = b−1a.

Thanks to the algorithm of Bestvina-Handel, one obtains a primitive
train-track map f4 : G4 → G4 representing ϕ4, and one checks that ϕ4 is
iwip. The graph G4 is depicted in Fig. 5.1. It has 2 vertices v1 and v2, and
4 edges: A from v1 to v1, B and C from v2 to v1, and D from v1 to v2.
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The map f4 is defined by A 7→ DC, B 7→ D−1A, C 7→ B, D 7→ C−1. The
correspondence between R3 and G4 is given by a ∼ A, b ∼ DB, c ∼ DC.

The transition matrix Mf4 is primitive; its characteristic polynomial is
X4 − 2X − 1, and the dilation coefficient is λϕ4 ≈ 1.39. Its conjugates are
-0.47462, - 0.46035 + 1.13931i, and - 0.46035 - 1.13931 i. Hence, ϕ4 is not
Pisot and there is no associated central tile.

A
D

B

C
Figure 5.1. A topological representation of ϕ4 (the inverse of the Tri-
bonacci substitution) given by the graph G4 provided with the map
A 7→ DC, B 7→ D−1A, C 7→ B, D 7→ C−1.

Figure 5.2. Central tile for the β-substitution associated with the
smallest Pisot number σ3 and the Tribonacci substitution σ4. Their
inverse automorphisms are not Pisot and cannot be represented by a
central tile.

Example 5.3. — The automorphism ϕ5 of F3 =< a, b, c > given by
a 7→ c−1bcab−1, b 7→ a−1c−1b−1c, c 7→ a−1c−1b does not induce a train-
track map on the rose R3, since a cancellation occurs when computing
ϕ5(c−1b), which occurs in ϕ5(a).

The algorithm of Bestvina-Handel allows one to obtain a primitive train-
track map f5 : G5 → G5, with G5 = G4, i.e., , the graph on which f4 (Ex-
ample 5.2) is defined (see Fig 5.1), and to check that ϕ5 is an iwip automor-
phism. Again, the correspondence between R3 and G5 is given by a ∼ A,
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b ∼ DB, c ∼ DC. The map f5 is defined by A 7→ C−1BDCAB−1D−1,
B 7→ D−1B−1C, C 7→ B, D 7→ A−1C−1.

The transition matrix Mf5 is primitive; its characteristic polynomial is
X4 − 2X3 − 2X2 + 1, and its dilation coefficient is λϕ5 ≈ 2.69, that is a
unit Pisot number.

The group automorphism ϕ5 of F3 has a 3-dimensional central tile with
eight subtiles since its dilation coefficient has degree 4 and its train-track
map f5 act on a 4-edge graph. It is depicted in Fig. 5.3.

Figure 5.3. Central tile for the train-track map f5 representing ϕ5: it
is 3-dimensional, with eight subtiles.

5.3. Example of a train-track map with a reducible matrix

Example 5.4 and 5.5 are examples of automorphisms that induce directly
train-track maps, but they have transition matrix with reducible charac-
teristic polynomial.

Example 5.4. — Thanks to the algorithm of Bestvina-Handel, one ob-
tains that the automorphism ϕ6 : a 7→ ab−1, b 7→ c, c 7→ d, d 7→ e, e 7→ a

is an iwip automorphism that induces a train-track map f6 on the rose R5;
indeed, the only possible cancellation can occur within the factors e−1a
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(or its inverse); one checks that e−1a never occurs since b is always fol-
lowed by a−1.

Its transition matrix Mf6 has for characteristic polynomial X5−X4−1 =
(X3−X−1)(X2−X+1), which is reducible. Its dilation coefficient satisfies
X3 = X + 1. It is the smallest Pisot number.

This example illustrates that the characteristic polynomial of a primitive
matrix is not necessarily irreducible, and that the degree of the dilation
coefficient of an iwip outer automorphism Φ ∈ Out(FN ) is neither bounded
below by the number of edges in a train-track representing Φ, nor by N .

The central tile of the group automorphism ϕ6 of F5 is 2-dimensional
since its dominating eigenvalue has degree 3; it admits 10 subtiles. The
central tile is depicted in Fig. 5.2.

The action of the exchange of domains is illustrated in Fig. 5.4 below
for the train-track map ϕ6 of Example 5.4. The central tile is divided into
10 subtiles. Pieces move simultaneously by pairs (that consist of a subtile
and its symmetric for the inverse letter), so that there are five translation
vectors.

