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SUBSTITUTION DYNAMICAL SYSTEMS ON INFINITE
ALPHABETS

by Sébastien FERENCZI

ABSTRACT. — We give a few examples of substitutions on infinite alphabets,
and the beginning of a general theory of the associated dynamical systems. In
particular, the “drunken man” substitution can be associated to an ergodic infinite
measure preserving system, of Krengel entropy zero, while substitutions of constant
length with a positive recurrent infinite matrix correspond to ergodic finite measure
preserving systems.

RESUME. — Nous étudions quelques exemples de substitutions sur des alphabets
infinis, et jetons les bases d’une théorie générale des systemes dynamiques associés.
En particulier la substitution “de l'ivrogne” définit un systéme préservant une
mesure infinie ergodique, d’entropie de Krengel nulle, tandis que les substitutions
de longueur constante dont la matrice est positive récurrente correspondent a des
systémes préservant des mesures finies ergodiques.

1. Substitutions

Substitutions are well-known and much used mathematical objects, and
throughout the paper we refer the reader to the Old and New Testament,
[12] and [11].

DEFINITION 1.1. — Let A be a finite or countable set, called the alpha-
bet, and its elements will always be called letters.

A word of length |w| = k is a finite string w; ... wy, of elements of A; the
concatenation of two words w and w’ is denoted multiplicatively, by ww’.
A word w1 ... wy is said to occur at place i in the infinite sequence or finite
word u if u; = wy,...,Uirk—1 = Wg; we say also that w is a factor of u;
when u Is finite, we denote by N(w,u) the number of these occurrences.

Keywords: Substitutions, dynamical systems.
Math. classification: 37A05, 37A40, 37B10.
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Let A be a finite alphabet and v = (up,n € N) = ugujus... be a
one-sided sequence on A.

The language L, (u) is the set of all words of length n occurring in wu,
while L(u) is the union of all the L, (u).

A substitution is an application from an alphabet A into the set A*
of finite words on A; it extends to a morphism for the concatenation by
o(ww') = cwow'.

It is primitive if there exists k such that a occurs in o*b for any a € A,
be A

It is of constant length L if the length of oa is L for any a € A.

A fixed point of ¢ is an infinite sequence u with ocu = u.

For any sequence u = (u,,n € N) on a finite alphabet A, we can de-
fine the (topological) symbolic dynamical system associated to u: we first
take Q = AN, equipped with the product topology (each copy of A being
equipped with the discrete topology) and T' the one-sided shift

T(.’I}()J,‘LI?Q .. ) = X1T2x3 ...

then X, is the closure of the orbit of w under 7. The dynamical system
associated to a primitive substitution is the symbolic system (X,,,T’) asso-
ciated to any of its fixed points.

In the usual case when A is finite, the theory is well-established, see for
example [12], [11]: under the (relatively mild) assumption of primitivity,
the symbolic system X,,,T is minimal: the closed orbit of any point under
T is the whole X,,, or, equivalently, for all m there exists n such that every
word of length m occurring in u occurs in every word of length n occurring
in u. Under the same assumption, the system is uniquely ergodic: it admits
a unique invariant probability measure p. The measure-theoretic dynam-
ical systems built from primitive substitutions give many (one could say:
most) interesting examples in ergodic theory, such as the Morse, Fibonacci,
Chacon and Rudin-Shapiro substitutions (or systems).

In the present paper we try to build the bases of a theory of substitution
dynamical systems on infinite alphabets, and a large part of it is devoted
to the study of a simple (in its definition, at least) example, which we
call the drunken man substitution (the reason of this name will be found
in section 3 below, but we take this opportunity to recall the paramount
influence of Gérard Rauzy in this whole field of mathematics). An arith-
metic study of substitutions on infinite alphabets including this and other
examples can be found in [8]. Here most results and techniques of the finite
case fail; still, we have been able to adapt a few main tools, such as the
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Rokhlin stacks, the step-by-step determination of the measure of cylinders,
and (to a lesser extant as it seems more difficult to generalize to other ex-
amples) the theory of complexity and special factors; thus we build from
this substitution a conservative ergodic infinite measure preserving system
of (Krengel) entropy zero, and introduce on the way another interesting
substitution, corresponding to the induced system on a cylinder. Then we
attempt to generalize this theory, using a natural classification of substitu-
tions through the recurrence properties of their incidence matrix; we have a
whole class of examples, the substitutions with constant length, a property
of synchronization, and a positive recurrent irreducible aperiodic matrix,
which give birth to ergodic finite measure-preserving systems. In the null
recurrent case (to which the drunken man substitution belongs), only a
part of the results can be generalized, while next to nothing is known in
the transient case. And we illustrate this theory by examples: one of them,
the infini-Bonacci substitution in Example 3.8 below, is shown to give a
system which is isomorphic to a well-known one, while the others give new
dynamical systems, which clamor to be studied further.

I acknowledge a great debt towards Christian Mauduit for proposing
me this whole subject of research, and more precisely the drunken man
substitution (together with its name), and for useful discussions during
this work.

2. A fundamental example

The following broad question was asked by Christian Mauduit: what can
be said of the following substitution on A = Z?

Example 2.1 (The drunken man substitution). —
n— (n—1)(n+1)
for all n € Z.

The first obstacle is that, if we look at the k-th image of 0, it is made
only of even (resp. odd) numbers if k is even (resp. odd); this reflects the
fact that the matrix has period two (see section 3 below). Hence the right
substitution to consider is

Example 2.2 (The squared drunken man substitution). —
n — (n—2)nn(n+ 2)
for all n € A =2Z.

TOME 56 (2006), FASCICULE 7
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This substitution, which we denote by o, has no fixed point; we create
one artificially by adding a letter ¢ (for initial) and adding the rule

L — 0

this gives a new substitution ¢’, which has a fixed point beginning by ¢,
where ¢ occurs only as the first letter; in all this section, we denote by tu
the fixed point of ¢’, and we say that u is the fixed point of o. We define
a subset X of AN to be the set of all sequences * = xox1 ... such that
every word occurring in z is in the language L(u); or, equivalently, we can
define X to be the set of all sequences x = xgxy ... such that every word
occurring in x occurs in o™a for at least one a € A and n > 0.

X is then a closed subset of the (noncompact) set ZN equipped with
the product topology (each copy of Z being equipped with the discrete
topology), and, if T is the one-sided shift defined in section 1, TX C X.
We say that (X, T) is the (non-compact) symbolic system associated to the
substitution o.

If w=wg...ws, the cylinder [w] is the set

{r € X;20 =wq,...,xs = ws}.

The substitution ¢ acts also on infinite sequences of X, and o X C X.

2.1. Combinatorial and topological properties

It is trivially false that, in any given sequence x of X, for all m there
exists n such that every word of length m occurring in z occurs in every
word of length n occurring in x; but on an infinite alphabet the minimality
of the system (X, T) would be equivalent to a weaker property, namely that
any word occurring in one element of X occurs in every element of X. But
in fact this property is not satisfied here:

PROPOSITION 2.3. — (X, T) is not minimal.

Proof. — Let v be the sequence beginning by ¢™(2n) for all n; v is well
defined as
o™"(2n) = o™ to(2n) = "1 (2n — 2)a" " (2n)a" T (2n)0" T (20 + 2)

and hence v is in X. But the smallest number in o(2n) is 2n — 2, which
appears only once, and at the beginning of this word; inductively, for all
p < n, the smallest number in o?(2n) is 2n — 2p, which appears only once,
and at the beginning of this word. Hence T'w is an infinite sequence in X

ANNALES DE L’INSTITUT FOURIER
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without any occurrence of the letter 0, and the positive orbit of Tv does
not visit the cylinder [0]. O

The sequence v is surprising, but we shall see in Proposition 2.24 below
that it is in some sense an isolated counter-example: every sequence in X
without any 0 is built in a similar way, and it cannot be extended to the
left, hence v and similar examples have no pre-image by T and T is not
surjective.

