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ATOMIC SURFACES, TILINGS AND COINCIDENCES
II. REDUCIBLE CASE

by Hiromi EI, Shunji ITO & Hui RAO (*)

Abstract. — The atomic surfaces of unimodular Pisot substitutions of irre-
ducible type have been studied by many authors. In this article, we study the
atomic surfaces of Pisot substitutions of reducible type.

As an analogue of the irreducible case, we define the stepped-surface and the
dual substitution over it. Using these notions, we give a simple proof to the fact
that atomic surfaces form a self-similar tiling system. We show that the stepped-
surface possesses the quasi-periodic property, which implies that a non-periodic
covering by the atomic surfaces covers the space exactly k-times.

The atomic surfaces are originally designed by Rauzy to study the spectrum of
the substitution dynamical system via a periodic tiling. However, we show that,
since the stepped-surface is complicated in the reducible case, it is not clear whether
the atomic surfaces can tile the space periodically or not. It seems that the geometry
of the atomic surfaces can not applied directly to the spectral problem.

Résumé. — Les surfaces atomiques des substitutions unimodulaires de type
Pisot ont été étudiées par de nombreux auteurs. Dans cet article, nous étudions les
surfaces atomiques des substitutions Pisot de type réductible.

Par analogie avec le cas irréductible, nous définissons la notion de surfaces plis-
sées et de substitution duale agissant dessus. Grâce à ces notions, nous donnons
une preuve simple du fait que les surfaces atomiques forment un système de pavage
auto-similaire. Nous montrons que les surfaces atomiques sont quasi-périodiques,
ce qui implique qu’un recouvrement non périodique par les surfaces atomiques
recouvre l’espace exactement k fois.

Les surfaces atomiques ont été introduites à l’origine par Rauzy dans le but
d’étudier le spectre des systèmes dynamiques substitutifs via un pavage périodique.
Cependant, nous montrons qu’il n’est pas évident de savoir si les surfaces atomiques
peuvent paver l’espace périodiquement ou non, en raison de la complexité du cas
réductible. Il semble que la géométrie des surfaces atomiques ne peut pas être
appliquée directement au problème spectral.

Keywords: Atomic surfaces, Pisot substitution, tiling.
Math. classification: 52C23, 37A45, 28A80, 11B85.
(*) The third author is supported by the JSPS Postdoc fellowship.
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1. Introduction

1.1. Atomic surfaces of Pisot substitution

A unimodular Pisot substitution determines a graph-directed iterated
function system; the atomic surfaces (also called Rauzy fractals) are the
invariant sets of the system.

Originally, the atomic surfaces are designed to give a geometrical real-
ization of the substitution dynamical systems ([28, 5]). A domain-exchange
transformation is defined on the atomic surface, and it is conjugate to the
substitution dynamical system. The geometry of the Rauzy fractals may
give information on the spectrum of the substitution dynamical system
([27, 17, 31]).

The atomic surfaces are also employed to construct nice Markov parti-
tions for group automorphism of the torus([26, 30]). This construction has
been applied to β-numeration system([22, 21]).

One major feature of atomic surfaces is that they form self-similar tiling
systems([32]). The atomic surface tilings and the integral self-affine tilings
([7, 23, 24]) are the only two classes of self-similar tilings being studied sys-
tematically. As we have seen, the atomic surface tilings have rich dynamical
properties.

Host([19]), Arnoux and Ito([5]) introduce the coincidence condition for
Pisot substitution to the study of the atomic surfaces. (The notion of coinci-
dence is originally introduced by Dekking [12] for substitutions of constant
length.) Ito and Rao ([20]), Barge and Kwapisz ([9]) introduce a super-
coincidence condition independently. (It is called geometrical coincidence
condition in [9].) It is shown that the tiling and ergodic properties of the
atomic surfaces are governed by the super-coincidence condition. Barge and
Diamond show that a strong coincidence condition holds for Pisot substi-
tution over two-letter alphabet, and it follows that the super-coincidence
condition also holds in this case. Super-coincidence condition for many let-
ters is an important and challenging open problem([10]).

However, all the previous discussions assume that the characteristic poly-
nomial of the substitution is irreducible over Q, which we call the irreducible
case. Recently, the study of the reducible Pisot substitution has drawn the
attentions of many people. One of the motivations comes form the so-called
β-tiling, constructed by Thurston ([33]) and studied by Akiyama ([1, 2]).
The β-tilings can be regarded as a special case of the atomic-surface tilings
of Pisot substitutions, of irreducible or reducible case according to β([11]);
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the (W)-property in [2, 3] becomes a special case of the super-coincidence
condition.

The atomic surfaces of reducible Pisot substitutions were first studied
by Ei and Ito [14]. Following this paper, several works are devoted to this
topic, namely, Berthé and Siegel [11], Baker, Barge and Kwapisz [6] and
the present paper. These works are carried out more or less independently,
with emphasis on different aspects.

The paper [11] builds up the theory as a generalization of a construction
of Thurston related to Pisot number. A numeration system due to Dumont
and Thomas [13], plays an central role in [11], and the discussion is number
theoretical. The paper [6] mainly concerns the spectral aspect and the
super-coincidence condition.

In the present paper, we investigate the atomic surfaces of the reducible
case in a geometrical point of view. Special attentions are paid to the
stepped-surface, dual substitution, and periodic tiling of the atomic sur-
faces. These properties are dramatically different from the irreducible case.
One of our main results is to show that atomic surfaces form a self-similar
tiling system, where we give an elegant proof by using new results of La-
garias and Wang ([25]). Some results in this paper are already known in
[11], but we keep them for self-containing and for alternative proofs.

1.2. Examples

Here we give two examples of Pisot substitutions of reducible case. Both
examples come from β-numeration systems.

Example 1.1. — Let β be the dominant root of the polynomial x3 −
Kx2− (K +1)x− 1 where K > 0 is an integer. Then β is a Pisot unit (i.e.,
a Pisot number as well as an algebraic unit) and the expansion of 1 in base
β is

1 = 0.(K + 1)00K1.

The associated β-substitution σ and incidence matrix Mσ are

σ :



1 7→ 1(K+1)2

2 7→ 3

3 7→ 4

4 7→ 1K5

5 7→ 1

, Mσ =


K + 1 0 0 K 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

TOME 56 (2006), FASCICULE 7
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The characteristic polynomial of Mσ is

x5 − (K + 1)x4 −Kx− 1 = (x3 −Kx2 − (K + 1)x− 1)(x2 − x + 1).