Figure 5.4. Exchange of domains for the central tile ϕ6. It has 10 subtiles.

5.4. Example of an orientable automorphism

We conclude with an example of an orientable automorphism.

Example 5.5. — Consider the automorphism ϕ7 : a 7→ ab−1, b 7→
c−1, c 7→ d, d 7→ e, e 7→ a.

Its transition matrix Mf7 has for characteristic polynomial (X3 −X − 1)
(X2 −X + 1), which is reducible.

Note that by replacing b with b−1, ϕ7 becomes the substitution associ-
ated with the smallest Pisot number β-substitution σ3. Hence, ϕ7 is an ori-
entable automorphism. The associated attractive lamination corresponds
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to a substitutive symbolic dynamical system and can be represented by
the 2-dimensional central tile shown in Fig. 5.2 with 5 subtiles and no
symmetry.

6. Perspectives: stability of the representation under
conjugation

Our purpose in this paper was to exhibit a connection, in some specific
cases, between the geometric representation of symbolic dynamical systems
and the theory of free group automorphisms. We plan to explore, in the near
future, several natural questions concerning the influence of the choice of
the train-track representative on the representation. For instance, does the
spectrum of the dynamical system associated with the symbolic lamination
depend on the choice of the basis? Are the topological properties of the
central tile conserved inside the class of an outer automorphism? Is the
nonorientability property satisfied by all train-track representatives of an
outer automorphism? More generally, can one define a flow associated with
the algebraic attractive lamination, so that the central tile associated with
a particular choice of coordinates appears as a section for this flow? Note
that, while the present work is restricted to the Pisot case, recent progresses
[8] open possibilities in the general hyperbolic case; in that framework,
the flow should be replaced by an Rk-action, with k the dimension of the
expanding space.

As an illustration, let us consider the two following examples. The sub-
stitution τ4 : A 7→ ACB, B 7→ C, C 7→ A is a conjugate of the Rauzy
(or Tribonacci) substitution σ4 : a 7→ ab, b 7→ ac, c 7→ a, under the sub-
stitution µ : A 7→ ab, B 7→ c, C 7→ a. Both central tiles of these substi-
tutions are depicted in Fig. 6.1. One checks that they have similar local
structure. A similar phenomenon can be observed for the substitutions
τ2 : A 7→ ABC, B 7→ C, C 7→ A and σ2 : a 7→ ab, b 7→ ca, c 7→ a, that also
are conjugated by µ. Their central tiles are depicted in Fig. 6.1; they also
seem to present important similarities.

This similarity can easily be completely explained, as was pointed out
to us by Marcy Barge. Indeed, if we define the substitution ψ4 : a 7→ A,
b 7→ CB, c 7→ C, we can check immediately that we have σ4 = µ ◦ ψ4

and τ4 = ψ4 ◦ µ (the use of two different alphabets, upper and lower case,
should only be seen as a convenience to keep track of the direction of the
conjugacy). This easily implies the commutation relation τ4 ◦ψ4 = ψ4 ◦σ4,
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Figure 6.1. Central tiles for two pairs (τ4, σ4), and (τ2, σ2) of Pisot
unit irreducible substitutions. Each pair consists of substitutions that
belong to the same class of automorphisms of F3.

which shows that the fixed point v of τ4 is the image of the fixed point u
of σ4 by ψ4.

Hence the infinite word v can be coded by the three words A, CB and
C, and renaming these three words respectively a, b, c, we recover the
infinite word u. Consider now the central tile Tσ4 of σ4, with its nat-
ural decomposition Tσ4 = Tσ4(a) ∪ Tσ4(b) ∪ Tσ4(c), and the central tile
Tτ4 = Tτ4(A) ∪ Tτ4(B) ∪ Tσ4(C), seen as the closure of the projection of
the respective fixed points; from this recoding, we can obtain Tτ4(A) as
Tσ4(a), Tτ4(B) as a translate of Tσ4(b), and Tτ4(C) as the disjoint union
Tσ4(b) ∪ Tσ4(c). This decomposition can be seen in Fig. 6.2, on the left.
Let us note that the disjoint unions here are considered up to sets of zero
measure.