Though individual sequences may have strange properties, we are looking
for good statistical properties for “typical” sequences of X. This involves
looking for invariant measures; but here the situation is also different from
the finite case, as

LEMMA 2.4. — The number of occurrences of the letter 2p 4+ 2k in the
word o™ (2p) is the binomial coefficient Cy* for —n < k < n, 0 for k > |n.

Proof. — By induction on n: we write
o"(2p) = 0" H(2p — 2)0" " (2p)0" T (2p)0" T (2p + 2)
and count the occurrences in each part. O

PROPOSITION 2.5. — There is no finite measure on X Invariant under
T.

Proof. — Because of the above lemma, the maximal number of occur-
£22n
vn

if n is large. Let v be any sequence in X, n large, ¢ larger than n, r maximal

rences of any letter k in the word ¢"p is C3,,, which is smaller than

for the relation ¢ > 722"; v; ... vp can be decomposed as w; ... ws where
s < r+1 and each w; is some 0™(a;) except wy which is a suffix of o™ (aq)
and wg which is a prefix of 6™ (as). Then the number of occurrences of any

letter k in vy ... v, is at most (r + 1)C%, < %leq. Hence

N(k,v1...v9) =0

Q=

when ¢ — +o0.

But if there exists a finite invariant measure, we can find an ergodic
invariant probability p; the ergodic theorem then implies u([k]) = 0 for
every k; hence u(X) = 0, which is a contradiction. O

In spite of all these differences, in one way o behaves like a substitution
on a finite alphabet, and this will be our main tool in the next section: we
can describe it with Rokhlin stacks, as in Lemma 6.10 of [12] though we
have to use a countable family of them.

TOME 56 (2006), FASCICULE 7
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To build them, we need first a notion of synchronization, allowing us to
know how a word can be decomposed into words of the form on, n € 27;
there are different possible notions, see [1], [9] or section 3 below for further
discussion, but fortunately our o satisfies one of the strongest, which is both
a property of synchronization and recognizability.

DEFINITION 2.6. — Let o be a substitution on an alphabet A, with a
fixed point u: it is left determined if there exists N such that, if w is a word
of length at least N in the language L(u), it has a unique decomposition
w = ws ... ws where each w; is a oa; for some a; € A, except that w; may
be only a suffix of ca; and wgs may be only a prefix of cas, and the a;,
1 <7< s—1, are unique.

LEMMA 2.7. — o is left determined.

Proof. — Any word of length at least 3 contains either some nn(n + 2),
or n(n + 2)(n + 2), or n(n + 2)m for m # n + 2, or mn(n + 2) for m # n,
and this is enough to place in a unique way the bars between the w;, hence
the w; are unique; and the last letter of oca determines the letter a. O

LEMMA 2.8. — The system (X, T, u) is generated by a countable family
of Rokhlin stacks: namely, for every n € N, X is the disjoint union of the
TEom[j], j € 22,0 < k < 4" — 1.

Proof. — Let ¢ = z1... € X, M from Lemma 2.7; z1...23 has a
unique decomposition w = wy . .. w; as in Definition 2.7; for any n > M the
unique such decomposition of x; ...z, begins with w; ... ws, and this gives
a unique infinite sequence a;, i > 1, such that = begins by wicas...oq;
for every i. And ca; = wjwy, with ky = |w]], 0 < k1 < 3. Then wjx is the
unique preimage of x by T, wiz € ola;], # € T*10[a1], and = is in no
other T%q for a € A and 0 < k < 3.

This proves the lemma for n = 1. For n = 2 we apply the same reasoning
tothe word A = ay ...a; ... which isin X again; and we proceed inductively
for every n. |

Henceforth we denote by G2, the stack U?lalTjU" [2q]. The stack
G(n,2q) is made of levels T70™[2q], and such a level is included in the
cylinder [a] (thus labelled by the letter a) if a is the j + 1-th letter of
0™(2q). The levels of G(n,2q) are viewed as stacked above one another as
j increases from 0 to 4™ — 1.

PROPOSITION 2.9. — The shift T is a bijection on a closed T-invariant
subset of X with a countable complement.

ANNALES DE L’INSTITUT FOURIER
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Proof. — From the proof of Lemma 2.8 we deduce that a point z € X
can be extended uniquely to the left when it is in any T*0"[j], j € 27Z,
1 < k < 4™ — 1. Hence, if z is a point without a unique left extension,
for any n > 0 there exists g, € 2Z such that x begin by ¢"¢,; because
of Lemma 2.7 this implies ¢,—1 = ¢, — 2 for all n, and there are at most
countably many such points. And by deleting countably many orbits we
get our result. O

2.2. Natural measure and ergodicity

The last tool we need is a “natural” notion of measure; this is inspired by
the finite alphabet case, where the only invariant measure can be explicitly
built by equation 2.1 below. Though there is no unicity in our case, it is
most useful to be able to build an explicit invariant measure.

DEFINITION 2.10. — For any words v and w, we say that v is an ancestor
(under o) of w with multiplicity m if w occurs in ov at m different places.

We say that p is a natural measure on (X, T) if it is T-invariant and for
each cylinder [w],

(2.1) plw] =5 D plolm(v),

the sum being taken on all its ancestors v and m(v) denoting their multi-
plicities.

PROPOSITION 2.11. — There is a unique natural measure p, if we nor-
malize by giving to the cylinder [0] the measure 1; it is an infinite measure
on X invariant under T.

Proof. — First we define u; the naturality equation 2.1 on one-letter

words gives
4pl2n] = 2p2n] 4+ p[2n — 2] + p[2n + 2]

hence all the letters have the same measure, 1 by our normalization con-
dition. The measures of cylinders of length 2 are defined recursively by
the equation 2.1: words of the form (2n)(2n) and (2n)(2n + 2) only have
ancestors of length 1, then words of the form (2n)(2n — 2p), p > 0 only
have ancestors of the form (2n)(2n — 2p + 4), and this exhausts all words
of length 2 of nonzero measure. Then if k£ > 2 each word of length k has
only ancestors of length at most &£ — 1, and this allows to define them by
equation 2.1.

TOME 56 (2006), FASCICULE 7
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Then we have to check that for a word w,
S plaw) = 3 pwa] = plu);
a€A a€cA

because of equation 2.1 we need to check these relations only for 1-letter

words, such as p[2n] = 2_11 1[(2n)(2n — 2p)], and we check this is true
as u[(2n)(2n —2p)] = 27772 for p > —1.
Hence p is T-invariant, and clearly p(X) is infinite. O

Note that the measure p is nonatomic, and hence 7' is a bijection on a
set whose complement has measure 0.  can be said to preserve the Rokhlin
stacks: for every ¢, when n varies each G(n,2q) has measure (G 24) =

1[2q].

PROPOSITION 2.12. — The system (X, T, u) is recurrent (or conserva-
tive): namely, for every set B with 0 < u(B),

p{x € B;T"x ¢ B for every n > 0} = 0.

Proof. — We first check this result for B = [0]. For every n and ¢
p(Gr,24) = 1 and each level T90"[2¢] has measure 4~"; hence

1(Gn,2g N [0]) = 47"N(0,0"(29));
in particular, we have
1(Gn,2q N[0]) = (G 2g N [0])

if0<g<q orq <g<0.And p(Gp2NI[0]) =0if |g| > n.