This substitution is called Hokkaido substitution by Akiyama, since its
atomic surface looks like the map of Hokkaido, a northern island of Japan.
The atomic surfaces of this substitution has been studied in detail in [14].

1

2

3

4

X

X

X

X

5X

Figure 1.1. Atomic surfaces
⋃5

i=1 Xi of Hokkaido substitution.

Example 1.2. — Let β be the dominant root of the polynomial x3 −
Kx2 + Kx − 1 where K > 2 is an integer. Then β is a Pisot number and
the expansion of 1 in base β is

1 = 0.(K − 1)(K − 1)01.

The associated β-substitution τ and incidence matrix Mτ are

τ :


1 7→ 1(K−1)2

2 7→ 1(K−1)3

3 7→ 4

4 7→ 1

(K > 2), Mτ =


K − 1 K − 1 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 .

The characteristic polynomial of Mτ is

x4 − (K − 1)x3 − (K − 1)x2 − 1 = (x3 −Kx2 + x− 1)(x + 1).

In what follows, τ will always refer to this substitution.
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1

2
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X

X

X

Figure 1.2. Atomic surfaces
⋃

i=1,2,3,4 Xi of substitution τ .

1.3. Main results

Let σ be an unimodular Pisot substitution over {1, 2, . . . , d}. Let λ be
the Perron-Frobenius eigenvalue of the incidence matrix M = Mσ, and
let g(x) be the minimal polynomial of λ. In this paper, we assume that
m = deg g(x) < d, that is, σ is reducible.

Projections. — Similar to the irreducible case, the atomic surfaces can
be defined by projection method. Let λ1 = λ, λ2, · · · , λm be the roots of
g(x), then they are eigenvalues of M . Let P1 be the sum of the eigenspaces
of the eigenvalues λi, then P1 is M -invariant and there is a unique M -
invariant subspace V1 satisfying Rd = P1 ⊕ V1. (See Proposition 2.2.)

Let V be the eigenspace corresponding to the eigenvalues λ1, and let
P be the direct sum of the eigenspaces corresponding to the eigenvalues
λ2, . . . , λm. Then P is stable and V is unstable. According to the direct
sum Rd = V1 ⊕ P ⊕ V, the following projections can be defined:

φ : Rd 7→ P1, π : Rd 7→ P, π′ : Rd 7→ V.

We note that the projection φ is “rational”, that is, the projection of Zd

is an m-dimensional lattice.

Atomic surface and self-similarity. — Let ω be a periodic point of σ.
Then ω defines a broken line in Rd. Projecting the integer points on the
broken line to the stable plane P and taking a closure, we obtain the atomic
surface X. The set X can be divided naturally into d parts X1, X2, . . . , Xd,
which are called the partial atomic surfaces of σ. The partial atomic surfaces
X1, . . . , Xd are compact subsets of the stable space P and they have a self-
similar structure. This has also been shown in [11].

TOME 56 (2006), FASCICULE 7
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Theorem 1.3. — Let σ be an unimodular Pisot substitution. Then
the partial atomic surfaces {Xi}d

i=1 are compact and satisfy the follow-
ing set equations

(1.1) M−1Xi =
d⋃

j=1

⋃
W

(j)
k

=i

(
Xj + M−1π(f(P (j)

k ))
)

, 1 6 i 6 d.

All the notations in the above formula will be precisely defined in the
beginning of Section 3.

Stepped-surface and dual substitution. — The stepped-surface and dual
substitution are powerful tools to study the set equations (1.1), as they do
in the irreducible case. But the structure of the stepped-surface in the
reducible case is more complicated.

The stepped-surface S is defined as a set of colored points on the lattice
L = φ(Zd), where these points are very close to the stable space P in some
sense (see Section 4). We will use [x, i∗] to denote an element of S, where
x is a point in L and i∗ ∈ {1∗, 2∗, . . . , d∗} indicates the color of x. Now
the number of colors is larger than the rank of L. This fact causes many
difficulties. First, we do not have an obvious geometrical representation of
the stepped-surface (we even do not know whether such a representation
exists or not). Because of this, we do not know whether the atomic surfaces
can tile the space P periodically or not.

Nevertheless, we could show the quasi-periodicity of this “abstract” step-
ped-surface.

Theorem 1.4. — The stepped-surface S of a Pisot substitution is quasi-
periodic.

According to the set equations (1.1), we define a dual substitution σ∗,
a morphism on the stepped surface S. An important fact is that the dual
substitution keeps the stepped surface S invariant.

Theorem 1.5. — Let σ be an unimodular Pisot substitution. Then the
stepped surface is invariant under the action of the dual substitution σ∗.
Precisely,

(i) σ∗(S) = S.
(ii) σ∗[x, i∗] ∩ σ∗[y, j∗] = ∅, for distinct [x, i∗], [y, j∗] ∈ S.

Self-similar tiling system. — Thanks to Theorem 1.5, now we can show
that the partial atomic surfaces X1, . . . , Xd form a self-similar tiling system.
Precisely,

ANNALES DE L’INSTITUT FOURIER



ATOMIC SURFACES II. REDUCIBLE CASE 2291

Theorem 1.6. — Let σ be an unimodular Pisot substitution. Then
(i) The interiors of the partial atomic surfaces Xi are not empty.
(ii) The right side of (1.1) consists of non-overlapping unions.
(iii) Xi = X◦

i and ∂Xi has Lebesgue measure 0, where ∂Xi denotes the
boundary of Xi.

In the irreducible case, this theorem is proved in several different ways
([5, 32]). Here we give a quick proof by using a result of Lagarias and
Wang [25] on substitution Delone set. The idea of [25] is to construct a
dual system of the set equations (1.1); if a family of Delone sets satisfies
the dual system, then equation (1.1) gives a self-similar tiling system. It
turns out that the projection of the stepped-surface gives a solution of the
dual system.

A quasi-periodic tiling. — Combining the atomic surfaces and the step-
ped-surface together, we define the following collection

J := {π(x) + Xi; [x, i∗] ∈ S}.

We will see that J is a self-replicating collection (see Section 5). From the
quasi-periodicity of the stepped-surface and the self-replicating property of
J , one can show that there exists a constant k, such that almost every
point of the space P is covered by k pieces of tiles in J .