On the other hand, we have also the commutation relation µ◦τ4 = σ4◦µ,
which proves that the fixed point u can be coded by the three words ab, a,
and c; from this decomposition, we can obtain Tσ4(a) as the disjoint union
Tτ4(A) ∪ Tτ4(C), Tσ4(b) as a translate of Tτ4(A), and Tσ4(c) as Tτ4(B),
see Fig. 6.2 on the right. More precisely, if Mµ and Mψ4 stand for the
incidence matrix of the conjugacy substitutions µ and ψ4, and πτ4 and πσ4

stand for the projections on the β-contracting planes of τ4 and σ4, we get
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the following relations:
Tτ4(A) = Mψ4Tσ4(a)

Tτ4(B) = Mψ4Tσ4(b) + πτ4 l(B)

Tτ4(C) = Mψ4Tσ4(b) ∪Mψ4Tσ4(c)


Tσ4(a) = MµTτ4(A) ∪MµTτ4(C)

Tσ4(b) = MµTτ4(A) + πσ4 l(a)

Tσ4(c) = MµTτ4(B).

Figure 6.2. Relations between central tiles for conjugate substitutions.
Left side: the basic subtiles of Tτ4 (central tile of τ4) can be rebuilt
from the basic subtiles of Tσ4 (central tile of Tribonacci substitution
σ4, conjugate to τ4). Right side: the basic subtiles of Tσ4 can be rebuilt
from the basic subtiles of Tτ4 .

It might seem contradictory to obtain each central tile as a subset of
the other; the solution of this apparent paradox is that there is no canoni-
cal normalization for the central tile. Using one substitution, we obtain in
fact an infinite sequence (T (n)

σ4 ) of decreasing homothetic sets, with rela-
tion given by the substitution: if we consider the central tile as the closure
of the projection of the discrete line, as explained in Section 4.1, the re-
coding, using the substitution, selects a subset of the discrete line which
projects to a homothetic set, and this can be iterated; the other substitu-
tion gives another decreasing infinite sequence (T (n)

τ4 ) inserted in the first,
with T (n+1)

σ4 ⊂ T (n)
τ4 ⊂ T (n)

σ4 , for all n. The best picture in this case is to use
the canonical flow associated with the substitution, as defined in [11]. The
central tile appears as a section for this flow; the action of the substitution
gives in fact an infinite family of homothetic sections. The conjugacy allows
us to define another family of sections, which can be inserted in the first
one.

The same property is true for the second example, using substitution µ

and ψ2 : a 7→ A, b 7→ BC, c 7→ C; one checks that σ2 = µ ◦ ψ2 and τ2 =
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ψ2◦µ; we leave to the reader the computation of the related decompositions
of the central tiles.

Appendix A. Boundary of a free group and algebraic
laminations

We now define intrinsic objects corresponding to what we defined above;
the aim of this appendix is to prove that the symbolic lamination defined
above as the dynamical system generated by the double substitution is
indeed an algebraic lamination in the sense of free groups.

A.0.1. Boundary of a free group

Since the free group FN is a hyperbolic group, its Gromov boundary
exists and is denoted by ∂FN [27, 26, 21]. This boundary appears to be the
space of ends of FN : it is a Cantor set which compactifies FN . If a basis
of FN is fixed, ∂FN can be defined as the set of one-sided infinite reduced
sequences in this basis, provided with the topology given by the cylinders
(one can prove that this topology does not depend on the choice of a basis).

Let G be a marked graph with marking τ : RN → G. Let G̃ stand for
the universal cover of G, and pr : G̃ → G for the natural projection; G̃
is a tree, whose vertices have finite valence. There is a natural action of
FN = π1(G, ∗) on G̃ by deck transformations. Since G̃ is a simplicial tree
whose vertices have finite valence, its (Gromov) boundary ∂G̃ exists and is
a Cantor set which compactifies G̃ [26, 21]. The boundary ∂G̃ is naturally
identified with ∂FN by fixing a base point in G̃ and using the marking
τ : RN → G (or equivalently the action of FN on G̃).

An alternative definition is as follows: the boundary ∂G̃ can be defined as
the set of equivalence classes of rays in G̃, where two rays (one-sided paths)
of G̃ are said to be equivalent if their intersection is a ray. Consequently,
a line (two-sided path) in G̃ defines two distinct points of ∂G̃ (equivalent
classes of rays obtained by cutting the line at a point), thus two distinct
points of ∂FN . Conversely, two distinct points of ∂FN define a unique line
in G̃.