Fix n > k; if —n < ¢ < n— 2k, the upper 4" % levels of G',24 correspond
to the word o™ ~*(2¢+2k) which contains a zero as |g+k| < n—k; hence the
set S, of levels in the stacks G, 24, —n < ¢ < n which have no zero above
them is included in the union of the upper 4" % levels of all these stacks
and the whole stacks Gy, 24, n—2k+1 < ¢ < n. Thus u(S,N[0]) <47F+ £,
This measure is as small as we want if we take k then n large enough, hence
the claimed property is true for B = [0].

The same reasoning works for B = [2p] for any p € Z by looking at the
stacks G4, p —n < ¢ < p+n, and for B = ¢"[2p] by replacing n by
n + r. Hence the result is true for every cylinder, hence for any (finite or
countable) union of cylinders, hence for any measurable set. O

LEMMA 2.13. — For every set B with 0 < p(B),

p{x € B;T"x & [0] for every n > 0} = 0.

ANNALES DE L’INSTITUT FOURIER
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Proof. — It is the same proof as for the previous proposition; we start
from B = [2p], look at stacks G 24, P — 1 < ¢ < p + n, which will have a
zero in their upper 4"~ levels as soon as p — n < ¢ < n — 2k, and p being
fixed, take k then m large. Then the result is true for B = ¢"[2p], every
cylinder, or any (finite or countable) union of cylinders, or any measurable
set. g

Because of the recurrence and Lemma 2.13, it makes sense to study the
induced, or first return, map of (X,T,u) on the cylinder E = [0]. Let
(E,Tg, pg) be this system, defined by Ty = T"¥y where r(y) is the first
r > 0 such that Ty € E, and ug(F) = % for F C E. This system
will be studied in the next section, but we can already use it to prove the
ergodicity of (X, T, u).

PROPOSITION 2.14. — The system (X, T, u) is ergodic: namely, for every
set B with 0 < u(B) and p(BATB) = 0, either y(B) =0 or u(X/B) = 0.

Proof. — We shall first show that (E,Tg, ug) is ergodic. pg is a finite
measure on F, and we build a generating partition P in the following way:
a return word of 0 in X is a word of the form Ow, where w does not contain
a 0 but the word Ow0 occurs in some element of X. There is a finite or
countable family of return words Ow,,, and we define the set P, as the set
of z in E such that w, occurs in z between xy = 0 and the next 0 in z.

We first check that the ergodic theorem is satisfied for atoms of P, and
begin by the simplest one, which we call Py, corresponding t([) t]he return

pl0o] _ 1

word 0 (0w0 where w is the empty word): we have ug(Fy) = Sor = 1 and

need to show that for pp-almost all y € F,

lim 5 1py (The) = -
Jim =y 1 (Tir) = .
k=0
But a visit of Ty to Py corresponds to an occurrence of the word 00 in
y € F C X, and what we want is equivalent to prove that for y -almost all
rEeX,

N(00,z¢...2p—1) . 1([00])
N(O,l’o...l’n_l) ,LL([O])
when n goes to infinity.
We look at the Rokhlin stacks: the number of 0 in 0™ (2q) is C,,¢; 00 oc-

curs in 0™ (2q) iff (—2)002 occurs in 0™ (2q), that is iff 0 occurs in o™~ 1(2q),
hence the number of 00 in 0™ (2¢) is equal to the number of 0 in o™ ~1(2¢),

TOME 56 (2006), FASCICULE 7
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that is Cjy. % . Now, for given e,

Cy 1 4n? —2n
d—e< Mg = —5—5 <d+te
Con s nm=q

as soon as |g| < en.

Now, for fixed n, all levels labelled 0 are included in the stacks G(n,2q),
—n < ¢ < n; among these stacks, we call good those in which the number
of 00 divided by the number of 0 is e-close to %: a stack is not good if
ne < g <nor —n < qg< —ne The ratio of the measure of the union of
levels 0 in the stacks with ne < ¢ < n and the union of levels 0 in the stacks

with 0 <g<nis
> o

nESGSN

Ay — o

2G5
q=0
and a,, — 0 when n — 4o00: to prove it, we compare the term C7*, 0 <

2n
i < ne, to the partial sum Zn€+(i_1)1:e 1. C37, or equivalently

€

<j<neti
to Oy nesisz] and show that this ratio tends to infinity uniformly.

Hence, as in the proof of the recurrence, with probability at least (1 —¢€)
a point = has above it a good stack: for k fixed, the stack G(n,2¢) is made
of 4% copies of stacks G(n — 2k,2¢), and these are all good as soon as
lg| < en — 2k — 1. We take x in such n-stacks deprived of their last upper
n — k-stack; then above x there is at least a full n — k-stack, hence at least
4% full n— 2k-stacks, and the relative frequency of 00 is good in any of these
full n —2k-stacks; even though it may be bad in the n — 2k-stack containing
z (because of truncation), it becomes good after averaging with the 4% — 1
following n — 2k-stacks. Then by taking ¢ = 27" and Borel-Cantelli we get
that for almost all y the frequency of P is good along a subsequence, which
is enough as it allows us to identify the limit of the Birkhoff sums (which
exists by the ergodic theorem) as ug(Pp).

For other atoms of P, and of any VI ,S"P, a similar reasoning applies:
for example, the return word 02 corresponds in L(u) to the word 020; 020
occurs in ¢™(2q) iff (—2)0020224 occurs in ¢™(2q), that is iff 02 occurs
in 0"71(2q), that is iff 0 or 2 occurs in 0" ~2(2q), while, because u is the
natural measure, [020] = 472(u[0] + u[2]); and we show in the same way

that the Birkhoff sums for the corresponding atom of P tend to £ F(L[(O[(Q)]O)]).

More generally, any atom of V2 ;S P corresponds to a word 0w0 in L(u),
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and, because of Lemma 2.7, Ow0 occurs in o™(2q) iff a shorter word w;
occurs in 6" 71(2q), and we can iterate this operation if the length of w; is
at least 3; hence Ow0 occurs in 0™(2q) iff a word wy, of length 1 or 2 occurs
in 0"~ %(2q), and this in turn is equivalent to the occurrence of either one
letter ay, or any one of two letters aj or by in 0" *71(2¢), and we have
similar estimates as p[Ow] is then respectively

47" pfag] or A7F M (ufag] + plbe]).

So the ergodic theorem is satisfied for all these atoms.
Hence for every atom F of any VI T5 P,

n—1

. 1 k
pp(F)= lm — > 1p(Tkx)
k=0
almost everywhere and in £2. Hence for any measurable set B in E, by
making the inner product with 15 we get

S
pe(F)pp(B) = lim ;;) ne(TpF N B)
and this is still true for any measurable set F' in F by approximation. Thus
any invariant set F' under T satisfies up(F) = (ug(F))? and T is ergodic.
Now, if B is T-invariant, then BN E is Tg-invariant and pg(BNE) =0
or ug(B°N E) = 0. In the first case, this implies u(T-"(B N E)) = 0 for
all n; but because of Lemma 2.13

w(B) < S p(BAT"E) = 3 w(I"(BN E)) = 0.
neN neN

In the second case we do the same for B€. O

In fact, to prove the ergodicity of T, we have proved directly that it
satisfies the so-called Hopf ergodic theorem [4]: though we cannot define
frequencies for words, we may define ratios of frequencies: namely, for al-

most all z € X, and words w and w’, %N(w,xo ...%p_1) has limit zero

plw]
nlw’]”

N(w,zo...Tn_1)

when n — +00, but N(w’,zg...Tn—1)

does converge to

2.3. The induced substitution, complexity and entropy

PROPOSITION 2.15. — The system (E,Tg, pg) is measure-theoretically
isomorphic to the symbolic system (Y, S) associated to the substitution T
on the alphabet A = N X Z, equipped with its natural measure v, which is
an invariant probability measure.