The problem whether J is always a tiling is an open problem. In a sequel
paper [15], we will introduce the super-coincidence condition for reducible
Pisot substitution and show that J is a tiling if and only if σ satisfies the
super-coincidence condition. We also show there that for β-substitution,
the super-coincidence condition is equivalent to a (W)-property introduced
by Akiyama [2]. Several classes of Pisot numbers are proved to have (W)-
property ([18, 3]) and hence the associated collections J are tilings.

Collection J2 and Markov partition. — As an analogue to the reducible
case, we construct a family X̂1, . . . , X̂d which are subsets of P1. Let X̂ =
∪d

i=1X̂i. Set
J2 := {X̂ + z : z ∈ L}.

It is shown that

Theorem 1.7. — The collection J2 is a tiling of P1 if and only if J is
a tiling of P .

Since the matrix M is unimodular, it can be regarded as a group auto-
morphism of the m-dimensional torus P1 \L. It has been shown ([11]) that
if J2 is a tiling, then the collection {X̂1, . . . , X̂d} is a Markov partition of
group automorphism M on the torus P1 \ L.

TOME 56 (2006), FASCICULE 7
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Figure 1.3. Quasi-periodic tiling J of Hokkaido substitution.

Figure 1.4. Quasi-periodic tiling J of substitution τ .

Can X tile P periodically? — In the irreducible case, the atomic surface
X can tile P periodically; actually this tiling is a lattice tiling. If σ satisfies
the strong coincidence condition, then a domain exchange transformation
is well-defined on X ([5]). Furthermore, if σ satisfies the super-coincidence
condition, then X can be regarded as a (d− 1)-dimensional torus and the
domain exchange transformation is a rotation on the torus ([20]).

In the reducible case, the existence of geometrical representation of the
stepped-surface is unclear. Hence in general, we do not know whether X

can tile P periodically or not. This is a significant difference between the
irreducible case and the reducible case.

Ei, Furukado and Ito have studied this problem for the substitutions
in Example 1.1 and Example 1.2. By trial and error method, they found
geometrical representation of the stepped-surface of these substitutions,
consisting of polygons with strange shapes.

ANNALES DE L’INSTITUT FOURIER
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The paper is organized as follows. In Section 2, we give the basic notations
and various projections are studied. The atomic surfaces are defined in
Section 3 and the self-similarity is proved there (Theorem 1.3). In Section
4, we study the stepped-surface; quasi-periodicity is shown there (Theorem
1.4). Section 5 is devoted to dual substitution and Theorem 1.5 is proved.
In Section 6, we show that the partial atomic surfaces form a self-similar
tiling system (Theorem 1.6). Two tilings are studied in Section 7. In Section
8, some comments are given on the periodic tiling of atomic surfaces.

2. Projections

2.1. Pisot substitution

Let A = {1, · · · , d}, d > 2, be an alphabet. Let A∗ = ∪n>0An be the
set of finite words over A. A substitution σ is a function σ : A 7→ A∗.
The incidence matrix of σ is Mσ = M = (mij)16i,j6d, where mij is the
number of occurrences of i in σ(j). A substitution is said to be primitive if
its incidence matrix M is primitive, i.e, MN is a positive matrix for some
N . By Perron-Frobenius Theorem, a non-negative primitive matrix has a
simple real eigenvalue λ, which we call the Perron-Frobenius eigenvalue,
that is larger than all the other eigenvalues in modulus.

The theory of atomic surfaces is related to a special type of substitutions,
the so-called Pisot substitution.

Definition 2.1 — A substitution σ is a Pisot substitution if σ is prim-
itive and the Perron-Frobenius eigenvalue of Mσ is a Pisot number.

An algebraic integer is a Pisot number if all its algebraic conjugates have
modulus strictly less than 1. A substitution σ is unimodular if det M = ±1;
it is irreducible (or of irreducible type) if the characteristic polynomial of
M is irreducible over Q.

2.2. Direct sum decomposition

Assume that g(x)h(x) is the characteristic polynomial of M , and g(x) is
the minimal polynomial of the Pisot number λ. Then there is an integral
d× d matrix Q with det Q = ±1 such that

(2.1) Q−1MQ =
(

A1 0
0 A2

)
,

TOME 56 (2006), FASCICULE 7
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where A1, A2 are integral matrices with characteristic polynomials g(x) and
h(x), respectively.

Let λ1 = λ, λ2, · · · , λm be the roots of g(x), then they are eigenvalues of
M as well as A1. We arrange them in such an order: the real roots are ahead
of the complex roots; for a complex root λi we put its complex conjugate
λ̄i next to it to make a pair. Let v = v1, v2, · · · , vm be the eigenvectors of
M corresponding to the eigenvalues λ1, λ2, · · · , λm. To each real eigenvalue
there is a 1-dimensional, M -invariant real eigenspace. To a pair of complex
eigenvalues λi and λi+1 = λ̄i, we choose vi+1 = vi; hence there is a 2-
dimensional M -invariant real eigenspace

{civi + ci+1vi+1 : ci+1 = c̄i, ci ∈ C}.

Let us denote by P1 the direct sum of these eigenspaces,

(2.2) P1 = {c1v1 + · · ·+ cmvm : ci ∈ R if λi ∈ R; ci+1

= ci ∈ C if λi+1 = λi}.

Hereafter we will use v1, · · · , vm as a basis of P1 in the above sense. Using
(2.1), it is easy to show that

Proposition 2.2 — There is a unique M -invariant subspace V1 satis-
fying Rd = P1 ⊕ V1. Furthermore, if Q is a matrix satisfying (2.1), then

V1 = Q

(
0

Rd−m

)
.

We leave the easy proof to the reader. We decompose P1 into P1 = P⊕V,

where V is the eigenspace corresponding to λ, and P is the direct sum of
the eigenspaces corresponding to λ2, . . . , λm.

2.3. Projections

According to the direct sum Rd = P1⊕V1, a natural projection from Rd

to P1 is defined:
φ : Rd 7→ P1.

According to the direct sum P1 = P ⊕V , we define two natural projections

(2.3) π1 : P1 7→ P, π′1 : P1 7→ V.

We define projections π : Rd 7→ P and π′ : Rd 7→ V by

π := π1 ◦ φ, π′ := π′1 ◦ φ.