A special case is that of the Cayley graph associated with a basis of
the free group, which can be seen as a cover of the rose; one-sided infinite
reduced sequences in this basis can be seen as infinite reduced paths (rays)
in the Cayley graph.
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The group FN acts on itself by conjugacy. This action is continuous, and
one can prove that it extends continuously to an action of FN on ∂FN by
left translations. We denote by ∂iu : ∂FN → ∂FN the left translation by u
that is defined by ∂iu(Y ) = uY for all Y ∈ ∂FN .

Given an automorphism, it is natural to ask whether it can be contin-
uously extended to an homeomorphism of the boundary of FN considered
as a set of one-sided sequences. As explained earlier, every inner automor-
phism extends naturally to ∂FN . More generally, it is proved in [20] that
such an extension exists for every automorphism ϕ ∈ Aut(FN ); we denote
by ∂ϕ : ∂FN → ∂FN the homeomorphism extending ϕ. The proof relies on
the fact that an automorphism ϕ of FN is a quasi-isometry for the word
metric associated with some given basis. This implies in particular the fol-
lowing fact: fix a basis of FN ; there exists a constant C > 0 (depending on
the basis and the automorphism ϕ) such that for all reduced words u, v
such as uv is also reduced, then the cancellation occurring when concate-
nating the reduced images of u and v by ϕ is bounded by C. This is the
key ingredient for proving the existence of ∂ϕ.

A.0.2. Laminations

Let us define some useful material about general laminations in free
groups. For more details, see [22].

Consider the set ∂2FN = ∂FN × ∂FN r ∆ (where ∆ is the diagonal in
∂FN × ∂FN ) of pairs of distinct points in ∂FN . Note that the topology
of ∂FN induces a topology on ∂2FN . Moreover, the action of FN on ∂FN
induces a diagonal action of FN on ∂2FN . The set ∂2FN admits a distin-
guished involution ϑ : (X,Y ) 7→ (Y,X), called the flip involution: it is an
FN -equivariant homeomorphism.

Definition A.1. — An algebraic lamination L of FN is a closed subset
of ∂2FN which is FN -invariant and flip-invariant.

If we consider, as above, ∂FN as the boundary ∂G̃ of the universal cover
of a graph G, an element of ∂2FN can be seen as a biinfinite line in the
tree G̃, joining two distinct points on the boundary. This representation
depends of course on the choice of the graph G (or on the choice of a basis,
in the case of the Cayley graph), while the definition of ∂2FN is intrinsic.

The group Out(FN ) acts naturally on the set of algebraic laminations of
FN , in the following way. Consider ϕ ∈ Aut(FN ) and (X,Y ) ∈ ∂2FN , and
define ∂2ϕ(X,Y ) to be (∂ϕ(X), ∂ϕ(Y )); then ∂2ϕ is an homeomorphism
of ∂2FN . Note that if L is an algebraic lamination, then ∂2ϕ(L) is also an
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algebraic lamination. Moreover, because of the FN -invariance of L, ∂2ϕ(L)
only depends of the outer class Φ of ϕ, and we shall denote it by Φ(L).
If Φ(L) = L, one traditionally says that Φ stabilizes the lamination L.

Since a point in ∂2FN defines a unique line in G̃, an algebraic lamination
L defines a set of lines in G̃, denoted by L(G̃). The symbolic lamination in
G-coordinates associated with L, denoted by L(G), is the set of lines in G

which can be lifted to lines of L(G̃). The lines of L(G) are called leaves.
With such a symbolic lamination L(G), one can associate the set L(L(G)),

called the laminary language of L in G-coordinates, which consists of all
the finite paths in G which occur in some leaf of L(G).

To study the dynamics of a free group automorphism, it is interesting to
consider its action on the boundary, and to look for fixed points. Similarly
as in the case of surface homeomorphisms, it makes sense to look for a
lamination that is invariant by an automorphism, and such lamination
always exists for an iwip automorphism, as detailed below.

Let Φ be an iwip outer automorphism, and let f be a primitive train-
track representative f : G → G. We define the set L+

f according to the
following condition: a path w of G belongs to L+

f if, and only if, there
exists some edge e of G and some n > 1 such that w is a subpath of fn(e).
The following result is proved in [15] (see also [14]):

Theorem A.2 (Bestvina-Feighn-Handel). — Let Φ be an iwip outer au-
tomorphism Φ, and let f : G→ G be a primitive train-track representative.
There exists an algebraic lamination L+

Φ , called the attractive lamination
of Φ, whose laminary language in G-coordinates is L+

f . Moreover:
• this algebraic lamination does not depend on the choice of the train-

track f representing Φ,
• Φ stabilizes L+

Φ , that is, Φ(L+
Φ) = L+

Φ .