TOME 56 (2006), FASCICULE 7
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Where 7 is the

Example 2.16 (The induced drunken man substitution). —

n—14+m™t —1
(mn)— J[ GV (mn+1) [ G1)
7=0 i=—n+1l+m—

forallm e Z and n > 1.

Proof. — We have first to determine the return words; this is done em-
pirically, and we choose to classify them by families:

we start by 00, which gives the return word 0, and we denote it
by (0,1); if we apply o to 0 * 0 (with the convention o(x) = x),
we get (—2)002 % (—2)002 and by looking at the last zero before
the star and the first zero after the star, we get 02 x (—2)0, which,
deprived of its star and its last zero, gives the return word denoted
by (0,2); iterating this process from 02 % (—2)0 we get (0,3) =
0224(—4)(—2)(—2), and so on, the word (0,n) having p-measure
9-2n

applying the same process to 0 % 2, we get 02 % 0 giving (1,1) = 02,
then 0224 % (—2)0 giving (1,2), and so on, the word (1,n) having
Ji-measure 272771,

similarly from (—2) x 0, we get a family of return words denoted by
(=1, n), starting from 0 (—2)0 giving (—1,1) = 0(—2), and having
Ji-measure 27271,

we apply the same process to (2p) x (2p): we iterate o (with the
convention o(*) = *), wait until some 0 appear, then take the word
from the last zero before the star to the first zero after the star and
continue; by removing the stars and the last zero, we get a family
of return words denoted by (2p,n), of measure 272727

similarly we get the (—2p,n), of measure 272"=2P from (—2p) *
(—2p), the (2p + 1,7n), of measure 2727=2P=1 from (2p) * (2p + 2),
the (—2p — 1,n), of measure 272" ~2P~1 from (—2p — 2) * (—2p).

The short proof that we have exhausted all the return words of 0 lies in
the fact that they are all different and that the sum of their measures is

1 = p0].
And now, almost every infinite sequence in X can be written as a suc-
cession of return words of 0, ...0w_,, ...0wo0w; .. .; if we apply o to this

sequence, we get

- (=2)0020 (w_y,) . . . (—2)0020 (w ) (—2)0020 (w1 ) . ..
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Let 7 be the substitution which associates to the return word of 0 equal to
Ow the word 0020 (w)(—2), seen as a concatenation of return words of 0.
We check that its action on our words denoted by (m,n) is the one defined
above. The new substitution 7 has a fixed point beginning by (0,1), and
we can associate to it a symbolic dynamical system (Y, .S); we equip it with
its natural measure defined by v[m,n] = v(S¥[m,n]) = 271"~ and a
cylinder [w], or S*[w], has measure 1 " v[v]m(v) , the sum being taken on
all its ancestors (under 7) v and m(v) denoting their multiplicities. There
is then a natural measure-theoretic isomorphism between (E, T, ug), coded
by the generating partition P, and (Y, S, v). O

We can now revert to the symbolic system (Y, S) and study it for its own
sake

PROPOSITION 2.17. — The system (Y, S,v) is not minimal.

Proof. — The infinite sequence (0,1)...(n,1)... isin Y, and does not
contain the symbol (0,2) for example. O

Then, of course (Y, S) cannot be uniquely ergodic; it is worth noting that
we can also build sequences in Y in which every symbol occurs, but they
are not well distributed; this can be done for example by taking V; to be
7(1,1) deprived of its initial (0,1); Va to be 72(2,1) deprived of everything
before its first V7 included in a 7(1, 1); generally V, is Tq2(q, 1) deprived of
everything before its first V,_; included in a T(q_l)Q(q —1,1). The infinite
sequence beginning by V; for each ¢ has a frequency of (0, 1) smaller than %.

Note that 7 is not of constant length, and even it can be said to be
of unbounded length as the lengths of 7(m,n) are unbounded when (m,n)
exhausts the alphabet; the lengths of further iterates are not given by
straightforward formulas; we check that

[ (m, D] = C3py

while for n > 2, the lengths |77 (m, n)| involve linear combinations of bino-
mial coefficients.

7 is not left determined, nor does it satisfy any of the usual notions of
synchronization or recognizability: for example, for any p > 0, the word
(1,1)...(p,1) has no decomposition as in Definition 2.6, and the word
(0,1)...(p,1) is a prefix of infinitely many 7(m,n).

But if we drop the (countable) orbit of the sequence (0,1)...(n,1)...,
we do get a bijective shift where the equivalent of Lemma 2.8 does hold:
for any p > 0, Y is the disjoint union of the S¥7P[(m,n)], m € Z, n > 1;
0 < k < |?(m,n)| — 1. However, the Rokhlin stacks are not useful as
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they have not always the same measure, the measure of the Rokhlin stack
corresponding to 7°(m, 1) being 4*pC§p+|m|, which tends to zero when p
tends to infinity.

Substitution dynamical systems on a finite alphabet are of entropy zero,
whether in the topologic or measure-theoretic sense. The classic proof [12]

uses a finer notion, the complezity, see [1] or [3] for a detailed theory.

DEFINITION 2.18. — The complexity of an infinite sequence x is the
function p,(n) which associates to each integer n > 1 the cardinality of
L,(x).

A right special word in L(z) is a word w such that wa and wb are again
in L(z) for two different letters a and b. Prefixes and suffixes are defined
as in the usual language.

For fixed points of primitive substitutions on a finite alphabet, the com-
plexity is always bounded by Cn, and this implies the system has topolog-
ical (and hence measure-theoretic) entropy zero. But, going back to o, the
complexity of u would be p,(n) = +oo for all n. By truncating the alpha-
bet, replacing u by a fixed symbol when it is larger than a prescribed N,
we get a sequence on a finite alphabet, whose complexity can be computed
[7]; but it does not yield any dynamical property, as this truncation means
losing information on a part of X which is of infinite measure.

However, we can compute the measure-theoretic Krengel entropy [6] for
the conservative infinite measure preserving system (X, T, u); because of
Lemma 2.13, it is just the measure-theoretic entropy h(Tg, 1ug) of the in-
duced system on E, hence also of (Y, S,v). It is a finite measure-preserving
system, and the underlying non-compact symbolic system may be associ-
ated to the sequence v, the fixed point of 7 beginning by (0,1). Hence,
instead of looking at u, we can now look at v, its derived sequence (with
respect to the word 0, see [2]). With v, we have the same problem as with
u, the complexity is infinite, but a truncation argument is now possible,
losing information only on a part of Y of arbitrarily small measure. And
this will allow us to prove that the Krengel entropy of T is 0.

LEMMA 2.19. — The right special words of v of length 1 are the letters
(k,1), k> 0.

For every k > 0 and any t > 1, there is one right special word Z(k,t)
of length t ending by (k,1), and there exists n > 1 such that Z(k,t) is the
suffix of length t of the word

k—1 p+1

0
Y(k,n) = H Tk(j,l)H HTk_l_p(jal)-

j=—n p=0 7=0
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The only possible letters following Y (k,n) are the (¢, k+2) for g < —n+1.
Proof. — The letter (k,1) can be followed:
(1) by (k+1,1), and this occurs in any 7(m,n) with
(m>0m+n>2k+2) or (m>=0,n>=k+2);

(2) by any (k—p,2+p), 0 < p <k, and this occurs in 7(k — p, 1 + p);
(3) by any (¢,k+2), ¢ <0, and this occurs in 7(g, k + 1).

We look now at the possible ways to extend (k,1) to the left in the
language of v; we get first (k —1,1)(k, 1) (if k£ > 1), then ([,1)...(k,1) for
any 0 <! < k. All these words are suffixes of Wi = (0,1)... (k, 1), which is
the common prefix of all 7(m,n) for the m,n) which can follow (k — 1, 1);
they have the same possible right extensions as (k, 1).