Since P1, V1, P and V are M -invariants, all the above projections commute
with M .

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3 — The relation ϕ ◦M = M ◦ ϕ holds for

ϕ ∈ {φ, π1, π
′
1, π, π′}.

Let e1, · · · , ed be the canonical basis of Rd, let 〈·, ·〉 be the inner product.
Let tM denote the transpose of M .

Remark 2.4 — An explicit formula of the projections are given in [11].
Let v1 be the eigenvectors of M for the eigenvalue λ = λ1, we may assume
that the entries of v1 belong to the field Q(λ). Likewise, let u1 be the
eigenvectors of tM for the eigenvalue λ, with entries in Q(λ) and the inner
product 〈v1, u1〉 = 1. Let vi be the conjugates of v1 and ui be the conjugates
of u1. Then

φ(x) = 〈x, u1〉v1 + 〈x, u2〉v2 + · · ·+ 〈x, um〉vm,

π(x) = 〈x, u2〉v2 + · · ·+ 〈x, um〉vm,

π′(x) = 〈x, u1〉v1.

Let v∗ be a positive eigenvector of tMσ with respect to the eigenvalue λ.
Then

Lemma 2.5 — The following properties hold.

(i) v∗ ⊥ (P ⊕ V1).
(ii) 〈φ(ei), v∗〉 > 0 holds for 1 6 i 6 d.

Proof —

(i) Since 〈u1, v1〉 = 1 and π′(x) = 〈x, u1〉v1, for any vector x ∈ Rd, we
have txv∗ = txut

1v1v
∗, and hence 〈x, v∗〉 = 〈x, u1〉〈v1, v

∗〉. So that

〈x− π′(x), v∗〉 = 0,

which is desired.
(ii) Let y = ei−φ(ei) ∈ V1. Then 〈φ(ei), v∗〉 = 〈ei−y, v∗〉 = 〈ei, v

∗〉 > 0.

�

3. Atomic surfaces: definition and self-similarity

The following notations are used throughout this paper. Let f : A∗ → Zd

be a map which sends a finite word to an integer in Rd as follows:

(i) f(ε) = 0, where ε denotes the empty word;
(ii) f(i) = ei for 1 6 i 6 d and f(UV ) = f(U) + f(V ) for U, V ∈ A∗.

TOME 56 (2006), FASCICULE 7
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Clearly f ◦ σ = M ◦ f.

We write σ(i) = W
(i)
1 . . .W

(i)
li

, i = 1, 2, . . . , d. Let P
(i)
k = W

(i)
1 . . .W

(i)
k−1

be the prefix of σ(i) with length k− 1, and denote by S
(i)
k = W

(i)
k+1 . . .W

(i)
li

the suffix of σ(i). Then σ(i) can be written as

σ(i) = P
(i)
k W

(i)
k S

(i)
k .

3.1. Inflation and substitution map

For x ∈ Zd, we denote by (x, i) := {x + θei; θ ∈ [0, 1]} the segment from
x to x + ei. Define y + (x, i) := (x + y, i). Set

G = {(x, i) : x ∈ Zd, 1 6 i 6 d}.

The term segment will refer to any element of G.
The inflation and substitution map Fσ is defined as follows on the set of

subsets of G ([8]). Define

Fσ(0, i) :=
li⋃

k=1

{(f(P (i)
k ),W (i)

k )}, 1 6 i 6 d.

Fσ(x, i) := {Mx + k : k ∈ Fσ(0, i)},

and for K ⊆ G,
Fσ(K) :=

⋃
k∈K

Fσ(k).

Rigorously we should use Fσ{(x, i)} instead of Fσ(x, i). By the defini-
tions of the incidence matrix and f , one has Mσn = Mn

σ and f(σ(U)) =
Fσ (f(U)) for every word U , and so that Fσn = Fn

σ .

3.2. Atomic surfaces

An infinite word over {1, 2, . . . , d} is a fixed point of σ if σ(s) = s, is
a periodic point of σ if σk(s) = s holds for some k > 1. A primitive
substitution has at least one periodic point. For a finite or infinite word
s = s1 . . . sn . . . , a broken line s starting from the origin is define as follows:

s =
⋃
i>1

{(f(s1 . . . si−1), si)} ⊂ G.

Recall that π = π1◦φ is a projection from Rd to the contractive subspace
P . Let s = s1s2 . . . be a periodic point of σ and s̄ the broken line. Let

ANNALES DE L’INSTITUT FOURIER
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Y = {f(s1 . . . sk−1) : k > 1} be the set of integer points located on s. Then
the atomic surface of σ is the closure X = π(Y ) of the projection of Y

onto the contractive space P . Furthermore, let

Yi = {f(s1 . . . sk−1) : sk = i, k > 1},

and Xi = π(Yi), 1 6 i 6 d. We call the family X1, X2, . . . , Xd the partial
atomic surfaces of σ.

As one expects, the partial atomic surfaces have a self-similar structure.
(See also [11]).

Theorem 1.3 — Let σ be an unimodular Pisot substitution. Then the
partial atomic surfaces {Xi}d

i=1 are compact and satisfy the following set
equation

(3.1) M−1Xi =
d⋃

j=1

⋃
W

(j)
k

=i

(
Xj + M−1π(f(P (j)

k ))
)

, 1 6 i 6 d.

The above set equation has exactly the same form as the irreducible case.

Proof —

(i) By the definition of Fσ, we see that every element of Y can be
expressed as y =

∑N
k=0 Mkak, where ak belongs to the finite set

{f(P (i)
j ) : 1 6 i 6 d, 1 6 j 6 li}. (If s is a periodic point satisfying

σk(s) = s, we replace σ by σk.) By the Pisot assumption, we can
choose a real θ such that |λj | < θ < 1 holds for 2 6 j 6 m. Since
π(ak) are points of the contractive eigenspace P , we have

|π(y)| = |
N∑

k=0

Mkπ(ak)| < C

∞∑
k=0

θk =
C

1− θ
,

where C > 0 is a constant depends on the set {f(P (i)
j ) : 1 6 i 6

d, 1 6 j 6 li}. So X is bounded in the ball B(0, C/1− θ) ⊂ P and
the sets Xi are compact.

(ii) First we consider the case that s is a fixed point of σ. In this case,
we show that

(3.2) Yi =
d⋃

j=1

⋃
W

(j)
k

=i

(MYj + f(P (j)
k )).