Definition A.3. — Let Φ be an iwip outer automorphism Φ, and let
f : G→ G be a primitive train-track representative. The symbolic attrac-
tive lamination in G-coordinates L+

Φ(G) is defined as the set of two-sided
sequences in ∂2FN whose language is included in L+

f .

Let us note that one has L(L+
Φ(G)) = L+

f .

A.0.3. Symbolic dynamics generated by a symbolic lamination

Consider f : G → G a primitive train-track map representing an iwip
automorphism Φ. Proposition A.6 below states that the symbolic attractive
lamination L+

f (G) coincides with the lamination associated with the double
substitution σf .
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Remark A.4. — The analogy with linear algebra can be enlightening.
Consider an endomorphism f of R3, and suppose that f has an eigenspace
which is a plane P . Every choice of a basis of R3 allows one to describe
the plane P thanks to an equation. This equation become simpler when
the basis contains a basis of P , since this choice of a basis respects the
geometry of f . The attractive lamination of an iwip outer automorphism
Φ ∈ Out(FN ) is an intrinsic object, lying in ∂2FN . For each choice of
a marked graph, that is, a choice of coordinates, the lamination can be
represented as a subset of lines embedded in the universal cover of G.
When G is the graph of a train-track map f representing Φ, the subset of
lines becomes “nice” since a line of this lamination is given by iterations of
f on an edge, and without cancellation. Roughly, we can also say that the
choice of the representation respects the geometry.

Let us recall that the flip map Θ is defined in Definition 3.3.

Lemma A.5. — Let f be a primitive train-track map representing an
iwip outer automorphism. Then there exists p such that for all edge a, the
following decomposition holds: fp(a) = w−1aw1, with w1, w−1 nonempty
words. The following two-sided sequence in ∂2FN belongs to the symbolic
attractive lamination in G-coordinates:

la = . . . f (j−1)p(w−1) . . . fp(w−1)w−1 · aw1f
p(w1)

. . . f (j−1)p(w1) . . . ∈ L+
Φ(G).

Let Xla = {Sj la; j ∈ Z} be the closed-shift orbit of la, where S denotes
the shift map on ∂2FN . Then

• (Xla , S) is a minimal symbolic dynamical system;
• the symbolic attractive lamination L+

Φ(G) is generated by Xla :

L+
Φ(G) = Xla ∪Θ(Xla).

Proof Fix an edge a of G. By primitivity of the transition matrix
Mf , then there exists m > 0 such that all the entries of Mm

f are greater
than 3. Hence, fm(a) = x−1ax1 or fm(a) = x−1a

−1x1 for all edge a,
with nonempty x−1, x1 (since a or a−1 occurs at least three times in
fm(a)). Hence, p = 2m satisfies fp(a) = w−1aw1 for all edge a, with
nonempty w−1, w1. Then for all j > 2, f jp(a) = w−jawj with w−j =
f (j−1)p(w−1) . . . fp(w−1)w−1 and wj = w1f

p(w1) . . . f (j−1)p(w1). Note that
no cancellation occurs when iterating f on a because f is a train-track map,
hence, we can define la as follows:

la = . . . f (j−1)p(w−1) . . . fp(w−1)w−1 · aw1f
p(w1) . . . f (j−1)p(w1) . . .
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Since the language of la is included in L+
f , we have la ∈ L+

Φ(G).
The primitivity of Mf implies that the line la is quasiperiodic as shown

in [15]. Consequently, (Xla , S) is a minimal symbolic dynamical system (see
Section 2.1).

The language of every l ∈ Xla is the same as that of la, i.e., the set
of factors of {f jp(a), k ∈ N}. Since it is contained in L+

f , we have Xla ⊂
L+

Φ(G). Every finite factor of any two-sided sequence in Θ(Xla) is included
in an iterate Θ(fp(a)) = fp(a−1), so we also have Θ(Xla) ⊂ L+

Φ(G).
Let b be another edge in the graph. By the definition of p, either b or b−1

occurs in fp(a). If b occurs in fp(a), then the language of lb, that is, the
set of factors of {f jp(b), k ∈ N} is included in the language of la, hence,
lb ∈ Xla . If b occurs in fp(a−1), then lb ∈ XΘ(la) = Θ(Xla). Finally, let
l ∈ L+

Φ(G). Every factor l[−j,j] is a factor of fpmj (ej). Since the ej ’s are
finite, there exists b such that the language of l is included in the set of
factors of {f jp(b), k ∈ N}. Hence l ∈ Xlb ⊂ Xla ∪ Θ(Xla), which implies
L+

Φ(G) = Xla ∪Θ(Xla).