To go further left, we have to look at which 7(m’,n’) may occur before
a 7(m,n) containing the word (0,1)...(k,1): if (m,n) corresponds to the
subcase (2) or (3) above, the only possible (m/,n’) is (k — 1,1) ; if (m,n)
corresponds to the subcase (1) above, there are infinitely many possible
(m/,n'), but they give extensions of the form w(0,1)...(k, 1) where w has
no common suffix with 7(k — 1,1) and hence w(0,1)...(k,1) can only be
followed by (k +1,1).

Hence the only way to get a right special word extending (0,1) ... (k,1)
to the left is to extend it by 7(k —1,1) or any suffix of it; then, further left,
we get the suffixes of Wy = 7(0,1)...7(k — 1,1)(0,1)...(k,1) All these
words, from (k — 1,2)W; to Wa, can be followed by any (k — p,2 + p),
0<p<k, orany (¢,k+2), qg<0. They are suffixes of the common prefix
of all 72(m,n) for the (m,n) which can follow (k — 2,1).

Continuing our extension to the left, a similar reasoning gives, as the
only possible right special words, the suffixes of W, for any 1 <p < k+1,
where W), is the common prefix of 77(m, n) for the (m,n) which can follow
(k—p,1).

Wyr1 =72(0,1)...7°(k — p, 1)W,,,
and if a right special word w is a suffix of W, but not of W, it can be
followed by any (k —q,2+¢q),p— 1< ¢ <k, or any (q,k +2), ¢ <0.

In the next step to the left, we use the fact that (—1,1)(0, 1) is the only
left extension of (0,1) to be right special, and it can be followed by any
of the successors of (0,1) except (1,1); more generally, for n > 1, the only
right special word of length n + 1 ending by (0,1) is (—n,1)...(0,1), and
it can be followed by every (p,2), p < —n + 1.

Hence the left extensions of Wy, 1 which are right special are suffixes of

™(=n,1). . TF (=1, 1) Wiy
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for n > 1. As n grows, we lose possible right extensions: namely, if a
right special word w is a suffix of 7%(—n,1)...7%(=1,1)Wj1; and not of
8(—n +1,1)...7%(=1,1)Wy41 it can be followed by every (g, k + 2), for
g < —n+1, and also by (—n+2,k+2) (replaced by (1,k+1)ifn=1) in
the case where w is a common suffix of

™ (—n, )7 (—n+1,1) ... 7F (=1, D)Wy

and
*(—n+1,2)7F(—n+1,1) ... 77 (=1, 1) Wi ,.
In particular, if w = 7%(—n,1)...7%(=1,1)W41, it can only be followed
by (¢, k +2) for ¢ < —m + 1. O
Let M > 2 be an integer. Let Ap; be the finite alphabet whose letters

are (m,n), —M+1<m<M-1,1<n<M-—1, and the letters n and
w. We define a letter-to-letter map F; from A = N x Z to Ajp; by putting

o Fyy(mym)=nif im| > M andn >2,orif n > M,

o Fyy(m,n) =wif |m| > M and n =1,

o Fyy(m,n) = (m,n) in all other cases.
Let V(M) = Fu(v).

LEMMA 2.20. — For fixed M, if w is a right special word of V(M) which
contains at least one letter other than n and w, there exists at most one
letter a € Ay such that aw is a right special word of V/(M).

Proof. — M being fixed, we omit it in the mention of F' and V. Like in
the previous lemma, we shall find all the right special words of V', moving
to the left from their possible last letters.

1) right special words ending with (0,1): any left extension w(0, 1) which
is still right special must be such that w = F(w;) = F'(w2) where w;(0,1)
can be followed by (m,n) and wz(0, 1) can be followed by (m’,n’) for some
(m,n) # (m/,n’); we shall show that there exists a number Cj such that
the only solution to this problem is w(0,1) = FZ(0,t) if |lw|+ 1 =t is at
most Cp, and that there is no solution if t > Cj.

Indeed, (m,n)(0, 1) is right special in L(V') only if it is so in L(v), w(0, 1)
does not occur, and we have to check whether 1(0,1) is right special; but
it is not the case, (0, 1), though it has infinitely many different preimages
under F, is always followed by (1,1); hence, in the language of V', the only
right special word of length 2 ending by (0,1) is (—1,1)(0,1) = FZ(0,2).
Similarly, as n(—n,1)...(0, 1) is not right special, there is only one way to
continue to the left while staying right special, until we reach

(=M +1,1)...(0,1).
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At the next step, we check again that n(—M + 1,1)...(0,1) is not right
special; the only possible right special word extending (—M +1,1)...(0,1)
to the left is F[(—M,1)(-M +1,1)...(0,1)] = w(—M +1,1)...(0,1); this
word has only one preimage under F', and, because of the previous lemma,
can only be followed by F'(q,2) for ¢ < —M +1, hence by n or (—M +1,2).
But at the next stage, no left extension of w(—M + 1,1)...(0,1) is right
special: we check that nw(—M + 1,1)...(0,1), whose preimages by F are
of the form a(—M,1)...(0,1) with F(a) = 7, is not right special; as for
ww(—M+1,1)...(0,1), whose only preimage by F'is (—M —1,1)...(0,1),
it is not right special because it can be followed only by F(q,2) for every
q < —M, and this is just 7. And no further left extension can be right
special.

2) right special words ending with (1,1): we show the same result as in
the previous case, the only right special left extensions are F'Z(1,t) (though
at some stage FZ(1,t) will have infinitely many preimages under F') for
t smaller than a number C, and after that no left extension can be right
special.

Indeed, there is nothing new as we add successively to the left of Z(1,t)
the words (0,1), 7(0,1), 7(-=1,1), ...7(—=M + 1,1): FZ(1,t) has no n nor
w and hence has only one preimage by F', and no other word than FZ(1,t)
can be right special, as the only other possibility would be replacing the
first letter of FZ(1,t) by an 7; the resulting word G(1,t) does exist when
the first letter of FZ(1,t) is a (—n,2), or when the first letter of FZ(1,t)
is a (—n, 1) and there is no other (—n,1) in FZ(1,t), but G(1,t) is never
right special.

Now we extend Z(1,t) left by 7(—M, 1); this means adding to the left
of FZ(1,t), successively, the letters (—1,1), (-=2,1) ...(=M + 1,1), and
nothing new happens; then we add an w, but nothing new happens as, in
this position, it has only one preimage by F’; then we add n, and for this
length tg FZ(1,tg) is still the only possible right special word, but it has
infinitely many preimages by F'; hence we have to check that only one left
extension of F'Z(1,tp) is right special, but this is the case, and it is indeed
FZ(1,to +1). And FZ(1,ty + 1) has again only one preimage by F', as
(0, 1)nw(—M +1,1)...(—1,1) has only one preimage, 7(—M, 1).

The same reasoning works when we extend Z(1,to + 1) left by

T(-M —1,1);

but as soon as we have added strictly more than the common suffix of
Fr(—M-1,1) and F7(—M, 2), our FZ(1,t) can only be followed by F(q, 3)
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for every ¢ < —M, and this is just 1, and no further extension will be right
special.

3) right special words ending with (k,1), 2 < k < M — 1: we show the
same result with FZ(k,t) and Cj; the reasoning is similar to the last case,
with only two differences. First, words G(k,t) deduced from FZ(k,t) by
changing its first letter into an n exist when the first letter of FZ(k,t) is a
(—n, k), or when the first letter of FZ(k,t) isa (—n,i) for 1 < i< k—1and
there is no other (—n,4) in FZ(k,t), but G(k,t) is still never right special.
Second, for k = M —1, some n will appear in F'Z(k,t) before we have added
Frk(—M,1): these are the images by F of the (—n, M) in 7M~1(—n,1).
When such an 7 is the first letter of an FZ(k,t1), it has infinitely many
preimages by F'. But still only one left extension of F'Z(k,t1) is right spe-
cial, it is indeed F'Z(k,t; + 1), and, the preimage of n being forced if we
know the letter after and the letter before, F'Z(k,t; + 1) has again only
Z(k,t; + 1) as a preimage.