Let us use the notation (Yi, i) to denote the set {(y, i); y ∈ Yi}.
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Then the stair of the fixed point can be expressed as s̄ =
⋃d

i=1(Yi, i)
and

(Yi, i) = {(y, i) : (y, i) ∈ s̄}

= {(y, i) : (y, i) ∈ Fσ(
d⋃

j=1

(Yj , j))}

=
d⋃

j=1

{(y, i) : (y, i) ∈ Fσ(Yj , j)}

=
d⋃

j=1

⋃
W

(j)
k

=i

{(My + f(P (j)
k ), i) : y ∈ Yj}.

Taking the starting points of the line segments in the above equa-
tion, we get (3.2). Formula (3.1) is obtained by taking the projection
π and then taking a closure on both sides of (3.2).

(iii) Suppose s is a periodic point of σ, say σk(s) = s. Hence by (ii),
X1, . . . , Xd defined by s satisfy the set equation (3.1) for the sub-
stitution σk. Notice that the k-th iteration of the set equation (3.1)
for σ coincides with the set equation (3.1) for σk, hence the set
equations for σ and that for σk have the same invariant sets (see
[16]). So X1, . . . , Xd satisfy the set equation (3.1) for σ.

�

Since the non-empty compact solution of (3.1) is unique ([16]), it is seen
that the atomic surfaces do not depend on the choice of the periodic points.

4. Stepped-surface

In the reducible case, the stepped-surface and dual substitution are still
powerful tools to study the atomic surfaces. In this section, we investigate
the stepped-surface.

4.1. Definition of stepped-surface

Set L := φ(Zd); it is seen that L is a full lattice (of rank m) in P1 and
{φ(ej)}d

j=1 is a group of redundant generators of L. Let

P+ := {x ∈ P1 : 〈x, v∗〉 > 0} and P− := {x ∈ P1 : 〈x, v∗〉 < 0}.
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From its definition, P+ denotes the half space of P1 above the subspace
P , according to the direction given by v∗.

We now intend to associate to any point on L a color described by a
letter on A. Formally, let us denote

G∗ := {[x, i∗] : x ∈ L, 1 6 i 6 d}

the set of such colored points. We define S, the stepped-surface of P , to be
the set of nearest colored points [x, i∗] above P , meaning that x belongs to
P+ whereas x− φ(ei) does not.

(4.1) S := {[x, i∗] ∈ G∗ : x ∈ P+ and x− φ(ei) ∈ P−}.

Notice that a point x in L may have several colors.
For u ∈ Rd, denote by P + u the hyperplane which is parallel to P and

contains u. The area in P1 between P and P +u, including P and excluding
P + u, is denoted by [P, P + u). As a consequence of the definition of S,
[x, i∗] ∈ S if and only if x ∈ [P, P + φ(ei)).

4.2. Geometrical representation of stepped-surface.

In the irreducible case, there is a natural geometrical representation of
S. To any colored integer point [x, i∗], one associates a face of a unit cube
of Rd whose lowest vertex is in x and that is orthogonal to the direction
ei. We denote this face by [x, i∗], namely

[x, i∗] := {x+c1e1+· · ·+ciei+· · ·+cded ∈ Rd : ci = 0, 0 6 ck 6 1 if k 6= i}.

Then
S :=

⋃
[x,i∗]∈S

[x, i∗].

is an approximation of the space P , and sometimes it is also called the
stepped-surface of P . Let us denote [i∗] = [0, i∗] the faces of the unit cube
placed in zero. Projecting the stepped-surface S to P , we obtain a polygonal
tiling of P ,

(4.2) J ′ := {π[x, i∗] : [x, i∗] ∈ S},

which uses d polygons π[1∗], . . . , π[d∗] as prototiles.
Unfortunately all these nice properties are uncertain in the reducible

case. This is the first big difference between the irreducible case and the re-
ducible case. Here we present a possible definition of a geometrical stepped-
surface. If there exist polyhedrons

{T1, T2, . . . , Td}
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of P such that

(4.3) {π(x) + Tj ; [x, j∗] ∈ S}

is a tiling of P , then we say this tiling is a geometrical representation
of the stepped-surface S. It is very unclear whether there always exists
a geometrical stepped-surface. However, Ei-Ito ([14]) found very strange
geometrical representation for Hokkaido tiling. See Figure 5.

Figure 4.1. Geometrical representation of stepped-surface of Hokkaido
substitution.

Figure 4.2. Geometrical representation of stepped-surface of substitu-
tion τ .
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4.3. Quasi-periodicity of stepped-surface

Let Λ be a subset of Rd. Λ is said to be uniformly discrete if there exists
a positive real number r0 such that, for any x, y ∈ Λ, |x−y| > r0. Let E be
a subset of Rd. Λ is relatively dense in E if there is a positive real number
R0 such that every sphere with center in E and with radius greater than
R0 contains at least one point of Λ in its interior. A set Λ is said to be a
Delone set in E, if it is uniformly discrete and it is relatively dense in E.
(See for example [29]).

Let J be a translation tiling of Rd with finite prototiles. Denote by
B(x, r) the ball centered on x and with radius r. We call

P(B(x, r)) = {T : T ∈ J and T ∩B(x, r) 6= ∅}

the local arrangement in B(x, r).
If for any r > 0, there exists R > 0 such that for any x, y ∈ Rn, the local

arrangement of B(x, r) appears (up to translation) in the ball B(y, R), then
we say that J is quasi-periodic.

Now we define the quasi-periodicity for a stepped-surface. Let

S0 = {x : [x, i∗] ∈ S}

be the base set of S. For z ∈ S0, we define the local arrangement of a ball
B(z, r) in S as

P(B(z, r)) = {[x, i∗] : [x, i∗] ∈ S and x ∈ B(z, r)}.

Definition 4.1 — A stepped-surface S is said to be quasi-periodic
provided that it satisfies the following property: for any r > 0, there exists
R > 0 such that for any x, y ∈ S0, the local arrangement of B(x, r) appears
(up to translation) in the local arrangement of the ball B(y, R) in S.

Theorem 1.4 — The stepped-surface S of a Pisot substitution is quasi-
periodic.

In the irreducible case, this theorem is proved in [4] by associating the
stepped-surface with a certain dynamical system on the real line. We do
not know whether their method still works for the reducible case. Here we
give a direct proof.