Proposition A.6. — Let f : G → G be a primitive train-track map
representing an iwip outer automorphism Φ. The symbolic attractive lami-
nation in G-coordinates L+

Φ(G) is equal to the attractive symbolic lamina-
tion Lf of the double substitution of f (see Definition 3.9).

Proof. — From Definition 3.9, if f is nonorientable, Lf is defined as
the symbolic set Xσf

generated by σf . By definition, for every letter a,
the two-sided sequence la belongs to Xσf

, hence Lemma A.5 implies that
L+

Φ(G) ⊂ Lf . Conversely, if l ∈ Lf , then its language is the same as that
of any periodic point of σf , and l ∈ L+

Φ(G).
If f is orientable, the substitution (taking the square in the orientation-

reversing case) splits in two disjoint primitive substitutions conjugated by
Θ, and Lf is the union of the two systems associated with the two primitive
substitutions. By primitivity, both subsystems are minimal and generated
by any periodic point for a letter that belongs to the corresponding alpha-
bet. Let us fix a letter a. Then la belongs to one of the subsystems, and lΘ(a)

belongs to the other one. Hence Lf = Xla ∪XlΘ(a) = Xla ∪ΘXla = L+
Φ(G)

from Lemma A.5. �

Corollary A.7. — Let f : G → G be a primitive train-track map
representing an iwip outer automorphism Φ and let S denote the shift
map on the attractive lamination in G-coordinates L+

Φ(G) = Lf . Then the
symbolic dynamical system (Lf , S) satisfies one of the following properties:
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• If the double-substitution σf is orientable and orientation-preserving,
(Lf , S) admits two subsets that are invariant by both the shift map
S and the train-track map f . These subsets are minimal for the
shift map. They are exchanged by the flip map Θ. This is the case
of all extensions of substitutions to the free group.

• If the double substitution σf is orientable and orientation-reversing,
then (Lf , S) admits two shift-invariant subsets that are exchanged
by the flip. These subsets are minimal for the shift map. The train-
track f maps each invariant subset on the other.

• If the double substitution σf is nonorientable, then (Lf , S) is a
minimal symbolic dynamical system.

Appendix B. Orientable surfaces and geometric
automorphisms

To conclude, we study automorphisms arising from homeomorphisms of
orientable compact surfaces, and we show that they can never be iwip
automorphisms on an odd number of letters.

The origin of the study of automorphisms of free groups can be found
in the work of Nielsen, and later Thurston, on diffeomorphisms of surfaces.
Indeed, such a diffeomorphism f : Mg →Mg gives rise to an automorphism
of the fundamental group of the surface, which is a free group if the surface
has a nonempty boundary.

To study their dynamics up to isotopy, Thurston introduced train-tracks
as graphs embedded in the surface. Note that these surface train-tracks have
more structure than those we have defined above: around each vertex, there
are important data given by a cyclic order provided by the fact that the
graph is locally planar (see [16]). For a surface train-track, one can define
admissible weights, and a measurable foliation associated with admissible
weights. The question of the orientability of this foliation is a particular
case of the discussion above on the orientability of a train-track map.

We say that a free group automorphism is orientably geometric if it
can be obtained by a diffeomorphism of an orientable surface Mg. Many
automorphisms are not orientably geometric:

Proposition B.1. — An iwip automorphism on a free group of odd
rank is never orientably geometric.

Proof. — Suppose that f realizes an iwip automorphism on an orientable
surface Mg. This surface must have a boundary, otherwise the fundamen-
tal group of the surface is not free. If there are N > 1 components of

TOME 56 (2006), FASCICULE 7



2210 P. ARNOUX, V. BERTHÉ, A. HILION & A. SIEGEL

the boundary, we can suppose, taking a power if necessary, that f fixes
all components of the boundary. But the conjugacy class of the subgroup
generated by N − 1 component of the boundary is a free factor, which
contradicts the iwip hypothesis.

Hence there is exactly one component of the boundary; but in this case,
it is well known that the fundamental group of the orientable surface Mg

is a free group of even rank 2g; so every orientably geometric iwip auto-
morphism must be on a group of even rank. �
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