4) right special words ending with (M — 1,1) followed by a string of w:
if a word ends by (M — 1,1)wP, then its preimages by F' end by

(M —1,1)...(M +p—1,1),

and these right special words are FZ(k = M +p — 1,t) for t < C}, as in
the cases before. The only new phenomenon is that, when some FZ(k,ts)
begins by 7, its only right special left extension FZ(k,ts + 1) may have
also infinitely many preimages by F' as it begins by wn; but then again its
only right special left extension is FZ(k,ts 4 2), and if we continue to the
left we still follow the F(k,t); as the preimage of 7 is forced if we know the
letter after it (in this case, even if it is w as it has only one preimage), and
either the letter before it or the number of w between the last (M — 1,1)
and it, for some ¢ < k — M FZ(k,ts + q) has again only one preimage.

5) right special words ending with (0,1) followed by a string of w and
7n: the word (0, 1)n exists in the language of V', and is the image by F' of
(0,1)(—n,2) for any n > M. After such (0,1)(—n,2) we see

(—n,1)(—n+1,1)...(=1,1).

After taking the image by F, we see that (0,1)n is always followed by w,
but (0, 1)nw is right special: it is followed by (—M + 1,1) when it is the
image of (0,1)(—=M,2)(—M,1), or by w = F(—n+1,1) when it is the image
of (0,1)(—n,2)(—n, 1) for n > M.
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Any left extension w(0,1)nw which is still right special must be such
that w = F(wy) = F(wz) where wy(0,1) can be followed by (—M,2) and
w2(0,1) can be followed by (—n,2) for some n > M; this is a similar
problem to the one in case 1), and we show that this implies w = FZ(0,t)
for t < Cy,1, while there is no solution for |w| > Cp 1. The only difference
is that Cy1 = Cp + 1 as we can extend as far as ¢ = M + 1, the last ¢ for
which Z(0,t) can be followed by (—M,2).

Similarly, (0, 1)nw? is right special for every p > 1, as it is followed by
(=M +1,1) when

nP = F((=M —p+1,2) (=M —p+1,1)...(—M,1))

and by w when nw? = F((—n,2)(—-n,1)...(—n + p — 1,1)) for some n >
M + p — 1. By the same reasoning, its only right special left extension is
FZ(0,t)nw? for t < Cy,p, and then no further left extension can be right
special. This exhausts the case 5).

6) right special words ending with (k,1) followed by a string of w and n:
for k = 1 we have right special words (1, 1)nw? for every p > 2, followed by
(=M +1,1) when nw? = F((-M —p+2,3)(—-M —p+1,1)...(—M, 1))
and by w when nw? = F((—n,3)(—n+1,1)...(-n+p,1)) for some n >
M + p — 2. By the same reasoning, its only right special left extension is
FZ(1,t)nw? for t < C1,, and then no further left extension can be right
special.

The same situation happens for 1 > k > M — 3, with right specials
(k, 1)nw? for every p > k+ 1, which extend to the left into FZ(k, t)nw? for
t < Cy p, and then no further left extension can be right special.

For k = M — 2, in (k,1)n n can be F(—n, M) for any n < 0 (and not
only for n < M). This gives right specials (k, 1)nw? for every p > 0, and
again they extend to the left into F'Z(k,t)nw? for t < Cyp, and then no
further left extension can be right special.

For k=M — 1, in (k,1)n n can be F(—n, M + 1) for any n < 0 and also
F(1,M). This gives the same situation as in the previous case.

The case k = M corresponds to right specials (M — 1, 1)wnw? for every
p=20,withw=F(M,1),n=F(—n,M+2)foranyn <0,n=F(1,M+1)
or n = F (2, M); they extend to the left into F'Z(k, t)nw? for t < Cy, p, and
then no further left extension can be right special.

This last situation generalizes to k = M + q, ¢ > 1, with right specials
(M —1,1)w?nw? for every p > 0, with

Wt = (M, 1)...(M+q—1,1)),n=F(-n,M +q+1)
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for any n < 0, or n = F(r, M +q+1—r) for any r > 0; they extend to the
left into FZ(k,t)nw? for t < C p, and then no further left extension can
be right special. g

PROPOSITION 2.21. — The complexity of V(M) is bounded by K (M )n3.

Proof. — Let M be fixed, p(n) the complexity function of V (M), g(n)
the number of its right special words of length n. A right special word of
length n + 1 is a left extension of a right special word of length n; the only
ones for which more than one left extension is right special are those which
are made only with 77 and w; as between two 7 there is always at least a
(0,1), the only possible ones are strings of w and zero or one 7; this makes
n+1 different words and each of these has at most M’ = (M —1)(2M —1)+2
left extensions, hence ¢(n + 1) < g(n) + (M’ — 1)(n + 1) while p(n + 1) <
p(n) + (M’ — 1)g(n), and this gives the desired estimate. O

COROLLARY 2.22. — The measure-theoretic entropy h(S,v), and hence
the Krengel entropy of (X, T, u) are equal to 0.

Proof. — The shift on the language of V(M) is of polynomial complexity,
hence has a topological entropy equal to 0. Now we equip the system (Y, .5)
with the partition Py; whose atoms are

e Py(n) = {yo = (m,n) for some (m,n) with |m| > M and n > 2,

or with n > M},

e Py(w) ={yo = (m,n) for some (m,n) with |m| > M and n = 1},

e Py(m,n)={yo=(m,n)} if |m| < M and n < M.
The measure-theoretic entropy h(Pas, S) is the measure-theoretic entropy
of the shift on the language of V(M) for the measure induced by v, hence
it is zero. When M goes to infinity, Py; converges, in the sense of the
usual distance between partitions, to the partition P of Y into cylinders
{zg = (m,n)}, m € GZ, n > 1, hence h(P,S) =0, hence h(S,v) =0 as P
is a generating partition. O

Remark 2.23. — The proof of Lemma 2.20 allows us to compute more
precisely the complexity of V(M), but, as the truncation is somewhat ar-
bitrary, the exact value is not of dynamical interest.

Both the language of v (by Lemma 2.19) and the language of u ([7])
satisfy the property that, if w is a right special word, there exists at most
one letter a such that aw is a right special word; this, of course, does not
prevent their complexity function to be infinite, and this property is in gen-
eral not preserved by taking the derived sequence; also, it is not preserved
by truncation, even after restricting it to right special words made with
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letters which have only one preimage in the non-truncated alphabet. But
still it is a possible generalization to infinite alphabets of various notions of
low complexity (such as those described in [3]), and it would be interesting
to know which information it gives on a system in general.

2.4. The two-sided shift

We can also take the subset X’ of A% to be the set of all sequences
x = (zp,n € Z) such that every finite word occurring in z is in L(u), and
consider the two-sided shift defined by (T'z), = x,41 for all n € GZ.

PROPOSITION 2.24. — (X', T") is minimal.

Proof. — Suppose that a sequence z € X' is such that x,, # 0 for all n
large enough, and look at the one-sided sequence without 0

y = (Tn,m = N).

y is in X and, because of Lemma 2.7 and as in the proof of Lemma 2.8, we
can define without ambiguity two sequences ¢, € 2Z and k, € {1,2,3,4}
such that the beginning of y falls into the word ¢™¢,, and into the k,-th
word in its decomposition

0"qn =0""gn —2)0" (gn)"  (qn) o™ Hgn + 2).