Proof — We use D(A,B) = inf{|a − b|; a ∈ A, b ∈ B} to denote the
distance between two sets in Rd. First, we rearrange these hyperplanes
P, P + φ(e1), . . . , P + φ(ed) from below to above, and denote them by
P0, P1, . . . , Pd after arrangement. The hyperplanes Pk, 0 6 k 6 d, divide
the space into d + 2 parts R0, R1, . . . , Rd+1 from below to above. Notice
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that R0 = P− and Rd+1 is the space above (and including) the hyperplane
Pd.

Since [y, i∗] ∈ S if and only if y ∈ [P, P + φ(ei)), we infer that all points
of L in a region Rk have the same color-configuration. Precisely, an integer
point in R0 and Rd+1 has no color, an integer point in Rk, 1 6 k 6 d, has
exact d− k + 1 colors.

For any y ∈ L, there is a unique j ∈ {0, 1, . . . , d + 1} such that y ∈ Rj ;
we set

∆(y) :=

{
D(y, Pj) if j < d + 1

+∞ if j = d + 1.

By the definition ∆(y) > 0 always holds.

18 Hiromi EI, Shunji ITO & Hui RAO

For any y ∈ L, there is a unique j ∈ {0, 1, . . . , d + 1} such that y ∈ Rj ;
we set

∆(y) :=

{
D(y, Pj) if j < d + 1
+∞ if j = d + 1.

By definition ∆(y) > 0 always holds.
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Let z ∈ S0 and r > 0. We consider the distribution of the local arrange-
ment of P(B(z, r)) in the stepped-surface. Let

ε(z, r) := min{∆(y) : y ∈ B(z, r) ∩ L}.

Then ε(z, r) > 0 since B(z, r)∩L is a finite set. Suppose Pd = P + ẽmax,
i.e., ẽmax is the vector in φ(e1), . . . ,φ(ed) such that π′(ẽmax) attains the
maximal value. Choose N large enough such that the distance between P
and P + ẽmax/N is less than ε(z, r). We claim that B(z, r) and B(y, r) have
the same local arrangements for y ∈ [P + z, P + z + ẽmax/N) ∩ L.

Set T (x) = x + (y − z); it is an one-one from B(z, r) ∩ L to B(y, r) ∩ L.
Take an integer x ∈ B(z, r). Let k be the unique number such that x ∈ Rk.
If k = d + 1, then clearly T (x) still belongs to the region Rk since y − z is
in the positive direction (according to v∗). If k < d + 1, then

D(P + x, P + T (x)) < D(P + x, P + x + ẽmax/N)

< ε(z, r) < D(P + x, Pk),

which means that T (x) is between P + x and Pk and so that T (x) is still
in the region Rk. Hence x ∈ B(z, r) has the same color as T (x) ∈ B(y, r).
Our claim is proved.
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which means that T (x) is between P + x and Pk and so that T (x) is still
in the region Rk. Hence x ∈ B(z, r) has the same color as T (x) ∈ B(y, r).
Our claim is proved.

It remains to show that [P + z, P + z + ẽmax/N) ∩ L is relatively dense
in S0. Since

S0 = ∪N−1
k=0 [P + kẽmax/N, P + (k + 1)ẽmax/N)

is a finite union of translations of [P, P + ẽmax/N), we have [P, P + ẽmax/N)
is relatively dense in S0. Therefore [P + z, P + z + ẽmax/N)∩L is a Delone
set, and this completes the proof. �

5. Dual substitution

For [y, i∗] ∈ G∗, we define x + [y, i∗] := [x + y, i∗]. According to set
equation (3.1), we define the dual substitution σ∗ on the set of subsets of
G∗ as follows.

σ∗[0, i∗] :=
d⋃

j=1

⋃
W

(j)
k

=i

{[M−1φ ◦ f(P (j)
k ), j∗]}, 1 6 i 6 d,

σ∗[x, i∗] := {M−1x + k : k ∈ σ∗[0, i∗]},

and for any K ⊆ G∗,
σ∗(K) :=

⋃
k∈K

σ∗(k).

For simplicity, we use σ∗[x, i∗] to denote σ∗{[x, i∗]}. Using the dual substi-
tution, formula (3.1) is equivalent to

(5.1) M−1Xi =
⋃

[x,k∗]∈σ∗[0,i∗]

π(x) + Xk.

Arnoux and Ito ([5]) showed that the dual substitution keeps the stepped-
surface invariant in the irreducible case. Here we generalize this remarkable
property to the reducible case.

Theorem 1.5 — If σ is an unimodular Pisot substitution, then the
stepped surface is invariant under the action of the dual substitution σ∗.
Precisely,

(i) σ∗(S) = S.
(ii) σ∗[x, i∗] ∩ σ∗[y, j∗] = ∅, for distinct [x, i∗], [y, j∗] ∈ S.

The proof is very similar to the irreducible case ([5]).
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Proof — We decompose the proof into the following three claims.

Claim 1. If [x, j∗], [x′, j′∗] ∈ S and [x, j∗] 6= [x′, j′∗], then σ∗[x, j∗] ∩
σ∗[x′, j′∗] = ∅.

Suppose on the contrary that [y, i∗] belongs to the intersection of σ∗[x, j∗]
and σ∗[x′, j′∗]. Then, by the definition of σ∗, there exist k, k′ such that

y = M−1(x + φ ◦ f(P (i)
k )) = M−1(x′ + φ ◦ f(P (i)

k′ )).

It follows that x + φ ◦ f(P (i)
k ) = x′ + φ ◦ f(P (i)

k′ ).
If x = x′, then φ ◦ f(P (i)

k − P
(i)
k′ ) = 0, and so that f(P (i)

k − P
(i)
k′ ) = 0

by Lemma 2.5 (ii). It follows that k = k′ and that j = W
(i)
k = W

(i)
k′ = j′.

Hence we get [x, j∗] = [x′, j′∗], which is a contradiction.
If x 6= x′, then k 6= k′ by the above discussion. Let us assume that k < k′

without loss of generality. Then

x− φ ◦ f(W (i)
k · · ·W (i)

k′−1) = x′.

Notice that W
(i)
k = j and f(W (i)

k ) = ej , so

〈x′, v∗〉 = 〈x− φ ◦ f(W (i)
k · · ·W (i)

k′−1), v
∗〉

= 〈x− φ(ej), v∗〉 − 〈φ(f(W (i)
k+1 · · ·W

(i)
k′−1), v

∗〉

The first term of the last line is negative since [x, j∗] ∈ S, the second term
is negative by Lemma 2.5 (ii). So (x′, v∗) < 0 and x′ ∈ P−. Again we get
a contradiction and our claim is proved.

Claim 2. σ∗(S) ⊆ S.
It suffices to show that if [x, i∗] ∈ S and W

(j)
k = i, then [M−1(x + φ ◦

f(P (j)
k )), j∗] ∈ S.

On one hand, x ∈ P+ implies x+φ◦f(P (j)
k ) ∈ P+ and so that M−1(x+

φ ◦ f(P (j)
k )) ∈ P+. On the other hand, from M−1(f(σ(j))) = ej we have

M−1
(
x + φ ◦ f(P (j)

k )
)
− φ(ej)

=M−1
(
x + φ ◦ f(P (j)

k )− φ ◦ f(σ(j))
)

=M−1
(
x− φ(ei)− φ ◦ f(S(j)

k )
)

.

Now [x, i∗] ∈ S implies x−φ(ei) ∈ P−, so the vector in the above formula
belongs to P−. Therefore [M−1(x + φ ◦ f(P (j)

k )), j∗] ∈ S.

Claim 3. S ⊆ σ∗(S).

Suppose [x, i∗] ∈ S. Then x′ = x − φ(ei) ∈ P− and that M(x′) ∈ P−.
Since f(σ(i)) = Mei, we deduce that M(x)−{φ◦f(P (i)

1 ), · · · , φ◦f(P (i)
li

), φ◦
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M(ei)} determines a path (on L) from M(x) to M(x′), i.e, from P+ to P−.
This path must go through the hyperplane P . Suppose it intersects P at
the k-th step, then we have [Mx − φ ◦ f(P (i)

k ), j∗] ∈ S where W
(i)
k = j.

Hence by the definition of σ∗ we have

[x, i∗] ∈ σ∗[Mx− φ ◦ f(P (i)
k ), j∗] ⊆ σ∗(S).

�

6. Self-similar tiling system

This section can be regard as the first application of the stepped-surface
and the dual substitution. We prove that the partial atomic surfaces X1, . . . ,

Xd, as the unique invariant sets of (3.1), have non-empty interiors and the
right sides of (3.1) consist in non-overlapping unions. Such system is called
self-similar tiling system([35]).

6.1. Substitution Delone set

First, let us cite the definition of inflation functional equation of Lagarias
and Wang [25].

Let A be an expanding n× n real matrix, i.e. all its eigenvalues |λ| > 1.
Let

{Dij ; 1 6 i, j 6 d}
be finite sets in Rn. These data define a graph-directed IFS,

(6.1) AXi =
d⋃

j=1

(Xj +Dji)

for 1 6 i 6 d. There are unique non-empty compact sets X1, . . . , Xd,
Xi ⊂ Rn, satisfy the system (6.1) ([16]). The subdivision matrix associated
to (6.1) is

B = []Dji]16i,j6d,

where ]Dij denotes the cardinality of Dij .
The data A and Dij define another system as follows.

(6.2) Zi =
d⋃

j=1

(A(Zj) +Dij), 1 6 i 6 d.

This equation is called the inflation functional equation ([25]).
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Actually in [25], the inflation functional equations are defined for a
multi-set family (Z1, . . . , Zd). However, for our purpose, a normal family
(Z1, . . . , Zd) is sufficient. A solution (Z1, . . . , Zd) of the inflation functional
equation (6.2) is a substitution Delone set family if each set Zi is a Delone
set. It is seen that the subdivision matrix of (6.2) is tB. Let us denote
by ρ(B) the absolute value of the maximal eigenvalue of B. The following
theorem is a partial result of Theorem 5.1 in [25].

Theorem 6.1 — Let (6.2) be an inflation function equation that has a
primitive subdivision matrix tB such that

ρ(tB) = |det A|.

If there exists a family of Delone sets (Z1, . . . , Zd) which is a solution of
(6.2), then

(i) the unique non-empty compact solution X1, . . . , Xd of (6.1) consists
of sets Xi that have positive Lebesgue measure, 1 6 i 6 d.

(ii) The system (6.1) satisfies an open set condition, i.e., the right side
of (6.1) consists in non-overlapping union.

(iii) Xi = X◦
i and ∂Xi has Lebesgue measure 0, where ∂Xi denotes the

boundary of Xi.

6.2. Atomic surfaces

Now we apply Theorem 6.1 to the atomic surface. First, the action of
M−1 on the subspace P is a linear map, and hence it is equivalent to a
(m− 1)× (m− 1) real matrix. Let us denote this matrix by A. Since M is
an unimodular Pisot matrix, we have that A is expanding and |det A| = λ

is the Perron-Frobenius eigenvalue of M . Let us define

Dji := {M−1π(f(P (j)
k )); W

(j)
k = i}, 1 6 i, j 6 d.

Using these data, system (6.1) coincides with the system (3.1), and hence
the partial atomic surfaces X1, . . . , Xd are the unique invariant sets of (6.1).
It is seen that the subdivision matrix B = tM .

A solution of Delone sets of (6.2) can be obtained by projecting the
stepped-surface to the contractive space P . Precisely, let

Zi := {π(x); [x, i∗] ∈ S},

then Theorem 1.5 amounts to say that {Z1, . . . , Zd} is a solution of (6.2).
Therefore by Theorem 6.1, we have
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Theorem 1.6 — Let σ be an unimodular Pisot substitution. Then
(i) The interiors of the partial atomic surfaces Xi are not empty.
(ii) The right side of (3.1) consists in non-overlapping unions.
(iii) Xi = X◦

i and ∂Xi has Lebesgue measure 0, where ∂Xi denotes the
boundary of Xi.

7. Two Tilings arising form atomic surfaces

7.1. A self-replicating collection J

Combining the atomic surfaces and the stepped-surface together, we de-
fine the following collection

J : = {π(x) + Xi; [x, i∗] ∈ S}

=
d⋃

i=1

{z + Xi; z ∈ Zi}.