Because these sequences are unique, we get that ¢,_1 = ¢, — 2 if k, = 1,
Qn-1 = qn if k, =2 o0r k, = 3, gu_1 = q, + 2 if k, = 4. Because the
sequence y contains the full words 0™~ !(q) situated to the right of the k,-
th in 0™(g,), these cannot contain any 0, and this implies the following
conditions

o if k, =1 (hence ¢, = gn—1+2), go = 2n or g, < —2n — 2,

e if k, =2 (hence ¢, = gn—1), gn = 2n 0r ¢, < —2n — 2,

e if k, = 3 (hence ¢, = gn—1), gn = 2n —2 or g, < —2n — 2,

e if k, = 4 (hence ¢, = gn—1 — 2), no condition.

But these conditions can be satisfied only if k,, = 1 for all n large enough
or k, = 4 for all n large enough. In the first case we have ¢, = Q + 2n
for n > N, and y begins with 0™ (Q + 2n). Before y in z there must be a
o"r,, T, can be any number larger or equal to @ 4+ 2n — 2; as o"r, ends
by 0"~ 1(r,, + 2) we must have r,, = r,_; — 2, and it is impossible to find
such a sequence, y cannot be extended to the left. By the same reasoning,
in the case where k,, = 4 for all n large enough, (x,,n < N — 1) could not
have been extended to the right.
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Hence in any sequence in X’ there are Os arbitrarily far to the right and
to the left; this is true in the same way for each letter 2¢q, ¢ € Z, and, by
applying oP, this is true also for each o?(2q), hence for each word w € L(u).
Hence any orbit visits any cylinder, hence it is dense. O

As far as invariant measures go, the two-sided shift behaves as the one-
sided shift T': there is no finite invariant measure, and the natural measure
u' can be defined on (X', T") exactly as p on (X, T).

Note that, though (X’,T") is minimal, there are uncountably many infi-
nite T’-invariant measures not proportional to u’; indeed, take any C > 4,
and define, with the notations of Lemma 2.11,

pelvl = & 3 pelelm(@),

and fix for example pc[0] = pel2] = 1; we get another infinite measure on
X' invariant under T": we check, as in Lemma 2.11, that each one-letter
cylinder has a positive measure (this part would not be true for C < 4),
and that for every n

+oo

ul2n] = Y ul(2n)(2n - 2p)];

p=-—1
this last relation is transformed by the defining equation into

+oo

p[2n] =Y C7H(Cpl2n — 2g) — p[2n — 2¢ — 2)),

and hence is satisfied. The condition on the left extensions of [2n] is checked
similarly, while compatibility conditions for words of length at least 3 come
directly from the defining equation.

Note that pe can be defined similarly on the one-sided shift, giving
uncountably many non-proportional T-invariant measures concentrated on
the same set as u.

pe is not ergodic, as it has the same support as p/ and u' is ergodic,
because Proposition 2.9 implies that (X, 4, T') and (X', u/, T") are measure-
theoretically isomorphic.

Note that, similarly, the two-sided shift associated to the substitution
7 is minimal but not uniquely ergodic; we can equip it with the natural
measure 1/, getting a system which is measure-theoretically isomorphic to
(Y. 5,v).
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3. General theory

DEFINITION 3.1. — The matrix of a substitution o is defined by M =
((map)), a € A, b € A, where myy, is the number of occurrences of the letter
b in the word oa.

DEFINITION 3.2. — Let M be a matrix on a countable alphabet. We
denote by m;;(n) the coefficients of M™; M is irreducible if for every (i, j)
there exists ¢ such that m;;(¢) > 0. An irreducible M has period d if for
every i d = GCD{{;m;;(¢) > 0}, and is aperiodic if d = 1.

An irreducible aperiodic matrix admits a Perron-Frobenius eigenvalue A
defined as

3=

limy,— 4oomij(n)
M is transient if
me JAT" < o0,

recurrent otherwise. For a recurrent M, we define

li;(1) = myj;,4;(n+ 1) ZEW )My
ri
M is null recurrent if
anu AT < +oo,

and positive recurrent othermse.

The reference for all the definitions and results on infinite matrices above
is section 7.1 of [5]. The vocabulary comes from the theory of random walks:
when it is stochastic, a matrix is positive recurrent if it is the matrix of
a random walk which returns to each point with probability one and the
expectation of the waiting time is finite, it is null recurrent if it is the
matrix of a random walk which returns to each point with probability one
and the expectation of the waiting time is infinite, and it is transient if
it is the matrix of a random walk which does not return to each point
with probability one. And the matrix of the drunken man substitution is
a multiple of the matrix of the famous random walk of the same name,
though the dynamical systems we can associate to these two objects are
completely different.

Now, for a given substitution o on a countable alphabet A, with an
irreducible matrix, we define a language L(u), either through a fixed point,
possibly artificial as in section 2.1, or as the set of words which occur in
o"a for at least one a € A and n > 0; then we define the dynamical system
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associated to o in the same way as in section 2.1 (to fix ideas, we take the
one-sided shift, but the following results apply as well to the two sided-shift
as in section 2.4).

ProOPOSITION 3.3. — If o is of constant length and has an irreducible
aperiodic positive recurrent matrix, the associated system (X, T) admits a
natural invariant measure which is a probability.

Proof. — By Theorem 7.1.3 of [5], M admits a Perron-Frobenius eigen-
value A\, with positive left and right eigenvectors [ and r such that the
scalar product Ir is finite. Moreover, as |oca| = L for all letters, we have
A = L and r is a multiple of (...1,1...). We define the natural measure
on letters by taking (u[a],a € A) to be the left eigenvector £ normalized to
have ) ., f(a) = 1.

For longer words, we use the substitution o) defined in [12], section 5.4,
on the alphabet A(;) = Li(u) by associating to the k-letter vy ...v; the
word on Ay

(W) W2 Y1) - Ykt - Yt)

if the |ov1|+k —1= L+ k — 1 first letters of o(vy...vy) are yy ...y:. We
denote by M) the matrix of this substitution.

M) is also irreducible and aperiodic, and has L as its Perron-Frobenius
eigenvalue, with left and right eigenvectors £(3) and r(3), and we can take
r2) = (...1,1...). We can approximate M and My by finite submatri-

ces M) and M((zn))7 on alphabets A(™ and AE;)), with Perron-Frobenius

eigenvalues A(™ and )\EZ)) , left eigenvectors £(™) Egg)) , normalized so that for

every a € A,

oo )= Y ) (ba) = ("(a).

n). (n) n). (n)
be Al >,abeA(2) be Al ),baEA(Q)

By Theorem 7.1.4 of [5], £") and EE;)) tend respectively to £ and £ (5, hence

we can normalize £(2y so that for every a € A,

S lela) = DT l(ba) = La).
bEA;abEA 2 bEAbaE A (g

As a consequence, we get that the scalar product £(3)r(2) is finite, and, by
Theorem 7.1.3 of [5], this implies that M,y is positive recurrent. And we
define the natural measure on two-letter words by taking (u[ab],ab € Asg)
to be the left eigenvctor £(5) normalized as above.

Similarly M, is positive recurrent and we define (pfw],w € A*) to
be its left eigenvctor for the Perron-Frobenius eigenvalue L, normalized
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inductively by the compatibility relations; and p(T*[w]) = p[w] for all
cylinders. The naturality equation 2.1 is then a translation of the relations

Note that, because of the above proof, the easiest way to check that the
matrix of a substitution of constant length L is positive recurrent (or not)
is to check whether the equation M = L¢ has (or not) a solution such that
> acat(a) = 1; this equation is also, with the notations of section 2, for
every letter a € A,

1

the sum being taken on all the ancestors b of a and m(b) denoting their
multiplicities.

PROPOSITION 3.4. — If o is of constant length, left determined, and
has an irreducible aperiodic positive recurrent matrix, the natural invariant
probability is ergodic.