We say J is a self-replicating collection in the following sense: let us blow up
the collection J by M−1, then M−1J := {M−1T : T ∈ J } is a collection
with the prototiles {M−1Xi}d

i=1. Subdividing M−1Xi into small pieces
according to the set equations (3.1), we obtain a new collection which
coincides with J by Theorem 1.5. If J is a tiling of P , then it is a self-
replicating tiling. The notion of self-replicating tiling is first introduced by
Kenyon ([23]).

One may ask whether J is always a tiling. This problem is still open, in
both the irreducible case and the reducible case. Similar to the irreducible
case ([30, 34]), One can construct graphs to check whether the collection
J is a tiling.

However, using the quasi-periodicity of the stepped-surface and the self-
replicating property of J , we could show that there exists a constant k,
such that almost every point of the space P is covered by k pieces of tiles
in J . The proof is exactly the same as that of the irreducible case, which
can be found in [20].

7.2. Collection J2 and Markov partition

In this subsection, we show how to construct Markov partition of group
automorphism on torus by using atomic surfaces.
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Recall π′ is the projection from Rd to V defined in Section 2. Let

X̂i := {Xi − θπ′(ei) : 0 6 θ < 1}, 1 6 i 6 d,

and let X̂ :=
⋃d

i=1 X̂i. Set

J2 := {z + X̂ : z ∈ L} = X̂ + L.

Theorem 1.7 — The collection J2 is a tiling of P1 if and only if J is
a tiling of P .

Proof — Suppose that J is a tiling of P . Let us consider the intersection
of P and X̂ + L. By the definition of X̂, x + X̂ intersects P if and only
if x is on the stepped surface. Precisely, x + X̂ does not intersect P if
[x, i∗] 6∈ S for any 1 6 i 6 d; [x, i∗] ∈ S implies |π′(x)| < |π′(ei)|, and so
that (π(x) + Xi) ⊆ P ∩ (x + X̂). But ∪[x,i∗]∈Sπ(x) + Xi is a tiling of P by
our assumption, so P ⊆ X̂ + L and in fact P is tiled by X̂ + L in the sense
that almost every point of P is covered but only once by X̂ + L.

Now it is ready to see for any integer point z ∈ L, P + z is covered and
“tiled” by X̂ +L. Since π′(L) is dense in V , for any x ∈ P1, P +x is covered
and “tiled” by X̂ +L. Therefore X̂ +L is a tiling of P1. In the same manner
we can prove the inverse is also true. �

Since the matrix M is unimodular, it can be regarded as a group auto-
morphism of the d-dimensional torus P1\L. Set Ii = {θπ′(ei) : 0 6 θ 6 1},
1 6 i 6 d. Then Ii are subsets of the expanding eigenspace V . It is easy to
see that {Ii} satisfies the set equations

(7.1) MIi =
li⋃

k=1

I
W

(i)
k

+ f(P (i)
k )

Let us rewrite (7.1) as MIi =
⋃li

k=1 Iik and define

X̂ik = {x− z : x ∈ Xi, z ∈ Iik}.

It has been shown that ([11])

Theorem 7.1 — If J2 is a tiling, then the collection {X̂ik : 1 6 i 6
d, 1 6 k 6 li} is a Markov partition of group automorphism M on the torus
P1 \ L.

8. Can X tile P periodically?

In the irreducible case, the atomic surface X can tile P periodically. Ac-
tually this tiling is a lattice tiling, where the translation set Γ is a discrete
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subgroup generated by the vectors π(e2) − π(e1), . . . , π(ed) − π(e1). If σ

satisfies the strong coincidence condition, then a domain exchange trans-
formation can be defined on X as:

(8.1) E(x) = x− π(ei), x ∈ Xi.

(See [5].) For a point x on the common boundaries of Xi, we can set x

belongs to only one of Xi to avoid ambiguity. Furthermore, if σ satisfies
the super-coincidence condition, then X can be regarded as a (d − 1)-
dimensional torus and the domain exchange transformation E(x) is a ro-
tation on the torus ([20]). In this case, the rotation on the torus is topo-
logically conjugate to the substitution dynamical system associated to σ

and hence the later one has a discrete spectrum. Unfortunately, the same
argument does not work for the reducible case.

Domain-exchange transformation — In the reducible case, we can still
define a domain-exchange transformation E by (8.1), and it is metrically
conjugate to the substitution dynamical system of σ. The trouble is that
the atomic surface X is no longer a torus.

Periodic tiling — To show that X can tile P periodically in the irre-
ducible case, the geometrical representation of the stepped-surface plays a
crucial role. As we has pointed out in Section 4, the existence of geomet-
rical representation is very unclear in the reducible case. Hence in general,
we do not know whether X can tile P periodically or not.

Ei, Furukado and Ito have studied this problem for the substitutions
in Example 1.1 and Example 1.2. By trial and error method, they found
geometrical representation of the stepped-surface of these substitutions.

For the substitution in Example 1.2, they shows that X can tile P by
a lattice translation set. Hence X is a two-dimensional torus and a do-
main exchange transformation can be defined by formula (8.1). Actually
the translation set is

Γ = {mπ(e2 − e1) + nπ(e4 − e1) : m,n ∈ Z}.

The situation is different for the Hokkaido substitution. Ito and Ei ([14])
show that X can not tile P by any lattice translation set; but there is a
domain U consisting of X and a translation of reflection of X, such that U

admits a lattice tiling of P . Precisely, set

U = X ∪ (−X + π(e1 + e2 + e3)),

Γ = {mπ(e2 − e4) + nπ(e1 + e2 − 2e3) : m,n ∈ Z},
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then U +Γ is a tiling of P . They also managed to define a domain exchange
on the set U .

Figure 8.1. Periodic tiling by polygons of substitution τ .

Figure 8.2. Periodic tiling by atomic surface X of substitution τ .

Figure 8.3. Periodic tiling by polygons of Hokkaido substitution.
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Figure 8.4. Periodic tiling by atomic surface X of Hokkaido substitu-
tion.

We conjecture that X can always tile P periodically if reflection and
rotations are allowed.

Realization of the substitution dynamical system — Even if a periodical
tiling exists, it is still a problem that how to define a rotation on the funda-
mental domain of the tiling to realize the substitution dynamical system.
Remember that this is the original motivation of Rauzy’s construction!
More detailed study of this problem will carry out in [15].

Acknowledgements — The authors like to thank Professor S. Akiyama,
P. Arnoux and V. Berthé for many helpful discussions.
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