Proof. — Under this hypothesis, Lemma 2.8 holds (with 4 replaced by
the length L everywhere): we have stacks G(n,a), a € A, and G(n,a) has
measure pu([a]).

Let 0 be a fixed element of A. Let f(n,a) be the number of levels 0 in
the stack G(n,a), which is also the number of occurrences of 0 in ¢™a; by
assertion (ii) of Lemma 7.1.19 in [5],

T09) . o)

when n — +oo for fixed a; the limit is identified by the definition of p and

its normalization.

Fix €, choose k£ and n to be precised later. Choose a finite subset B of
A, of cardinality M, such that ) g p([a]) < e. Then choose n such that
the frequency of 0 is e-good (% is e-close to u([0])) in all stacks o™ *a,
a € B. Take the union of stacks G(n,a), a € B, which is of measure at least
1 —¢; each word o™a is a concatenation of L* words o™ ¥b, or equivalently
each stack o"a is a union of L* copies of stacks G(n — k,b); call a word
or column ¢”*b good if b € B; in the whole picture there are M L* words
o™ Fb, of which at least M L*(1—¢) are good. Call a level of a stack G(n,a)
good if there exist at least k words ™ ¥b above it, not counting the one in
which it is, and at least k(1 —¢) of them are good. The total number of good
levels is (by a Fubini-type argument: for each level, we count the number
of bad n — k-words in the next k£ above it, and when we sum all that, we
find k times the total number of bad n — k-words, up to boundary effects)
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at least MLF(1 —¢) — MkL™". If z is in a good level, the frequency of 0 in
the orbit of = up to the top of the k-th word ¢™~*b above it is good up to
€+ e+ k™! (to allow for the initial truncation and the bad n — k-words).
Thus with probability at least (1 — 2¢) a point x has above it a piece
of orbit where the frequency of 0 is 3e-good. Then by taking ¢ = 27"
and Borel-Cantelli we get that for almost all x there exists a subsequence
K, (z) such that the frequency of 0 is 2~"-good along the orbit x, ..., T*»x;
and this allows us to identify the limit in Birkhoff’s theorem as w([0]).
Hence we have proved the ergodic theorem for the cylinder [0], or any one-
letter cylinder; it holds for any cylinder of length k, either by computing
its number of occurrences in the stacks through its ancestors and using
the naturality equation, or directly by using the same machinery for the
substitution o). And the validity of the ergodic theorem on a dense class
of subsets implies ergodicity. O

In the hypothesis, the notion of left determination can be replaced by
weaker notions: in particular, if we take the two-sided shift (or if we can
restrict ourselves to a suitable set to have a bijective one-sided shift), we
need only what we may call strong bilateral recognizability : there exists
M such that, if w = z1...2, is a word in the language L(u), the word
w' = xpr... 72— has one decomposition w = w; ... w, where each w; is
a oa; for some a; € A, except that wi may be only a suffix of ca; and w;
may be only a prefix of ga,, and the w; and a;, 1 < ¢ < s, are uniquely
determined by w; this property is convenient on finite alphabets, as it is
true as soon as o is primitive and has a nonperiodic fixed point, see [9].
It is not clear how (and for which notion of primitivity) this result may
be extended to infinite alphabets; but, in most examples we can build in
constant length, a notion of synchronization can be proved directly as in
Lemma 2.7: the usual way is to find a subword which fixes the position of
bars, and then use a property of injectivity on letters to get recognizability.

Here are examples of positive recurrent situations:

Example 3.5 (The one step forward, two step backwards, substitution).

n—n-1)Mn-=-1)(n+1)
for all m > 1, and

0— 111.

As its matrix is of period two,

ANNALES DE L’INSTITUT FOURIER



SUBSTITUTIONS, INFINITE ALPHABET 2341

Example 3.6 (The squared one step forward, two step backwards, substi-
tution). —

n— (n—2)(n—2)n(n—2)(n—2)nnn(n + 2)

for all even n > 2, and
0 — 002002002.

This substitution is left determined, has a positive recurrent irreducible
aperiodic matrix, hence the system has a natural invariant ergodic prob-
ability measure, which gives measure % to [0] and 272" to [2n], n > 1.
But it is still not uniquely ergodic.

Example 3.7 (The golden ratio substitution). —
n—(n—-2)(n+1)
for all n > 2,

0 — 01,
1 —02.

It is left determined, has a positive recurrent irreducible aperiodic ma-
trix, and the natural invariant ergodic probability gives to [n] the measure
27 (3—/5)

2(1+v5)"
Example 3.8 (The infini-Bonacci substitution). —
n—1ln+1)

for all n > 1.

This is a very special case, as the symbolic system is minimal (even
if we take the one-sided shift) and uniquely ergodic (indeed, if u is the
fixed point, beginning by 1, for every word w %N(w,up ... Uptn—1) has
a limit f(w) uniformly in p when n goes to infinity; hence, there is one
invariant probability, giving measure f(w) to the cylinder [w]). Measure-
theoretically, the system is isomorphic to the dyadic odometer, with an
explicit coding to and from the system generated by the period-doubling
substitution on two letters, 1 — 12, 2 — 11 (just send the even digits of
u to 2 and the odd digits to 1). From the combinatorial point of view,
the infini-Bonacci fixed point was defined by Cassaigne ([1], section 6) and
used to build many interesting new sequences: it thus earned the unofficial
nickname of the universal counter-example, and will be studied in depth in
the forthcoming [10].
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In the null recurrent case, a typical example is the drunken man substi-
tution, whose matrix is proved to be null recurrent in Example 7.1.28 of
[5], unsurprisingly in view of the above considerations on random walks,
while the squared drunken man substitution has a null recurrent irreducible
aperiodic matrix.

For this class, we can just generalize the beginning of section 2: if o is
of constant length, and has an irreducible aperiodic null recurrent matrix,
we can define a natural measure by Perron-Frobenius left eigenvectors, and
it is an infinite invariant measure; with a property of synchronization as
in the last paragraph, we can generate the system by Rokhlin stacks, and
prove it is recurrent; however, the proof of the ergodicity in section 2 uses
precise estimates which are not clearly generalizable.

As for the transient case, it does not lead to general results: eigenvectors
for the Perron-Frobenius eigenvalue measure may exist or not, see Remark
7.1.12 in [5]. Note also that, except in section 2.3, we have not considered
substitutions of nonconstant length: natural invariant measures might be
defined through Perron-Frobenius left eigenvectors, but the finiteness of the
measure may not be linked to positive recurrence (as the right eigenvector
is not (...,1,1,...)) and the all-important tool of Rokhlin stacks seems
difficult to use. Still, we finish by an example which is of non-constant
length with a transient matrix:

Example 3.9 (The positive drunken man substitution). —
n— (n—1)(n+1)

for allm > 1, and
0—1.

The matrix of this substitution is shown to be transient in Example
7.1.29 of [5]; it is of period 2, hence we study the square.

Example 3.10 (The squared positive drunken man substitution). —
n— (n—2)nn(n+2)

for all even n > 2, and
0 — 02.

The matrix is irreducible, aperiodic and transient; there exists an infi-
nite invariant measure, defined by left eigenvectors for the Perron-Frobenius
eigenvalue 4; after we normalize it by p[0] = 1, its value on letters is given
by u[2n] = 2n + 1, and on cylinders by equation 2.1. Hand computations
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suggest that, despite a misleading vocabulary, the infinite measure preserv-
ing dynamical system is recurrent, and, when we induce it on the cylinder

[0], what we get is isomorphic to the system associated to

Example 3.11 (The induced positive drunken man substitution). —

n—123...(n+1)

for all n > 1.

[1]

=

(10]
(11]

(12]
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